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Stability of a cubic fixed point in three dimensions: Critical exponents for genericN
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St. Petersburg 197 376, Russia
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The detailed analysis of the global structure of the renormalization-group~RG! flow diagram for a model
with isotropic and cubic interactions is carried out in the framework of the massive field theory directly in three
dimensions~3D! within an assumption of isotropic exchange. Perturbative expansions for RG functions are
calculated for arbitraryN up to four-loop order and resummed by means of the generalized Pade´-Borel-Leroy
technique. Coordinates and stability matrix eigenvalues for the cubic fixed point are found under the optimal
value of the transformation parameter. Critical dimensionality of the model is proved to be equal toNc

52.8960.02 that agrees well with the estimate obtained on the basis of the five-loop« expansion@H. Kleinert
and V. Schulte-Frohlinde, Phys. Lett. B342, 284 ~1995!# resummed by the above method. As a consequence,
the cubic fixed point should be stable in 3D forN>3, and the critical exponents controlling phase transitions
in three-dimensional magnets should belong to the cubic universality class. The critical behavior of the random
Ising model being the nontrivial particular case of the cubic model whenN50 is also investigated. For all
physical quantities of interest the most accurate numerical estimates with their error bounds are obtained. The
results achieved in the work are discussed along with the predictions given by other theoretical approaches and
experimental data.
d
rie

cu
ag
rro
flu
sm
d

ld

h
o
a
ys
d

as

ne
he

di
on
l
ac
f
na
d.
ra

in
ap

n
ed,
ith
hat
u-

ood
led

in
at
e-

pts
ra-

ty
ts

m-

y

s at

a-
d,
d
on
ing
I. INTRODUCTION

In the present time the critical behavior of the basic mo
els of phase transitions described by isotropic field theo
with a quartic interaction like( i 51

N (w i
2)2 is well studied in

the framework of different theoretical approaches. In parti
lar, the critical phenomena in polymers, easy-axis ferrom
nets, simple liquids, and binary mixtures, easy-plane fe
magnets, certain superconductors, as well as super
helium-4, Heisenberg ferromagnets, and quark-gluon pla
in some models of quantum chromodynamics were prove
be governed by theO(N)-symmetric universality class with
N50, 1, 2, 3, and 4, respectively. The large-order fie
theoretical renormalization-group~RG! expansions com-
bined with proper resummation techniques, the hig
temperature series method, and the most advanced M
Carlo ~MC! simulations provided high precision and comp
rable to each other numerical estimates for important ph
cal quantities~critical exponents, universal couplings, an
critical amplitude ratios! which nowadays are regarded
canonical numbers.1,2

However, in real crystals due to their complex crystalli
structure an anisotropy is always present. That is why, w
studying phase transitions in real substances, besides
O(N)-symmetric term one should take into account ad
tional quartic interactions in corresponding fluctuati
Landau-Wilson~LW! Hamiltonian. The simplest nontrivia
crystalline anisotropy is a cubic one. Proper quartic inter
tion term is represented as( i 51

N w i
4 . In this case the vector o

magnetization is directed either along the edges or diago
of a hypercube inN dimensions of the order-parameter fiel

The critical thermodynamics of magnetic and structu
phase transitions in three-dimensional~3D! cubic crystals
was extensively investigated more than 25 years ago
good number of papers. By using the lower-order RG
PRB 610163-1829/2000/61~21!/14660~15!/$15.00
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proximations, Wilson and Fisher,3 Aharony,4 and Ketley and
Wallace5,6 showed that in the critical region the fluctuatio
instability of continuous phase transitions may be observ
and that it may lead to the isotropization of the system w
a cubic anisotropy. This fact gave rise to a question of w
regime of the critical behavior is actually realized in 3D c
bic crystal with N53. Much effort of many people have
been devoted to answering this question. It was underst
that for a given model it is enough to calculate the so-cal
critical ~or marginal! dimensionality Nc of the order-
parameter field. Indeed, the critical valueNc separates two
different regimes of critical behavior of the system. ForN
.Nc the cubic rather than isotropic fixed point is stable
3D. At N5Nc the points interchange their stability so th
for N,Nc the stable fixed point is the isotropic one. Ther
fore the calculation ofNc is the crucial point in studying the
critical phenomena in 3D cubic crystals. However, attem
to evaluate the critical dimensionality resulted in the d
matically different estimates.

In fact, the field-theoretical RG analysis of the stabili
matrix eigenvalues of the cubic and isotropic fixed poin
fulfilled in the one-loop approximation as well as some sy
metry arguments~for details, see Sec. III of the paper! lead
to the conclusion thatNc should lie between 2 and 4. Man
years ago the three-loop expansion forNc as a power series
in « was obtained in Ref. 5. Summation of that short serie
«51 (D53) by means of the Pade´ approximant @1/1#
yielded the valueNc53.128,7 while making use of the Pade´-
Borel resummation method results in the estimateNc53. In
contrast to this, in the work of Ref. 8, by using the vari
tional modification of the Wilson recursion relation metho
it has been found thatNc52.3. Later, however, Newman an
Riedel by decoupling the infinite system of the recursi
relations for the so-called scaling fields and then solv
them showed9 that for D53 Nc;3.4. At the same time, the
14 660 ©2000 The American Physical Society
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PRB 61 14 661STABILITY OF A CUBIC FIXED POINT IN THREE . . .
classical technique of the high-temperature expansions,
der some circumstances, allowed to establish that forN53
the isotropic critical asymptotics in the cubic crystal
unstable,10 thus implyingNc,3. Further, ten years ago, th
analysis of the critical behavior of the (mn)-component field
model, which has a good number of interesting applicati
to the phase transitions in real substances, has been ca
out within the three-loop RG approach in three dimensio
The calculation of the stability matrix eigenvalues for t
cubic model (m51, n53) provided the stability of the cu
bic fixed point in 3D, and the critical dimensionality turne
out to be equal to 2.91.11 In agreement with this, the estima
Nc52.9 was quoted in Ref. 12. More recently, Kleinert a
Schulte-Frohlinde calculated the RG functions for the cu
model in (42«) dimensions up to five-loop order.13 Resum-
mation of the critical dimensionality expansion with the he
of the Pade´ approximant @2/2# gave the estimateNc
52.958.14 The cubic fixed point eigenvalues found by mea
of a simple resummation algorithm of the Borel type, a
counting the large-order behavior of theb functions when
the parameter of anisotropy is very small,16 indicated that the
cubic point is stable in 3D.17 Finally, in the recent work of
Ref. 18 by using finite-size scaling techniques and the hi
precision MC simulations it has been suggested thatNc co-
incides with 3 exactly. So, such strong scattering in the e
mates ofNc inspired us to study this problem with particul
care. Calculation of the critical dimensionality of the ord
parameter field as well as the eigenvalue exponents for
cubic fixed point by exploiting higher-order RG approach
three dimensions and generalized Pade´-Borel-Leroy ~PBL!
resummation technique is the main goal of the paper. As
be shown, our estimates forNc and eigenvalues are in exce
lent agreement with recent results by Kleinert a
collaborators17 obtained on the basis of the five-loop« ex-
pansions.

