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Critical exponents at the superconductor-insulator transition in dirty-boson systems
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I obtain the inverse of the correlation length exponent at the superfluid–Bose-glass quantum critical point as
a series in a small parameterAd21, with d being the dimensionality of the system, and compute the two
lowest terms. Ford52, I find ns50.81 andnc51.03 for short-range and Coulomb interactions between
bosons, respectively. When combined with the exact values of the dynamical critical exponents, these results
are in quantitative agreement with experiments on onset of superfluidity in4He in porous glasses and on the
superconductor-insulator transition in homogeneous metallic films.
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The phenomenon of the superconductor-insulator~SI!
transition occurs in a variety of low-dimensional electron
systems, examples ranging from Josephson junction arr1

and homogeneous thin films2,3 to high-temperature
superconductors,4 and is believed to represent a prototypic
quantum ~zero-temperature! phase transition. At low tem
peratures, as some controlling parameter like the thicknes
a film is varied, the resistivity changes from a sharply d
creasing to a continuously increasing function
temperature.5 The good collapse of the resistivity data und
scaling and near universality of the critical value of the co
ductivity indicate a quantum (T50) critical point that sepa-
rates two many-body ground states with different symm
tries. A natural question arises: what is the mechanism
destruction of the superfluid ground state in a disorde
system? One possibly universal answer is provided by
so-called dirty-boson theory, which postulates that it is
loss of the superconducting phase coherence due to loca
tion of Cooper pairs which is ultimately responsible for t
SI transition.6–8 Since on the scale of the diverging phas
coherence correlation length Cooper pairs will appear
point particles, the SI transition would, under this hypothe
in general fall into the same universality class as the onse
superfluidity in 4He in disordered media,9 corrected for the
long-rangeness of the Coulomb interaction. In principle
way to assess the validity of this idea is to compare
measured critical exponents with the calculations for
dirty-boson Hamiltonian. The strongly coupled nature of t
dirty-boson critical point, however, poses a fundamental
stacle to this procedure, and makes any but a most qualita
understanding of the superfluid–Bose-glass transition v
difficult. The absence of a useful noninteracting start
point for disordered bosons forces one to rely on uncont
lable approximation schemes or turn to numeri
calculations.10 This seems to be a common problem for the
ries of interacting disordered low-dimensional quantum s
tems, apparent also in fermionic systems of this type.11 In
fact, the dirty-boson Hamiltonian may be the simplest qu
tum problem that irreducibly contains the physics of inter
tions and disorder,12 and as such has received a lot of atte
tion through the years.10

Recently, an approach to the dirty-boson criticality h
been suggested,13 according to which the strongly couple
superfluid–Bose-glass critical point in two dimensionsd
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s

l

of
-
f
r
-

-
of
d
e

e
za-

-
s
,

of

a
e
e
e
-
ve
ry
g
l-
l
-
-

-
-
-

s

52) could be understood as smoothly evolving from t
zero-disorder critical point ind51. The idea is to note that
by preventing the clean superfluid ground state ind51 from
exhibiting a true long-range order, the Mermin-Wagn
theorem14 forces the SI fixed point ind51 to lie precisely at
zerodisorder.15 In d511e a true long-range order become
possible and the superfluid thus becomes more resilien
disorder, which causes the SI fixed point to shift to a fini
but small, value of disorder, controlled by the parametere.13

Although the dirty-boson transition probably lacks the upp
critical dimension,16 it has the lower critical dimensiondl

51, and this in principle allows one to compute the unive
sal quantities at the transition perturbatively in the small
rametere5d21. Within this formalism, a particular sym
metry of the low-energy action present ind51 guarantees
that the dynamical critical exponent isz5d (z51 for Cou-
lomb interaction! exactly,13 in agreement with the expecta
tion based on the compressible nature of the Bose gla16

The second correlation length exponentn, however, turns
out to be a perturbation series inAe. On the experimenta
side, a directly measurable quantity is typically the prod
of the two exponentszn,5,9 and a meaningful compariso
with experiment requires knowledge of the exponentn to
some accuracy. In this paper I present a field-theor
method for higher-order calculations within thee expansion
for the superfluid–Bose-glass transition, and use it to co
pute the correlation length exponent totwo lowest orders in
Ae. The result for both short-range and Coulomb interactio
between bosons~see Table I! leads to values ofn in d52 in
a very good agreement with the experiments on the onse
superfluidity in 4He in aerogel9 and on the SI transition in
thin metallic films,5 as well as with the Monte Carlo calcu
lations on the dirty-boson Hamiltonian.17 My calculation
supports the idea that the SI transition in disordered e
tronic systems falls into the dirty-boson universality cla
and establishes a way for a quantitative understanding of
SI criticality, as presently exists for the thermal critic
phenomena.18 The effort involved in higher-order calcula
tions of the correlation length exponent and of the univer
critical conductivity is discussed.

