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A scaling consideration of the Kondo lattices is performed with account of singularities in the spin excitation
spectral function. It is shown that a non-Fermi-liquidFL) behavior can be naturally connected with the
regime which is marginal between the regions of strong coughtmndo lattice and weak coupling“usual”
magnets For complicated magnetic structures with several magnon branches, this regime occurs naturally
between two critical values of the basef coupling constant. Another kind of a NFL-like stdteith different
critical exponentscan occur for simple antiferromagnets with account of magnon damping, and for paramag-
nets, especially with two-dimensional character of spin fluctuations. The mechanisms proposed lead to some
predictions about behavior of specific heat, resistivity, magnetic susceptibility, and anisotropy parameter,
which can be verified experimentally. In particular, the Wilson ratio is predicted to weakly increase with
lowering temperature.

[. INTRODUCTION importance. In that case a marginal situation is demonstrated
to occur, where the coupling constant does not diverge at a
Recently, numerous experimental data have been obtaindhite scale, but becomes infinite exactly at the Fermi surface.
for anomaloud systems demonstrating so-called non-Fermi-As a consequence, “soft” boson branches are formed during
liquid (NFL) behaviort? Manifestations of the NFL behav- the renormalization process. Scattering of electrons by such
ior are unusual temperature dependences of magnetic susc&t collective excitations just leads to the formation of the
tibility [x(T)~T¢¢<1], electronic specific he4C(T)/T ~ NFL state(see Ref. 15 _ .
is proportional toT ¢ or —InT], and resistivity [ p(T) In Sec. Il the renormalization groufscaling equations
~ Tk 1< u<2], etc. Such a behavior is observed not only in&€ presented. In Sec. lll we consider the antiferromagnetic
alloys where disorder is present (¥4 [Pds (AFM) state_wnh account qf the spin-wave (_1amp|ng ar_1d the
UPt_Pd,,CeCl_,Au,,U,Th, ,Ber), but also inxsonywe paramagnetic state with simple spm-dﬁfuswe d_ynamlcs. It
A N A : turns out that in these cases a NFL-like behayiara re-
st0|ch|om§tr|c compoundsﬁ, €.g., ﬂm?’.’ .CeC.LkS'Z’ stricted temperature interyals possible, especially in the
CeN,Ge,,” UCWPd,UCyPL” The latter situation is most 556 of quasi-two-dimensionéD) spin fluctuations. In Sec.
interesting from the physical point of vielv. _ IV we consider the general problem of singularities of the
There are a number of theoretical mechanisms proposegtgjing function. In Sec. V we show that the NFL behavior
to describe the NFL state: two-channel Kondo sc6atte3r|ﬁ@, up to lowest temperatures can be naturally obtained provided
Griffiths singularities” in disordered magnetS;® strong 4t we take into account magnonlike excitations in the case
spin fluctuations near a quantum magnetic phasgt 5 complicated spin dynamics. The excitation picture re-
transition, ete. qut of modern treatments of the NFL quired is characteristic for refkystems where several exci-
problem have a semiphenomenological character. The onlion pranches exist. In Sec. VI we discuss various physical

microscopic model where formation of the NFL state isyqherties. Possible relation to experimental data is consid-
proven—the one-impurity two-channel Kondo model— greq in Sec. VL.

seems to be insufficient, since important role of intersite in-
teractions is now a matter of common experiehce.

In the present paper we start from the standard micro- lIl. THE SCALING EQUATIONS
scopic model of a periodical Kondo lattice. Main role in the 1o describe a Kondo lattice, we use thef exchange
physics of the Kondo lattices belongs to the interplay of theyodel
on-site Kondo screening and intersite exchange interactions.
This interplay leads to the mutual renormalization of the
characteristic energy scales: the Kondo temperafgr@and ~ H= 2, t,Cl Co— 1> S0,5C1.Ciat+ 2 IS ¢S4+ Has
spin-fluctuation frequencw. It was shown in our previous K ok d 1)
papers®~18 that, depending on the model parameters, this
may result in either entering strong-coupling regitive cou-  wheret, is the band energy§ and S, are spin-density op-
pling constant diverges at a finite energy scale, i.e., effectiverators, and their Fourier transfornisis the s-f exchange
Kondo temperatur@y) or formation of magnetic state with parameter,J, are the intersite exchange parametersare
partially suppressed moments. Here we consider the case tife Pauli matricesH , is the anisotropy Hamiltonian which
more complicatedbut realistig spin dynamics, presence of results in occurrence of the gap, in the spin-wave spec-
several singularities of spin spectral function being of cruciaktrum. As well as in Refs. 16—18, we investigate the interplay
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of the Kondo effect and intersite interactions by the renor- d d
malization group approach. The latter starts from the second- Jq=2le €0osq; +4J22 COS(Q; COsq;
order perturbation theory with the use of the equation-of- =1 =]
motion method (within the diagram technique in the | .., J, andJ,
pseudofermion representation for the spin operators, such
approximation corresponds to the one-loop scaling

