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Stability of a cubic fixed point in three dimensions: Critical exponents for genericN
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The detailed analysis of the global structure of the renormalization-giiR@ flow diagram for a model
with isotropic and cubic interactions is carried out in the framework of the massive field theory directly in three
dimensions(3D) within an assumption of isotropic exchange. Perturbative expansions for RG functions are
calculated for arbitrary\N up to four-loop order and resummed by means of the generalizedBRadeLeroy
technique. Coordinates and stability matrix eigenvalues for the cubic fixed point are found under the optimal
value of the transformation parameter. Critical dimensionality of the model is proved to be egNal to
=2.89+0.02 that agrees well with the estimate obtained on the basis of the fiverlegpansiorfH. Kleinert
and V. Schulte-Frohlinde, Phys. Lett. 82, 284(1995] resummed by the above method. As a consequence,
the cubic fixed point should be stable in 3D td&3, and the critical exponents controlling phase transitions
in three-dimensional magnets should belong to the cubic universality class. The critical behavior of the random
Ising model being the nontrivial particular case of the cubic model wker0 is also investigated. For all
physical quantities of interest the most accurate numerical estimates with their error bounds are obtained. The
results achieved in the work are discussed along with the predictions given by other theoretical approaches and
experimental data.

. INTRODUCTION proximations, Wilson and FishérAharony? and Ketley and
Wallaceé® showed that in the critical region the fluctuation
In the present time the critical behavior of the basic mod-nstability of continuous phase transitions may be observed,
els of phase transitions described by isotropic field theorieand that it may lead to the isotropization of the system with
with a quartic interaction Iikez{“:l(¢i2)2 is well studied in  a cubic anisotropy. This fact gave rise to a question of what
the framework of different theoretical approaches. In particuregime of the critical behavior is actually realized in 3D cu-
lar, the critical phenomena in polymers, easy-axis ferromagbic crystal withN=3. Much effort of many people have
nets, simple liquids, and binary mixtures, easy-plane ferrobeen devoted to answering this question. It was understood
magnets, certain superconductors, as well as superfluidnat for a given model it is enough to calculate the so-called
helium-4, Heisenberg ferromagnets, and quark-gluon plasmeiitical (or marginal dimensionality N. of the order-
in some models of quantum chromodynamics were proved tparameter field. Indeed, the critical valbk separates two
be governed by th®(N)-symmetric universality class with different regimes of critical behavior of the system. For
N=0, 1, 2, 3, and 4, respectively. The large-order field->N, the cubic rather than isotropic fixed point is stable in
theoretical renormalization-grougRG) expansions com- 3D. At N=N, the points interchange their stability so that
bined with proper resummation techniques, the highfor N<N the stable fixed point is the isotropic one. There-
temperature series method, and the most advanced Montere the calculation oN. is the crucial point in studying the
Carlo (MC) simulations provided high precision and compa-critical phenomena in 3D cubic crystals. However, attempts
rable to each other numerical estimates for important physito evaluate the critical dimensionality resulted in the dra-
cal quantities(critical exponents, universal couplings, and matically different estimates.
critical amplitude ratios which nowadays are regarded as In fact, the field-theoretical RG analysis of the stability
canonical numbers? matrix eigenvalues of the cubic and isotropic fixed points
However, in real crystals due to their complex crystallinefulfilled in the one-loop approximation as well as some sym-
structure an anisotropy is always present. That is why, whemetry argumentsfor details, see Sec. Ill of the papdead
studying phase transitions in real substances, besides ti@ the conclusion thal, should lie between 2 and 4. Many
O(N)-symmetric term one should take into account addi-years ago the three-loop expansion iy as a power series
tional quartic interactions in corresponding fluctuationin ¢ was obtained in Ref. 5. Summation of that short series at
Landau-Wilson(LW) Hamiltonian. The simplest nontrivial s=1 (D=3) by means of the Padapproximant[1/1]
crystalline anisotropy is a cubic one. Proper quartic interacyielded the valueN.=3.128 while making use of the Pade
tion term is represented &' ;¢ . In this case the vector of Borel resummation method results in the estinfdge-3. In
magnetization is directed either along the edges or diagonatontrast to this, in the work of Ref. 8, by using the varia-
of a hypercube ifN dimensions of the order-parameter field. tional modification of the Wilson recursion relation method,
The critical thermodynamics of magnetic and structuralit has been found théd.=2.3. Later, however, Newman and
phase transitions in three-dimension@D) cubic crystals Riedel by decoupling the infinite system of the recursion
was extensively investigated more than 25 years ago in eelations for the so-called scaling fields and then solving
good number of papers. By using the lower-order RG apthem showedthat forD=3 N~ 3.4. At the same time, the
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classical technique of the high-temperature expansions, un- [l. MODEL AND B FUNCTIONS
der some circumstances, allowed to establish thai\fet3
the isotropic critical asymptotics in the cubic crystal is
unstable!® thus implyingN,<3. Further, ten years ago, the
analysis of the critical behavior of then(n)-component field H= f d3x
model, which has a good number of interesting applications
to the phase transitions in real substances, has been carried
out within the three-loop RG approach in three dimensions.
The calculation of the stability matrix eigenvalues for the
cubic model (n=1, n=3) provided the stability of the cu- ) .
bic fixed point in 3D, and the critical dimensionality turned Where ¢i, i=1,... N is the real vector order-parameter
out to be equal to 2.9%% In agreement with this, the estimate field in 3D, mg is the linear measure of the temperature, and
N.=2.9 was quoted in Ref. 12. More recently, Kleinert andUo andv, denote the bare coupling constants. The symme-
Schulte-Erohlinde calculated the RG functions for the cubidrized tensors associated with isotropic and cubic interactions
model in (4- &) dimensions up to five-loop ordét Resum- are
mation of the critical dimensionality expansion with the help
of the Pade approximant[2/2] gave the estimateN, a1 @)
—2.958 The cubic fixed point eigenvalues found by means Gkl = 3 (8ij da+ didji+ 8 dij),  Giji = 8ij i Sir
of a simple resummation algorithm of the Borel type, ac- 2)
counting the large-order behavior of thgfunctions when
the parameter of anisotropy is very smidlindicated that the respectively. When the cubic symmetry is present, the aniso-
cubic point is stable in 3B/ Finally, in the recent work of tropic exchange has been shown to be negligible within the
Ref. 18 by using finite-size scaling techniques and the highe-expansion methotf. We assume that the anisotropic ex-
precision MC simulations it has been suggested Mato-  change is an irrelevant variable in our case too, and study the
incides with 3 exactly. So, such strong scattering in the estieritical behavior of the mode{l) with isotropic exchange
mates ofN, inspired us to study this problem with particular only.
care. Calculation of the critical dimensionality of the order The model(1) has a number of interesting applications to
parameter field as well as the eigenvalue exponents for thiie phase transitions in simple and complicated systems. In
cubic fixed point by exploiting higher-order RG approach infact, whenN=1 the Hamiltonian(1) describes the critical
three dimensions and generalized R&deel-Leroy (PBL) phenomena in pure spin systerfthe pure Ising modgl
resummation technique is the main goal of the paper. As willvhile for N=2 it corresponds to the anisotropicy model
be shown, our estimates fbl, and eigenvalues are in excel- (the model of two coupled scalar fie)ddescribing as struc-
lent agreement with recent results by Kleinert andtural phase transitions in ferroelectrics as ordering the two-
collaborator’ obtained on the basis of the five-loapex-  component alloy$?® The magnetic and structural phase
pansions. transitions in a cubic crystal are governed by modglas