To be specific, consider the effective low-energyT50
action for the disordered superfluid ind51:19,16
14 723 ©2000 The American Physical Society
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K

p (
i 51

N E
2`

`

dxdt$c2@]xu i~x,t!#21@]tu i~x,t!#2%

2D (
i , j 51

N E
2`

`

dxdtdt8cos 2@u i~x,t!2u j~x,t8!#.

~1!

The couplingK is inversely proportional to the superflui
density at some microscopic cutoff lengthL21, c is the ve-
locity of low-energy phonons, andD is proportional to the
width of the Gaussian random potential. The interaction
tween particles in Eq.~1! is taken to be short ranged, and th
standard limit on the number of replicasN→0 is assumed.
The fieldu(x,t) is thedual phase,19,10 and the above theory
describes the destruction of the sound mode in the super
due to unbinding of topological defects~phase slips! at the
point of transition ind51. Its role is similar to that of sine
Gordon theory for the Kosterlitz-Thouless transition in t
two-dimensionalXY model.20 To determine the macroscop
state of the system, one is in principle interested in the fat
the couplingsK, c, andD as the cutoff in the theory is low
ered. Under a changeL→L/s the combinations of the cou
pling constantsu532h21 ~whereh5Kc), k51/Kc2, and
W;D ~to be precisely defined shortly!, in d511e dimen-
sions, are expected to renormalize according to theb
functions:13

u̇5e~u23!1W1auW1O~W2!, ~2!

Ẇ5uW1bW21O~uW2!, ~3!

k̇5~d2z!k, ~4!

whereẋ5dx/d ln(s), anda andb are numerical coefficients
Thed-dependent terms in the recursion relations~2!–~4! can
be understood as deriving from the scaling of the superfl
density, rs f;K21;j22z2d, and the compressibility,k
;jz2d,13,16 wherej is the diverging correlation length nea
the critical point andz the dynamical exponent. Adopting th
logic of the minimal subtraction scheme,18 the disorder-
dependent terms in the recursion relations should be c
puted precisely ind51, where one has the dual represen
tion ~1! of the low-energy theory on his disposal. Th
symmetry of the interaction term in Eq.~1! under a transfor-
mation u i(x,t)→u i(x,t)1 f (x), for arbitrary f (x), implies

TABLE I. Comparison between experiment, Monte Carlo, a
second-ordere-expansion results for the critical exponents, f
short-range~s! and Coulomb~c! universality classes.

Experiment Monte Carloa e expansion

ns 0.8060.04b 0.9060.10 0.81
zs 2 2.060.1 2
nc 1.260.2c 0.960.15 1.03
zc 1.060.1d 1.0 1

aReference 17.
bReference 9.
cReference 24.
dReference 3.
-

id

of

id

-
-

then that there could be no disorder-dependent terms in
~4!,13 so z5d at the fixed point. The correlation length ex
ponentn follows from the linearization of the first two equa
tions near the critical point atW* ;u* ;e. It is then straight-
forward to check that to second order ine1/2

ns
21531/2e1/21

113~a1b!

2
e1O~e3/2! ~5!

for short-range interactions. TheO(e3/2) term follows from
the higher-order terms in Eqs.~2! and ~3!.