We apply the “poor man scaling” approach.in this
method one considers the dependence of effe¢tamormal-
ized model parameters on the flow cutoff parameer
—0 (here and hereafter the energy is referred to the Fermi J
energyE-=0) which occurs at picking out the Kondo sin- a’:Z(d—1)J—|<exp(ikR2)>tk:0|2, (7)
gular terms. The relevant variables are the effectremor- 1
malized parameter ob-f couplingge(C)=—2pl(C) (p whereR, runs over the next-nearest neighbors.
is the bare density of electron states at the Fermi Jevel  ysing Egs.(2)—(4) we obtain the explicit expressions
characteristic “exchange” spin-fluctuation energy,(C),

being the exchange integrals between nearest
Yhd next-nearest neighborsl{|>|J,|). By averaging the
Kondo correction to the magnon frequernsge Refs. 17,18
over the Fermi surface and using the expansion in small
wave vectorg] one can derive

gap in the spin-wave spectruay(C), and magnetic moment ;ex(c) :;exexp( —a[ge(C)—gl/2),

S«(C). The derivation of the scaling equations is described

in detail in Ref. 17. In the magnetically ordered phasg, is wo(C)=woexp —b[ge(C)—al/2),

the magnon frequenay,, which is averaged over the wave (8)
vectorsq=2k wherek runs over the Fermi surface; in the Sei(C)=Sexp —[gei(C)—gl/2),

case of dissipative spin dynami@saramagnetic pha}se_)ex - -

is determined by the second moment of the spin spectral y(C)=kg§f(C)w exd —c[ge(C)—g]/2].

density. Here we write down the set of scaling equations

with account of the spin-wave damping(C) which is de- N the last equation of Eq8), we have taken into account
termined from the imaginary part of the magnon polarizationthat the magnon damping is proportionalfg y=kg?w (the
operator(see the next sectionin this sense, the following factor k is determined by the bandstructure and magnetic

equations generalize Eq81)—(34) from Ref. 17: ordering, and the scaling equations should contain only
renormalized quantities.
99ef(C)/IC=A,3In S C)/9C=— A/2 2) One can see from Eq¢8) that the behavior of all the

relevant variables is determined by a single functi( &)

[for the sake of convenience we introduce the variaple
=In|D/C|, the scaleD of order of the electron bandwidth
being defined byg.¢(— D) =g]. Generally speaking, depend-

91N wey(C)/IC=—aAl2,0In wy(C)/IC=—bA/2, (3)

dlny(C)/dC=—cA/2 (4) ing on the bare model parameters, two simplest situations are
_ possiblexi) ger(£€) diverges at= &¢* =In(D/Ty). Within our
with approach, that is based on perturbation theory, one cannot
_ describe the scaling behavior of the systeméaté*. By
A=A[C,0e(C),wo(C)] analogy with the exact results for the one-impurity Kondo
5 _ — problem, one can propose that the formation of a heavy-
~9e(C) [ wedC) wo(C) ¥(C) 5) fermion state takes place with a characteristic energy scale

