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Vortex-boson analogy and the nonlinear response function in high-Tc superconductors
near the phase transition

H. D. Chen, Y. Wang, D. L. Yin,* Y. L. Zhu, K. X. Chen, C. Y. Li, and G. Lu
Department of Physics, Peking University, Beijing 100871, China

~Received 28 May 1999!

The physics of flux lines in a high-Tc superconductor pinned by strongly correlated defects can be mapped
onto charged bosons localized in two dimensions~2D!. Considering the viscous dissipation of moving vortices,
we derive a nonlinear response function. This function is compatible with so far suggested different model
barriersU(J) and able to make a consistent description of the vortex system near transition. A comparison
with the scaling behavior of the measured isothermal current-voltage curves with YBa2Cu3O72d ~YBCO!
samples shows fair agreement. This nonlinear response function also shows an empirical fit withI -V behavior
of some 2D charge systems.
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I. INTRODUCTION

The static and dynamic response of the flux in the hi
temperature superconductors has been the subject of nu
ous recent experimental and theoretical investigations.1 One
of the most striking phenomena is the solid-liquid transiti
in the vortex system. The analysis of current-voltage (I -V)
characteristics measured in twinned YBa2Cu3O72d ~YBCO!
~Refs. 2 and 3! with the magnetic field applied in thec di-
rection, in terms of the vortex-glass scaling theory4 provide
impressive evidence of a second-order phase transition.

However, Nelson and Vinokur raised the questio
whether these transitions are really caused by uncorrel
‘‘point’’ disorder as assumed in the original vortex-gla
phenomenology,4 because twin boundary may offer muc
stronger pinning.5 The vortex dynamics with strongly corre
lated pinning can be studied efficiently by exploiting t
mapping between vortices and two-dimensional~2D!
bosons.6 Similar to the physics of flux lines in a pur
system,7 the statistical mechanics of vortices interacting w
columnar pinning centers that are aligned parallel to
magnetic field may be mapped into the quantum mecha
of charged bosons in two dimensions. Table I summari
the analogy between the vortices system, with the tilt m
ules «̃1 and thicknessL ~length of vortex!, and the corre-
sponding 2D charged bosons system.8 This new low-
temperature glassy phase stabilized by correlated defec
called Bose glass. For fields parallel toc axis, the Bose-glass
theory5 predicts for theI -V characteristics with similar criti-
cal exponent relation as those given by the vortex-gl
theory. But when the magnetic field is rotated off thec axis
the Bose-glass theory predicts a critical state with a differ
universality class. This has been experimentally observed
cently by the measurements of the electrical transport p
erties of twinned YBCO crystals.9
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Another attempt to explain the experimental data of Ko
et al. in Ref. 2 has been made by Coppersmithet al.10 in
terms of the flux-creep-flow model.11 Though this model re-
produces the qualitative features of the data, it fails to giv
quantitative fit. The exponent values needed to collapse
I -V curves in the model of Coppersmithet al. are z513.5
andn50.6 ~Ref. 10! in contrast toz54.8 andn51.7 from
the experimental data of Ref. 2. Thus, this reinterpretat
has been reasonably questioned.12 However, Wenet al. re-
ported later the exponent valuesz514 andn50.7 from the
scaling ofI -V isotherms of YBa2Cu3O72d thin films.13

This paper is organized as follows. In the subsequent s
tion we introduce a common nonlinear response funct
starting from the Bose glassU(J). This function is also
shown in connection with the Anderson-Kim model and t
stationary solution of Brownian motion in a periodic pote
tial. In Sec. III, our equation is compared with the wide
quoted experimental results observed by Kochet al.12 In
view of the analogy of Table I, we discuss the nonline
transport of some 2D charge systems in Sec. IV. Finally
short summary concludes this work.

II. NONLINEAR RESPONSE FUNCTION

For the macroscopic description of the mixed state
type-II superconductors we have to deal with the Maxw
equations combined with the materials equationJ(E,B) de-
scribing the electromagnetic response of superconductor

Bardeen and Stephen studied the motion of vortices, w
they are not subjected to pinning force.14 In the case of ideal
type-II superconductors the materials can be characterize
the relation

E5r f~B,T!J, ~1!
t

TABLE I. Boson analogy applied to vortex transport.