The paper is organized in the following way. In Sec. Il theN=3. Further, wherN=0 Hamiltonian(1) determines the
perturbative expansions fg8 functions of the hypercubic critical properties of weakly disordered quenched systems
model are deduced within the RG technique in 3D up to thaindergoing second-order phase transitions. The latter is the
four-loop order. In Sec. Ill the structure of the RG flows of nontrivial specific case of the hypercubic model, the system-
the model are investigated and fixed point locationsMor atical studying of which was initiated in the classical works
=3 are calculated using the generalized PBL resummatioby Harris and LubensKy?* and Khmelnitsk#® and then
method. The eigenvalue exponents of the most intriguingonsiderably advanced by many authors when employing the
O(N)-symmetric and cubic fixed points are evaluated for theconventional field-theoretical RG approach both in 3D and
physically important casd =3 and their stability problem is (4—¢) dimensions. Finally, the cadé—oc corresponds to
analyzed in Sec. IV. The numerical estimate of the criticalthe Ising model with equilibrium magnetic impuritiésin
dimensionalityN,, at which the topology of the flow dia- this limit the Ising critical exponent of specific heat
gram changes, is obtained by resumming both the four-loophanges its sign and takes the Fisher renormalizatias
RG expansions for thg functions in 3D and the five-loop  well as v and y: a——a/(1—«)), v—=y/(l1—a), v
expansion folN, ate=1. In Sec. V the four-loop RG ex- — y/(1— ). Since the critical phenomena in the pure Ising
pansions of the critical exponents for geneNcand their  and anisotropiX'Y models are well understood, we will con-
numerical estimates are presented. Section VI is devoted tider below the critical behavior of the cubic and random
the study of the critical behavior of the three-dimensionallsing models only.
random Ising mode(RIM) which is the special case of the  To calculate the RG functions the standard normalization
cubic model wherN=0. The coordinates, eigenvalues, andconditions of the massive renormalized theory at fixed di-
the critical exponents of the RIM fixed point are computedmensions are appli€d.For each Feynman graph contribut-
by applying the PBL resummation procedure. Theing to the RG functions the corresponding contractions are
correction-to-scaling exponent is estimated therein. The computed by using the algorithm developed in Ref. 27. The
results of the investigation are discussed in the Conclusior;ombinatorial factors as well as integral values are known
along with the predictions and numerical estimates obtaineffom Ref. 28. After performing simple but cumbersome cal-
earlier on the basis of the same or other theoretical apeulations we obtain the four-loop expansions for héunc-
proaches and experimental data. tions:

The fluctuation LW Hamiltonian of the model reads

1 1
E(mé"’i2+ 9, P19, P1) +E(UoGi(ilk)l
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It is reasonable to note that the cubic mo@Blpossesses low to obtain the lower boundary value of the critical dimen-
some specific symmetry property whéh=2. Namely, the sionality N,.
transformation of the field components

I1l. METHOD OF SUMMATION
1 1 AND FIXED-POINT LOCATIONS
1= —=(@1+t@2), Q2= —=(e1—¢2) )
V2 V2

Before analyzing the four-loop functions let us consider
briefly the predictions following from the one-loop approxi-
gnation. It is easy to see th@t functions(3) and (4) in this
approximation have four different solutions corresponding to
Gaussian(trivial), Ising, isotropic(Heisenbery and cubic
3 fixed points with the coordinates

u—>u+§v, v——U (6)

combined with substitution of the quartic coupling constant

(i) uS=vs=0,
does not change the structure of the initial Hamiltonian itself.

As a result, thes functions(3) and(4) should obey certain
symmetry relatior’S which may be written down as

(N+8)
g

(i) ui=0, wvi=

(i) uf=1, wvi=0,

Bu

3 3
utsuv,-v =Bu(u,v)+ Eﬁv(uvv)’

N+8 N—4)(N+8
vy ue= 2, =TS

3N ®

BU :_BU(U,U). (7)

ut v, —
21) v

respectively. The most intriguing fixed points are the isotro-
pic and cubic ones. AN=4 the coordinates of these two
It can be easily verified that equatiot® are really satisfied. points coincide that leads to the conclusion that the critical
The specific symmetry of Hamiltoniafl) will be used be- dimensionality has the upper boundary vaNie=4. On the
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other hand, the eigenvalue exponents for the isotropic anthis information was used to solve the stability problem of

cubic fixed points are given by the expressions the cubic fixed point in three dimensions frenexpansiof’.
Usually, in a lack of any information about the high-order
AMi=—1, A=(N-4)/(N+8), behavior of the series either the simple P&deel or
Chisholm-Borel resummation procedures are used, for treat-
)\(1:: 1, )\§:(4—N)/3N. (9) ing the perturbative expansions of anisotropic models. The

latter technique, however, possesses at least two inherent

If the real parts of both eigenvalues are negative, the corredrawbacks. First, some ambiguity in the calculation of coef-
sponding fixed point is infrared stable; if eigenvalues are oficients of denominators of the Chisholm approximants is
opposite sings, the point is of “saddle-knot” type. It is seen unavoidablée'3 Segqnd, the Chisholm-BpreI procedure does
from Egs. (9) that N.=4 actually separates two different Not hold the specific symmetry properties of a model. At the
regimes of critical behavior of the model. Whah>N, the ~ Same time, exploiting the Borel transformation in combina-
cubic rather than the isotropic fixed point is stable in 3D,tion with the Pader Chisholm approximants shows that the
while for N<N, the stable fixed point is the isotropic one. results of calculation are very sensitive to the choice of the
To determine the lower boundary dbf, one should em- fype of the approximant. This may lead to the estimates,
ploy the above-mentioned specific symmetry property of thevhich do not pro_\nde_rellable pl‘ed.ICtIOI’]S even in the higher-
model, whenN =23 As was already pointed out, the rota- 100P RG approximationgsee, for instance, Sec. VI of the
tion (5) of the components ofy; by w/4 combined with pgpe}. Besides, in the framework of both schemes it is very
substitution(6) generates relationd), but does not change c_hfﬂcult to determine any error bounds for evaluated quanti-
the form of the RG equations. However, fd=2 transfor-  Ues. _
mations(5) and (6) result in the relocation of the coupling " the present work we apply for processing RG expan-
constants values so that the cubic and Ising fixed points argfons of thes functions and critical exponents of the model
transformed into each other at the 3D RG flow diagram (1) the PBL resummation method generalized for the two
Since the exact RG equations always have the Ising fixe§oUpling constant case. This resummation technique, intro-
point, which inevitably is the saddle-knot one, these equaduced by Baker, Nickel, and Meiron in Ref. 44, turned out to
tions should have also the cubic fixed point, which will be P& highly efficient when used to study the critical behavior of
unstable. In this situation, the isotropic fixed point, againSiMpIeO(N)-symmetric models in 3D. The critical exponent
always existing in the exact RG equations, should be th&stimates obtained within the framework of this technique
stable knot only. Therefore we conclude that the lowerd® regarded nowadays as the most accurate values, as those
boundary ofN, is not less than 2. Of course, the real value ofof Refs. 2, 35, and 39. We motivate our choice of the PBL
N, can be obtained only on the basis of the thorough analysi€Summation method by the following reasons:
of the structure of the RG flow diagram, provided thatghe ~ * 3D RG expansions for thg functions and critical ex-
functions of the model are calculated in sufficiently high- POnents of the cubic model are alternating in signs. There-
order RG approximations and then processed by means fgre using PBL resummation technique is quite natpral.
appropriate resummation techniques. « It can be expected that for complex models with more