icl "\"Icl el el ) T . It should be noted thak}; can differ considerably from
_ Tk, see Ref. 17(ii) ge(&€) remains finite at arbitrarg. This
a=1-a for the paramagneti®®M) phasea=1—a’,.b=1  case corresponds to the usual magnet with local moments
for the antiferromagnetiCAFM) phasea=2(1-«a"),b=2  \hich are partially suppressed owing to the Kondo effect.
for the ferromagneti¢FM) phase;a,a’, " are some aver- It is clear that a NFL behavior is in a sense intermediate
ages over the Fermi surfa¢see Ref. 1Y the quantitycis  petween these cases. In particular, one has to expect for the
discussed below. The scaling functignis determined by magnetic susceptibilityy(T) e 1/T% = const(T) in the case
(i), and x(T)<1/T in the case(ii), whereasy(T)xT ¢,0
<(¢<1 in the NFL state. Below we demonstrate that the
NFL behavior can be associated with the marginal behavior
of gei(§), Wherege(€) —o0 at é—oo. Alternatively, the in-
where the electron spectruty is referred to the Fermi en- crease ofj.;(£) can take place in a widéregion. Of course,
ergy, Jq(w) is the normalized spectral density of the trans-details of description of such situations in our approg@el.,
verse spin susceptibility* ~(qg,w), (for the AFM phase, in  concrete exponents in the temperature dependences of physi-
the local coordinate systgmEquations that are similar to cal characteristigsare not quite reliable, since higher-order
Egs. (2—(4) can be obtained for the Coqblin-Schrieffer corrections to the scaling functidibeyond the one-loop ap-
model” and in the case of anisotropsef coupling®® proximation may be important. However, it is natural to

Further we shall need the expression &drin the case of expect that the fact of existence of the marginal regime is
the staggered AFM ordering for the 2D and 3D cubic latticesreproduced correctly by the lowest-order scaling. Therefore
where we believe that our approach enables one, at least, to indicate

7l=Ref_;dw<~7k—kr(w)>tk=tk,:om' (6)
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physical factors which are favorable for the NFL state. In the
next sections we consider concrete scenarios of the marginal
behavior.

Ill. THE SCALING BEHAVIOR IN THE PRESENCE
OF DAMPING

As demonstrated in Ref. 17, the singularities of the scal-
ing function » can result in occurrence of a NFL behavior in
a restricted region due to fixing of the argument of the func-
tion # at the singularity during the scaling process, so that

»(C)=I[C],
— FIG. 1. The scaling trajectori in isotropic 2D antifer-
9er(§)—g=2(§—M)/ar=In(D/w). ©) romagnetgsolid Iines,g:O{lskgf?f(g)z0.15592) and 3D an-
This region becomes not too narrow only provided that thdiferromagnets(dashed linesg=0.139<g., g=0.140>g;) with
bare coupling constamf= — 2l p is very close to the critical k=0.5, a=c=1, A=In(D/w)=5.
value g. for the magnetic instability [¢—g.l/gc
~10 *-10%). Here we treat the scaling process with ac- ,
count of a not too small magnon damping (only very Ag=p Ek: (1) 6(ty4q)- (15
small damping was introduced in Ref. 17 to provide exis-
tence of the magnetic-nonmagnetic ground-state transition dthe damping14) can be put nearly constant at not too large
g=g.). g (the threshold value determined by the AFM gap can be
Consider the scaling functiom in the FM and AFM  neglected due to formal smallnessljn In the 2D AFM case
phases for simple magnetic structures. We use the expressid¢ obtain in the same approximation
for the spectral density, corresponding to the case of one

3
magnon mode 7(x.2)= 4” (x,2) - (16)
. vi(X,2)+z
T(w)= % PPRECTYE (10) 1
(0= )™+ 7 vz(x,z)zz[l—x2+ J(1-x3)%+472].

Substituting this into Eq(6), we obtain
These expessions modify somewhat the cutoff procedure

(wexl|Cl,¥I|C|) made in Ref. 17.
_ - : 2/ ~2y—1 The function\, determines, in particular, the factirin
RE(1= (@1 F17ei)TC) Dy=y=0 Eq. (8). For a parabolic electron spectrum we obtain
11
for simplicity, magnetic anisotropy is neglected in this sec N 6(1~x) X ve, =3, (17
or sim , - = _ _
(for simplicity, mag D s T zx T |am i) d=2,

tion). For an isotropic three-dimensioné8D) ferromagnet
integration in Eq.(11) for y,=const and quadratic spin- \wherex=q/2kg,6(x) is the step functionz is the electron

