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Susceptibility amplitude ratio near a Lifshitz point
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The susceptibility amplitude ratio in the neighborhood of a uniaxial Lifshitz point is calculated at the
one-loop level using field-theoretic andeL-expansion methods. We use the Schwinger parametrization of the
propagator in order to split the quadratic and quartic part of the momenta, as well as a new special symmetry
point suitable for renormalization purposes. For a cubic lattice (d53), we find the resultC1 /C253.85.
e-
en
ha
f t
tio
er
es
th
z
in

ng
i

ion

g
e
iti-
d
-
d

e
a

li-
a
in

th
t
ua
sin
an
a
e
to
it
n
a
f

ch
te
a

a-

er-
tri-

ym-
e

op

-
e

is
l-
he
ity
m-

an
u-

al

the
Lif-
n

ltz
the
I. INTRODUCTION

Universality is a key concept in the theory of critical ph
nomena, which states that all critical properties only dep
on the number of components of the order parameter c
acterizing the phase transition and the space dimension o
system. Beside the critical exponents, the amplitude ra
above and below the critical temperature for different th
modynamic potentials are examples of universal quantiti1

One special type of critical behavior is associated with
Lifshitz point.2 In magnetic systems, the uniaxial Lifshit
point can be described by an axially nearest-neighbor Is
model~ANNNI !,3 which consists of a spin-1

2 Ising model on
a cubic lattice with nearest-neighbor ferromagnetic coupli
and next-nearest-neighbor competing antiferromagnetic
teractions along a single lattice axis. Due to the competit
the system presents a modulated phase~in addition to the
ordinary paramagnetic and ferromagnetic ones. Althou
this model possesses a variety of modulated phases, w
going to concentrate our attention only on the Lifshitz cr
cal region, where a simple field-theoretic setting can be
fined; see Sec. II below!. Theoretical and experimental stud
ies in MnP~Refs. 4 and 5! showed that this system indee
presents this sort of uniaxial Lifshitz critical behavior.

Renormalization-group ande-expansion techniques ar
particularly suitable to investigate amplitude ratios of critic
systems.6 However, very little is known about these amp
tude ratios for the Lifshitz critical behavior. The specific-he
amplitude ratio for a uniaxial Lifshitz point was measured
MnP by Bindilatti, Becerra, and Oliveira.5 Recently, some
authors obtained this amplitude ratio theoretically at
mean-field level.7 It turned out that the two results do no
agree. This disagreement is not surprising, for the fluct
tions must be taken into account in a proper treatment u
the e expansion. In order to find an outcome beyond me
field for this amplitude ratio, one needs the coupling const
at the two-loop level. As it is only known at one-loop for th
Lifshitz point, we can then ask ourselves if it is possible
calculate some other amplitude ratio at one-loop order w
this restricted knowledge of the coupling constant. If o
considers the susceptibility amplitude ratio, such a progr
can be achieved. Besides, having a theoretical prediction
this amplitude ratio, where the renormalization-group te
nique can be exploited in its full power, should motiva
experiments to test the degree of accuracy of this appro
for systems of this type.
PRB 610163-1829/2000/61~21!/14691~3!/$15.00
d
r-
he
s
-
.
e

g

s
n-
,

h
are

e-

l

t

e

-
g
-

nt

h
e
m
or
-

ch

In this work we calculate the susceptibility amplitude r
tio at a Lifshitz point usinglf4 field theory ande-expansion
methods at first order in the loop expansion. In order to p
form the one-loop integrals, we use the Schwinger parame
zation for the free propagator, as well as a new special s
metry point. We will show that the result has the sam
dependence oneL54.52d for a uniaxial Lifshitz point as
that exhibited by the usual Ising-like system, where the lo
expansion parameter ise542d. We find the numerical
value C1 /C253.85 for this amplitude ratio in a three
dimensional lattice. To our knowledge, this is the first tim
that an amplitude ratio for the Lifshitz critical behavior
calculated to first order ineL . The presentation goes as fo
lows. In Sec. II, we develop our approach to deal with t
uniaxial Lifshitz behavior and calculate the susceptibil
amplitude ratio. In Sec. III, we discuss our results and co
pare with other methods existing in the literature.

