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Critical exponents at the superconductor-insulator transition in dirty-boson systems
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| obtain the inverse of the correlation length exponent at the superfluid—Bose-glass quantum critical point as
a series in a small parametgd—1, with d being the dimensionality of the system, and compute the two
lowest terms. Fod=2, | find »s=0.81 andv,=1.03 for short-range and Coulomb interactions between
bosons, respectively. When combined with the exact values of the dynamical critical exponents, these results
are in quantitative agreement with experiments on onset of superfluiditiénin porous glasses and on the
superconductor-insulator transition in homogeneous metallic films.

The phenomenon of the superconductor-insulgteh =2) could be understood as smoothly evolving from the
transition occurs in a variety of low-dimensional electronic zero-disorder critical point il=1. The idea is to note that,
systems, examples ranging from Josephson junction érrayby preventing the clean superfluid ground statdinl from
and homogeneous thin film$ to high-temperature exhibiting a true long-range order, the Mermin-Wagner
superconductordand is believed to represent a prototypical theoreni* forces the Sl fixed point id=1 to lie precisely at
quantum (zero-temperatujephase transition. At low tem- zerodisorder'® In d=1+ € a true long-range order becomes
peratures, as some controlling parameter like the thickness @ossible and the superfluid thus becomes more resilient to
a film is varied, the resistivity changes from a sharply de-gisorder, which causes the Sl fixed point to shift to a finite,
creasing to a continuously increasing function  of byt small, value of disorder, controlled by the paramet&t

temperatur€.The good collapse of the resistivity data under ajthough the dirty-boson transition probably lacks the upper
scaling and near universality of the critical value of the con-.itical dimensiort® it has the lower critical dimensiod,

ductivity indicate a quantumT{=0) critical point that sepa- =1, and this in principle allows one to compute the univer-

rates two many-body_ 9“““?0' sFates W.'th different sy_mme-?al guantities at the transition perturbatively in the small pa-
tries. A natural question arises: what is the mechanism o _ - . . .
rametere=d— 1. Within this formalism, a particular sym-

destruction of the superfluid ground state in a disordered . )
P g etry of the low-energy action present =1 guarantees

system? One possibly universal answer is provided by th ) S . -
so-called dirty-boson theory, which postulates that it is thet%at the dynamical critical exponentis-d (z=1 for Cou-

loss of the superconducting phase coherence due to localiz2MP interaction exactly;” in agreement with the expecta-
tion of Cooper pairs which is ultimately responsible for theion based on the compressible nature of the Bose dfass.
Sl transition®® Since on the scale of the diverging phase-The second correlation length exponenthowever, turns
coherence correlation length Cooper pairs will appear agut to be a perturbation series ife. On the experimental
point particles, the Sl transition would, under this hypothesisside, a directly measurable quantity is typically the product
in general fall into the same universality class as the onset aff the two exponentzv,®>® and a meaningful comparison
superfluidity in “He in disordered mediacorrected for the with experiment requires knowledge of the exponento
long-rangeness of the Coulomb interaction. In principle, asome accuracy. In this paper | present a field-theoretic
way to assess the validity of this idea is to compare thenethod for higher-order calculations within tkeexpansion
measured critical exponents with the calculations for theor the superfluid—Bose-glass transition, and use it to com-
dirty-boson Hamiltonian. The strongly coupled nature of thepyte the correlation length exponentttoo lowest orders in
dirty-boson critical point, however, poses a fundamental ob- ¢ The result for both short-range and Coulomb interactions
stacle to this procedure, and makes any but a most qua“tat“‘r?etween bosonsee Table)lleads to values of in d=2 in

ungierstanding of the superfluid—Bose-g'Iass tra}nsition Very very good agreement with the experiments on the onset of
difficult. The absence of a useful noninteracting Startmgsuperfluidity in *He in aerogdl and on the SI transition in

point for disordered bosons forces one to rely on uncontrol;[hin metallic films® as well as with the Monte Carlo calcu
lable approximation schemes or turn to numerical '