The paper is organized in the following way. In Sec. II t
perturbative expansions forb functions of the hypercubic
model are deduced within the RG technique in 3D up to
four-loop order. In Sec. III the structure of the RG flows
the model are investigated and fixed point locations forN
>3 are calculated using the generalized PBL resumma
method. The eigenvalue exponents of the most intrigu
O(N)-symmetric and cubic fixed points are evaluated for
physically important caseN53 and their stability problem is
analyzed in Sec. IV. The numerical estimate of the criti
dimensionalityNc , at which the topology of the flow dia
gram changes, is obtained by resumming both the four-l
RG expansions for theb functions in 3D and the five-loop«
expansion forNc at «51. In Sec. V the four-loop RG ex
pansions of the critical exponents for genericN and their
numerical estimates are presented. Section VI is devote
the study of the critical behavior of the three-dimensio
random Ising model~RIM! which is the special case of th
cubic model whenN50. The coordinates, eigenvalues, a
the critical exponents of the RIM fixed point are comput
by applying the PBL resummation procedure. T
correction-to-scaling exponentv is estimated therein. The
results of the investigation are discussed in the Conclus
along with the predictions and numerical estimates obtai
earlier on the basis of the same or other theoretical
proaches and experimental data.
n-

s
ied

s.

c

s
-

-

i-

r
he

ill

e

n
g
e

l

p

to
l

n,
d

p-

II. MODEL AND b FUNCTIONS

The fluctuation LW Hamiltonian of the model reads

H5E d3xF1

2
~m0

2w i
21]mw i]mw i !1

1

4!
(u0Gi jkl

(1)

1v0Gi jkl
(2) )w iw jwkw l G , ~1!

where w i , i 51, . . . ,N is the real vector order-paramete
field in 3D, m0

2 is the linear measure of the temperature, a
u0 and v0 denote the bare coupling constants. The symm
trized tensors associated with isotropic and cubic interacti
are

Gi jkl
(1) 5

1

3
~d i j dkl1d ikd j l 1d i l dk j!, Gi jkl

(2) 5d i j d ikd i l ,

~2!

respectively. When the cubic symmetry is present, the an
tropic exchange has been shown to be negligible within
«-expansion method.19 We assume that the anisotropic e
change is an irrelevant variable in our case too, and study
critical behavior of the model~1! with isotropic exchange
only.

The model~1! has a number of interesting applications
the phase transitions in simple and complicated systems
fact, whenN51 the Hamiltonian~1! describes the critica
phenomena in pure spin systems~the pure Ising model!,
while for N52 it corresponds to the anisotropicXY model
~the model of two coupled scalar fields! describing as struc-
tural phase transitions in ferroelectrics as ordering the tw
component alloys.3,20 The magnetic and structural phas
transitions in a cubic crystal are governed by model~1! as
N53. Further, whenN50 Hamiltonian~1! determines the
critical properties of weakly disordered quenched syste
undergoing second-order phase transitions. The latter is
nontrivial specific case of the hypercubic model, the syste
atical studying of which was initiated in the classical wor
by Harris and Lubensky21,22 and Khmelnitskii23 and then
considerably advanced by many authors when employing
conventional field-theoretical RG approach both in 3D a
(42«) dimensions. Finally, the caseN→` corresponds to
the Ising model with equilibrium magnetic impurities.24 In
this limit the Ising critical exponent of specific heata
changes its sign and takes the Fisher renormalization25 as
well as n and g: a→2a I /(12a I), n→n I /(12a I), g
→g I /(12a I). Since the critical phenomena in the pure Isi
and anisotropicXY models are well understood, we will con
sider below the critical behavior of the cubic and rando
Ising models only.

To calculate the RG functions the standard normalizat
conditions of the massive renormalized theory at fixed
mensions are applied.26 For each Feynman graph contribu
ing to the RG functions the corresponding contractions
computed by using the algorithm developed in Ref. 27. T
combinatorial factors as well as integral values are kno
from Ref. 28. After performing simple but cumbersome c
culations we obtain the four-loop expansions for theb func-
tions:
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bu5uH 12u2
6

N18
v1

1

~N18!2
@3~2.024 691N19.382 716!u2144.444 444uv110.222 222v2#

2
1

~N18!3
@3~0.449 648N2118.313 459N166.546 806!u313~6.646 878N1164.613 849!u2v

13~0.621 889N1100.955 929!uv2165.937 285v3#1
1

~N18!4
@2~0.155 646N3235.820 204N2

2602.521 231N21832.206 732!u423~1.352 882N22182.073 890N22064.170 701!u3v13~27.250 336N

12110.408 809!u2v219~1.291 017N1308.599 361!uv31495.005 747v4#J , ~3!

bv5vH 12
1

N18
~12u19v !1

1

~N18!2
@~3.407 407N154.814 815!u2192.444 444uv134.222 222v2#

2
1

~N18!3
@2~1.251 107N2241.853 902N2469.333 970!u319~0.248 784N1136.511 768!u2v

1957.781 662uv21255.929 737v3#1
1

~N18!4
@~0.574 653N320.267 107N21584.287 672N

15032.692 260!u413~0.057 375N21107.641 680N15989.283 536!u3v13~7321.464 604

216.494 003N!u2v2111 856.956 858uv312470.392 521v4#J . ~4!
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It is reasonable to note that the cubic model~1! possesses
some specific symmetry property whenN52. Namely, the
transformation of the field components

w1→
1

A2
~w11w2!, w2→

1

A2
~w12w2! ~5!

combined with substitution of the quartic coupling consta

u→u1
3

2
v, v→2v ~6!

does not change the structure of the initial Hamiltonian its
As a result, theb functions~3! and ~4! should obey certain
symmetry relations29 which may be written down as

buS u1
3

2
v,2v D5bu~u,v !1

3

2
bv~u,v !,

bvS u1
3

2
v,2v D52bv~u,v !. ~7!

It can be easily verified that equations~7! are really satisfied.
The specific symmetry of Hamiltonian~1! will be used be-
s

f.

low to obtain the lower boundary value of the critical dime
sionality Nc .

III. METHOD OF SUMMATION
AND FIXED-POINT LOCATIONS

Before analyzing the four-loopb functions let us conside
briefly the predictions following from the one-loop approx
mation. It is easy to see thatb functions~3! and ~4! in this
approximation have four different solutions corresponding
Gaussian~trivial!, Ising, isotropic~Heisenberg!, and cubic
fixed points with the coordinates

~ i! uc
G5vc

G50,

~ ii ! uc
I 50, vc

I 5
~N18!

9
,

~ iii ! uc
H51, vc

H50,

~ iv! uc
C5

N18

3N
, vc

C5
~N24!~N18!

9N
, ~8!

respectively. The most intriguing fixed points are the isot
pic and cubic ones. AtN54 the coordinates of these tw
points coincide that leads to the conclusion that the criti
dimensionality has the upper boundary valueNc54. On the
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other hand, the eigenvalue exponents for the isotropic
cubic fixed points are given by the expressions

l1
H521, l2

H5~N24!/~N18!,

l1
C521, l2

C5~42N!/3N. ~9!

If the real parts of both eigenvalues are negative, the co
sponding fixed point is infrared stable; if eigenvalues are
opposite sings, the point is of ‘‘saddle-knot’’ type. It is se
from Eqs. ~9! that Nc54 actually separates two differen
regimes of critical behavior of the model. WhenN.Nc the
cubic rather than the isotropic fixed point is stable in 3
while for N,Nc the stable fixed point is the isotropic one

To determine the lower boundary ofNc one should em-
ploy the above-mentioned specific symmetry property of
model, whenN52.30 As was already pointed out, the rota
tion ~5! of the components ofw i by p/4 combined with
substitution~6! generates relations~7!, but does not change
the form of the RG equations. However, forN52 transfor-
mations~5! and ~6! result in the relocation of the couplin
constants values so that the cubic and Ising fixed points
transformed into each other at the 3D RG flow diagra
Since the exact RG equations always have the Ising fi
point, which inevitably is the saddle-knot one, these eq
tions should have also the cubic fixed point, which will
unstable. In this situation, the isotropic fixed point, aga
always existing in the exact RG equations, should be
stable knot only. Therefore we conclude that the low
boundary ofNc is not less than 2. Of course, the real value
Nc can be obtained only on the basis of the thorough anal
of the structure of the RG flow diagram, provided that theb
functions of the model are calculated in sufficiently hig
order RG approximations and then processed by mean
appropriate resummation techniques.