II. SUSCEPTIBILITY AMPLITUDE RATIO

The most convenient way to formulate thelf4 field-
theoretic approach to the Lifshitz point is the Lagrangi
description, which is equivalent to the usual Landa
Ginzburg-Wilson Hamiltonian formulation. For the uniaxi
case, the bare Lagrangian is

L5
1

2
u¹1

2fu21
1

2
u¹ (d21)fu21d

1

2
u¹1fu21

1

2
t0f2

1
1

4!
lf4. ~1!

We see that the competition along one axis produces
first term in the above expression. Furthermore, at the
shitz critical pointd50. We are going to focus our attentio
in this case from now on.

The expression for the one-loop renormalized Helmho
free-energy density at the fixed point associated with
uniaxial Lifshitz critical behavior of the system is

F~ t,M !5
1

2
tM21

1

4!
g* M41

1

4 S t21g* tM21
1

4
g*

2
M4D I sp

1
1

2E dd21qdk$ ln@11~1/2!g* M2/~k41q21t !#

2 1
2 g* M2/~k41q2!%. ~2!
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In the above equation,t,M (t05Zf2
21t,f5Zf

21/2M ) are the
renormalized~bare! reduced temperature and order para
eter, respectively,Zf2,Zf are renormalization functions,g*
is the renormalized coupling constant at the fixed point,qW is
a (d21)-dimensional wave vector along the direction par
lel to the plane where only ferromagnetic nearest-neigh
interactions take place, whereask is a wave vector parallel to
the axis where the antiferromagnetic competition is loc
ized. The integralI sp is defined by

I sp5E dd21qdk

@~k1k8!41~q1p!2#~k41q2!
. ~3!

The symmetry point that simplifies the integral is chos
at external momentak850, p251. The dimensionful cou-
pling constant is related to the dimensionless one through
formula g* 5(p2)2eL/2u* . Therefore, choosing the scale
external momentap251 has the advantage of transformin
the dimensionful coupling constant into the convenient
mensionlessu* . At this point it is convenient to extract fo
each loop integration a geometric angular factor and abs
it in the coupling constant. In our case, it is (3A2/8)Sd21S1,
where Sd5@2d21pd/2G(d/2)#21. In order to calculate this
integral, we use the Schwinger parametrization:

E dd21qdk

@k41~q1p!2#~k41q2!

5E
0

`E
0

`

da1da2S 2E
0

`

dk exp@2~a11a2!k4# D
3E dd21q exp@2~a11a2!q222a2qp2a2p2#. ~4!

The q integral can be easily performed,

E dd21q exp@2~a11a2!q222a2qp2a2p2#

5
1

2
Sd21GS d21

2 D ~a11a2!2d21/2expS 2
a1a2p2

a11a2
D ,

~5!

and thek integration is8

2E
0

`

dk exp@2~a11a2!k4#5 1
2 ~a11a2!21/4G~ 1

4 !. ~6!

Inserting Eqs.~5!, and ~6! into Eq. ~4! together with the
valuep251, one finds

S E dd21qdk

@k41~q1p!2#~k41q2!
D

p251

5
1

4
Sd21GS d21

2 DG~ 1
4 !E

0

`E
0

`

da1da2

3expS 2
a1a2

a11a2
D ~a11a2!2[(d21)/21(1/4)]. ~7!
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We can perform one of the integrals in the Schwing
parameters using a change of variables. Then, after a res
the result can be expressed in the following form9

E
0

`E
0

`

da1da2 expS 2
a1a2

a11a2
D ~a11a2!2[(d21)/21(1/4)]

5GF22S d21

2
1

1

4D G E
0

1

dv„v~12v !…[(d21)/21(1/4)]22.

~8!