Charged bosons Mass \ \/T Pair potential Charge Electric field Curren

Vortices «̃1
T L 2«0K0(r /l) f0 zW3JW /c E(J)
1468 ©2000 The American Physical Society
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where the flux-flow resistivityr f'rn(B/Bc2). On the other
hand, in a nonideal superconductor with considerable p
ning the material is described by set of equations,

E5B3v,

v5v0e2U(J)/kT,

or

E~J!5Jr fe
2U(J)/kT, ~2!

where the activation barrierU additionally depends on th
temperatureT and magnetic fieldB. Different types ofU(J)
have been suggested to approximate the real barrier, fo
stance, the Anderson-Kim model11 with U(J)5Uc(1
2J/Jc), the logarithmic barrierU(J)5Uc ln(Jc /J) ~Ref. 15!
and the inverse power law withU(J)5Uc@(Jc /J)m21#.4,5

In view of Eq. ~1!, for the steady state of flux motion i
nonideal type-II superconductor the mean transport cur
densityJ can be phenomenologically expressed as

J5Jp1Jf ~3!

with

Jf[E~J!/r f ~4!

the component due to the moving vortices of uniform de
sity. Jp is the contribution from the pinned vortices wit
nonuniform distribution.

We find, if one makes a common modification to the d
ferent model barriersU(J) as

U~J!→U~Jp[J2E/r f !, ~5!

the corresponding modified materials equation

E~J!5Jr fe
2U(Jp)/kT ~6!

leads to a common normalized form as

y5x exp@2g~11y2x!p# ~7!

with x andy the normalized current density and electric fie
respectively.g is a parameter characterizing the symme
breaking of the pinned vortices system andp is an exponent.

For an example, in following we show the derivation
the unified materials equation in connection with the inve
power-law modelU(J).4,5,16 We start from the expressio
widely used for the highly nonlinearE(J) characteristics of
Bose-glass phases,5,8

E~J!5r fJ expF2S Ek

kTD S J0

J D pG , ~8!

whereEk is a typical vortex kink energy,J0 sets the curren
scale, andp is a glass exponent. Equation~8! can also be
expressed as

E~J!5r fJ expF2S Ek

kTD S 2R* ~J!

d D G , ~9!

with d the average distance between strongly correlated
fects, e.g., columnar damage tracks, twin boundaries,
R* (J) is the typical hopping range of vortex at the curre
-
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-

,
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densityJ. Since the hopping range can not exceed the sam
sizeL, Eqs.~8! and~9! can be used in the rangeJ.JL with

R* ~JL![L. ~10!

The vortex kink energyEk relates to the tilt modules«̃1 and
the average pinning potentialU0 as

Ek5dA«̃1U0. ~11!

SubstitutingJp[J2E(J)/r f for the current densityJ in the
brackets on the right-hand sides of Eqs.~8! and~9! and tak-
ing its logarithm we get

J2Jf5S Ek

kTD 1/p

J0F lnS J

Jf
D G2(1/p)

5S Ek

kTD 1/p

J0~11h!21F lnS JL

JL f
D G2(1/p)

, ~12!

whereJL f[E(JL)/r f , which is much smaller thanJL , and

h[
2@ ln~JL /JL f !

1/p2 ln~J/Jf !
1/p#

ln~JL /JL f !
1/p

, uhu,1. ~13!

Using the approximation (11h)21'12h for uhu,1, finally
we find Eq.~12! in the form

x2y512 ln~x/y!1/pg2(1/p), ~14!

which is exactly the general normalized form of the materi
equation Eq.~7!, here we have with

g[2p ln
JL

JL f
52pS Ek

kTD S J0

JL2JL f
D p

'2pS Ek

kTD S J0

JL
D p

,

x[
1

2 S Ek

kTD 2(1/p)S ln
JL

JL f
D 1/pS J

J0
D5

1

2 S J

JL2JL f
D'

J

2JL
,

y[
1

2 S Ek

kTD 2(1/p)S ln
JL

JL f
D 1/pS E~J!

J0r f
D5

1

2 S E~J!

~JL2JL f !r f
D

'
E~J!

2JLr f
. ~15!

In an earlier work this materials equation for type-II s
perconductors has been shown in connection with
Anderson-Kim model as17

E~J!52v0B exp@~2Uc2Wn!/kT#sinh~WL /kT!

or

E~J!5Jr f exp@~2Uc2Wn1WL!/kT#, ~16!

wherev0 is a prefactor with dimension of velocity andUc is
the pinning potential,Wn5hvA5E(J)3BA/r f is the vis-
cous dissipation term of flux motion with viscosity coeffi
cient h5B3Bc2 /rn5B2/r f ,14 WL the energy due to Lor-
entz driving force,WL5J3B3A, the parameterA is a
product of the volume of the moving flux bundle and t
range of the force action.
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Equation ~16! can be expressed with a general reduc
form

y5xe2g(11y2x), ~17!

whereg[Uc /kT, x[WL /Uc , andy[Wn /Uc .
A numerical solution of Eq.~7! with p51 is shown in

Fig. 1, which unifies consistently three regimes of flux m
tion, i.e., the Anderson-Kim regime, the critical state, and
flux flow.