wave spectrum yields concentrationwith both spin projections
) _ The main Kondo renormalization of the magnon damping
1+z¢ (1+x)°+z¢ 1+x z f . ) i he f & Soin f
n(X,2)= In arctan comes from its proportionality to the factor &8f Spin fluc-
4x (1-x)2+ 22 z 1+x tuations can give correction to this factor, as well as for the

magnon frequency. For simplicity, we restrict ourselves in
_ ﬂarctan z , (1  humerical calculations to the AFM case withyq/y,

z 1—-x = Swqlwg=8S/S, so thatc=1 in Eqgs.(4), (8). The corre-
sponding scaling trajectories are shown in Fig. 1. One can
see that, unlike Ref. 17, the “linear” behavior, although be-
ing somewhat smeared, is pronounced in a considerable re-
gion of £ for not too smallg—g.|, especially in the 2D case.

In the 3D case the linear regidf) is followed by a quasi-
linear behavior with

wherex= wq,/|C|,z= y/|C|. Note that last two terms in Eq.
(12) play a role similar to that of the “incoherent” contribu-
tion to the functiony, which was treated in Ref. 17.

For a 3D antiferromagnet integration in Ed.1) for the
linear spin-wave spectrum gives

1 — —
7(X,2)= 3R (1+i2)In(1+x+iz) 9el(§)=A(£—N\),w(C)=|C|**2 S,(C)=|C[*2, (18)

. . whereA<2/a.
+(1=iz)In(1+x=iz)], (13 To investigate the latter behavior in more details, it is
where we take into account the intersubband damping onlyinstructive to consider also the case of a paramagnet with
o pure dissipative dynamics. In the case of spin-diffusion be-
¥q=m217S(Jq— o) p*N g+ 0. (14  havior we havesee Ref. 1y



PRB 61 NON-FERMI-LIQUID BEHAVIOR IN KONDO LATTICES ... 14 643

3 Inlnjv|, d=3,

70V gpyp12, d=2. 24

Note that the singularity of the form tnobtained for the B
case in Ref. 17see also previous sectipns a consequence

of a simplified “Debye” model of the magnon spectrum. In
fact, such a dependence corresponds qualitatively to an in-
termediate asymptotics at approaching the singularity. In any
case, a small damping of spin excitations should be intro-
duced to cut the singularity. In the calculations below we put
the damping parametei=1/100(see Ref. 1¥. In fact, pro-
nounced extrema of, but not singularities themselves turn
out to be important for the scaling behavior discussed below.
FIG. 2. The scaling trajectorieg.¢(£) in 2D (solid lineg and Forg—0 we have)\qocq_l. Near the points of minimum

3D (dashed linesparamagnets witla=1/2A=5. The bare cou- maximum in the maanon spectrum we have?— w2 o
pling parameters arg=0.135 andg=0.145, higher curves corre- (+ 2 ang)for —c?_ gz_)o V\F/)e obtain \leé @m
sponding to largeg. The values ofj; in 2D and 3D cases are 0.148 — a- v= “m

and 0.152.

=In|v], d=3,
m(w)= Fo(Fo)|v|"M3 d=2
P 2| = N [1+(DqYC)2] L w=4DKE, (19)
T \c 7 ¢ q ’ B so thatp— — o near the band bottom ang— +« near the

_ o band top. The Van Hove singularities in the magnon band at
whereD is the spin diffusion constant. As demonstrate nu-¢, =, for g0 yield weaker singularities ig(v) (Jv|¥2for

merical calculationgsee Fig. 2, for g<g. the one-impurity =3 and a finite jump ford=2) and will not be treated
behavior 1g.¢(£) =1/g— & is changed af=\ by the behav- pe|ow.

(29

ior (18) with
—~ 2 - _ — - V. THE SCALING PICTURE AND NFL BEHAVIOR
A=18ed( M JH(0).8er(M)=0/(1=19), (0)=7(1) ?2'8)' IN MANY-SUBLATTICE MAGNETS
In the 3D case where;”M(x)=arctarnx/x the quasi-linear Using the results of the previous section we can propose a
NFL-like behaviorge(£) takes place in a rather narrow re- rather realistic and universal mechanism of the NFL behav-
gion. However, in the 2D case we obtain ior. Suppose that the spin excitation spectrum contains sev-
eral branches which make additive contributions to the func-
1+ (1+x2)v2]Y? tion 7.
M) =| ————— (21 As a simple model example we can consider a two-
2(1+x%) sublattice ferrimagnet with the localized-system Hamiltonian

and the NFL-like region becomes more wide due to a more

PM ; , ~
slow decrease ofy" “'(x) at x—. Note that such regions Hi= 2 JiSS+ 2 JSS+ E JiSS
are not observed fag>g, . ieAjeA ieB,jeB ieAjeB