Let us now concentrate our attention on the analysis of
four-loop b functions. It is well known that field-theoretica
RG expansions are divergent. The character of their la
order asymptotic behavior for the case of simp
O(N)-symmetric models was established in Refs. 31–33
particular, it was proved that the coefficients of the serie
largek behave asc(2a)kk!kb, where the asymptotic param
etersa, b, andc are assumed to be calculated for each R
function. Knowledge of the exact values of the asympto
parameters in combination with the most powerful resumm
tion procedure of the Borel transformation with a conform
mapping,34 first proposed in Ref. 35 and then elaborated
Refs. 36–38, made it possible to develop the accomplis
quantitative theory of critical behavior of simpl
systems.1,2,35,38–41

At the same time, the asymptotic nature of RG functio
of anisotropic models is unknown. Calculation of the ex
values of the asymptotic parameters characterizing the la
order behavior of the series in such models is a very diffic
and still unsolved problem. As an exception one should m
tion the anisotropic quartic quantum oscillator represent
one-dimensionalw4 field theory with a cubic anisotropy
Within an assumption of the weak anisotropy, the transf
mation parameters for the perturbative expansion of
ground-state energy of this system as well as for theb func-
tions of the cubic model have recently been found.42,16 Later
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this information was used to solve the stability problem
the cubic fixed point in three dimensions from« expansion17.

Usually, in a lack of any information about the high-ord
behavior of the series either the simple Pade´-Borel or
Chisholm-Borel resummation procedures are used, for tr
ing the perturbative expansions of anisotropic models. T
latter technique, however, possesses at least two inhe
drawbacks. First, some ambiguity in the calculation of co
ficients of denominators of the Chisholm approximants
unavoidable.43 Second, the Chisholm-Borel procedure do
not hold the specific symmetry properties of a model. At t
same time, exploiting the Borel transformation in combin
tion with the Pade´ or Chisholm approximants shows that th
results of calculation are very sensitive to the choice of
type of the approximant. This may lead to the estimat
which do not provide reliable predictions even in the high
loop RG approximations~see, for instance, Sec. VI of th
paper!. Besides, in the framework of both schemes it is ve
difficult to determine any error bounds for evaluated quan
ties.

In the present work we apply for processing RG expa
sions of theb functions and critical exponents of the mod
~1! the PBL resummation method generalized for the t
coupling constant case. This resummation technique, in
duced by Baker, Nickel, and Meiron in Ref. 44, turned out
be highly efficient when used to study the critical behavior
simpleO(N)-symmetric models in 3D. The critical expone
estimates obtained within the framework of this techniq
are regarded nowadays as the most accurate values, as
of Refs. 2, 35, and 39. We motivate our choice of the P
resummation method by the following reasons:

• 3D RG expansions for theb functions and critical ex-
ponents of the cubic model are alternating in signs. The
fore using PBL resummation technique is quite natural.

• It can be expected that for complex models with mo
than one coupling constant, the asymptotics of RG serie
large orders will comprise a factork!kb. The PBL resumma-
tion method removes divergences of this type.

• The PBL resummation method allows one to determ
the error bounds for the physical quantities to be calcula
in a natural way.

The generalized PBL resummation procedure consist
the following steps. Let a physical quantityF(u,v) be rep-
resented by a double series

F~u,v !5(
i , j

f i j u
iv j , ~10!

where coefficientsf i j ;( i 1 j )!( i 1 j )b at large orders (i , j
→`), the additional parameterb being an arbitrary non-
negative number to be defined below. Associated with
initial series~10! is the function

F~u,v;b!5E
0

`

e2ttbB~ut,vt !dt. ~11!

The Borel-Leroy transformB(x,y) is the analytical continu-
ation of its Taylor series
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B~x,y!5(
i j

f i j

G~ i 1 j 1b11!
xiyj , ~12!

absolutely convergent in a circle of the nonzero radius.
order to calculate the integral in Eq.~11! one should continue
analyticallyB(x,y) for 0<x,` and 0<y,`. To this end,
the rational Pade´ approximants@L/M # (x,y) are used. The
Padéapproximant method is determined in a conventio
way.15 Let us consider a ‘‘resolvent’’ series

B̃~x,y,l!5 (
k50

`

lk(
l 50

k
f l ,k2 lx

lyk2 l

G~k1b11!
5 (

k50

`

Akl
k, ~13!

where coefficientsAk are uniform polynomials ofkth order
in u andv. The sum of the series is then approximated b

B~x,y!5@L/M #ul51 . ~14!

The Pade´ approximants@L/M # in l are given by an attitude

@L/M #5
PL~l!

QM~l!
, ~15!

wherePL(l) andQM(l) are polynomials of degreesL and
M, respectively, with coefficients depending onx and y
which should be determined from the conditions

QM~l!B̃~x,y;l!2PL~l!5O~lL1M11!,

QM~0!51. ~16!

Replacing variablesx5ut and y5vt in the Pade´ approxi-
mants and then evaluating the Borel-Leroy integral

F~u,v;b!5E
0

`

e2ttb@L/M #ul51dt, ~17!

we obtain the approximate expressions for RG functions
Among the Pade´ approximants the diagonal (L5M ) or

near-diagonal ones were proved to exhibit the best appr
mating properties.15 However, as the degree of the denom
nator M increases, the number of possible poles of the
proximant increases too. If some of the poles belong to
positive real semiaxis, the corresponding approximant sho
be rejected. Due to this the choice of ‘‘working’’ approx
mants, which might be used for analytical continuation of
Borel-Leroy image onto the complex cut plane, is large
limited. On the other hand, varying the free parameterb in
the Borel-Leroy transformation~11! allows one to optimize
the resummation procedure under the condition that the f
est convergence of the iteration process is achieved. So,
ing into account the above-mentioned remarks, in orde
find the fixed points locations of the model we adopt t
following scheme. For the fixedN, the b functions are re-
summed by virtue of transformation~11! in the highest-loop
orders by shifting the transformation parameterb. In order to
make an analytical continuation of the Borel-Leroy tran
forms Bu(u,v), Bv(u,v) over the cut plain the most appro
priate Pade´ approximants@2/1#, @3/1#, and @2/2# are chosen.
The fixed points locations are determined then for eacb
from the solution of the set of equations:bu

res(uc ,vc)50,
bv

res(uc ,vc)50. The ‘‘true’’ locations are obtained by ave
aging over the values given by the approximants under
n

l

i-

-
e
ld

e

t-
k-

to

-

e

optimal value of the parameterb, at which the quantity
u12FL(u,v;b)/FL21(u,v;b)u reaches its local minima. The
quantityFL(u,v;b) is evaluated for theL-partial sum of the
series in Eq.~17!, L stands for the step of truncation of th
series.