calculations'® This seems to be a common problem for theo—laﬁonS on th? dirty-boson Hamiltoniéﬁ.!\/ly .calculation
ries of interacting disordered low-dimensional quantum sysSUPPOrts the idea that the Si transition in disordered elec-
tems, apparent also in fermionic systems of this §fpen tronic systems falls into the dirty-boson universality class,

fact, the dirty-boson Hamiltonian may be the simplest quang:\nd e_;tab]ishes a way for a qu_antitative understanding pf the

tum problem that irreducibly contains the physics of interac-S! criticality, as presently exists for the thermal critical

tions and disordet? and as such has received a lot of atten-Phenomena® The effort involved in higher-order calcula-

tion through the year¥ tions of the correlation length exponent and of the universal
Recently, an approach to the dirty-boson criticality hascritical conductivity is discussed.

been suggested, according to which the strongly coupled  To be specific, consider the effective low-enerfy:0

superfluid—Bose-glass critical point in two dimensiorms ( action for the disordered superfluid ¢h=1:1°16
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TABLE I. Comparison between experiment, Monte Carlo, andthen that there could be no disorder-dependent terms in Eq.
second-ordere-expansion results for the critical exponents, for (4) 2 soz=d at the fixed point. The correlation length ex-

short-rangg(s) and Coulomb(c) universality classes.

Experiment Monte Carl8 € expansion
Vs 0.80+0.04° 0.90+0.10 0.81
z 2 2.0:0.1 2
Ve 1.2+0.2¢ 0.9+0.15 1.03
Z 1.0+0.19 1.0 1

%Reference 17.
bReference 9.
‘Reference 24.
dReference 3.

N

s

mi=1

J_m dxdr{c?[ 9, 6,(x,7)]1?+[9.6,(x,7)]°}

N
-D D, dxdrdr'cos 7 6;(x,7)— 6;(x,7')].
ij=1 J -
()
The couplingK is inversely proportional to the superfluid

density at some microscopic cutoff length %, c is the ve-
locity of low-energy phonons, anD is proportional to the

ponenty follows from the linearization of the first two equa-
tions near the critical point &/* ~u* ~ €. It is then straight-
forward to check that to second orderdH?

1+3(a+b)
+—

vy t=312e12 5

e+0(e?) (5

for short-range interactions. TH2(e%?) term follows from
the higher-order terms in Eq&) and (3).

While the outlined procedure is conceptually simple, its
implementation is made difficult by the fact that the action in
Eg. (1) has a compact form only in real space, and the inter-
action term contains all powers of the dual field. A similar
obstacle appears in the calculation of the Kosterlitz recursion
relations beyond the lowest order in fugacityHere | will
introduce a field-theoretic approach to the problem, which
also enables one to avoid the usual pitfalls of the
momentum-shell renormalization group when applied be-
yond the lowest order. The gist of the method is to recognize
thatind=1, right atu=0, the coupling constaiw becomes
dimensionless, and the theof%) appears to be just renor-
malizable. One then expects that the logarithmic divergences
at the renormalizable poigt=1 andu= 0 will at small finite
u show as poles when— 0. Since the couplindV acquires

width of the Gaussian random potential. The interaction bea finite scaling dimension fan+ 0, the coefficients in thg
tween particles in Eq.) is taken to be short ranged, and the functions are expected to stay finite @s>0. This is analo-

standard limit on the number of replichs—0 is assumed.
The field 6(x, 7) is thedual phase'®*°and the above theory

gous to the standard procedure of dimensional regularization,
commonly used to study thermal critical phenomena near the

describes the destruction of the sound mode in the superfluidpper critical dimensioh® except that here the coupling con-

due to unbinding of topological defec(phase slipsat the
point of transition ind=1. Its role is similar to that of sine-

stantu plays the role of dimension, while the real physical
dimension is at first fixed ail=1. When finallyd— 1+ e,

Gordon theory for the Kosterlitz-Thouless transition in thethe 8 functions are deformed into Eq&)—(4).