IV. SINGULARITIES OF THE SCALING FUNCTION => (Jqs,qsq+J(;S’,qsaﬁqs,qs;), (26)
q

To get further insight into the NFL-behavior problem, we ) _ ) )
perform a general analysis of singularities of the scalinghes-f exchange interaction being taken into account only at

function . In the absence of damping, after averaging ovePne sublatticeA (spins without primeg Similar to Eq.(22)

the Fermi surface we can rewrite Ed.1) as we obtain
w2 ot
_ . .
N wex|Clwo/|C)) =2 Ng(1—wd/CH™L (22 7= 2 Ngmo|1-—2| 27)
q ai=12 " Bq C?
The singularities ofy correspond to the Van Hove singulari- \where
ties in the magnon spectrum and to the boundary pajnts
—0 andq=2k . By={[S(Jq—Jo)+S' (3, — ) — (S+')Jp]2— 45ST212,
For g— 2kr the magnon spectrum has the Kohn anomaly a @0 a e ° ! (29)

(- 2koinlg—2k|, d=3 0q12=Bq ¥ |S(Jg—Jo) =S (34— Ip) +(S— ') 3y

Wq* 2 (23 are the acoustical and optical modes
Jo?—4kZ6(q—2kg), d=2. P :
9 P09 2ke) The dependence
Taking into account the dependen¢&g), which hold quali-
titglely in a general situation, we obtain for=C“—w \P(g)zzi Z [ (wex; /D)EE, (wg; /D)ef] (29)
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FIG. 3. The scaling function¥ (¢) defined by Eq(29) in the 3

case of a 3D antiferromagnet with two excitation modes. The pa-

— — — — FIG. 4. The scaling trajectori in a 3D antiferromagnet
rameters ar€1:0.4,22:0.6, In@/(l)z):4, (1)2/(1)1:3, wovl/wexyl g ] %f(g) g

= ., 5 with the parameters of Fig. 3 aral=b;=1. The bare coupling
=0.2, wg 2/ wex 2= 0.6 (0] = wgy + wg;) - parameters arg=0.158=g_, (upper solid line with the asymptot-

) o o ~ics), g=0.154=g.; (lower solid ling, and g.;<g=0.156<g,,
is shown in Fig. 3 for the case of two excitation modes in &dashed ling

3D antiferromagnetthe expressions for the function; in

the case of one mode with inclusion of anisotropy are giverjence takes place only for the total characteristic frequency
in Ref. 1§. The only property of the functiol’, which wil w (e.g., for an anisotropic antiferromagnet with one mode we

be important below, is the occurrence of teecondzero — 2. : = _
with decreasingC| (or increasingg). This property follows ~Nave®”=wo+wg,), and the behavioge(£) andSe((¢) is
more complicated. As follows from Ed7), for the AFM

immediately from existence of the “positive” singularity in : ; .
¥ near the maximum frequency of the lower branch and oftate with small next-nearest exchange interactions the case
of small|la—1| andb=1 is realized.

the “negative” singularity near the minimum frequency of
the upper branche.g., for w1(q=2kg)<w,(q=0)]. One
can expect that this is a general property of many-sublattice  VI. NFL BEHAVIOR OF PHYSICAL PROPERTIES
magnets. The singularities can be also connected with the
crystal-field excitations.