It is also interesting to note that the materials equat
~16! has the same form as the stationary solution of Brow
ian motion in a periodic potential, which is a typical examp
of nonlinear stochastic equations. The one-dimensional e
tion of motion for this problem has the stationary solution
the form of integrals18 that can be reformulated by using th
mean-value theorem in the form

^v&52v0 expF22«02h* ^v& l *

Q Gsinh@Fl * /Q# ~18!

with the velocity prefactorv0 and the effective mean-valu
barrier crossing free pathl * and frictionh* ~see Ref. 19!.

Equation~7! gives us a relation between the parameteg
and the slope

S[
d ln y

d ln x
5

11pgx~11y2x!p21

11pgy~11y2x!p21
. ~19!

The maximal slopeSmax occurs at the inflection poin
(xi ,yi) of isotherm lny; ln x, where

p2g2xiyi~11yi2xi !
2p21512p~xi2yi !, ~20!

and we have the power lawV}I Smax.
From Eq.~19! and Eq.~20! we get

Smax5
11gxiz

11gyiz
'S xi

yi
D 1/2

~21!

and

FIG. 1. Numerical solution of Eq.~7! for p51.
d

-
e

n
-

a-

g2xiyi51/z2, ~22!

where z2[p2(11yi2xi)
2p21/@12p(xi2yi)#'1. In view

of the numerical solution of Eq.~7! for p51 as shown in
Fig. 1, one findsxi'1. Thus from Eq.~21! and Eq.~22!, we
have approximately the relation

g'2Smax
2 ln Smax. ~23!

III. SCALING BEHAVIOR OF ISOTHERMAL E„J…
CURVES

Now we compare our Eq.~7! with the scaling behavior of
the experimental measured isothermalE(J) curves obtained
by Kochet al.with YBCO samples.2,12 At different tempera-
tures and magnetic fields, they found that for each field a
single well defined temperatureT, the I -V curves shows a
power-law behaviorV}I S. This temperature is defined a
Tg . All the iostherms can be collapsed onto two scali
functions, forT.Tg andT,Tg correspondingly, by plotting
V/I scaled byuT2Tgun(z21) vs I scaled byuT2Tgu2n, where
n is the exponent of the coherence lengthj, j;uT2Tgu2n,
and z is the dynamical exponent of the coherent timejz.
Based on their experimental data they foundn51.7 andz
54.8 for B52, 3, and 4 T. The slopS[(d ln V)/(d ln I) at
T5Tg is reported of the value 2.960.3 in all their measure-

ments. SinceEk5dA«̃1U0, one may reasonably assum
Ek(T)}(T* 2T)d, JL(T)}(T* 2T)a, and r f}T with T*
being the irreversibility temperature where tilt modules«̃1
vanishes, so according to Eq.~15! we expect

g~T!5g0~T* 2T!d2ap/kT, ~24!

I}xJL~T!}x~T* 2T!a, ~25!

V}yJL~T!r f}y~T* 2T!aT. ~26!

In accordance with the observedSmax'2.5 for the case
of B54T ~Ref. 2!, one may expectg(Tg)'11.5. Assuming
d52.5, a53, andp50.6, we get from Eq.~7! more than
100E(J) isotherms near theTg'78 K ~as observed in Refs
2 and 12!. All the isotherms collapsed nicely onto two curve
(T.Tg and T,Tg), consistent with the scaling ofn51.7,
z54.8, as shown in Fig. 2. The similar scaling result of Re
2 and 12 is shown in Fig. 2~b! with open circles, which has
the same scaling exponents ofn51.7 andz54.8.

This rather quantitative agreement between our nonlin
equation~7! and the widely quoted pertinent experimen
results of Kochet al. in wide temperature range shows th
this equation may provide an advantageous basis for des
ing nonlinear electromagnetic phenomena in type-II sup
conductors.