two-dimensionaX Y model?° To determine the macroscopic

With this strategy in mind, consider the self-energy de-

state of the system, one is in principle interested in the fate dfined by the propagator of the dual phase dx=1 as

the coupling, ¢, andD as the cutoff in the theory is low-
ered. Under a changk— A/s the combinations of the cou-
pling constantsi=3— "1 (where p=Kc), k=1/Kc?, and
W~D (to be precisely defined shorjlyin d=1+ € dimen-
sions, are expected to renormalize according to fthe
functions?®

U= e(u—23)+W+auW+O(W?3), 2
W=uW+bW2+O(uW?), )
k=(d—2)k, 4

wherex=dx/d In(s), anda andb are numerical coefficients.
The d-dependent terms in the recursion relatio®s-(4) can

G Yk, w)=(2K/7)(w?*+c?k?) + 3 (w). It will prove useful
to separate the first- and second-order contributions iy
writing it as 3 (0)=3(w)+3,(w)+0(D?%, where 3,
~D". Simple calculation then gives

oo

El(w)=8Df_ dr(1—e'“ne '™, (6)

where the two-point  correlation  function f(7)
=4(6(0,0) 6(0,0)— 6(0,7)]) is given by the integral

cAl7dx

(3—u)f0 ?(1_e7X).

Whenu—0, it readily follows that at small frequencies

f(7)

@)

be understood as deriving from the scaling of the superfluid

density, ps~K 1~&27279 and the compressibilityx
~ ¢~ 4 1318 where¢ is the diverging correlation length near
the critical point and: the dynamical exponent. Adopting the
logic of the minimal subtraction schermthe disorder-

2W /(1
El(w)=w2% G+O(1)

, ®

where | introduced the frequency-dependent, dimensionless

dependent terms in the recursion relations should be confoupling W=[4mD/(c?A®)](cA/w)". After a tedious but
puted precisely ird=1, where one has the dual representa-straightforward algebra, one similarly finds

tion (1) of the low-energy theory on his disposal. The
symmetry of the interaction term in E¢(L) under a transfor-
mation 6;(x, 7)— 6;(x, 1)+ f(x), for arbitrary f(x), implies

2

*1(w) ()

(€)

22<w)=%(



PRB 61 CRITICAL EXPONENTS AT THE SUPERCONDUCTOR.. . 14725

where appears also in thg functions for the sine-Gordon mod@,
where it determines the first correction to the Kosterlitz-
Thouless scaling.

| expect the presented expansion to lead to a divergent
series; the poinD=0 in the action(1) is nonanalytic, since

l(w)=8D2f dydrdr'dv(1—e'“7)

CH— () , o for D<O th_e Gaussian probability distribution for the ran- _
xe Fly,v,77")|1+e dom potential becomes unbounded. Nevertheless, the hope is
that the series in Eq5), for example, will be asymptotic,
1 e and that the few lowest terms may already lead to useful
X5(1-e 1) =1y, (10 results. Indeed, estimating, for d=2 from the simple sum

of the first two terms gives = 0.81, within bounds found in
andF denotes a four-point correlation function: the Monte Carlo calculations. The experimental data of
Crowell et al. on the onset of superfluidity and on the spe-
F(y,v,7,7")=e X000-00n6y.0)-0yo+7]) (17)  cific heat of *He in aerogel at low temperatufesn its face
) ) ] ) value are consistent with the effective dimensionalitydof
When w—0, after rescaling the imaginary times and the =2 _uynder this assumption the product of the two exponents
length in the integral a&n7— 7 and wy/c—yYy, the leading n their experiment igr=1.60+0.08. Assuming further that
divergence i (w) asu—0 comes from the integration over z =2 at the transition ind=2 gives »=0.80+0.04. Al-
small values ofr and7’. To obtain the leading divergence in though the uncertainty cited here should be taken with some
I (w) it therefore suffices to exparfd to the lowest order in  reservation, and the accuracy of the measurement falls short
7 and 7', to find that at small frequencies of the standards in thermal critical phenomena, the result
appears to be in excellent agreement with my calculation
6 1 1 (see Table)l It is worth noting that the inequality v=2/d
|(w)=—w2—CW2 —2+O(a) - (120 seems to be violated both by the experiment and by my
& u estimate. It has been argued recefftlthat the above in-
The last equation is the central result of this work. Collecting€duality is an artifact of the particular averaging procedure,