Let us now concentrate our attention on the analysis of th&1an one coupling constant, the asymptotics of RG series at
four-loop 4 functions. It is well known that field-theoretical !arge orders will comprise a factét k. The PBL resumma-
RG expansions are divergent. The character of their largdion method removes divergences of this type. _
order asymptotic behavior for the case of simple ° The PBL resummation method allows one to determine

O(N)-symmetric models was established in Refs. 31-33. ifhe error bounds for the physical quantities to be calculated,

particular, it was proved that the coefficients of the series af? @ natural way. . _
largek behave as(—a)*k!k®, where the asymptotic param- The generalized PBL resummation procedure consists of

etersa, b, andc are assumed to be calculated for each RGN€ following steps. Let a physical quanti§(u,v) be rep-
function. Knowledge of the exact values of the asymptotic€Sented by a double series

parameters in combination with the most powerful resumma-

tion procedure of the Borel transformation with a conformal

mapping®* first proposed in Ref. 35 and then elaborated in F(U,U)ZE fijuiuj, (10)
Refs. 36—38, made it possible to develop the accomplished L

guantitative theory of critical behavior of simple

,2,35,38—-41 - L L Lo
systems: _ _ __where coefficientsf;; ~(i+j)!(i+j)® at large orders i(j
At the same time, the asymptotic nature of RG functlons_m), the additional parametes being an arbitrary non-

of anisotropic models is unknown. Calculation of the exactyegative number to be defined below. Associated with the
values of the asymptotic parameters characterizing the largesitia) series(10) is the function

order behavior of the series in such models is a very difficult

and still unsolved problem. As an exception one should men-

tion the anisotropic quartic quantum oscillator representing © b

one-dimensionak* field theory with a cubic anisotropy. J—"(u,v;b)=JO e t°B(utwt)dt. 1D
Within an assumption of the weak anisotropy, the transfor-

mation parameters for the perturbative expansion of the

ground-state energy of this system as well as forg@Hfanc-  The Borel-Leroy transfornB(x,y) is the analytical continu-
tions of the cubic model have recently been fodhtfLater  ation of its Taylor series
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fi; iy a)
Bx.y)= 2 F(|+J+b+1) (12)
absolutely convergent in a circle of the nonzero radius. In 1.38
order to calculate the integral in E{.1) one should continue 1.36

analyticallyB(x,y) for 0<x<o and 0sy<~. To this end,

the rational Padapproximant{L/M] (x,y) are used. The 1.34 = N -
Padeapproximant method is determined in a conventional 1.32
wayX® Let us consider a “resolvent” series 1.30

Uc

_ k=1 _ K
Boay =2 M2 mrprt — 2 AN (9 b
where coefficient®\, are uniform polynomials okth order b)
in uandv. The sum of the series is then approximated by
B(x,y)=[L/M]|;-1. (14 018
The Padeapproximant§L/M] in \ are given by an attitude o 883 X . R
> . X X raY
[L/IM]= PLM) (15) 8'82 M
Qu(n)’ 0.00 - ‘ ‘ =
whereP (\) andQy(\) are polynomials of degredsand 0 1 2 3
M, respectively, with coefficients depending enand y b

which should be determined from the conditions
FIG. 1. Curves demonstrating dependence of the results of cal-

Qu(M)B(X,y;N) =P (\)=O\-"M*h), culating the cubic fixed point locatioria) u, component andb) v
component on transformation parametefrom the four-loop ap-
Qu(0)=1. (16) proximation forN=3. The upper curve ¢ ) corresponds to the

[2/1] Pade approximant (three-loop approximation while the
middle (A) and lower () curves correspond to th&/2] and[3/1]
Padeapproximantgfour-loop approximatioy respectively.

Replacing variablex=ut andy=ut in the Padeapproxi-
mants and then evaluating the Borel-Leroy integral

Fu,v b)_f TOILM][ - qdt, 17 optimal value of the parametds, at which the quantity
|1— F (u,v;b)/F _1(u,v;b)| reaches its local minima. The
we obtain the apgroximate expressions for RG functions. quantity 7, (u,v;b) is evaluated for thé-partial sum of the
Among the Padepproximants the diagonal&M) or  series in Eq(17), L stands for the step of truncation of the
near-diagonal ones were proved to exhibit the best approxieries.
mating properties® However, as the degree of the denomi-  In Fig. 1 the results of the computation of the cubic fixed-
nator M increases, the number of possible poles of the appoint locations depending on the parameieare presented
proximant increases too. If some of the poles belong to thgor the physically important casd=3. Three curves corre-
positive real semiaxis, the corresponding approximant shoulépond to the three Padg@proximants. The parameteshifts
be rejected. Due to this the choice of “working” approxi- from 0 to 3. As seen from the figure the optimal valuebd$
mants, which might be used for analytical continuation of thezero. At this point the numerical values of the cubic fixed-
Borel-Leroy image onto the complex cut plane, is largelypoint locations given by different approximants are the most
limited. On the other hand, varying the free paramé&én  close to each other. The result of computing the cubic fixed-
the Borel-Leroy transformatiofiL1) allows one to optimize point locations folN=3 are also presented in Table I. In the
the resummation procedure under the condition that the fastirst three columns of the table the fixed-point locations val-
est convergence of the iteration process is achieved. So, takes found for the Pad@pproximant$2/1], [3/1], and[2/2] at
ing into account the above-mentioned remarks, in order t@he pointb=0 are placed. Averaging the results of process-
find the fixed points locations of the model we adopt theing over the all approximants under the optimal valuebof
following scheme. For the fixedl, the 8 functions are re- gives the estimates standed in the fourth column of the table.
summed by virtue of transformatidi 1) in the highest-loop  These numbers we adopt as the final estimates of the cubic
orders by shifting the transformation paramétein order to  fixed-point locations found within the four-loop approxima-
make an analytical continuation of the Borel-Leroy trans-tion. As an accuracy for these approximate values we take
forms B,(u,v), B,(u,v) over the cut plain the most appro- the maximum deviations of the average values of the fixed-
priate Padeapproxmants[Z/l] [3/1], and[2/2] are chosen. point locations from those given by the approximantsat
The fixed points locations are determined then for ech =0. One can observe, looking at Fig. 1, that the values of the
from the solution of the set of equation8, *(uc,v)=0,  cubic fixed-point locations given by the symmetric approxi-
Bi%%(uc,v:)=0. The “true” locations are obtained by aver- mant[2/2] weakly depend on the shift parameterAverag-
aging over the values given by the approximants under théng over all the values given by this approximant within the
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TABLE I. Coordinates of the cubic fixed point of RG equations bt 3 found under the optimal value
of the transformation parametbr=0. “AV” denotes the average value.