IV. DISCUSSION

In view of the flux-charge analogy shown in Table I,
natural conjecture is whether there exists some similar eq
tions in 2D charge systems. Recently, Graysonet al. reported
a systematic study of the current versus voltage (I -V) rela-
tion when tunneling into the fractional quantum Hall effe
~FQHE! sample at different values ofB over a continuum of
filling factors n from 1/4 to 1.20 The series of log-logI -V
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curves over the whole range ofB field manifest a power-law
region in the middle of the curve whereas they soften
linear behavior at lower and higher bias voltages. In Fig
we show these data in log@(I/V)(ne2/h)21#-logV plot analo-
gous with Fig. 1 and try to compare with the phenomen
logical nonlinear response functiony85x8 exp@2g(11y8
2x8)p#. In the B field range from 7.0 to 9.0 T, whereRxy
}B we see a rather fair agreement between the empir
nonlinear response function

I 5
V

RXy
expF2

Ts

T S 11
eIRxy

kTs
2

eV

kTs
D 5G ~27!

FIG. 2. ~a! The I -V curves derived from Eq.~7!. ~b! d: The
collapsed data derived from Eq.~7!, with n51.7, z54.8, d52.5,
a53, p50.6, Tg'78 K ~as observed in Ref. 2! and g(Tg)
'11.5. More than 100 curves are plotted forT.Tg andT,Tg . s:
The original experimental result of Ref. 2.
o
3

-

al

and the measuredI -V data of Ref. 20. AtB values due to the
fractional Hall plateaus inRxy-B plot ~for example, B
511.0 T, n51/3), the theoreticalI -V relationship of Cha-
mon and Fradkin for the problem of tunneling between
chiral Fermi liquid and a chiral Luttinger liquid21 fits the
experimental data with remarkable precision.

It is important to note, though the FQHE sample is a 2
charge system, there are still essential differences betw
the physical condition of the experimental of Graysonet al.
and Table I, for instance, the high magnetic field in t
former, so Fig. 3 is only an empirical fit at present.

FIG. 3. ~a! I -V response of FQHE~Ref. 20!. ~b! log@(I/
V)(ne2/h)21#-logV plot of data in Fig. 3~a!. y85(eIRxy)/(kTs), x8
5(eV)/(kTs).
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V. SUMMARY

We suggest common nonlinear response function that
well describe the electromagnetic response of hig
temperature superconductors with inhomogenities or defe
as pinning centers. This function is compatible with so f
suggested different model barriersU(J) and is able to make
a consistent description of the vortex system near transiti
A comparison with the scaling behavior of the experimen
n

t
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-
ts
r
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l

measured isothermal current-voltage curves with YBC
samples shows fair agreement. In view of the flux-cha
analogy, this nonlinear response function may also be
plied to the transport of 2D charge system.
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8U.C. Täuber and D.R. Nelson, Phys. Rev. B52, 16 106~1995!.
9S.A. Grigera, E. Morre´, E. Osquiguil, C. Balseiro, G. Nieva, and

F. de la Cruz, Phys. Rev. Lett.81, 2348~1998!.
10S.N. Coppersmith, M. Inui, and P.B. Littlewood, Phys. Rev. Le
-

s.

d

ev.

t.

64, 2585~1990!.
11P.W. Anderson and Y.B. Kim, Rev. Mod. Phys.36, 39 ~1964!.
12R.H. Koch, V. Foglietti, and M.P.A. Fisher, Phys. Rev. Lett.64,

2856 ~1990!.
13H. H. Wen, X.X. Yao, R.L. Wang, H.C. Li, S.Q. Guo, and Z.X

Zhao, Physica C282-287, 351 ~1997!.
14J. Bardeen and M.J. Stephen, Phys. Rev.140, A1197 ~1965!.
15E. Zeldov, N.M. Amer, G. Koren, A. Gupta, R.J. Gambino, an

M.W. McElfresh, Phys. Rev. Lett.62, 3093~1989!.
16M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vi-

nokur, Phys. Rev. Lett.63, 2303~1989!.
17D. Yin, W. Schauer, V. Windte, H. Ku¨pfer, S. Zhang, and J.

Chen, Z. Phys. B: Condens. Matter94, 249 ~1994!.
18H. Risken,The Fokker-Planck Equation: Methods of Solution an

Applications~Springer-Verlag, Berlin, 1984!, Chap. 11.
19K. Chen and D. Yin, Chin. J. Low Temp. Phys.19, 81 ~1997!.
20M. Grayson, D.C. Tsui, L.N. Pfeiffer, K.W. West, and A.M.

Chang, Phys. Rev. Lett.80, 1062~1998!.
21C. de C. Chamon and E. Fradkin, Phys. Rev. B56, 2012~1997!.