Now we make the continuationd54.52eL . We can
make use of the identity G@1.752(eL/2)#G(0.25)
5(3A2p/4)G@22(eL/2)#, to get the following expression
for I sp :

I sp5
1

eL
S 11

eL

2 D . ~9!

We are now in a position to calculate the susceptibil
amplitude ratio. Using Eq.~2!, we find the following renor-
malized equation of state:

HR5
]F

]M
5tM1

1

6
u* M31

1

2
u* M S t1

1

2
u* M2D

3F I sp2E dd21qdk

~k41q2!S k41q21t1
1

2
u* M2D G .

~10!

The one-loop integral is then readily calculated:

E dd21qdk

~k41q2!S k41q21t1
1

2
u* M2D

5
1

2
GS 22

eL

2 DGS eL

2 D ~ t1 1
2 u* M2!2eL/2. ~11!

The renormalized two-point vertex part

GR
(2,0)5

]

]M
HR ~12!

is related to the susceptibility as

x215GR
(2,0) . ~13!

We can now apply the following procedure to calcula
this amplitude ratio.10 For T.TL we can putM50 into Eq.
~12! above and use the Lifshitz value at the fixed pointu*
52eL/3, to get

x~T.TL!5t2gLS 12
eL

6 D . ~14!

For T,TL , we useu* M2526t and proceeding along
the same lines gives the result
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x~T,TL!5~2t !2gL
1

2 S 12
eL

6
~41 ln 2! D , ~15!

with amplitude ratio

C1

C2
52gL21

gL

bL
, ~16!

where gL511(eL/6) and bL5 1
2 2(eL/6) are the suscepti-

bility and magnetization critical exponents, respectively, a
sociated to the Lifshitz point. This result is then the amp
tude ratio for the uniaxial case in the neighborhood of t
Lifshitz point (d50).

III. DISCUSSION

First, we note that expression~16! has the same depen
dence oneL as the usual Ising-like critical behavior, the on
difference being the value ofeL51.5 for a cubic lattice (d
53). The numerical value for the amplitude ratio is the
C1 /C253.85. Compared with the value (C1 /C2)mean field
52, the correction due to the fluctuations is remarkable. S
ond, the method developed here might be efficient to cal
late the fixed point at the two-loop level, and then to find t
specific-heat amplitude ratio at ordereL in order to compare
with known experimental data.5 Alternatively, the result ob-
tained for the susceptibility amplitude ratio should motiva
the realization of experiments to check whether t
renormalization-group techniques are suitable to underst
this sort of system. Indeed, the comparison of the critic
exponentsbL and gL to first order ineL with Monte Carlo
simulations showed that they are different.3 It was argued
t

s
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e
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u-
e

e
e
nd
l

that the Monte Carlo result was more appropriate, beca
the expansion parametereL is not small and, therefore, th
perturbative expansion might not be reliable. On the ot
hand, carrying out the calculation of the critical exponents
second order ineL might actually bring their values closer t
those obtained via Monte Carlo. The definite answer to eit
possibility has to wait until one can figure out the fixed po
at two-loop order. As Monte Carlo methods are not availa
yet to calculate amplitude ratios, the most direct way
probe the numerical value at ordereL of the susceptibility
amplitude ratio shown here is to compare with experime
to be done in systems with uniaxial critical Lifshitz behavio
such as MnP. This comparison should give a clue about
reliability of the eL expansion methods in this case. Final
although some authors have recently proposed a diffe
field-theoretic approach to the Lifshitz point,11 their method
does not seem to be suitable for the uniaxial case, for t
choice of the symmetry point makes the integralI sp more
difficult to be performed. Therefore, our result suggests t
the uniaxial critical behavior (d50) has almost the sam
critical properties as the usual Ising model. The main diff
ence is the critical dimension, i.e., the loop expansion par
eters, characterized bye542d for the Ising-like system and
eL54.52d for the uniaxial Lifshitz point. The issues of two
loop calculations and crossover are under current invest
tion.
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