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Vortex-boson analogy and the nonlinear response function in higf-. superconductors
near the phase transition
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The physics of flux lines in a high;. superconductor pinned by strongly correlated defects can be mapped
onto charged bosons localized in two dimensi(#i3). Considering the viscous dissipation of moving vortices,
we derive a nonlinear response function. This function is compatible with so far suggested different model
barriersU(J) and able to make a consistent description of the vortex system near transition. A comparison
with the scaling behavior of the measured isothermal current-voltage curves withC¥Ra, s (YBCO)
samples shows fair agreement. This nonlinear response function also shows an empirical ¥ Wwithavior
of some 2D charge systems.

[. INTRODUCTION Another attempt to explain the experimental data of Koch
etal. in Ref. 2 has been made by Coppersméthal° in
The static and dynamic response of the flux in the highterms of the flux-creep-flow modét.Though this model re-
temperature superconductors has been the subject of numeroduces the qualitative features of the data, it fails to give a
ous recent experimental and theoretical investigattoBse ~ quantitative fit. The exponent values needed to collapse the
of the most striking phenomena is the solid-liquid transitionl-V curves in the model of Coppersmitt al. are z=13.5
in the vortex system. The analysis of current-voltag®/f  and »=0.6 (Ref. 10 in contrast toz=4.8 andv=1.7 from
characteristics measured in twinned ¥%Ba;O,_; (YBCO)  the experimental data of Ref. 2. Thus, this reinterpretation
(Refs. 2 and Bwith the magnetic field applied in the di- has been reasonably questiorfédHowever, Wenet al. re-
rection, in terms of the vortex-glass scaling thégpyovide  ported later the exponent valugs: 14 andvy=0.7 from the
impressive evidence of a second-order phase transition.  scaling ofl-V isotherms of YBaCu;O;_ 5 thin films!®
However, Nelson and Vinokur raised the question, This paper is organized as follows. In the subsequent sec-
whether these transitions are really caused by uncorrelatdétbn we introduce a common nonlinear response function
“point” disorder as assumed in the original vortex-glass starting from the Bose glasg(J). This function is also
phenomenology, because twin boundary may offer much shown in connection with the Anderson-Kim model and the
stronger pinning. The vortex dynamics with strongly corre- stationary solution of Brownian motion in a periodic poten-
lated pinning can be studied efficiently by exploiting thetial. In Sec. Ill, our equation is compared with the widely
mapping between vortices and two-dimension&D) quoted experimental results observed by Katall? In
bosong Similar to the physics of flux lines in a pure view of the analogy of Table I, we discuss the nonlinear
system’ the statistical mechanics of vortices interacting withtransport of some 2D charge systems in Sec. IV. Finally, a
columnar pinning centers that are aligned parallel to theshort summary concludes this work.
magnetic field may be mapped into the quantum mechanics
of charged bosons in two dimensions. Table | summarizes
the analogy between the vortices system, with the tilt mod- Il. NONLINEAR RESPONSE FUNCTION

ules £, and thicknesd (length of vortey, and the corre- For the macroscopic description of the mixed state in
sponding 2D charged bosons systenThis new low- e | superconductors we have to deal with the Maxwell
temperature glassy phase stabilized by_ correlated defects &uations combined with the materials equati¢g,B) de-
called Bose glass. For fields paralleldaxis, the Bose-glass  sribing the electromagnetic response of superconductors.
theory predicts for thel -V characteristics with similar criti- Bardeen and Stephen studied the motion of vortices, when
cal exponent relation as those given by the vortex-glas§ney are not subjected to pinning forteln the case of ideal

theory. But when the magnetic field is rotated off thexis  type-|| superconductors the materials can be characterized by
the Bose-glass theory predicts a critical state with a differenfhe rejation

universality class. This has been experimentally observed re-
cently by the measurements of the electrical transport prop-
erties of twinned YBCO crystafs. E=p¢(B,T)J, D

TABLE I. Boson analogy applied to vortex transport.

Charged bosons Mass % T Pair potential Charge Electric field Current

Vortices P T L 2goKo(r/\) bo zxJlc E(J)
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where the flux-flow resistivity s~ p,(B/B.»). On the other densityJ. Since the hopping range can not exceed the sample
hand, in a nonideal superconductor with considerable pinsizel, Eqgs.(8) and(9) can be used in the rangle>J, with
ning the material is described by set of equations,

R*(J.)=L. (10
E=BXuv, ~
The vortex kink energ¥, relates to the tilt modules; and
v=vge YOI/KT the average pinning potentibl, as
or Ey=dvz,Uo. (11)
E(J)=Jpre” VKT, 2