In Fig. 1 the results of the computation of the cubic fixe
point locations depending on the parameterb are presented
for the physically important caseN53. Three curves corre
spond to the three Pade´ approximants. The parameterb shifts
from 0 to 3. As seen from the figure the optimal value ofb is
zero. At this point the numerical values of the cubic fixe
point locations given by different approximants are the m
close to each other. The result of computing the cubic fix
point locations forN53 are also presented in Table I. In th
first three columns of the table the fixed-point locations v
ues found for the Pade´ approximants@2/1#, @3/1#, and@2/2# at
the pointb50 are placed. Averaging the results of proce
ing over the all approximants under the optimal value ob
gives the estimates standed in the fourth column of the ta
These numbers we adopt as the final estimates of the c
fixed-point locations found within the four-loop approxim
tion. As an accuracy for these approximate values we t
the maximum deviations of the average values of the fix
point locations from those given by the approximants ab
50. One can observe, looking at Fig. 1, that the values of
cubic fixed-point locations given by the symmetric appro
mant@2/2# weakly depend on the shift parameterb. Averag-
ing over all the values given by this approximant within t

FIG. 1. Curves demonstrating dependence of the results of
culating the cubic fixed point locations~a! uc component and~b! vc

component on transformation parameterb from the four-loop ap-
proximation for N53. The upper curve (L) corresponds to the
@2/1# Padé approximant ~three-loop approximation!, while the
middle (n) and lower (h) curves correspond to the@2/2# and@3/1#
Padéapproximants~four-loop approximation!, respectively.
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TABLE I. Coordinates of the cubic fixed point of RG equations forN53 found under the optimal value
of the transformation parameterb50. ‘‘AV’’ denotes the average value.

@2/1# @3/1# @2/2# AV AV over @2/2# Ref. 11 Ref. 12

uc 1.3536 1.3338 1.3410 1.342860.0200 1.3425 1.348 1.3357
vc 0.0526 0.1026 0.0894 0.081560.0300 0.0937 0.090 0.0906
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interval @0,3# results in the cubic fixed-point locations es
mates presented in the fifth column of Table I. The coor
nates of the cubic fixed point found earlier on the basis of
three- and four-loop approximations with the use of t
Chisholm-Borel resummation method are presented in
sixth and seventh columns of the table, for comparis
These numbers include the normalizing multiplier11

9 needed
to compare ourb functions with those obtained in Refs. 1
and 12.

In order to verify the correctness of the chosen appro
let us apply the above-considered scheme to estimate
fixed-point locations of theO(N)-symmetric model where
the numerical results are well known. Consider, for examp
an O(3)-symmetric case relevant to the Heisenberg fer
magnets. The six-loop 3D RG expansion for theb function
of this model was reported in Refs. 35 and 44. The P
resummation of that series with the use of eight types of
Padé approximants@2/1#, @3/1#, @2/2#, @4/1#, @3/2#, @5/1#,
@4/2#, and @3/3# for analytical continuation of the Borel
Leroy transform yields, after solving the equationb res(gc)
50, the picture displayed in Fig. 2. It is seen that the valu
of the isotropic fixed point location calculated in the highe

FIG. 2. The results of computation of theO(3)-symmetric
fixed-point locations from the three- to the six-loop approximatio
obtained on the basis of the PBL resummation method when e
types of the Pade´ approximants used:@2/1#, L; @3/1#, h; @2/2#, n;
@4/1#, full L; @3/2#, full n; @5/1#, full s; @4/2#, s; @3/3#, 3. On the
six-loop level under the optimal value of the transformation para
eterb54.5 we obtain the estimategc51.392.
i-
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e
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he
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L
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s
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RG orders with the help of the approximants@3/3#, @4/2#, and
@3/2# are very weakly dependent on the parameterb varied
within the interval 0<b<15. The curves corresponding t
these approximants are intersected atb54.5. Therefore the
value b54.5 is the optimal value of the transformation p
rameter in which the fastest convergence of the iteration p
cedure is ensured. Forb54.5 the central value estimate o
the isotropic fixed point isgc51.392. The maximum devia
tion of the central value from the values given by some
the approximants@3/3#, @4/2#, and@3/2# at the pointb510 is
adopted approximately as an apparent accuracy of the ca
lation, D50.0013. Such a small error can be explained
the small dispersion of the curves within the range 5<b
<10. So, the estimategc51.392060.0013 is in excellent
agreement with those found more then 20 years ago in R
35 and 44 as well as with recent results of Ref. 2.

Within the framework of the four-loop approximatio
there are only three appropriate Pade´ approximants. Averag-
ing the results of computing the isotropic fixed-point locati
given by the approximants@2/1#, @3/1#, and @2/2# under the
optimal value of the transformation parameter results in
estimate gc51.392560.0070. The error was determine
again through the maximum deviation of the central va
from those given by each of the approximants atb50. It is
seen that the four-loop estimate of the coordinate of the
tropic fixed point is in a good accordance with the best o
followed from the six-loop consideration.

s
ht

-

TABLE II. Coordinates of the cubic fixed point of RG equation
and critical exponents estimates for someN found under the optimal
value of the transformation parameterb within the four-loop ap-
proximation. The critical exponents values obtained within t
framework of the «-expansion method~five-loop results! and
marked by the symbol~a! are presented for comparison.

N uc vc h n g

3 1.3428 0.0815 0.0332 0.6996 1.3775
0.0375a 0.6997a 1.3746a

4 0.9055 0.8167 0.0327 0.7131 1.4028
0.0365a 0.7225a 1.4208a

5 0.6980 1.2361 0.0325 0.7154 1.4076
0.0358a 0.7290a 1.4305a

6 0.5807 1.5386 0.0324 0.7157 1.4082
0.0354a 0.7301a 1.4322a

7 0.5060 1.7874 0.0324 0.7155 1.4079
8 0.4544 2.0076 0.0324 0.7153 1.4074
9 0.4168 2.2108 0.0324 0.7149 1.4067
10 0.3881 2.4032 0.0324 0.7147 1.4063
12 0.3473 2.7680 0.0323 0.7142 1.4054

aQuoted from Ref. 64.
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Let us note that the coordinate of theO(3)-symmetric
fixed point calculated within the five-loop approximatio
does not approach the exact value. Namely, the PBL res
mation procedure leads to the estimategc51.394760.0040.
Although the error of the calculation became visibly small
the central value of the fixed-point location stepped as
from the four- and six-loop ones. Thus the fulfilled nume
cal analysis shows that the isotropic fixed-point location
timate obtained in the four-loop level occurs to be close
the ‘‘exact’’ value. Therefore it can be expected that in t
case of the cubic model the fixed-point locationsuc

FIG. 3. Graphs of dependence of the results of processing o
series ~a! 2]bu /]u, ~b! 2]bv /]v, ~c! 2]bu /]v, and ~d!
2]bv /]u on the parameterb for N53. The curves on the picture
~a! and ~b! are given in the same notations as in the previous
ures, while for the curves corresponding to the approximants@1/1#
and @2/1# on the pictures~c! and ~d! the notationsL and h are
used, respectively.
-

,
e

-
o

51.342860.0200, vc50.081560.0300 ~see fourth column
of Table I! will not distinguish strongly from the ‘‘exact’’
values as well. The coordinates of the cubic fixed point
some valuesN of the order parameter dimensionality a
presented in Table II. Our calculations show that forN53
the coordinates of the cubic fixed point practically do n
differ from those of the Heisenberg one. However, with
creasingN the cubic fixed point runs away from the isotrop
point moving towards the Ising one. In the largeN limit
these two fixed points become close to each another so m
that the influence of theO(N)-symmetric invariant on the
critical thermodynamics of the cubic model vanishes. T
can be easily seen by applying the 1/N consideration to the
one-loop solutions of the RG equations of the model~1!.
Indeed, rescaling the coupling constantsu→u/N, v→v/N in
the initial Hamiltonian and taking then the limitN→` in
Eqs.~8! one can see that the cubic fixed point approaches
Ising one asymptotically. So, the cubic model turns out to
split into N noninteracting Ising models, the critical behavi
of each of them is determined by a set of the critical exp
nents renormalized according to Fisher25. The data listed in
Table II will be used further for calculating the stability ma
trix eigenvalues as well as critical exponents of the hyper
bic fixed point.

he

-

FIG. 4. Dependence of the results of processing of the« series
for the critical dimensionalityNc on transformation parameterb.
The crossing of the curves corresponding to the three Pade´ approxi-
mants gives the optimal value of the parameterb at which the
estimateNc52.894 is obtained.

