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Susceptibility amplitude ratio near a Lifshitz point
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The susceptibility amplitude ratio in the neighborhood of a uniaxial Lifshitz point is calculated at the
one-loop level using field-theoretic arg-expansion methods. We use the Schwinger parametrization of the
propagator in order to split the quadratic and quartic part of the momenta, as well as a new special symmetry
point suitable for renormalization purposes. For a cubic latttte ), we find the resul€, /C_=3.85.

[. INTRODUCTION In this work we calculate the susceptibility amplitude ra-
tio at a Lifshitz point using\ ¢* field theory ande-expansion
Universality is a key concept in the theory of critical phe- methods at first order in the loop expansion. In order to per-
nomena, which states that all critical properties only dependorm the one-loop integrals, we use the Schwinger parametri-
on the number of components of the order parameter chagation for the free propagator, as well as a new special sym-
acterizing the phase transition and the space dimension of tHgetry point. We will show that the result has the same
system. Beside the critical exponents, the amplitude ratiogdependence owr =4.5—d for a uniaxial Lifshitz point as
above and below the critical temperature for different therthat exhibited by the usual Ising-like system, where the loop
modynamic potentials are examples of universal quantitiesexpansion parameter is=4—d. We find the numerical
One special type of critical behavior is associated with thevalue C, /C_=3.85 for this amplitude ratio in a three-
Lifshitz point.z In magnetic systems, the uniaxial Lifshitz dimensional lattice. To our knowledge, this is the first time
point can be described by an axially nearest-neighbor Isinghat an amplitude ratio for the Lifshitz critical behavior is
model (ANNNI),® which consists of a spig-Ising model on  calculated to first order i, . The presentation goes as fol-
a cubic lattice with nearest-neighbor ferromagnetic couplingdows. In Sec. Il, we develop our approach to deal with the
and next-nearest-neighbor competing antiferromagnetic inuniaxial Lifshitz behavior and calculate the susceptibility
teractions along a single lattice axis. Due to the competitiongmplitude ratio. In Sec. Ill, we discuss our results and com-
the system presents a modulated phéseaddition to the pare with other methods existing in the literature.
ordinary paramagnetic and ferromagnetic ones. Although
this model possesses a variety of modulated phases, we are Il. SUSCEPTIBILITY AMPLITUDE RATIO
going to concentrate our attention only on the Lifshitz criti- . 4
cal region, where a simple field-theoretic setting can be de- 11€ MOst convenient way to formulate thep™ field-
fined: see Sec. Il belowTheoretical and experimental stud- 1€0retic approach to the Lifshitz point is the Lagrangian
ies in MnP (Refs. 4 and 5showed that this system indeed d€scription, which is equivalent to the usual Landau-
presents this sort of uniaxial Lifshitz critical behavior. Ginzburg-Wilson Hamiltonian formulation. For the uniaxial
Renormalization-group and-expansion techniques are Case the bare Lagrangian is
particularly suitable to investigate amplitude ratios of critical 1 1 1 1
system§. However, very little is known about these ampli- L= §|V§¢|2+§|V(d—1)¢|2+ 5§|V1¢|2+ §t0¢2
tude ratios for the Lifshitz critical behavior. The specific-heat
amplitude ratio for a uniaxial Lifshitz point was measured in 1
MnP by Bindilatti, Becerra, and OliveiraRecently, some +E)\¢4' 2
authors obtained this amplitude ratio theoretically at the :

mean-field level. It turned out that the two results do not We see that the competition along one axis produces the

agree. This disagreement is not surprising, for the fluctuag s term in the above expression. Furthermore, at the Lif-
tions must be taken into account in a proper treatment usingii; critical pointé=0. We are going to focus our attention
the e expansion. In order to find an outcome beyond mean;, ihis case from now on.

field for this amplitude ratio, one needs the coupling constant 1 expression for the one-loop renormalized Helmholtz
at the two-loop level. As it is only known at one-loop for the ee_energy density at the fixed point associated with the
Lifshitz point, we can then ask ourselves if it is possible t0|,4iaxial Lifshitz critical behavior of the system is

calculate some other amplitude ratio at one-loop order with

this restricted knowledge of the coupling constant. If one 1 1 1
considers the susceptibility amplitude ratio, such a progranfr (t,M)= EIMZJF 4—,9* M4+Z

1
24 g* tM2+ Zg*ZM“ lsp
can be achieved. Besides, having a theoretical prediction for

this amplitude ratio, where the renormalization-group tech- O - waa2ia L o
nique can be exploited in its full power, should motivate +§f d® qdKk{In[1+(1/2)g*M/(k*+q°+1)]
experiments to test the degree of accuracy of this approach

for systems of this type. —39*M?/(k*+g?)}. 2
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In the above equation,M (t,= Z:/)zlt, $=2,""M) are the
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We can perform one of the integrals in the Schwinger

renormalized(bare reduced temperature and order param-Parameters using a change of variables. Then, after a rescale,

eter, respectivelyZ 42,Z, are renormalization functiong*
is the renormalized coupling constant at the fixed pcﬁn’ts

the result can be expressed in the following form

a (d—1)-dimensional wave vector along the direction paral- f f dada, exp( . ma (ag+ ay) (A= D2FWA)]
lel to the plane where only ferromagnetic nearest-neighbor J0 /0 aytaz

interactions take place, whergats a wave vector parallel to d-1 1 1

the axis where the antiferromagnetic competition is local- :1"[2_(_4__ f do (v (1—v))ld- D2+ (1A4)]-2,
ized. The integral g, is defined by 2 4/lJo

| _f d?-1qdk
) Lk K) (g p) A (KA ?)