While the outlined procedure is conceptually simple,
implementation is made difficult by the fact that the action
Eq. ~1! has a compact form only in real space, and the int
action term contains all powers of the dual field. A simil
obstacle appears in the calculation of the Kosterlitz recurs
relations beyond the lowest order in fugacity.20 Here I will
introduce a field-theoretic approach to the problem, wh
also enables one to avoid the usual pitfalls of t
momentum-shell renormalization group when applied
yond the lowest order. The gist of the method is to recogn
that ind51, right atu50, the coupling constantW becomes
dimensionless, and the theory~1! appears to be just renor
malizable. One then expects that the logarithmic divergen
at the renormalizable pointd51 andu50 will at small finite
u show as poles whenu→0. Since the couplingW acquires
a finite scaling dimension foruÞ0, the coefficients in theb
functions are expected to stay finite asu→0. This is analo-
gous to the standard procedure of dimensional regularizat
commonly used to study thermal critical phenomena near
upper critical dimension,18 except that here the coupling con
stantu plays the role of dimension, while the real physic
dimension is at first fixed atd51. When finallyd→11e,
the b functions are deformed into Eqs.~2!–~4!.

With this strategy in mind, consider the self-energy d
fined by the propagator of the dual phase ind51 as
G21(k,v)5(2K/p)(v21c2k2)1S(v). It will prove useful
to separate the first- and second-order contributions toS by
writing it as S(v)5S1(v)1S2(v)1O(D3), where Sn
;Dn. Simple calculation then gives

S1~v!58DE
2`

`

dt~12eivt!e2 f (t), ~6!

where the two-point correlation function f (t)
54^u(0,0)@u(0,0)2u(0,t)#& is given by the integral

f ~t!5~32u!E
0

cLutudx

x
~12e2x!. ~7!

Whenu→0, it readily follows that at small frequencies

S1~v!5v2
2W

pc S 1

u
1O~1! D , ~8!

where I introduced the frequency-dependent, dimension
coupling W5@4pD/(c2L3)#(cL/v)u. After a tedious but
straightforward algebra, one similarly finds

S2~v!5
p

2K S S1~v!

v D 2

1I ~v!, ~9!
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where

I ~v!58D2 È`

dydtdt8dv~12eivt!

3e2 f (t)2 f (t8)H F~y,v,t,t8!F11e2 ivv

3
1

2
~12e2 ivt8!G21J , ~10!

andF denotes a four-point correlation function:

F~y,v,t,t8!5e24^[u(0,0)2u(0,t)][ u(y,v)2u(y,v1t8)] &. ~11!

When v→0, after rescaling the imaginary times and t
length in the integral asvt→t and vy/c→y, the leading
divergence inI (v) asu→0 comes from the integration ove
small values oft andt8. To obtain the leading divergence i
I (v) it therefore suffices to expandF to the lowest order in
t andt8, to find that at small frequencies

I ~v!52v2
6

pc
W2F 1

u2
1OS 1

uD G . ~12!

The last equation is the central result of this work. Collect
all the terms back into the self-energy one recognizes
renormalized couplingh r as the coefficient ofv2 term in the
propagator. In general,

h r5h1
W

u
1x

W2

u2
1OS W2

u D , ~13!

where the terms finite whenu→0 have been discarded, an
x is a number determined from Eq.~12!. After judiciously
defining the renormalized disorder from Eq.~13! asWr5W
12xW2/u, and rescaling it to bring the coefficient of th
O(W) term in Eq.~2! to unity as 9Wr→Wr , differentiation
with respect to ln(cL/v) leads to Eqs.~2! and ~3! for the
renormalized couplingsur and Wr , with the coefficientsa
522/3 andb52x/9, with b50. The subleading;W2/u
term in Eq.~13! determines the nextO(W2) term in Eq.~2!,
and the next-order correction tons

21 .
A remarkable feature of the perturbation series forns is its

independence of the renormalization procedure, i.e., of
nonuniversal finite parts of the self-energy which have b
dropped in the last equation. To see this to the order of
present calculation consider the most general redefinitio
the coupling constants to the orderW2:20

ur85ur1aWr1burWr1gWr
2 , ~14!

Wr85Wr1durWr1sWr
2 , ~15!

where the coefficients$a, . . . ,s% are finite and dependabl
on the finite parts of the self-energy. It is easy to check t
the recursion relations for the new couplings have the sa
form as Eqs.~2! and ~3!, but with the coefficientsa85a
1a2d and b85b2a1d. Interestingly, while the coeffi-
cientsa and b by themselves are nonuniversal, the critic
exponent requires only their sum, which is perfectly univ
sal, i.e., scheme independent. An invariant similar toa1b
g
e

e
n
e

of

t
e

l
-

appears also in theb functions for the sine-Gordon model,20

where it determines the first correction to the Kosterli
Thouless scaling.