TABLE III. Four-loop eigenvalue exponents estimates for t
cubic ~CFP! and Heisenberg~HFP! fixed points (N53) found in
3D under the optimal value of the transformation parameterb.

CFP CFP, Ref. 17 HFP HFP, Ref. 17

l1 20.7786 20.7648 20.7791 20.7640
l2 20.0081 20.0085 0.0077 0.0089
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IV. STABILITY AND CRITICAL DIMENSIONALITY

One of the independent ways to determine the fixed-p
locations in fixedD is to construct the RG flow phase dia
gram of the model. If at the flow diagram there exists a fix
point of stable knot type, the trajectories originated fro
some point within the range of stability of the initial Hami
tonian would flow towards the knot. The region at the flo
diagram where the trajectories are intersected provides
coordinates of this stable fixed point. Thoroughly investig
ing the 3D RG flow diagram of the cubic model~1! in the
four-loop approximation we arrive at the conclusion that
cubic rather than isotropic fixed point is absolutely stable
all N>3.

On the other hand, the reliable conclusion about the
bility of the cubic fixed point forN>3 can be given on the
basis of calculating the eigenvalue exponentsl ’s of the sta-
bility matrix

Mi j 5S ]bu

]u

]bu

]v

]bv

]u

]bv

]v

D
taken atu5uc andv5vc . If the real parts of both eigenval
ues are negative, the fixed point is the stable knot in
(u,v) plane. Ifl1 , l2 have opposite signs, the point is of th
‘‘saddle-knot’’ type.

To calculate the stability matrix eigenvalues of the cu
and isotropic fixed points we have chosen the followi
strategy. First, the derivatives of theb functions~3! and ~4!
are calculated, and the new RG expansions resumme
means of the PBL technique are substituted into the ma
Mi j . The eigenvalue exponents of the matrix of derivativ
Mi j obtained in this way are evaluated then under the o
mal value of the transformation parameterb. In Figs. 3~a!
and 3~b! we present our numerical results for the ser
2]bu /]u and2]bv /]v for the physically interesting cas
N53. The curves correspond to the three types of the P´
approximants used within the four-loop approximation. T
crossing of the curves gives the optimal value ofb at which
we find ]bu /]uuopt520.7536 and]bv /]vuopt520.0331.
Because the series2]bu /]v and 2]bv /]u are turned out
to be shorter by one order in comparison with2]bu /]u and
2]bv /]v, their resumming performed with the help of th
approximant@2/1# only yields the monotonic dependence
the result of processing on the parameterb. In this unfavor-
able situation, we take into account an additional Pade´ ap-
proximant@1/1# to optimize the iteration procedure. The r
sults are plotted in Figs. 3~c! and 3~d!. For the optimal values
of b we obtain ]bu /]vuopt520.4566 and ]bv /]uuopt

520.0409. Straightforward calculation of the eigenvalu
of the stability matrixMi j gives for the cubic fixed point the
numbers placed in Table III. The eigenvalues of the isotro
fixed point as well as the analogous numerical estimates
t
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tained recently in Ref. 17 on the basis of using the five-lo
« expansions are presented for comparison therein. Th
estimates show that the cubic fixed point is absolutely sta
in 3D for N53 while the isotropic fixed point appears to b
stable on theu axis only. Our numerical results agree we
with those obtained in Ref. 17.

Let us now calculate the critical dimensionalityNc of the
order parameter field. The critical dimensionality is defin
as a value ofN at which the cubic fixed point coincides wit
the isotropic one. Equivalently, forN5Nc the second eigen
value of the stability matrixMi j vanishes,l250.

Studying carefully the 3D RG flow diagram of the mod
~1! depending on the order of approximation with the use
different Pade´ approximants we arrive at the conclusion th
Nc52.91060.035 andNc52.89060.020 within the three-
and four-loop approximations, respectively. The accuracy
calculation ofNc was determined through the evaluation
the stability matrix eigenvalues for differentN from the in-
terval of the above errors. That value ofN5Nc , above or
below of its central number, at which the second eigenva
l2 was becoming nonzero, was taking for the upper or low
boundary ofNc , respectively.

It is worthy to compare the four-loop estimate ofNc just
found with that which can be obtained within th
«-expansion method. The five-loop« expansion forNc has
been calculated in Ref. 13. The series proved to be alter
ing in signs that allows one to resum it by means of the P
technique. To this end, we will use again the most appro
ate Pade´ approximants@2/1#, @3/1#, and @2/2# for analytical
continuation of the Borel-Leroy transform for all 0<«t<`.
Dependence of the results of processing of the critical
mensionalityNc on the transformation parameterb is de-
picted in Fig. 4. The curves corresponding to the appro
mants are crossed at the pointb;1. The appropriate value o
the critical dimensionality isNc52.89460.040. As an error
of the calculation it is natural to assume the maximum sc
tering of numerical values given by the approximants ab
50 with respect to the value obtained at the crossing po
of the curves. This estimate ofNc is in excellent accordance
with the above found within the 3D RG approach. So, bo
schemes, the RG technique directly in 3D and t
«-expansion method, result in the same estimate of the c
cal dimensionalityNc52.89, thus implying that the cubic
fixed point is stable in three dimensions forN>3. This
means that the critical behavior of the model~1! should be
governed by the cubic fixed point with a certain set of t
critical exponents which will be calculated for genericN in
the next section.

V. CRITICAL EXPONENTS FOR GENERIC N

Having the coordinates of the cubic fixed point, the s
bility of which in 3D for N>3 has been proved in the pre
vious section, it is possible to obtain the numerical estima
for the critical exponents. Two of them are known to det
mine the critical behavior of the system while the others c
be found via the famous scaling laws. The four-loop R
expressions for the magnetic susceptibility exponentg21 as
well as the correlation function exponenth for the generic
symmetry indexN are as follows:
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g21512
1

N18 F ~N12!

2
u1

3

2
vG1

1

~N18!2
@~N12!u216uv13v2#2

1

~N18!3
@~0.879 559N216.485 477N

19.452 718!u319~0.879 559N14.726 359!u2v19~0.128 340N15.477 578!uv2116.817 754v3#

1
1

~N18!4
@2~0.128 332N327.966 741N2251.844 213N270.794 806!u423~0.513 328N2232.893 620N

2141.589 613!u3v19~3.423 908N183.561 044!u2v2127~0.208 999N119.120 991!uv31130.477 428v4#, ~18!

h5
1

~N18!2
@0.296 296~N12!u211.777 77uv10.888 888v2#1

1

~N18!3
@0.024 684~N12!~N18!u310.222 156~N18!