As demonstrate both numerical calculations and analytic
treatment, in some interval of the bare coupling paramete|5,
0.1<9<dc», the argument of the functio becomes fixed _ S
at the second zer@; = C,, during the scaling process which x=1lm (SIS ) w=0=(Jo=Jg) =S w. (33
is described by Eg2). This can be illustrated for the simple a0

case where=Db for all the modese.g., for an antiferomag-  one can assume that the spin-wave description of the
net in the nea_res_t-nelghbo_r approximation we haveb electron-magnon interaction is adequate not only in the AFM
=1). On substituting Eq(8) into Eq. (2) we obtain phase, but also for systems with a strong short-range AFM
order (e.g., for 2D and frustrated 3D systems at finite tem-

I(Uger)l9E=— W (E-alger—0)/2). (30 (e . y n

_ pe@ture}s_ Uiing the scaling arguments we can repla_ce
Then we derive — w(C),5—S.((C) with |C|~T, which yields

Qe §—2)=(2/a) (= &)~ LIV'(£)€E], (3D

where§0~ln(D/5) is the second zero of the functioh(¢). _ . .
Note that the first zero does not work since the unrestricte@‘?cord'ng to Eq.(7), the nonuniversal exponentis deter-

increase of).; corresponds to a decrease of the argument O?mned zy detat|!s of;nagnenc lsttr?_cturdg and can be both p()tﬁll-
the function¥ in Eq. (30), so that¥— +0. According to Ve and negative. For a qualitative discussion, we can st

: use Fig. 4 and treat the differenee-1 as a perturbation.
Eq. (8) we obtain The increase of(T—0) (which is usually called NFL be-
— = 1/a havior takes place fom>1 and, as follows from Eq(8),
©e C),00(C) ||, Se( C) |2, 32 corresponds to an increase of magnetic anisotropy parameter
Within the approach used, the behawi8l), (32) takes place with lowering T (see Ref. 18 Such a correlation may be
up to C=0(£==). As discussed in Sec. Il, the one-loop verified experimentally. The negativevalues correspond to
scaling equations themselves may become invalid with inan anomalous power-law temperature depender(d®. It
creasinges, but the tendency to the formation of the “soft” should be noted that corrections ¥§T) and C(T)/T that
magnon mode seems to be physically correct. The scalingre proportional toT*?, are discussed sometimes for some
picture for three possible cases is shown in Fig. 4. One cah—systems, e.g., \Y;_,Pd,* but picking out them is not
see that the intervdlg.;,g.,] where the NFL behavior oc- unambiguougsee the fittings of experimental data in Refs. 1
curs is not too small, unlike Ref. 17. and 6.
In a more general case, wheaet b and the exponents in The temperature dependence of electronic specific heat
Eq. (3) differ for different frequencies, the line&@ depen- can be estimated from the second-order perturbation theory,

Consider the temperature dependence of the magnetic
a§usceptibility. In the spin-wave region we have for an AFM
tructure with the wave vect@

x(MxT ¢ 7=(a—1)/a. (34
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TABLE |. Scenarios of the NFL behavidthe values of the VII. DISCUSSION OF EXPERIMENTAL DATA
exponent) in various magnetic phases. AND CONCLUSIONS
3D AFM AFM, Now we discuss relevant experimental data on the anoma-
(two regiong 2D AFM PM several branches lous f systems. They demonstrate indeed pronounced spin
- : : fluctuations. These can have quasi-2D nature, see, e.g., data
a-1 bothsigns both signs <0 both signs of Refs. 15,21,23 for the systems CeCiAu, and
¢ ((::11)):’/‘2 (a-1)a (a-1)A2<0  (a-1)/a CePdSi,. Note that for other compositions the first system

demonstrates complicated magnetic ordefhgccording to
Ref. 25, forx=0.45 the system LY, ,Pd; has antiferro-

Co(T)/T=1/Z(T) whereZ(T) is the residue of the electron magnetic ordering witﬁ'N.= 20 K and the sat'uration moment
Green’s function at the distandefrom the Fermi levelsee ~ @Pout Jug. The inelastic neutron scattering demonstrates

Ref. 20. Then we have existence of several branches in spin excitation spectrum,
- - which is probably connected with crystal field effects.
CeI(T)/Tocggf(T)sef(T)/wex(T)ocX(T)mZ(T/T*), The systems CeBR8i, and CeNjGe, (Ref. 12 possess

(35) complicated magnetic structure with several magnetic atoms
per unit cell(and, consequently, spin-wave branghé&nder
pressure, these systems demonstrate anomalous temperature
dependencey(T)~T#, u=1.2—1.5. Unfortunately, data on

whereT* is a characteristic energy scat@ossover tempera-
ture in the scaling procesdNith decreasing temperature, the