I expect the presentede expansion to lead to a divergen
series; the pointD50 in the action~1! is nonanalytic, since
for D,0 the Gaussian probability distribution for the ra
dom potential becomes unbounded. Nevertheless, the ho
that the series in Eq.~5!, for example, will be asymptotic
and that the few lowest terms may already lead to use
results. Indeed, estimatingns for d52 from the simple sum
of the first two terms givesns50.81, within bounds found in
the Monte Carlo calculations.17 The experimental data o
Crowell et al. on the onset of superfluidity and on the sp
cific heat of 4He in aerogel at low temperatures9 on its face
value are consistent with the effective dimensionality ofd
52. Under this assumption the product of the two expone
in their experiment iszn51.6060.08. Assuming further tha
zs52 at the transition ind52 gives n50.8060.04. Al-
though the uncertainty cited here should be taken with so
reservation, and the accuracy of the measurement falls s
of the standards in thermal critical phenomena, the re
appears to be in excellent agreement with my calculat
~see Table I!. It is worth noting that the inequality21 n>2/d
seems to be violated both by the experiment and by
estimate. It has been argued recently22 that the above in-
equality is an artifact of the particular averaging procedu
and that the true exponent is in fact not bound from below
would be interesting to see if the higher-order correctio
eventually push the value ofns above unity ind52, or in-
deed ns,1 as the experiment and the present calculat
suggest.

To make a comparison with the experiments on SI tran
tion in homogeneous thin films with thickness as the tun
parameter2 it is necessary to take into account the long-ran
Coulomb interaction between the Cooper pairs. As explai
in detail elsewhere13,23within the present scheme this may b
simply accomplished by defining the Coulomb interaction
Vc(rW)5e2*ddqW exp(iqW•rW)/qd21, so as to coincide with the
d-function repulsion ind51. The only change in the calcu
lation then is thatzc51 and thate→e/2 in Eq.~2!, while the
disorder-dependent terms in the recursion relations, wh
follow from d51, remain the same. The first two terms
the series then givenc51.03, in accordance with the Mont
Carlo results17 ~see Table I!. Experiment findszc51.060.1,
by suppressing the transition temperature with the magn
field or by scaling of resistance with the electric field.3 Col-
lapsing the resistivity data24 then gives the experimenta
value of nc51.260.2, again in very good agreement wi
my result.

As mentioned earlier, the next term in the series~5! re-
quires only the computation of the subleading,O(W2/u)
term in Eq. ~13!. Here, however, it appears that it is n
longer enough to know the correlatorF ~after rescaling the
lengths withv) only at small rescaledt andt8, as it was for
the leading divergence in Eq.~12!. In light of the likely
asymptotic nature of the expansion, this is left for futu
work.

Another universal quantity of interest is the critical co
ductivity in d52,8 which, aside from the universal un
e
*
2 /h, for bosons of chargee* can be obtained as a Laure

series ine.23 The lowest-order term was obtained in Ref. 2
and for d52 the resultsc50.69e

*
2 /h agrees with the low-

temperature experiment on bismuth films24 quite well. It
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would nevertheless be useful to compute the next-order
rection and see if it pushes the result towards the self-d
value ofe

*
2 /h, to which a large number of experimental r

sults seems to converge. Calculating the next-order term
the critical conductivity would in principle proceed along th
same lines as here, except that one needs to perform
analytic continuation to real frequencies to obtain the re
time dc response at low temperature. This problem w
solved in Ref. 23 to lowest order, but applying the same tr
in the next-order term does not seem straightforward. A p
liminary analysis also suggests that the second-order co
bution to the universal conductivity requires a computat
of both leading and subleading divergences in the seco
oi

l-

ev

. B

et
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al

in

the
l-
s
k
-

ri-
n
d-

order contribution to the self-energy.
In conclusion, it has been shown that the expans

around the lower critical dimensiondl51 for the
superfluid–Bose-glass critical point allows a field-theore
formulation that facilitates a systematic higher-order calcu
tion of the critical exponents. The computation to two lowe
orders yields results for the correlation length critical exp
nents ind52 in respectable agreement with the experim
and Monte Carlo calculations, both for the short-range a
Coulomb interactions between particles. The results sug
that the superconductor-insulator transition in homogene
thin films is in the universality class of disordered bosons
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