3u2v11.999 40uv210.666 468v3#1
1

~N18!4
@2~0.004 299N320.667 985N224.609 22N26.512 10!u4

23~0.017 194N222.706 33N213.0242!u3v13~0.681 615N122.8884!u2v2147.140uv3111.7850v4#. ~19!
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These series, however, are known to be divergent. To ex
from them a physical information concerning the critical b
havior of the substances of interest we will apply the sa
resummation procedure as that used above. Note that s
the coefficients of the series ofh are rapidly diminishing, its
values are found by the direct substitution of the coordina
of the cubic fixed point into Eq.~19!, whereas the series o
the exponentg21 before the substitution needs to be r
summed. Using the generalized PBL resummation techni
we evaluate the magnetic susceptibility exponentg and then,
having the values ofh at hand, estimate the correlatio
length critical exponentn by the scaling relation. The resu
of the numerical processing of Eq.~18! depending on the
parameterb for N53 is dipicted in Fig. 5. The three types o
the Pade´ approximants have been used, and the transfor
tion parameter shifted within the range@0,15#. For the opti-
mal value ofb we obtaing51.377560.0040. Thus, taking
into account that in the four-loop approximationh50.0332
60.0030, we arrive at the estimate of the critical expon
n: n50.699660.0037. The error bounds for the exponentsg
and n have been determined through a maximum deviat
of its central values atb5bopt from the corresponding val
ues given by the approximants atb50. In the case of the
exponenth, as the uncertainty we take the absolute diff
ence between two successive, three- and four-loop, res

FIG. 5. Curves demonstraiting dependence of the result of
cessing critical exponentg of the cubic model on the parameterb
for N53 in the four-loop approximation.
ct
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The critical exponents estimates of the cubic fixed point
other values ofN are listed in Table II. The estimates ob
tained from the« expansions64 are placed for comparison
therein.

How much do the critical exponent estimates found dif
from the exact ones? To answer this we resort again to
analysis of numerical results for theO(3)-symmetric model
obtained on the basis of using the PBL procedure. In Fig
the results of processing of the 3D RG series for the susc
tibility exponent g in successive orders of perturbatio
theory in a number of loops are presented. Within the fo
loop approximation under the optimal value of the transf
mation parameter we findg51.3778. The six-loop calcula
tions under the optimal choice ofb ~the point of crossing the
curves corresponding to the approximants@4/2#, @5/1#, and
@4/1#! give g51.3867. The latter estimate seems to be
good agreement with that known from Refs. 35 and 44. T
the difference between the four-loop results and their s
loop counterparts does not exceed 0.01.

For N52 the numerical results for the cubic model pro
to be much better. In this case the cubic fixed point lies in
v,0 half plane and is unstable (N,Nc). However, forN
52 the Hamiltonian of the model~1! possesses the specifi
symmetry @see Eqs.~5! and ~6!# that transforms the cubic

o-
FIG. 6. Graphs of dependence of the results of processing o

3D RG series for the critical exponentg of the O(3)-symmetric
model on the parameterb for the eight types of Pade´ approximants
in the PBL procedure.
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point into the Ising one and vice versa. Due to this symme
the critical exponents of both fixed points coincide. In t
four-loop level for the cubic fixed point atN52 we found
the estimatesg51.2416, h50.0323, andn50.631. These
numbers agree well with the best estimates followed fr
the six-loop RG expansions.35,44,39,2One may hope therefor
that the critical exponent estimates for the cubic model
tained in the present work within the four-loop approxim
tion will differ from the ‘‘exact’’ values by no more than
1–2%.

Unfortunately, for the most important caseN53 having a
good number of interesting applications to the critical ph
nomena in real substances, the critical exponents of the c
and isotropic fixed points turn out to be practically the sam
This is the consequence of the closeness of both point
the 3D RG flow diagram. Thus, although in the course of
investigation the cubic fixed point has been shown to
stable atN53 and therefore the critical behavior of the ma
netic phase transitions in crystals with cubic anisotro
should belong to the cubic rather than the isotropic univ
sality class, a certain difficulty arises in trying to identify th
cubic fixed point from experimentally determined exponen
Due to this ‘‘near-marginality’’ the calculation of the critica
exponents in cubic magnets seems to be of academic int
only.

At the same time, the numerical analysis shows that aN
increases the distinction between the critical exponents of
cubic and isotropic fixed points increases as well. In the li
N→` the critical exponents of the cubic fixed point go ov
into those of the Ising model with equilibrium magnet
impurities.25

VI. NUMERICAL RESULTS FOR THE RIM

In the critical region the character of critical behavior
the defect crystals such as impure uniaxial ferromagn
LiTb12xYxF4, Cd12xNdxCl3 or diluted Ising antiferromag-
nets MnxZn12xF2, FexZn12xF2 are known to be describe
by the 3D random Ising model with the effective Ham
tonian

H5E dxS 1

2
@m0

2w21~¹w!2#1
1

4!
v0w41c~x!w2D ,

~20!

wherec(x) is the static random field describing fluctuatio
of local transition temperature,m0

22m0c

2 ;T2Tc . Averag-

ing over all configurations ofc(x) with Gaussian weight and
employing the replica trick45 one can reduce the problem
~20! to the analysis of critical behavior of theN-component
cubic model~1! in the limit N→0.46 Moreover the Ising
vertexv0 in Eq. ~20! plays a role of the cubic vertex in Eq
~1!, while a role of the impure vertex plays the isotropic o
u0. Obviously, because nowu0,0,v0.0, the added interac
tion of critical fluctuations of the order-parameter fie
through the intermediary of impurities is the attraction.

Studying the magnetic and structural phase transition
the weakly disordered systems is of considerable inte
both from theoretical and experimental point of view. It
well known that the critical exponents of such syste
should differ markedly from those of the pure ones, due
y
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the famous Harris criterion.47 Indeed, according to Harris
provided the specific-heat exponentapure of a pure system is
positive, i.e., the specific heat is divergent at the critical po
(C;uT2Tcu2a), a new critical behavior under dilution i
expected. Otherwise, ifapure,0, the critical behavior of the
random system would be similar to that of the pure o
Among the three-dimensionalN-vector models, only the
Ising model hasa.0, and the corresponding new critica
behavior has been obtained as an unusual stable fixed p
dependent uponA« where «542D. Furthermore, one
~smallest! of the eigenvalues of the stability matrix taken
the RIM fixed point is expressed through the critical exp
nentsa andn: l2;a/n ~for the details see Refs. 48, 49!.

The systematical calculation of the RIM critical exp
nents was hystorically begun in the seminal works by Ha
and Lubensky21,22 and Khmelnitskii.23 However, the
«-expansion technique could not provide the reliable num
cal estimates, because RG equations of the model~1! for N
50 turn out to be degenerate in the one-loop approximat
Such a degeneracy causes powers ofA« to appear in expan-
sions for the fixed-point locations as well as critical exp
nents, thus leading to the substantial decrease of accu
expected within the high-loop approximations.50,51

The following pronounced step to evaluate the RIM e
ponents was made by G. Jug,52 who applied the alternative
approach, the RG in fixed dimensions. The reasonable
merical estimates were obtained within the two-loop a
proximation by making use of the Chisholm-Borel procedu
to resum the resulting series. Later the critical expone
series for the 3D RIM were deduced within the three- a
four-loop approximations and corresponding numerical e
mates were obtained on the basis of the Chisholm-Bo
summation method,11,12 Padé-Borel procedure and the firs
confluent form of the« algorithm of Wynn.53

In this section we will study the critical thermodynamic
of the 3D RIM using the generalized PBL summatio
method. SettingN50 in Eqs. ~3! and ~4! and solving the
system of equationsbu

res(uc ,vc)50, bv
res(uc ,vc)50 we

FIG. 7. Graphs of dependence of the results of calculating
RIM fixed point locations~a! uc component and~b! vc component
on transformation parameterb within the four-loop approximation.
The curves marked byL, n, andh correspond to the Pade´ ap-
proximants@1/1#, @2/2#, and@3/1#, respectively.
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TABLE IV. Numerical results for the RIM. Here ‘‘MSA’’ indicates that the fixed-point locations and
critical exponents are found for the most stable approximants in the framework of the PBL resumm
technique, ‘‘AV’’ means that the fixed-point locations are calculated as the averages between the
given by the highest approximants@3/1# and @2/2#, ‘‘PB’’ denotes a simple Pade´-Borel resummation. The
results obtained either within the different theoretical approaches, or on the basis of using different
mation techniques, or experimentally~‘‘Expt.’’ ! and by means of the MC simulations, are presented
comparison.