[2/1] [3/1] [2/2] AV AV over [2/2]  Ref.11  Ref. 12
U, 1.3536  1.3338  1.3410  1.3428.0200 1.3425 1.348 1.3357
Ve 0.0526  0.1026  0.0894  0.081®.0300 0.0937 0.090 0.0906

interval [0,3] results in the cubic fixed-point locations esti- RG orders with the help of the approximah®¢3], [4/2], and
mates presented in the fifth column of Table I. The coordi{3/2] are very weakly dependent on the paramé&temaried
nates of the cubic fixed point found earlier on the basis of th&vithin the interval G<b<15. The curves corresponding to
three- and four-loop approximations with the use of thethese approximants are intersectebat4.5. Therefore the
Chisholm-Borel resummation method are presented in thgajyeb=4.5 is the optimal value of the transformation pa-
sixth and seventh columns of the table, for comparisonrameter in which the fastest convergence of the iteration pro-
These numbers include the normalizing multipiemeeded  cequre is ensured. Far=4.5 the central value estimate of
to compare ou functions with those obtained in Refs. 11 4 isotropic fixed point ig,=1.392. The maximum devia-

and 12. tion of the central value from the values given by some of

In order to verify the correctness of the chosen approac - Cg T o
let us apply the above-considered scheme to estimate tf?ge approximantg3/3], [4/2], and[3/2] at the pointh=10 is

fixed-point locations of thed(N)-symmetric model where adopted approximately as an apparent accuracy of the calcu-

the numerical results are well known. Consider, for example![at'on’ A_O'.0013'. Such a small error can be explained by
an O(3)-symmetric case relevant to the Heisenberg ferro-he small dlspers!on of the curves W'thm. th_e range b
magnets. The six-loop 3D RG expansion for fdunction =10. So, thg estimatg.=1.392050.0013 is in excel!ent
of this model was reported in Refs. 35 and 44. The ppLagreement with those fqund more then 20 years ago in Refs.
resummation of that series with the use of eight types of thé® and 44 as well as with recent results of Ref. 2.
Pade approximants[2/1], [3/1], [2/2], [4/1], [3/2], [5/1], Within the framework of the four-loop approximation
[4/2], and [3/3] for analytical continuation of the Borel- there are only three appropriate Pagproximants. Averag-
Leroy transform yields, after solving the equatiBffS(g.) ing the results of computing the isotropic fixed-point location
=0, the picture displayed in Fig. 2. It is seen that the valuegiven by the approximant2/1], [3/1], and[2/2] under the
of the isotropic fixed point location calculated in the highestoptimal value of the transformation parameter results in the
estimate g.=1.3925+0.0070. The error was determined

1.43 - again through the maximum deviation of the central value
i from those given by each of the approximantdatO. It is
142 | seen that the four-loop estimate of the coordinate of the iso-
tropic fixed point is in a good accordance with the best ones
141 followed from the six-loop consideration.
TABLE Il. Coordinates of the cubic fixed point of RG equations
1.40 + and critical exponents estimates for sol#und under the optimal
: value of the transformation parameterwithin the four-loop ap-

S 1.39 - proximation. The critical exponents vaIL_Jes obtained within the
framework of the e-expansion methodfive-loop resulty and
marked by the symbdia) are presented for comparison.

1.38
N Uc Ve n 4 Y

1.37 1 3 1.3428  0.0815  0.0332 0.6996 1.3775

0.0375*  0.6997*  1.3746%
1.36 - 4 0.9055  0.8167  0.0327 0.7131 1.4028

0.0365*  0.7225%  1.4208*
1385 5 0.6980 1.2361 0.0325 0.7154 1.4076

: ] 0.0358%  0.7290°  1.4305%
01234567895101112131415 6 0.5807 1.5386 0.0324 0.7157 1.4082

b 0.0354% 0.73017 1.43222
FIG. 2. The results of computation of th®(3)-symmetric 7 0.5060  1.7874  0.0324 0.7155 1.4079
fixed-point locations from the three- to the six-loop approximations8 0.4544  2.0076 0.0324 0.7153 1.4074
obtained on the basis of the PBL resummation method when eigh 0.4168 2.2108 0.0324 0.7149 1.4067

types of the Padapproximants used2/1], ¢ ; [3/1], O; [2/2], A; 10 0.3881  2.4032 0.0324 0.7147 1.4063
[4/1], full & [3/2], full A; [5/1], full O; [4/2], O; [3/3], X. Onthe 12 0.3473  2.7680  0.0323 0.7142 1.4054
six-loop level under the optimal value of the transformation param
eterb=4.5 we obtain the estimatg.=1.392. aQuoted from Ref. 64.
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a) TABLE lll. Four-loop eigenvalue exponents estimates for the
cubic (CFP and HeisenbergHFP) fixed points (N=3) found in
0.80 3D under the optimal value of the transformation parambeter
s 0.78
g 0.76 CFP CFP, Ref. 17 HFP HFP, Ref. 17
20
T 074 A —-0.7786 —0.7648 —-0.7791 —0.7640
0.72 ¢ . \ . . w " No —0.0081 —0.0085 0.0077 0.0089
0 1 2 3 4 5 6
b

=1.3428+0.0200, v,=0.0815-0.0300(see fourth column
b) of Table ) will not distinguish strongly from the “exact”
values as well. The coordinates of the cubic fixed point for

0.06
0.05
2 004
é. 0.03
7 0.02
0.01

some valuesN of the order parameter dimensionality are
presented in Table Il. Our calculations show that Ifo# 3
the coordinates of the cubic fixed point practically do not
differ from those of the Heisenberg one. However, with in-
creasing\ the cubic fixed point runs away from the isotropic
point moving towards the Ising one. In the largelimit

these two fixed points become close to each another so much
that the influence of th@©(N)-symmetric invariant on the

critical thermodynamics of the cubic model vanishes. This

©) can be easily seen by applying théNl¢onsideration to the
0.45 one-loop solutions of the RG equations of the model
0.47 Indeed, rescaling the coupling constamts u/N, v —v/N in
B 046 the initial Hamiltonian and taking then the limN—o in
é 0.45 Egs.(8) one can see that the cubic fixed point approaches the
T 044 Ising one asymptotically. So, the cubic model turns out to be
0.43 - ' ‘ ' ‘ ' ! split into N noninteracting Ising models, the critical behavior
0 1 2 3 4 5 6 of each of them is determined by a set of the critical expo-

nents renormalized according to FisieiThe data listed in

Table Il will be used further for calculating the stability ma-
d) trix eigenvalues as well as critical exponents of the hypercu-

bic fixed point.

0.045
0.043
0.041
0.039
0.037 + \ \ \ T T

-dBv/du

FIG. 3. Graphs of dependence of the results of processing of the
series (8 —dBy/du, (b) —dB,ldv, (¢) —adBy/dv, and (d)
—dB,/du on the parametds for N=3. The curves on the pictures
(a) and (b) are given in the same notations as in the previous fig-
ures, while for the curves corresponding to the approximighity
and[2/1] on the pictureqc) and (d) the notations¢ and D are
used, respectively.

Let us note that the coordinate of ti@(3)-symmetric
fixed point calculated within the five-loop approximation
does not approach the exact value. Namely, the PBL resum-
mation procedure leads to the estimgte= 1.3947+ 0.0040.
Although the error of the calculation became visibly smaller,
the central value of the fixed-point location stepped aside
from the four- and six-loop ones. Thus the fulfilled numeri-

3.02

2.96

2.90 -

2.84 4

2.78

01234567891
b

01112131415

FIG. 4. Dependence of the results of processing ofettseries

cal analysis shows that the isotropic fixed-point location esfor the critical dimensionalityN, on transformation parametér
timate obtained in the four-loop level occurs to be close torhe crossing of the curves corresponding to the threé Rppoxi-
the “exact” value. Therefore it can be expected that in themants gives the optimal value of the parameteat which the
case of the cubic model the fixed-point locatioms  estimateN.=2.894 is obtained.
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IV. STABILITY AND CRITICAL DIMENSIONALITY tained recently in Ref. 17 on the basis of using the five-loop
¢ expansions are presented for comparison therein. These