Wilson ratio specific heat and magnetic susceptibility for these systems
W(T)=Tx(T)/Co(T)In"2(TIT*) (36) are not prgsgnted. The data of Ref. 5 on G&4} yield for
_ _ ) the resistivity exponentu=3/2, and the dependence
should decrease with lowerinj(T<T*). Co(T)/T is described by a logarithmic law with square-root

Generally, the temperature behavior of magnetic characcorrections. Provided that electron-electron scattering domi-
teristics S and w), which depend exponentially on the cou- nates, we obtain from Eq39) the dependenc€ (T)/T
pling constant, is decisive for our NFL mechanisms. ThexT~ %25 which cannot be easily distinguished from the loga-
transport relaxation rate determining the temperature depemithmic one[see different fittings of the dependendcag(T)
dence of the resistivity owing to scattering by spin fluctua-in Refs. 6 and 1 for the same systgm§hus the question

tions in AFM phase is given B¢ needs further investigations.

The dependenc€(T)/T«=x(T) has been recently ob-
1 27 ) 2 INg tained experimentally for a wide class of NFL systems, e.g.,
;‘E' S°(Jo= I p{(Vi+ o= Vi) >tk:Oq=Q Aq _&_a)q : U,Y,_«Pd;, UCu,Pd,UCuyPt, the value of{ being about

0.2-0.3° Such a correlation itself is in agreement with a
(37 number of theoretical microscopic mechanisms, including
Then we obtain the Griffiths point one, and cannot provide any definite argu-
ments. At the same time, the Griffiths point mechanism pre-
%ocgﬁf(T)gef(T)/Eex(T)T20<T206|(T)/TO<T2’4. (39) dicts nearly temperature independent Wilson ratio, but our
mechanism yields the dependern(@6). One can expect that

Considering electron-electron scattering as the main scatteE-?Sually the accuracy of the experimental data is insufficient

ing mechanism one can expect another temperature depe  pick out the factor of IF(T/T*). However, the data of Ref.
dence, namely, 4 for the system CeGu,Au, definitely demonstrate a con-

siderable dependend®(T), which is in a qualitative agree-
1 ment with Eq.(36) (unfortunately, no quantitative fitting is
;°<[P/Z(T)]ZTZOCTZ[Ce|(T)/T]2°<Tz_24- (39  presented in Ref. 24
Therefore obtaining data on resistivity for the same
One can expect that the dependence close tq38)should samples is of crucial importancas demonstrated in Ref. 1,
hold in localized-moment systems, and that close to(Bg).  the resistivity for Y_,Th,Pd,Al; is described by different
in itinerant-electron compounds. power-law temperature dependences at varying the in-

As for paramagnets with purely dissipative spin dynam-terval 0.6<x<<0.95). It should be noted that our approach
ics, the value of¢ is always negative sincea<l. Thus, to does yield nonuniversal exponents in the temperature depen-
produce NFL behavior with positivg spin dynamics should dences, which depend on characteristics of the Fermi surface.
include strong spin fluctuationéshort-range order, suffi- For the systems such asY,_,Pd; the experimental data
ciently well defined spin wavésThe temperature depen- demonstrate the negative contribution to resistividy(T)
dences of specific heat, magnetic susceptibility and resistiv-- —T#, u=1.1-1.4. However, the negative temperature co-
ity in the case of a NFL-like behavior considered in Sec. Il efficient probably indicates importance of disorder effects.
differ from those discussed above by the valuelef(a In the whole, despite existence of plentiful data on the
—1)A/2 (for the second “linear” regioh NFL behavior, it is difficult to choose unambiguously a the-

The results for the exponefitin various magnetic phases oretical mechanism because of the problem of fitting experi-
are summarized in Table I. Remember once more that theental data and absence of the complete set of physical char-
corresponding behavior takes place in a restricted regioracteristics[temperature dependences ©f(T),x(T),p(T),
except for the AFM case with several excitation branches. and spin dynamidsfor the same sample compositions. One
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of more features of our mechanism is correlation of elec-order scaling approach; treatment of higher-order corrections
tronic properties with magnetic anisotropy parameter. Thdo the scaling equations would provide additional informa-
existing data seem to not exclude the NFL mechanism protion. Unlike previous phenomenological works, existence of
posed, at least for the systems with pronounced magnetigeculiar long-range critical fluctuations near the quantum
ordering. To get further insight, detailed measurements fophase transition is not needed for this mechanism, but local
stoichiometric systems such as CeGig, would be useful. reconstruction of electronic states owing to the Kondo effect