uc vc h n g v

MSA 20.5816 1.9822 0.040 0.681 1.336 0.310
60.0850 60.0740 60.011 60.012 60.020

AV 20.6246 1.9438 0.034 0.672 1.323 0.330
60.0600 60.0500 60.010 60.004 60.010

PB @3/1# 20.6839 1.9877 0.033 0.674 1.326 0.362
PB @2/2# 20.5800 1.8934 0.034 0.669 1.316
AW 20.5874a 1.9362a 0.668a 1.318a

Ref. 11 20.728 2.006 0.021 0.671 1.328 0.359
Ref. 55 20.745 2.011 0.019 0.671 1.328 0.376
Ref. 12 20.6668 1.9951 0.034 0.670 1.326
3D MS 0.053b 0.677b 1.319b 0.330b

0.390e

Expt. 0.7160.02c 1.3760.04c

0.7060.02a,d 1.3760.04a,d

MC, Ref. 58 0.683760.0053 1.34260.010 0.3760.06

aQuoted from Ref. 53. dQuoted from Ref. 57.
bQuoted from Ref. 54. eQuoted from Ref. 61.
cQuoted from Ref. 56.
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find the RIM fixed-point locations depending on the transf
mation parameterb. Resulting curves are depicted in Fig.
Unfortunately, this picture is not complete, because in
three-loop approximation the Pade´ approximants@2/1# and
@1/2# have the poles for allb. On the other hand, the fixed
point locations values given by the approximant@1/1# seem
to be very far from the true ones. So, in order to determ
the RIM fixed point locations we cannot apply the optimiz
tion algorithm described in Sec. III, at least within the giv
approximation. In such situation we need a new work
criterion. We can, for instance, select the approximants p
viding the most stable values under the variation of the
rameterb. As is seen from Fig. 7, the locations of the RI
fixed point given by the approximants@2/2#, for theuc com-
ponent, and@3/1#, for the vc component, are practically in
dependent on the parameterb. Indeed, the dispersion of th
corresponding curves within the range 0<b<4 is no more
than 131024. The fixed-point locations obtained in such
way may then be used for calculation of the critical exp
nentsg, h, and n as well as eigenvalues of the stabili
matrix when starting the optimization procedure~see Secs.
IV and V!. Corresponding numerical estimates are summ
rized in Table IV. For comparison we collected in the tab
the data obtained earlier either by resumming RG functi
within the minimal subtraction~MS! scheme directly atD
53 ~3D MS!,54 or by applying different resummation proce
dures @Chisholm-Borel technique,11,12,55 « algorithm of
Wynn, ‘‘AW’’ ~Ref. 53!#, or found experimentally56,57 and
through the MC simulations.58 To compare those results wit
our numbers, the fixed-point locations are given by tak
the normalizing factor89 into consideration. As experimenta
data we consider the averaged values of Ref. 56 obtaine
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a course of studying the critical behavior of the site-rand
Ising system MnxZn12xF2 with x50.75 ~or 0.50! by the
neutron-scattering method as well as the averaged value
Ref. 57.

In Table IV we present also the numerical results for t
fixed-point locations and critical exponents obtained on
basis of the simple Borel summation method combined w
the Pade´ approximants@3/1# and @2/2#. Although the fixed-
point coordinates obtained in such a way turned out to
strongly different, the critical exponents estimates differ ne
ertheless from each other only slightly. From this point
view neither approximant is better.

Another possible way to determine the coordinates of
RIM fixed point is to calculate them as averages between
values given by the highest approximants@3/1# and@2/2# for
each of the components~see Fig. 7!. The corresponding criti-
cal exponents estimates are found to agree with just con
ered as well as experimental data and MC results within
error bounds~see Table IV!.

Unlike the cubic fixed point, the determination of the e
ror bounds for the RIM fixed-point locations is a more dif
cult problem. In the case of selecting the most stable
proximants we have taken the following scheme. First,
values of the fixed-point locations given by the approxima
@3/1# and @2/2# are averaged for each of the compone
separately within the interval 0<b<4. The discrepancy be
tween averages in these approximants is then adopted
sought uncertainty in the results. At the same time, the e
bounds for the critical exponents are determined in the sa
way as in Sec. V. If we adopt as the fixed-point locations
averages between the values given by the highest app
mants@3/1# and@2/2# separately for each of the componen
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the error bounds seem to be even smaller, they are alm
three-quarters of the previous ones. Absence of the e
bounds in some of the places of Table IV means that
errors either cannot be established or were not establish

We have checked also the stability of the RIM fixed po
on the three-dimensional RG flow diagram. In all conside
cases the eigenvalue exponents of the stability matrix tur
out to be negative, except the calculations based on
simple Borel summation method with the Pade´ approximant
@2/2#. In this case the second eigenvaluel2 occurred to be
positive and too large. This is in contradiction to the know
theoretical and experimental predictions as well as
Monte-Carlo simulations.58 Indeed, the second~smallest in
modulus! eigenvaluel2 of the matrix of derivatives of theb
functions is well known to define the so-called correction-
scaling exponentv that governs the leading corrections
the universal power laws. Thus the approach of the zero-fi
susceptibility to the critical temperature, forT.Tc , is char-
acterized by the Wegner series59

x.G0t2g~11G1tvn1••• !, ~21!

with Gk being the nonuniversal amplitudes andt5(T
2Tc)/Tc .60 Hereg, n are the asymptotic values of the su
ceptibility and correlation length critical exponents. As t
exponentv decreases the region increases, where the cor
tions to scaling laws should be taken into account. So,
smallness ofv in the RIM indicates the importance of it
calculation for analysis of the asymptotic critical behavior
dilute systems.61

Recent MC calculations based on the analysis of the
correction term in Eq.~21! provided the estimate of th
correction-to-scaling exponentv50.3760.06.58 Almost the
same number was more recently obtained in the framew
of the four-loop 3D RG analysis used for processing div
gent series the Borel summation method in combination w
the simple rational Chisholm approximants like@M ,M /1,1#,
v50.37260.005.61 Although the apparent accuracy of th
estimate seems to be highly overstated, the central value
accordance with previous estimatesv50.366~Ref. 62! and
v50.359,11 v50.376 ~Ref. 55! derived within the three-
loop approximation in the framework of the minimal su
traction scheme and the 3D RG, respectively. Our estim
of v obtained on the basis of the Borel summation meth
with the Pade´ approximant @3/1# is close to the above
mentioned one. On the contrary, using of the Pade´ approxi-
mant @2/2# in the Borel transformation leads to the unphy
cal result for the correction-to-scaling exponent.