One of the independent ways to determine the fixed-point . S -
locations in fixedD is to construct the RG flow phase dia- _estlmates show that the cubic fixed point is absolutely stable

gram of the model. If at the flow diagram there exists a fixed" 3D forN=3 wf_ule the isotropic f'X?d point appears to be
! . . - stable on theu axis only. Our numerical results agree well
point of stable knot type, the trajectories originated from™ . . .
. o i S - with those obtained in Ref. 17.
some point within the range of stability of the initial Hamil- Let us now calculate the critical dimensional fh
tonian would flow towards the knot. The region at the flow et us now cajcu’ate the critical cimensio a_m ortne
diaaram where the traiectories are intersected provides th%rder parameter field. The critical dimensionality is defined
gre . Jec . P -~ _. as avalue oN at which the cubic fixed point coincides with
coordinates of this stable fixed point. Thoroughly investigat

. X ) . ‘the isotropic one. Equivalently, fdd= N, the second eigen-
ing the 3D RG flow diagram of the cubic modd)) in the value of the stability matri ; vanishesh,=0.

four-loop approximation we arrive at the conclusion that the Studying carefully the 3D RG flow diagram of the model
cubic rather than isotropic fixed point is absolutely stable for(l) depending on the order of approximation with the use of
all N=3. different Padeapproximants we arrive at the conclusion that
On the other hand, the reliable conclusion about the stay_=2.910+0.035 andN,=2.890+0.020 within the three-
bility of the cubic fixed point foN=3 can be given on the and four-loop approximations, respectively. The accuracy of
basis of calculating the eigenvalue exponexitsof the sta-  calculation ofN, was determined through the evaluation of
bility matrix the stability matrix eigenvalues for different from the in-
terval of the above errors. That value Nf=N., above or
below of its central number, at which the second eigenvalue
N, was becoming nonzero, was taking for the upper or lower

dBy 9By boundary ofN., respectively.

au v It is worthy to compare the four-loop estimate df just
M= found with that which can be obtained within the

9By 9By e-expansion method. The five-loap expansion folN, has

du  dv been calculated in Ref. 13. The series proved to be alternat-

ing in signs that allows one to resum it by means of the PBL
technique. To this end, we will use again the most appropri-
ate Padeapproximantd2/1], [3/1], and[2/2] for analytical
continuation of the Borel-Leroy transform for alkQet=<oo.
ependence of the results of processing of the critical di-
mensionalityN. on the transformation parametbris de-

taken atu=u. andv=uv,. If the real parts of both eigenval-
ues are negative, the fixed point is the stable knot in th
(u,v) plane. IfA 1, N, have opposite signs, the point is of the

“saddle-knot” type. o o . picted in Fig. 4. The curves corresponding to the approxi-
To_ calcul_ate_the stal_Jlllty matrix eigenvalues of the Cu_b'cmants are crossed at the point 1. The appropriate value of
and isotropic fixed points we have chosen the followingihe critical dimensionality i8N, =2.894-0.040. As an error
strategy. First, the derivatives of tifefunctions(3) and(4)  of the calculation it is natural to assume the maximum scat-
are calculated, and the new RG expansions resummed Riring of numerical values given by the approximantsat
means of the PBL technique are substituted into the matrix g with respect to the value obtained at the crossing point
M;; . The eigenvalue exponents of the matrix of derivativesof the curves. This estimate &f. is in excellent accordance
M;; obtained in this way are evaluated then under the optiwith the above found within the 3D RG approach. So, both
mal value of the transformation parameterin Figs. 3a) schemes, the RG technique directly in 3D and the
and 3b) we present our numerical results for the seriese-expansion method, result in the same estimate of the criti-
—dByldu and —dB, /dv for the physically interesting case cal dimensionalityN.=2.89, thus implying that the cubic
N=3. The curves correspond to the three types of the Padixed point is stable in three dimensions fdi=3. This
approximants used within the four-loop approximation. Themeans that the critical behavior of the mod&l should be
crossing of the curves gives the optimal valuebadt which ~ governed by the cubic fixed point with a certain set of the
we find 3,3u/l9u|opt= —0.7536 and&ﬂv/av|optz —0.0331. critical expon.ents which will be calculated for geneNdn
Because the series 93,/dv and —dB,/du are turned out the next section.
to be shorter by one order in comparison witldg3,,/Ju and
—dB,1dv, their resumming performed with the help of the
approximan{2/1] only yields the monotonic dependence of V. CRITICAL EXPONENTS FOR GENERIC N

the re;ult (_)f processing on the paramdiem th!s unf,avor- Having the coordinates of the cubic fixed point, the sta-
able situation, we take into account an additional Paple bility of which in 3D for N=3 has been proved in the pre-
proximant[1/1] to optimize the iteration procedure. The re- yjoys section, it is possible to obtain the numerical estimates
sults are plotted in Figs.(8) and 3d). For the optimal values  for the critical exponents. Two of them are known to deter-
of b we obtain dB,/dv|op=—0.4566 anddB,/dulop:  mine the critical behavior of the system while the others can
= —0.0409. Straightforward calculation of the eigenvaluespe found via the famous scaling laws. The four-loop RG
of the stability matrixM;; gives for the cubic fixed point the expressions for the magnetic susceptibility expongnt as
numbers placed in Table lll. The eigenvalues of the isotropiavell as the correlation function exponentfor the generic
fixed point as well as the analogous numerical estimates olsymmetry indexN are as follows:
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1
“1_q__~
Y N+8

5 u+2v

2 2 27 _
(N+8)2[(N+ Jus+6uv + 3v7] (N+8)°

+9.452 718u+9(0.879 550 + 4.726 359uy + 9(0.128 340\ + 5.477 578uv 2+ 16.817 7543]

[(0.879 55N+ 6.485 47N

(N+2) 3 }
—_— +

+ N 8)4[—(0.128 33N3-7.966 74N?—51.844 218l— 70.794 806u*— 3(0.513 328! — 32.893 620!
+

—141.589 613uv +9(3.423 908\ + 83.561 044uv?+ 27(0.208 99% + 19.120 99Juv 3+ 130.477 428%], (18

1
n= [0.296 296N+ 2)u?+1.777 71w + 0.888 883 2] + [0.024 684N+ 2)(N+8)us+0.222 156N+ 8)
(N+8)2 (N+8)3

1
X u?v+1.999 4Qiw?+0.666 468 °] + N [ —(0.004 29%°—0.667 98B>— 4.609 2N — 6.512 1Qu*

+8)4
—3(0.017 1942—2.706 3N —13.0243u3v + 3(0.681 61M + 22.8884uv %+ 47.14Qu 3+ 11.78504]. (19

These series, however, are known to be divergent. To extradthe critical exponents estimates of the cubic fixed point for
from them a physical information concerning the critical be-other values oiN are listed in Table Il. The estimates ob-
havior of the substances of interest we will apply the sameained from thes expansion¥ are placed for comparison
resummation procedure as that used above. Note that sintieerein.

the coefficients of the series af are rapidly diminishing, its How much do the critical exponent estimates found differ
values are found by the direct substitution of the coordinatefrom the exact ones? To answer this we resort again to the
of the cubic fixed point into Eq(19), whereas the series of analysis of numerical results for ti@(3)-symmetric model
the exponenty ! before the substitution needs to be re-obtained on the basis of using the PBL procedure. In Fig. 6
summed. Using the generalized PBL resummation techniquéehe results of processing of the 3D RG series for the suscep-
we evaluate the magnetic susceptibility expongiaind then, tibility exponent y in successive orders of perturbation
having the values ofp at hand, estimate the correlation theory in a number of loops are presented. Within the four-
length critical exponent by the scaling relation. The result loop approximation under the optimal value of the transfor-
of the numerical processing of E¢L8) depending on the mation parameter we fingg)=1.3778. The six-loop calcula-
parameteb for N= 3 is dipicted in Fig. 5. The three types of tions under the optimal choice bf(the point of crossing the
the Padeapproximants have been used, and the transformasurves corresponding to the approximapé2], [5/1], and
tion parameter shifted within the ranf@,15]. For the opti- [4/1]) give y=1.3867. The latter estimate seems to be in
mal value ofb we obtainy=1.3775-0.0040. Thus, taking good agreement with that known from Refs. 35 and 44. Thus
into account that in the four-loop approximatier=0.0332 the difference between the four-loop results and their six-
+0.0030, we arrive at the estimate of the critical exponentoop counterparts does not exceed 0.01.

v: v=0.6996= 0.0037. The error bounds for the exponents For N=2 the numerical results for the cubic model prove
and v have been determined through a maximum deviatiorio be much better. In this case the cubic fixed point lies in the
of its central values ab=b,, from the corresponding val- v<0 half plane and is unstableN&N,). However, forN

ues given by the approximants lat=0. In the case of the =2 the Hamiltonian of the mod€ll) possesses the specific
exponenty, as the uncertainty we take the absolute differ-symmetry[see Eqs(5) and (6)] that transforms the cubic
ence between two successive, three- and four-loop, results.