all the terms back into the self-energy one recognizes th@"d that the true exponent is in fact not bound from below. It
renormalized coupling, as the coefficient of? term in the would be interesting to see if the h|gher-prder corrections
propagator. In general, eventually push the value of; above unity ind=2, or in-

deedv,<1 as the experiment and the present calculation

W2 W2 suggest. ' ' _ '
m=n+—+X—+0| — (13 To make a comparison with the experiments on SI transi-
' u u? u tion in homogeneous thin films with thickness as the tuning

o ) parameterit is necessary to take into account the long-range
where the terms finite whem— 0 have been discarded, and Coulomb interaction between the Cooper pairs. As explained
x is a number determined from EQL2). After judiciously  in detail elsewherg**within the present scheme this may be
defining the renormalized disorder from EG3) asW,=W  simply accomplished by defining the Coulomb interaction as
+2xWA/u, gnd rescaling it to bring the coefficient of the v (r)=e?fd% exp(q-r)/g® %, so as to coincide with the
O(W) term in Eq.(2) to unity as 9, —W,, differentiation  s-function repulsion ind=1. The only change in the calcu-
with respect to IngA/w) leads to Eqs(2) and (3) for the  |ation then is thaz,=1 and thate— €/2 in Eq.(2), while the
renormalized couplings, and W, , with the coefficientsa  disorder-dependent terms in the recursion relations, which
=—2/3 andb=2x/9, with b=0. The subleading~W?/u follow from d=1, remain the same. The first two terms in
term in Eq.(13) determines the nex®(W?) term in Eq.(2),  the series then give,=1.03, in accordance with the Monte
and the next-order correction t@l. Carlo resulty’ (see Table)l Experiment findsz,=1.0+0.1,

A remarkable feature of the perturbation seriesifpis its Py suppressing the transition temperature with the magnetic
independence of the renormalization procedure, i.e., of théield or by scaling of resistance with the electric fiél@ol-
nonuniversal finite parts of the self-energy which have beef@Psing the resistivity daf_é then gives the experimental
dropped in the last equation. To see this to the order of th¥alue of ».=1.2+0.2, again in very good agreement with

present calculation consider the most general redefinition gy result. , ,
the coupling constants to the ordéR:2° As mentioned earlier, the next term in the seriBsre-

quires only the computation of the subleadir@(W?/u)

' 2 term in EqQ.(13). Here, however, it appears that it is no
Ur = Ur - aW o Bu Wy 7 W (14 longer engugh to know the correlatEr(F;;\F;ter rescaling the
lengths withw) only at small rescaled and 7', as it was for
the leading divergence in Eq12). In light of the likely
where the coefficientéa, . . . ,o} are finite and dependable asymptotic nature of the expansion, this is left for future
on the finite parts of the self-energy. It is easy to check thawork.
the recursion relations for the new couplings have the same Another universal quantity of interest is the critical con-
form as Egs.(2) and (3), but with the coefficientsa’=a ductivity in d=22 which, aside from the universal unit
+a—5 andb'=b—a+ 5. Interestingly, while the coeffi- €2/h, for bosons of charge, can be obtained as a Laurent
cientsa and b by themselves are nonuniversal, the critical series ine.?® The lowest-order term was obtained in Ref. 23,
exponent requires only their sum, which is perfectly univer-and ford=2 the resultaczo.Ggei/h agrees with the low-
sal, i.e., scheme independent. An invariant similaateb  temperature experiment on bismuth fifthgjuite well. It

W, =W, + 8u,W, + e W?, (15)
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would nevertheless be useful to compute the next-order colrder contribution to the self-energy.