At the same time, applying the PBL resummation meth
to study the asymptotic critical behavior of the systems w
impurities results in the correction-to-scaling exponent v
ues which are different from those predicted by either
MC simulations or simple resummation procedures~see
Table IV!. It is the consequence of that the four-loop a
proximation is not enough to obtain reliable estimates of
RIM fixed-point locations. Note, however, that our estima
of v are within the error interval found for the MC resu
The critical exponents estimates obtained confirm also
inequality 2nv,a,0 conjectured for the random
models.63 Unfortunately, at present we cannot indicate a
error bounds in our calculation of the exponentv.
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So, if to assume that the MC simulations58 provide the
numerical estimate ofv which is close to the exact one,
question is to be put forward: can the estimation of t
correction-to-scaling exponent of the dilute systems be u
as an additional criterion of selection of the resummat
techniques to be employed? Probably the answer will
given in the course of the further investigation of the critic
properties of the RIM within the higher-order RG approx
mations provided a more sophisticated method of the se
summation will be used, on a level with the simple tec
niques. Thus more recently, a different approach to sum
tion of divergent field-theoretical series has be
suggested.64 The method, based on the Borel transformati
combined with a conformal mapping, relies upon the sta
ity of the result of processing on the transformation para
eters and therefore does not require knowing the ex
asymptotic behavior of the series. This method has b
tested on the functions expanded in their asymptotic po
series and applied to estimating the ground-state energ
quantum-mechanical systems, including anisotropic osc
tor, as well as to calculating the critical exponents for so
conformal field theories.64,65 The successful testing of th
developed technique on simple systems made it possibl
apply it for obtaining the critical exponents estimates of a
isotropicN-vector field models describing both magnetic a
structural phase transitions in cubic and tetrago
crystals27,64 from the known five-loop« expansions.13 It
would be reasonable therefore to apply this technique
studying the critical behavior of the RIM exactly in thre
dimensions within the five- or higher-loop approximations

VII. CONCLUSION

The complete RG analysis of a field model with two qua
tic coupling constants associated with isotropic and cu
interactions describing magnetic and structural phase tra
tions in a good number of real substances has been ca
out within the four-loop approximation directly in three d
mensions. Perturbative expansions for theb functions and
critical exponents were deduced for genericN. The fixed-
point locations were found forN>3 by applying the gener-
alized Pade´-Borel-Leroy resummation technique, and th
global structure of the 3D RG flow diagram was inves
gated. The analysis of the eigenvalue exponents of the m
intriguing isotropic and cubic fixed points fulfilled for th
physically important caseN53 has shown that the cubi
rather than isotropic fixed point is absolutely stable in 3
The eigenvalues estimates of both fixed points were foun
agree well with those of recently calculated on the basis
exploiting the five-loop« expansions.17 The critical dimen-
sionalityNc of the order-parameter field, at which the topo
ogy of the flow diagram changes, has been analyzed by
two different methods:~i! by resumming the four-loop RG
expansions for theb functions in 3D and~ii ! by resumming
the five-loop« expansion forNc at «51. The numerical
estimatesNc52.8960.02 andNc52.89460.040 obtained
are in a good agreement with the earlier results11,12 and con-
firm the conclusion about the stability of the cubic fixe
point for N>3. Consequently, the magnetic and structu
phase transitions in three-dimensional anisotropic crys
with cubic symmetry are of second order and their critic
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TABLE V. The cubic fixed point locations and critical exponents estimates for someN obtained within
the PBL resummation procedure in the six-loop approximation. Here the coupling constants are given
same notations as those of Ref. 66.

N uc vc h n g l1, Ref. 69 l2, Ref. 69

3 1.3177 0.0964 0.0327 0.7040 1.3850 20.7833 20.0109
60.0170 60.0165 60.0020 60.0040 60.0050 60.0054 60.0032

4 0.8804 0.6360 0.0316 0.7150 1.4074 20.7887 20.0740
60.0080 60.0050 60.0025 60.0050 60.0030 60.0090 60.0065

8 0.4410 1.1331 0.0305 0.7143 1.4068 20.7955 20.1396
60.0070 60.0160 60.0025 60.0035 60.0030 60.0150 60.0100

` 0.1751 1.4122 0.0319 0.7094 1.3962 20.7986 20.1787
60.0040 60.0090 60.0035 60.0030 60.0040 60.0200 60.0050
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thermodynamics should be governed by the cubic fixed p
with a specific set of critical exponents. The correspond
four-loop critical exponents estimates were found in
framework of the PBL resummation method. On the basis
comparative numerical analysis with theO(N)-symmetric
model, the critical exponents of which are solid
established,1 it has been shown that in the case of the cu
model the difference between the four-loop estimates and
‘‘exact’’ values does not exceed 1–2%. Although our resu
for the most interesting caseN53 are in good accordanc
with earlier theoretical predictions, the cubic universal
class is not easy to distinguish experimentally from the i
tropic one, due to the obvious marginality of the proble
Nc;3.

The critical behavior of weakly quenched disordered s
tems undergoing second-order phase transitions and
scribed by the three-dimensional random Ising model, wh
is the nontrivial specific case of the cubic model whenN
50, has been investigated also. The coordinates, eigen
ues, and critical exponents of the RIM fixed point were co
puted by using the PBL resummation method and the m
simple Pade´-Borel procedure. Our numerical results alo
with the known theoretical and experimental data were su
marized in the table. While the RIM fixed point location
found in the framework of the different approximatio
schemes turned out to be strongly different, the critical
ponents estimates differ from each other only slightly, with
the error bounds obtained.

Special attention was given to study the stability of t
RIM fixed point on the RG flow diagram. The calculation
the stability matrix eigenvalues based on applying differ
resummation techniques showed that they are negative. C
sequently, the RIM fixed pont is stable in 3D. As an exce
tion we have indicated the case of using the simple Bo
summation method in combination with the Pade´ approxi-
mant@2/2#, which led to the unphysical result for the seco
eigenvaluel25v. Applying the PBL procedure to calculat
the leading correction-to-scaling exponentv for the three-
dimensional impure systems was shown to result in the
merical estimates which are distinguishable markedly fr
those predicted by recent MC simulations58 or followed from
applying simple Borel-like summation procedures11,55,61~see
Table IV!. Note, however, that our estimates ofv were
found to be within the error bounds known for the MC resu

At last, it is worth noting, that one can hardly hope
nt
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extract a reliable numerical estimate ofv from the five-loop
« expansion,13 even resummed by a proper method. T
point is that the« series forv turns out to be very short, du
to the degeneracy of the random Ising modelb functions on
the one-loop level. Therefore, until the appreciable discr
ancy between the results given by different methods of
series summation on the one hand, and the MC calculati
on the other, does exist, the further investigation of
asymptotic critical behavior of dilute systems will be high
desirable in the framework of the higher-order~five- or six-
loop! RG approximations provided a more sophisticated
summation procedure, for instance, the Borel transforma
combined with a conformal mapping, will be applied.

More recently the six-loop study of critical behavior o
the 3D cubic model appeared.66 Perturbative expansions fo
b functions and critical exponents deduced within the m
sive field theory in fixed dimension have been resumed
means of the Borel transformation combined with a conf
mal mapping that takes into account the singularities of
Borel transform. The fixed point locations, stabililty matr
eigenvalues, and critical exponents estimates obtained tu
out to be essentially the same results as those of the pre
work. In the Appendix we present our numerical estima
for the cubic model obtained on the basis of the six-lo
expansions of Ref. 66 when the PBL resummation proced
is applied. The critical behavior of three-dimensional rand
Ising systems has recently been studied within the five-
six-loop RG approximations in Refs. 67 and 68, respective

APPENDIX

In this section we present our numerical estimates for
cubic fixed point locations and critical exponents for som
values ofN ~see Table V! using the six-loop expansions fo
RG functions recently obtained by J. M. Carmona, A. Pe
setto, and E. Vicari.66 We apply the generalized PBL resum
mation technique. The susceptibility and correlation len
critical exponents are estimated through the original se
for g21 andn21 ~or h451/n22), whereas the critical ex
ponenth is obtained by the known scaling relation:h52
2g/n. It is seen that our estimates are in excellent agr
ment with those of Ref. 66, where the Borel resummat
procedure with a conformal mapping, that takes into acco
the singularities of the Borel transform, has been appli
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