Substitutingd,=J—E(J)/p; for the current density in the
where the activation barridd additionally depends on the brackets on the right-hand sides of E¢®. and (9) and tak-
temperaturdl and magnetic field. Different types ofU (J) ing its logarithm we get

have been suggested to approximate the real barrier, for in-

stance, the Anderson-Kim modél with U(J)=U(1 Jo3— Ex UpJ | J\|-ee
—J/3.), the logarithmic barrietd (J)=U. In(J./J) (Ref. 19 T kT 9N J;
and the inverse power law with (J)=U [ (J./J)*—1].*° y )
In view of Eq. (1), for the steady state of flux motion in _(E) pJ (1471 |n<J_L P 12
nonideal type-Il superconductor the mean transport current kT 0 g i '

densityJ can be phenomenologically expressed as o
whereJ, ;=E(J,)/ps, which is much smaller thad, , and

J=J,+J; ()
—[IN(IL 13 )P In(3134) ]

In(J 13 )P

with N . ml<1l. (13
J=E(J)/ps (4) . N 1 .
Using the approximation (£h) ~*~1—h for |h| <1, finally
the component due to the moving vortices of uniform den-e find Eq.(12) in the form

sity. J, is the contribution from the pinned vortices with

nonuniform distribution. x—y=1— In(x/y)¥Py~(1P), (14)
We find, if one makes a common modification to the dif- ) )
ferent model barriert) (J) as which is exactly the general normalized form of the materials
equation Eq(7), here we have with
U()—U(Jp=3-Elpy), (5)
th di dified material t o2t —of Ex)[ )" _ o Ex)( o)
e corresponding modified materials equation Y= 3, IANESE AR
E(J)=Jpse” VO/KT 6
()= © 1(E "M g \W(3) 1 ] J
leads to a common normalized form as =5lkT nJ_Lf i =5 T ~ 23,
y=xexd —y(1+y—x)°] ()

n
It

1(E, M/ g \YPEW)| 1 E(J)
with x andy the normalized current density and electric field, Y= E(k_'l') (' ) ( Jopr ) = 5( (JL—JLf)Pf)
respectively.y is a parameter characterizing the symmetry
breaking of the pinned vortices system gni$ an exponent. E(J)

For an example, in following we show the derivation of ~ 2J.p (15
the unified materials equation in connection with the inverse
power-law modelU(J).*>*® We start from the expression  |n an earlier work this materials equation for type-Il su-
widely used for the highly nonlined£(J) characteristics of perconductors has been shown in connection with the
Bose-glass phasés, Anderson-Kim model d$

p .
()= pod ex;{_(i)(?) } - E(J)=2voB exd (— U.—W,)/kT]sinh(W, /kT)

kT
or

whereE, is a typical vortex kink energy], sets the current
scale, andp is a glass exponent. EquatidB) can also be E(J)=Jpsexd (—U.,—W,+W,)/KT], (16

expressed as
Ec\[2R*(J)
E(J)=p¢d exp{—(E_) (T) , (9)  cous dissipation term of flux motion with viscosity coeffi-
cient p=BXB,/p,=B?%p;,** W, the energy due to Lor-
with d the average distance between strongly correlated desntz driving force,W, =JXBXA, the parameteiA is a
fects, e.g., columnar damage tracks, twin boundaries, etproduct of the volume of the moving flux bundle and the
R* (J) is the typical hopping range of vortex at the currentrange of the force action.

wherev is a prefactor with dimension of velocity arndl. is
the pinning potential W, = nvA=E(J) XBA/p; is the vis-
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v2xiy= 1122, (22)

where 2=p2(1+y;—x)?* " Y[1-p(x;—Yy;)]=1. In view
of the numerical solution of Eq.7) for p=1 as shown in
Fig. 1, one finds;~ 1. Thus from Eq(21) and Eq.(22), we
have approximately the relation

'y~252maxln Smax: (23

Log ,4(y/%)

Ill. SCALING BEHAVIOR OF ISOTHERMAL E(J)
CURVES

Now we compare our Eq7) with the scaling behavior of
the experimental measured isotherr&40) curves obtained
by Kochet al.with YBCO sampleg:'2 At different tempera-
tures and magnetic fields, they found that for each field at a
single well defined temperaturg the |-V curves shows a
power-law behaviol«=|S, This temperature is defined as
Ty. All the iostherms can be collapsed onto two scaling
C1‘unctions, forT>T, andT<Tg correspondingly, by plotting

FIG. 1. Numerical solution of Eq7) for p=1.

Equation(16) can be expressed with a general reduce

form V/I scaled by T—T,y|"*~ Y vs| scaled by T—T4|?*, where
y=xe Ly 17 v is thg exponent of the coherence Iength§~(fT—Tg|.‘V,

' and z is the dynamical exponent of the coherent tigfe

wherey=U./kT, x=W,_ /U, andy=W, /U.. Based on their experimental data they found 1.7 andz

A numerical solution of Eq(7) with p=1 is shown in =4.8 forB=2, 3, and 4 T. The slog=(dInV)/(dInl) at
Fig. 1, which unifies consistently three regimes of flux mo-T=Tj is reported of the value 2:90.3 in all their measure-
tion, i.e., the Anderson-Kim regime, the critical state, and thements. SinceE,=dVe,U,, one may reasonably assume
flux flow. E(T)=(T*=T)°, I (T)=(T*=T)¢, and peT with T*