rection and see if it pushes the result towards the self-dual In conclusion, it has been shown that the expansion
value ofe?/h, to which a large number of experimental re- around the lower critical dimensiond;=1 for the
sults seems to converge. Calculating the next-order term ifuperfluid—Bose-glass critical point allows a field-theoretic
the critical conductivity would in principle proceed along the formulation that facilitates a systematic higher-order calcula-
same lines as here, except that one needs to perform thi@n of the critical exponents. The computation to two lowest
analytic continuation to real frequencies to obtain the real'ders yields results for the correlation length critical expo-
time dc response at low temperature. This problem wadents ind=2 in respectable agreement with the experiment

solved in Ref. 23 to lowest order, but applying the same tric nd Monte Carlo_ calculations, bOth. for the short-range and
in the next-order term does not seem straightforward. A pre. oulomb interactions between particles. The results suggest

- ; that the superconductor-insulator transition in homogeneous
liminary analysis also suggests that the second-order contr{-

. . L : . thin films is in the universality class of disordered bosons.
bution to the universal conductivity requires a computation
of both leading and subleading divergences in the second- This work has been supported by NSERC of Canada.

1H. S. J. van der Zant, W. J. Elion, L. J. Geerligs, and J. E. Mooij, 43, 942(1979.

Phys. Rev. B54, 10 081(1996. 13| F. Herbut, Phys. Rev. B8, 971(1998.
2Y. Liu, K. McGreer, B. Nease, D. Haviland, G. Martinez, J. Hal- **N. D. Mermin and H. Wagner, Phys. Rev. Le22, 1133(1966);

ley, and A. Goldman, Phys. Rev. Le@7, 2068(1991); J. M. P. C. Hohenberg, Phys. Rel58 383(1967).

Valles, Jr., R. C. Dynes, and J. P. Garitmd. 69, 3567(1992. 15see, for example, T. Giamarchi and H. J. Schulz, Phys. Rev. B
SA. F. Hebard and M. A. Paalanen, Phys. Rev. Lé®, 927 37, 325(1988.

(1990; A. Yazdani and A. Kapitulnikjbid. 74, 3037 (1995. 16M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S. Fisher,
4S. Doniach and M. Inui, Phys. Rev. &l 6668(1990; Y. Fuku- Phys. Rev. B40, 546 (1989.

zumi, K. Mizuhashi, K. Takenaka, and S. Uchida, Phys. Rev.}’M. Wallin, E. S. Sorensen, S. M. Girvin, and A. P. Young, Phys.

Lett. 76, 684 (1996. Rev. B49, 12 115(1994).
SFor a recent review, see A. Goldman and N. Markp®hys.  8J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,

Today51(11), 39 (1998. The Theory of Critical Phenomena; an Introduction to the
6M. Ma and P. A. Lee, Phys. Rev. 8, 5658(1985; M. Ma, B. Renormalization GrougClarendon Press, Oxford, 199Zhap.

I. Halperin, and P. A. Leeibid. 34, 3136(1986. 10.
"T. V. Ramakrishnan, Phys. S¢F27, 24 (1989. 19F. D. M. Haldane, Phys. Rev. Lef1, 605(1983.
8M. P. A. Fisher and G. Grinstein, Phys. Rev. Lé@, 208(1988;  2°D. J. Amit, Y. Y. Goldschmidt, and G. Grinstein, J. Phys 18,

M. P. A. Fisher, G. Grinstein, and S. M. Girviihid. 64, 587 585(1980.

(1990. 23 T, Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev.
9p. A. Crowell, F. W. Van Keuls, and J. D. Reppy, Phys. Rev. B Lett. 57, 2999 (1986.

55, 12 620(1997, and references therein. 22F. pazmandi, R. T. Scalettar, and G. T. Zimanyi, Phys. Rev. Lett.
05ee I. F. Herbut, Phys. Rev. Left9, 3502(1997; Phys. Rev. B 79, 5130(1997.

57, 13 729(1998, and references therein. 23|, F. Herbut, Phys. Rev. Let81, 3916(1998.

11D, Belitz and T. R. Kirkpatrick, Rev. Mod. Phy66, 261 (1994. 24N. Markovic, C. Christiansen, A. M. Mack, W. H. Huber, and A.
123 A. Hertz, L. Fleishman, and P. W. Anderson, Phys. Rev. Lett. M. Goldman, Phys. Rev. B0, 4320(1999.