)

®

Now we make the continuatiod=4.5-¢ . We can
make use of the identity I'[1.75- (€. /2)]T"(0.25)

The symmetry point that simplifies the integral is chosen= (3\2m/4)['[2— (€./2)], to get the following expression

at external momenté’ =0, p?=1. The dimensionful cou-

for Isp:

pling constant is related to the dimensionless one through the

formula g* = (p?) ~“2u*. Therefore, choosing the scale of
external moment®?=1 has the advantage of transforming
the dimensionful coupling constant into the convenient di-
mensionless* . At this point it is convenient to extract for

1+ —. 9)

1 €
2

|
P e,

We are now in a position to calculate the susceptibility

each loop integration a geometric angular factor and absorbmplitude ratio. Using Eg(2), we find the following renor-

it in the coupling constant. In our case, it is\(3/8)Sy_1S;,
where S4=[29"17921(d/2)]"*. In order to calculate this
integral, we use the Schwinger parametrization:

f d? ‘qdk
[k*+(q+p)?l(k*+0?)

=f f dada,
0 Jo

><f d?rgexf — (a1 + @) 92— 2a,qp— ayp?®]. (4)

Zdekexp[—(al—Faz)k“]
0

The g integral can be easily performed,

f d? g exfd — (a;+ az)g?—2a,qp— a,p?]

1 1
:Esd—lr 5

2

- ayap
(ag+ap) 9" Y2exp —

(11"1‘&2

(5

and thek integration i§
2 [ “akext— (e + @K'= bart a) 4r(). (©
0

Inserting Eqgs(5), and(6) into Eq. (4) together with the
valuep?=1, one finds

U di-1qdk )
[k*+(q+p)?l(k*+0?) p2=1

d-1 o o
—)F(%)J j daida,
2 0 Jo

(ay+ ay) 1@ D2e W] @

1
:st—lr

a,ap
xXexp —
(11“1‘ (£ %]

malized equation of state:

H —&F—M 1 NVE 1 M 1 M2
R—m—t +€U +EU t+EU
d? 1qdk
X Isp_ d

(k*+q?)

1
K*+g?+t+ EU*MZ)
(10
The one-loop integral is then readily calculated:

d4-1qdk

1
(k4+q2)( K*+ g% +t+ Eu*|v|2>

1 €
= Er(z— %)r (t+3Iu*M?)~ <2 (11

€L
2

The renormalized two-point vertex part

J
TEO=—Hr (12)
is related to the susceptibility as
x =rgo. (13)

We can now apply the following procedure to calculate
this amplitude ratid® For T>T, we can putM =0 into Eq.
(12) above and use the Lifshitz value at the fixed paifit
=2¢ /3, to get

X(T>TL)=t_7L(1—%). (14

For T<T,, we useu*M?=—6t and proceeding along
the same lines gives the result
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€L that the Monte Carlo result was more appropriate, because
X(T<TL)=(—'E)_7L§( 1- 54+ 2)>, (15  the expansion parameter is not small and, therefore, the
perturbative expansion might not be reliable. On the other
with amplitude ratio hand, carrying out the calculation of the critical exponents to
second order irr, might actually bring their values closer to
those obtained via Monte Carlo. The definite answer to either
possibility has to wait until one can figure out the fixed point
at two-loop order. As Monte Carlo methods are not available
yet to calculate amplitude ratios, the most direct way to

—Toon-1t (16)

where y, =1+ (¢€./6) and 8. =3 — (€. /6) are the suscepti-
bility and magnetization critical exponents, respectively, 8Shrobe the numerical value at order of the susceptibility

sociated_ to the Lifshi_tz .point. Th_is result i.s then the amp"'amplitude ratio shown here is to compare with experiments
tude ratio for the uniaxial case in the neighborhood of theg, e done in systems with uniaxial critical Lifshitz behavior,
Lifshitz point (6=0). such as MnP. This comparison should give a clue about the
reliability of the €, expansion methods in this case. Finally,
although some authors have recently proposed a different
First, we note that expressidi6) has the same depen- field-theoretic approach to the Lifshitz pqﬁﬁtheir method _
dence org, as the usual Ising-like critical behavior, the only gﬁgii :c:)tfstﬁin;;%r?it?;”sgﬁ fr?];r(ges liﬂ;a)i(r'ft‘:ag@e&]gor;the"
difference being the value af, =1.5 for a cubic lattice e
=3). The numerical value for the amplitude ratio is then?ﬁfg'cﬁgﬁégi;ecﬁﬁgglr nt;(;?w.a Iir:)?reio(;e, r?ur relsult suﬁgests that
C./C_=3.85. Compared with the valu€( /C )meantod T : 4=0) has almost the same
=2, the correction due to the fluctuations is remarkable. Sec(i‘”t'ca.I properties as the u_suall Ising model. The main differ-
ond, the method developed here might be efficient to calcu€"ce 1S ;he crltlgal z'menjf)g’f"e"hth? Ipoplixpansmn pardam—
late the fixed point at the two-loop level, and then to find theite_rsél' g ?jr?gﬁﬂéeunit;y;al Lifsr?i:zt peoi:tm'?He ?gﬁifg} f:;/‘o
e : : ) L=4. . -
SVE;CEfvaiategpr)ge:lrLu:nia{F Sgg;ﬁ;?ﬁ;&;fetgéorggmf g{f Ipop calculations and crossover are under current investiga-
tained for the susceptibility amplitude ratio should motivate!O"-
the realization of experiments to check whether the
renormalization-group techniques are suitable to understand
this sort of system. Indeed, the comparison of the critical The author would like to thank Denis Dalmazi for useful
exponents3, and vy, to first order ine_ with Monte Carlo  discussions and for pointing out Ref. 9. Support from
simulations showed that they are differént was argued FAPESP, Grant No. 98/06612-6, is gratefully acknowledged.
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