To conclude, phenomenon of the NFL behavior seems t@s essential, the concrete form of spin spectral function being
have a complicated natur@oth magnetic fluctuations and of crucial importance. More detailed investigations of the
the on-site Kondo effect are importanfThe mechanisms NFL behavior for complicated spectral functions, in particu-
considered above are not based on disorder effects, but diew with account of crystal-field effects and incoherent con-
scribe naturally the NFL state in ideal crystals. At the samdributions, would be also of interest.
time, the damping makes the quasi-NFL behavior considered
in Sec. lll more pronounced and in a sense plays the role of
disorder.

The damping is not important for the NFL behavior = The research described was supported in part by Grant
mechanism considered in Sec. V. This NFL picture is “true” No. 99-02-16279 from the Russian Basic Research Founda-
(i.e., holds up to lowest temperatuyesithin the lowest- tion.

ACKNOWLEDGMENTS

*Electronic address: Valentin.Irkhin@imp.uran.ru 10p_Coleman, L.B. loffe, and A.M. Tsvelik, Phys. Rev5g, 6611
IM.B. Maple et al,, J. Low Temp. Phys95, 225(1994); 99, 223 (1995.
(1995; in Proceedings of the Conference on Non-Fermi-Liquid 1A H. Castro-Neto, G. Castilla, and B.A. Jones, Phys. Rev. Lett.
Behavior in Metals Santa Barbara, 199R). Phys.: Condens. 81, 3531(1998.

Matter. 8, 9773(1996)]. 125, R. Julianet al, in Proceedings of the Non-Fermi-Liquid Be-
2proceedings of the Conference on Non-Fermi-Liquid Behavior in  havior in Metals(Ref. 1), p. 9675.

Metals (Ref. 1), p. 9675. 3. Schraderet al, Phys. Rev. Lett80, 5623(1998.
3p. Fulde and M. [Lwenhaupt, Adv. Phys34, 589 (1986. 141 B. loffe and A.J. Millis, Usp. Fiz. Nauk 68 672 (1998.
#K. Umeo, H. Kadomatsu, and T. TakabataReoceedings of the °P. Coleman, Physica B59-261 353(1999.

Non-Fermi-Liquid Behavior in MetalgRef. 1), p. 9743. 18y.Yu. Irkhin and M.I. Katsnelson, J. Phys.: Condens. Matter
SF. Steglichet al, Proceedings of the Non-Fermi-Liquid Behavior 9661(1992.

in Metals (Ref. 2, p. 9909. 17v.Yu. Irkhin and M.1. Katsnelson, Phys. Rev. 3, 8109(1997).
6M.C. Andradeet al,, Phys. Rev. Lett81, 5620(1998. 18y Yu. Irkhin and M.I. Katsnelson, Phys. Rev.3®, 9348(1999.

"1t should be noted that a possibility of a NFL behavior of trans-°P.W. Anderson, J. Phys. 8 2346(1970.
port properties in disordered systems has been discussed maf%.Yu. Irkhin and M.I. Katsnelson, Z. Phys. B5, 67 (1989.
years ago in the paper by B.L. Altshuler and A.G. Aronov, Zh. ?'O. Stockertet al, Phys. Rev. Lett80, 5627(1998.
Eksp. Teor. Fiz.77, 2028 (1979 [Sov. Phys. JETR0, 968 22y/.Yu. Irkhin and M.1. Katsnelson, Phys. Rev.3, 6181(1995.

(1979]. 234, von Lohneysen, J. Magn. Magn. Mate200, 532 (1999.
8B. Andraka and A.M. Tsvelik, Phys. Rev. Le67, 2886(1992); 244 von Lohneysen, inProceedings of the Non-Fermi-Liquid Be-
A.M. Tsvelick and M. Rivier, Phys. Rev. B8, 9887(1993. havior in Metals(Ref. 1), p. 9689.

°D.L. Cox and M. Jarrell, J. Phys.: Condens. Mat&r9825  2°P. Dai, H.A. Mook, C.L. Seaman, M.B. Maple, and J.P. Koster,
(1996. Phys. Rev. Lett75, 1202(1995.