1.392 -

1.383 4
1.388 ‘><‘\L>_‘¢

1.381 ==
1.384 -

1.379 A Y
Y 1.380 1
1.377
1.376—/
1.375
1.372 T T T T T T T T
—— T T—T—T—T— 012345678 9101112131415
01234567 8 9101112131415 b
b

1.373

FIG. 6. Graphs of dependence of the results of processing of the
FIG. 5. Curves demonstraiting dependence of the result of pro3D RG series for the critical exponent of the O(3)-symmetric
cessing critical exponeng of the cubic model on the parameter model on the parametérfor the eight types of Pada@pproximants
for N=3 in the four-loop approximation. in the PBL procedure.
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point into the Ising one and vice versa. Due to this symmetry a)
the critical exponents of both fixed points coincide. In the

four-loop level for the cubic fixed point &l=2 we found 0 1 2 3 4
the estimatesy=1.2416, »=0.0323, andv=0.631. These -0.50 ; T 5 —
numbers agree well with the best estimates followed from -ggg l:——* M

the six-loop RG expansioris**3°20One may hope therefore S 925 & % & A
that the critical exponent estimates for the cubic model ob- -0.66 i_____n—-—u————n———ﬂ
tained in the present work within the four-loop approxima- -0.70
tion will differ from the “exact” values by no more than b)
1-2%.

Unfortunately, for the most important calle=3 having a

good number of interesting applications to the critical phe- 3118 - g < < ©
nomena in real substances, the critical exponents of the cubic g f-gg L _ _ o

and isotropic fixed points turn out to be practically the same. 1921 N N 2 ;:
This is the consequence of the closeness of both points on 1.86 b - : |
the 3D RG flow diagram. Thus, although in the course of the 0 1 2 b 3 4

investigation the cubic fixed point has been shown to be
stable aN= 3 and therefore the critical behavior of the mag-  FIG. 7. Graphs of dependence of the results of calculating the
netic phase transitions in crystals with cubic anisotropyRIM fixed point locationsa) u, component andb) v, component
should belong to the cubic rather than the isotropic univeron transformation parameterwithin the four-loop approximation.
sality class, a certain difficulty arises in trying to identify the The curves marked by>, A, and correspond to the Padwp-
cubic fixed point from experimentally determined exponentsproximants[1/1], [2/2], and[3/1], respectively.
Due to this “near-marginality” the calculation of the critical
exponents in cubic magnets seems to be of academic interesie famous Harris criterioff. Indeed, according to Harris,
only. provided the specific-heat exponeny, of a pure system is

At the same time, the numerical analysis shows thdl as positive, i.e., the specific heat is divergent at the critical point
increases the distinction between the critical exponents of theC~|T— T, ~%), a new critical behavior under dilution is
cubic and isotropic fixed points increases as well. In the limitexpected. Otherwise, if <0, the critical behavior of the
N— < the critical exponents of the cubic fixed point go over random system would be similar to that of the pure one.
into those of the Ising model with equilibrium magnetic Among the three-dimensionall-vector models, only the

impurities?® Ising model hase>0, and the corresponding new critical
behavior has been obtained as an unusual stable fixed point
VI. NUMERICAL RESULTS FOR THE RIM dependent upon\/g where ¢e=4—-D. Furthermore, one

(smallest of the eigenvalues of the stability matrix taken at
In the critical region the character of critical behavior of the RIM fixed point is expressed through the critical expo-
the defect crystals such as impure uniaxial ferromagnetgentse and »: No~alv (for the details see Refs. 48, 49
LiTh; _xY«Fs4, Cdi—yNd,Cl3 or diluted Ising antiferromag- ~ The systematical calculation of the RIM critical expo-
nets Mnzn, ,F,, FgZn, ,F, are known to be described nents was hystorically begun in the seminal works by Harris
by the 3D random Ising model with the effective Hamil- and Lubensk§*??> and Khmelnitski®®> However, the
tonian e-expansion technique could not provide the reliable numeri-
cal estimates, because RG equations of the m@ddebr N
=0 turn out to be degenerate in the one-loop approximation.
Such a degeneracy causes powergofto appear in expan-
(200  sions for the fixed-point locations as well as critical expo-
] ] ] o ) nents, thus leading to the substantial decrease of accuracy
where y(x) is the static random field describing fluctuations expected within the high-loop approximatioii$?
of local transition temperaturené—mSC~T—Tc. Averag- The following pronounced step to evaluate the RIM ex-
ing over all configurations of/(x) with Gaussian weight and ponents was made by G. Jefgwho applied the alternative
employing the replica trick one can reduce the problem approach, the RG in fixed dimensions. The reasonable nu-
(20) to the analysis of critical behavior of thé-component merical estimates were obtained within the two-loop ap-
cubic model(1) in the limit N—0.%6 Moreover the Ising proximation by making use of the Chisholm-Borel procedure
vertexuv, in Eq. (20) plays a role of the cubic vertex in Eq. to resum the resulting series. Later the critical exponents
(1), while a role of the impure vertex plays the isotropic oneseries for the 3D RIM were deduced within the three- and
Uo. Obviously, because nouy<0,u,>0, the added interac- four-loop approximations and corresponding numerical esti-
tion of critical fluctuations of the order-parameter field mates were obtained on the basis of the Chisholm-Borel
through the intermediary of impurities is the attraction. ~ summation method;*? PadeBorel procedure and the first
Studying the magnetic and structural phase transitions igonfluent form of thes algorithm of Wynn??
the weakly disordered systems is of considerable interest In this section we will study the critical thermodynamics
both from theoretical and experimental point of view. It is of the 3D RIM using the generalized PBL summation
well known that the critical exponents of such systemsmethod. SettingN=0 in Egs.(3) and (4) and solving the
should differ markedly from those of the pure ones, due tesystem of equationg3;°%(u.,v.)=0, Bi(Uc,vc)=0 we