It is also interesting to note that the materials equatiorb ; ; i ; ™
. ) eing the irreversibility temperature where tilt modukes
(16) has the same form as the stationary solution of Browny g y P

. D o . L ) vanishes, so according to E@5 we expect
ian motion in a periodic potential, which is a typical example

of nonlinear stochastic equations. The one-dimensional equa- Y(T)=yo(T* = T)° *P/KT, (24)
tion of motion for this problem has the stationary solution in
the form of integral® that can be reformulated by using the [oexJ (T)oex(T* —T)¢, (25
mean-value theorem in the form
VeeyJ (T)pgoey(T* =T)T. (26)
* *
(V)=2v, exr{w SiNHFI*/0]  (18) In accordance with the observ&},.,~2.5 for the case
0 of B=4T (Ref. 2, one may expecy(T,4)~11.5. Assuming

6=2.5, «a=3, andp=0.6, we get from Eq(7) more than
100E(J) isotherms near th&,~78 K (as observed in Refs.
2 and 12. All the isotherms collapsed nicely onto two curves
(T>T4 and T<T,), consistent with the scaling of=1.7,
z=4.8, as shown in Fig. 2. The similar scaling result of Refs.
2 and 12 is shown in Fig.(B) with open circles, which has
diny 1+pyx(1+y—x)P ! the same scaling ex_ponentsmfc 1.7 andz=4.8. _
=k T (19 This rather quantitative agreement between our nonlinear
1+pyy(l+y—x) equation(7) and the widely quoted pertinent experimental
results of Kochet al. in wide temperature range shows that
this equation may provide an advantageous basis for describ-
ing nonlinear electromagnetic phenomena in type-ll super-
conductors.

with the velocity prefactowg and the effective mean-value
barrier crossing free patlf and friction »* (see Ref. 18

Equation(7) gives us a relation between the parameter
and the slope

The maximal slopeS,,,x occurs at the inflection point
(xi,y;) of isotherm Iny~ Inx, where

2y2iyi(1+yi—x) 2P 1=1—p(x;—)), 20
Py XYl Yi i) P(Xi—Yi) (20 V. DISCUSSION

and we have the power lawoc| Smax, . .
From Eq.(19) and Eq.(20) we get In view of the flux-charge analogy shown in Table I, a

natural conjecture is whether there exists some similar equa-
tions in 2D charge systems. Recently, Graysbal. reported

a systematic study of the current versus voltag&/) rela-

tion when tunneling into the fractional quantum Hall effect
(FQHE) sample at different values & over a continuum of
and filling factors » from 1/4 to 12° The series of log-lod-V

1+ yXi§~<Xi)l/2

= al 21
1t yyil i @)
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FIG. 2. (&) The |-V curves derived from Eq.7). (b) @®: The . | | . | | . .
collapsed data derived from E7), with v=1.7, z=4.8, §=2.5, e T

a=3, p=0.6, T;=78 K (as observed in Ref.)2and y(T,) (b)
~11.5. More than 100 curves are plotted Tor T, andT<Ty. O:

The original experimental result of Ref. 2. FIG. 3. (8 I-V response of FQHERef. 20. (b) log[(l/
V)(ve?h) 1]-logV plot of data in Fig. 8a). y’ =(elRy,)/(KTs), x’

curves over the whole range Bffield manifest a power-law = (eV)/(kTs).

region in the middle of the curve whereas they soften to

linear behavior at lower and higher bias voltages. In Fig. 3

we show these data in Ifg/V)(ve?/h)~1]-logV plot analo- and f[he measuredV data Qf Ref. 20. AB values due to the

gous with Fig. 1 and try to compare with the phenomeno-fr""ctIonal Hall plateaus 'nRXY'B plot (fqr exgmple, B

logical nonlinear response functiog’ =x’ exg — y(1+y’ =11.0T, v=1/3'), the theoretical -V relatlonghlp of Cha-

—X')"]. In the B field range from 7.0 to 9.0 T, wherg,, mon and Fradkin for the problem of tunneling between a

«B we see a rather fair agreement between the empiric%?('rzlririzrnrgl I(Ijq;tgjv;?r? rgnf:r'lizlbtuu'rg?;g&qtﬁa fits the
nonlinear response function P P i

It is important to note, though the FQHE sample is a 2D
| = —V - 21+
Rxy ex T

Log,(V)

charge system, there are still essential differences between

elR, eV 5} the physical condition of the experimental of Graysral.

kT, KT

(27) ~ and Table |, for instance, the high magnetic field in the
former, so Fig. 3 is only an empirical fit at present.
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V. SUMMARY measured isothermal current-voltage curves with YBCO

We suggest common nonlinear response function that Casamples shpws fa_ir agreement. In vieyv of the flux-charge
) . : gnalogy, this nonlinear response function may also be ap-

well describe the electromagnetic response of high- lied to the transport of 2D charge svstem
temperature superconductors with inhomogenities or defectd P ge sy '
as pinning centers. This function is compatible with so far
suggested different model barriddgJ) and is able to make ACKNOWLEDGMENT
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