1 1
H=fdX(E[m3¢2+(V¢)Z]+ﬂvo@4+lﬂ(X)qoz :
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TABLE IV. Numerical results for the RIM. Here “MSA” indicates that the fixed-point locations and the
critical exponents are found for the most stable approximants in the framework of the PBL resummation
technique, “AV” means that the fixed-point locations are calculated as the averages between the values
given by the highest approximanitd/1] and[2/2], “PB” denotes a simple PadBorel resummation. The
results obtained either within the different theoretical approaches, or on the basis of using different resum-
mation techniques, or experimentallyExpt.” ) and by means of the MC simulations, are presented for

comparison.
Uc Ve n v Y w
MSA —0.5816 1.9822 0.040 0.681 1.336 0.310
+0.0850 *0.0740 =+0.011 +0.012 +0.020
AV —0.6246 1.9438 0.034 0.672 1.323 0.330
+0.0600 *0.0500 +0.010 +0.004 +0.010
PB[3/1] —0.6839 1.9877 0.033 0.674 1.326 0.362
PB[2/2] —0.5800 1.8934 0.034 0.669 1.316
AW —0.5874%  1.93622 0.6682 1.3182
Ref. 11 -0.728 2.006 0.021 0.671 1.328 0.359
Ref. 55 —0.745 2.011 0.019 0.671 1.328 0.376
Ref. 12 —0.6668 1.9951 0.034 0.670 1.326
3D MS 0.053 0.677° 1.319° 0.330°
0.390°
Expt. 0.71-0.02° 1.37+0.04°
0.70+0.0224 1.37+0.043¢
MC, Ref. 58 0.683#0.0053  1.3420.010  0.3%0.06

%Quoted from Ref. 53. dQuoted from Ref. 57.
bQuoted from Ref. 54. €Quoted from Ref. 61.
‘Quoted from Ref. 56.

find the RIM fixed-point locations depending on the transfor-a course of studying the critical behavior of the site-random
mation parametel. Resulting curves are depicted in Fig. 7. Ising system Mpzn,_,F, with x=0.75 (or 0.50 by the
Unfortunately, this picture is not complete, because in theneutron-scattering method as well as the averaged values of
three-loop approximation the Pad@proximantg2/1] and  Ref. 57.

[1/2] have the poles for alh. On the other hand, the fixed- In Table IV we present also the numerical results for the
point locations values given by the approximabtl] seem  fixed-point locations and critical exponents obtained on the
to be very far from the true ones. So, in order to determinebasis of the simple Borel summation method combined with
the RIM fixed point locations we cannot apply the optimiza-the Padeapproximantg3/1] and[2/2]. Although the fixed-

tion algorithm described in Sec. lll, at least within the givenpoint coordinates obtained in such a way turned out to be
approximation. In such situation we need a new workingstrongly different, the critical exponents estimates differ nev-
criterion. We can, for instance, select the approximants proertheless from each other only slightly. From this point of
viding the most stable values under the variation of the paview neither approximant is better.

rameterb. As is seen from Fig. 7, the locations of the RIM  Another possible way to determine the coordinates of the
fixed point given by the approximan{g/2], for theu, com-  RIM fixed point is to calculate them as averages between the
ponent, and3/1], for the v, component, are practically in- values given by the highest approxima[84l] and[2/2] for
dependent on the parameterindeed, the dispersion of the each of the componentsee Fig. 7. The corresponding criti-
corresponding curves within the rangesB<4 is no more cal exponents estimates are found to agree with just consid-
than 1x 10~ 4. The fixed-point locations obtained in such a ered as well as experimental data and MC results within the
way may then be used for calculation of the critical expo-error boundgsee Table IV.

nentsy, 7, and v as well as eigenvalues of the stability = Unlike the cubic fixed point, the determination of the er-
matrix when starting the optimization procedusze Secs. ror bounds for the RIM fixed-point locations is a more diffi-
IV and V). Corresponding numerical estimates are summaeult problem. In the case of selecting the most stable ap-
rized in Table IV. For comparison we collected in the tableproximants we have taken the following scheme. First, the
the data obtained earlier either by resumming RG functionsalues of the fixed-point locations given by the approximants
within the minimal subtractiorfMS) scheme directly aD [3/1] and [2/2] are averaged for each of the components
=3 (3D MS),> or by applying different resummation proce- separately within the interval©b=<4. The discrepancy be-
dures [Chisholm-Borel techniqu&;*?®® ¢ algorithm of tween averages in these approximants is then adopted as a
Wynn, “AW” (Ref. 53], or found experimentalf/>" and  sought uncertainty in the results. At the same time, the error
through the MC simulation® To compare those results with bounds for the critical exponents are determined in the same
our numbers, the fixed-point locations are given by takingway as in Sec. V. If we adopt as the fixed-point locations the
the normalizing factog into consideration. As experimental averages between the values given by the highest approxi-
data we consider the averaged values of Ref. 56 obtained imants[3/1] and[2/2] separately for each of the components,
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the error bounds seem to be even smaller, they are almost So, if to assume that the MC simulatihgrovide the
three-quarters of the previous ones. Absence of the errarumerical estimate of which is close to the exact one, a
bounds in some of the places of Table IV means that thguestion is to be put forward: can the estimation of the
errors either cannot be established or were not establishedcorrection-to-scaling exponent of the dilute systems be used
We have checked also the stability of the RIM fixed pointas an additional criterion of selection of the resummation
on the three-dimensional RG flow diagram. In all consideredechniques to be employed? Probably the answer will be
cases the eigenvalue exponents of the stability matrix turnediven in the course of the further investigation of the critical
out to be negative, except the calculations based on thproperties of the RIM within the higher-order RG approxi-
simple Borel summation method with the Paajgproximant mations provided a more sophisticated method of the series
[2/2]. In this case the second eigenvalug occurred to be summation will be used, on a level with the simple tech-
positive and too large. This is in contradiction to the knownniques. Thus more recently, a different approach to summa-
theoretical and experimental predictions as well as thdion of divergent field-theoretical series has been
Monte-Carlo simulation2® Indeed, the secontsmallest in  suggested* The method, based on the Borel transformation
modulus eigenvalue\, of the matrix of derivatives of th@  combined with a conformal mapping, relies upon the stabil-
functions is well known to define the so-called correction-to-ity of the result of processing on the transformation param-
scaling exponent» that governs the leading corrections to eters and therefore does not require knowing the exact
the universal power laws. Thus the approach of the zero-fieldsymptotic behavior of the series. This method has been
susceptibility to the critical temperature, fée>T, is char-  tested on the functions expanded in their asymptotic power

acterized by the Wegner seriés series and applied to estimating the ground-state energy of
quantum-mechanical systems, including anisotropic oscilla-
x=Tor Y(1+T7%"+ - .), (21  tor, as well as to calculating the critical exponents for some

conformal field theorie&*®® The successful testing of the

with T, being the nonuniversal amplitudes and=(T  developed technique on simple systems made it possible to
—T.)/T..%° Here y, v are the asymptotic values of the sus- gpply it for obta|n|_ng the critical exponents estimates _of an-
ceptibility and correlation length critical exponents. As theiSotropicN-vector field models describing both magnetic and
exponeniw decreases the region increases, where the corre€lfuctural phase transitions in cubic and tetragonal
tions to scaling laws should be taken into account. So, therystal$™®* from the known five-loope expe}nsmné.' It
smallness ofw in the RIM indicates the importance of its Would be reasonable therefore to apply this technique in
calculation for analysis of the asymptotic critical behavior ofStudying the critical behavior of the RIM exactly in three
dilute system§? dimensions within the five- or higher-loop approximations.
Recent MC calculations based on the analysis of the first
correction term in Eq.21) provided the estimate of the
correction-to-scaling exponeat=0.37+0.06°% Almost the
same number was more recently obtained in the framework The complete RG analysis of a field model with two quar-
of the four-loop 3D RG analysis used for processing divertic coupling constants associated with isotropic and cubic
gent series the Borel summation method in combination witlinteractions describing magnetic and structural phase transi-
the simple rational Chisholm approximants liké,M/1,1], tions in a good number of real substances has been carried
»=0.372+0.005°% Although the apparent accuracy of this out within the four-loop approximation directly in three di-
estimate seems to be highly overstated, the central value is imensions. Perturbative expansions for ghdunctions and
accordance with previous estimates-0.366 (Ref. 62 and  critical exponents were deduced for geneic The fixed-
0=0.3591 »=0.376 (Ref. 59 derived within the three- point locations were found fal=3 by applying the gener-
loop approximation in the framework of the minimal sub- alized PadeBorel-Leroy resummation technique, and the
traction scheme and the 3D RG, respectively. Our estimatglobal structure of the 3D RG flow diagram was investi-
of w obtained on the basis of the Borel summation methodyated. The analysis of the eigenvalue exponents of the most
with the Padeapproximant[3/1] is close to the above- intriguing isotropic and cubic fixed points fulfilled for the
mentioned one. On the contrary, using of the Pagproxi-  physically important casél=3 has shown that the cubic
mant[2/2] in the Borel transformation leads to the unphysi- rather than isotropic fixed point is absolutely stable in 3D.
cal result for the correction-to-scaling exponent. The eigenvalues estimates of both fixed points were found to
At the same time, applying the PBL resummation methodagree well with those of recently calculated on the basis of
to study the asymptotic critical behavior of the systems withexploiting the five-loope expansions! The critical dimen-
impurities results in the correction-to-scaling exponent val-sionality N of the order-parameter field, at which the topol-
ues which are different from those predicted by either theogy of the flow diagram changes, has been analyzed by the
MC simulations or simple resummation proceduresge two different methods(i) by resumming the four-loop RG
Table IV). It is the consequence of that the four-loop ap-expansions for thg functions in 3D andii) by resumming
proximation is not enough to obtain reliable estimates of thehe five-loope expansion forN. at e=1. The numerical
RIM fixed-point locations. Note, however, that our estimatesestimatesN,=2.89+0.02 andN.=2.894+0.040 obtained
of w are within the error interval found for the MC result. are in a good agreement with the earlier restiftéand con-
The critical exponents estimates obtained confirm also thérm the conclusion about the stability of the cubic fixed
inequality —rvw<a<0 conjectured for the random point for N=3. Consequently, the magnetic and structural
models®® Unfortunately, at present we cannot indicate anyphase transitions in three-dimensional anisotropic crystals
error bounds in our calculation of the exponant with cubic symmetry are of second order and their critical

VIlI. CONCLUSION
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TABLE V. The cubic fixed point locations and critical exponents estimates for Sémietained within
the PBL resummation procedure in the six-loop approximation. Here the coupling constants are given in the
same notations as those of Ref. 66.

N Ue Ve 7 v y N1, Ref. 69  \,, Ref. 69
3 1.3177 0.0964 0.0327 0.7040 1.3850 —0.7833 —0.0109
+0.0170 +0.0165 +0.0020 +0.0040 +0.0050 +0.0054 +0.0032
4 0.8804 0.6360 0.0316 0.7150 1.4074 —-0.7887 —0.0740
+0.0080 +0.0050 +0.0025 +0.0050 +0.0030 +0.0090 +0.0065
8 0.4410 1.1331 0.0305 0.7143 1.4068 —0.7955 —0.1396
+0.0070 +0.0160 +0.0025 +0.0035 +0.0030 +0.0150 +0.0100
© 0.1751 1.4122 0.0319 0.7094 1.3962 —0.7986 -0.1787
+0.0040 +0.0090 +0.0035 +0.0030 +0.0040 +0.0200 +0.0050

thermodynamics should be governed by the cubic fixed poinéxtract a reliable numerical estimate @ffrom the five-loop
with a specific set of critical exponents. The corresponding: expansiort® even resummed by a proper method. The
four-loop critical exponents estimates were found in thepoint is that thes series forw turns out to be very short, due
framework of the PBL resummation method. On the basis Ofo the degeneracy of the random |Sing moﬁd’“nctions on
comparative numerical analysis with tf@(N)-symmetric  the one-loop level. Therefore, until the appreciable discrep-
model, the critical exponents of which are solidly ancy between the results given by different methods of the
estab“shed,it has been shown that in the case of the Cubiczseries summation on the one hand, and the MC CalcuiationS,
model the difference between the four-loop estimates and thgn the other, does exist, the further investigation of the
“exact” values does not exceed 1-2%. Although our resultsasymptotic critical behavior of dilute systems will be highly
for the most interesting cadé=3 are in good accordance desirable in the framework of the higher-ordéve- or six-
with earlier theoretical predictions, the cubic Universa”tyioop) RG approximations provided a more Sophisticated re-
class is not easy to distinguish experimentally from the isosymmation procedure, for instance, the Borel transformation
tropic one, due to the obvious marginality of the problem,combined with a conformal mapping, will be applied.

Ne~3. More recently the six-loop study of critical behavior of
The critical behavior of weakly quenched disordered systhe 3D cubic model appear&@iPerturbative expansions for
tems undergoing second-order phase transitions and deg functions and critical exponents deduced within the mas-
scribed by the three-dimensional random Ising model, whicljve field theory in fixed dimension have been resumed by
is the nontrivial specific case of the cubic model wHén means of the Borel transformation combined with a confor-
=0, has been investigated also. The coordinates, eigenvahal mapping that takes into account the singularities of the

ues, and critical exponents of the RIM fixed point were com-Borel transform. The fixed point locations, stabililty matrix
puted by using the PBL resummation method and the morgigenvalues, and critical exponents estimates obtained turned
simple PadeBorel procedure. Our numerical results alongout to be essentially the same results as those of the present
with the known theoretical and experimental data were sumwork. In the Appendix we present our numerical estimates
marized in the table. While the RIM fixed point locations for the cubic model obtained on the basis of the six-loop
found in the framework of the different approximation expansions of Ref. 66 when the PBL resummation procedure
schemes turned out to be strongly different, the critical exis applied. The critical behavior of three-dimensional random
ponents estimates differ from each other only slightly, within|sing systems has recently been studied within the five- and

the error bounds obtained. six-loop RG approximations in Refs. 67 and 68, respectively.
Special attention was given to study the stability of the

RIM fixed point on the RG flow diagram. The calculation of
the stabilit_y matrix _eigenvalues based on applying ciifferent APPENDIX
resummation techniques showed that they are negative. Con-
sequently, the RIM fixed pont is stable in 3D. As an excep- In this section we present our numerical estimates for the
tion we have indicated the case of using the simple Boretubic fixed point locations and critical exponents for some
summation method in combination with the Paajgproxi- values ofN (see Table Y using the six-loop expansions for
mant[2/2], which led to the unphysical result for the secondRG functions recently obtained by J. M. Carmona, A. Pelis-
eigenvaluer ,= w. Applying the PBL procedure to calculate setto, and E. Vicari® We apply the generalized PBL resum-
the leading correction-to-scaling exponentfor the three- mation technique. The susceptibility and correlation length
dimensional impure systems was shown to result in the nueritical exponents are estimated through the original series
merical estimates which are distinguishable markedly fronfor y tandv ! (or 5,=1/v—2), whereas the critical ex-
those predicted by recent MC simulatiéfer followed from  ponent 7 is obtained by the known scaling relation= 2
applying simple Borel-like summation procedure®®(see  —y/v. It is seen that our estimates are in excellent agree-
Table IV). Note, however, that our estimates of were  ment with those of Ref. 66, where the Borel resummation
found to be within the error bounds known for the MC result. procedure with a conformal mapping, that takes into account
At last, it is worth noting, that one can hardly hope to the singularities of the Borel transform, has been applied.
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