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Non-Fermi-liquid behavior in Kondo lattices induced by peculiarities
of magnetic ordering and spin dynamics

V. Yu. Irkhin* and M. I. Katsnelson
Institute of Metal Physics, 620219 Ekaterinburg, Russia

~Received 16 July 1999; revised manuscript received 6 October 1999!

A scaling consideration of the Kondo lattices is performed with account of singularities in the spin excitation
spectral function. It is shown that a non-Fermi-liquid~NFL! behavior can be naturally connected with the
regime which is marginal between the regions of strong coupling~Kondo lattice! and weak coupling~‘‘usual’’
magnets!. For complicated magnetic structures with several magnon branches, this regime occurs naturally
between two critical values of the bares- f coupling constant. Another kind of a NFL-like state~with different
critical exponents! can occur for simple antiferromagnets with account of magnon damping, and for paramag-
nets, especially with two-dimensional character of spin fluctuations. The mechanisms proposed lead to some
predictions about behavior of specific heat, resistivity, magnetic susceptibility, and anisotropy parameter,
which can be verified experimentally. In particular, the Wilson ratio is predicted to weakly increase with
lowering temperature.
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I. INTRODUCTION

Recently, numerous experimental data have been obta
for anomalousf systems demonstrating so-called non-Ferm
liquid ~NFL! behavior.1,2 Manifestations of the NFL behav
ior are unusual temperature dependences of magnetic su
tibility @x(T);T2z,z,1#, electronic specific heat@C(T)/T
is proportional to T2z or 2 ln T#, and resistivity @r(T)
;Tm,1<m,2#, etc. Such a behavior is observed not only
alloys where disorder is present (UxY12xPd3,
UPt32xPdx ,CeCu62xAux ,UxTh12xBe13), but also in some
stoichiometric compounds, e.g., Ce7Ni3,4 CeCu2Si2 ,
CeNi2Ge2,5 UCu4Pd,UCu4Pt.6 The latter situation is mos
interesting from the physical point of view.7

There are a number of theoretical mechanisms propo
to describe the NFL state: two-channel Kondo scattering,8–10

‘‘Griffiths singularities’’ in disordered magnets,11,6 strong
spin fluctuations near a quantum magnetic ph
transition,12–15 etc. Most of modern treatments of the NF
problem have a semiphenomenological character. The
microscopic model where formation of the NFL state
proven—the one-impurity two-channel Kondo model
seems to be insufficient, since important role of intersite
teractions is now a matter of common experience.1

In the present paper we start from the standard mic
scopic model of a periodical Kondo lattice. Main role in th
physics of the Kondo lattices belongs to the interplay of
on-site Kondo screening and intersite exchange interacti
This interplay leads to the mutual renormalization of t
characteristic energy scales: the Kondo temperatureTK and
spin-fluctuation frequencyv̄. It was shown in our previous
papers16–18 that, depending on the model parameters, t
may result in either entering strong-coupling region~the cou-
pling constant diverges at a finite energy scale, i.e., effec
Kondo temperatureTK* ) or formation of magnetic state with
partially suppressed moments. Here we consider the cas
more complicated~but realistic! spin dynamics, presence o
several singularities of spin spectral function being of cruc
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importance. In that case a marginal situation is demonstra
to occur, where the coupling constant does not diverge
finite scale, but becomes infinite exactly at the Fermi surfa
As a consequence, ‘‘soft’’ boson branches are formed dur
the renormalization process. Scattering of electrons by s
soft collective excitations just leads to the formation of t
NFL state~see Ref. 15!.

In Sec. II the renormalization group~scaling! equations
are presented. In Sec. III we consider the antiferromagn
~AFM! state with account of the spin-wave damping and
paramagnetic state with simple spin-diffusive dynamics
turns out that in these cases a NFL-like behavior~in a re-
stricted temperature interval! is possible, especially in the
case of quasi-two-dimensional~2D! spin fluctuations. In Sec
IV we consider the general problem of singularities of t
scaling function. In Sec. V we show that the NFL behav
up to lowest temperatures can be naturally obtained provi
that we take into account magnonlike excitations in the c
of a complicated spin dynamics. The excitation picture
quired is characteristic for realf systems where several exc
tation branches exist. In Sec. VI we discuss various phys
properties. Possible relation to experimental data is con
ered in Sec. VII.

II. THE SCALING EQUATIONS

To describe a Kondo lattice, we use thes- f exchange
model

H5(
ks

tkcks
† cks2I(

iab
Sisabcia

† cib1(
q

JqS2qSq1Ha ,

~1!

wheretk is the band energy,Si andSq are spin-density op-
erators, and their Fourier transforms,I is the s- f exchange
parameter,Jq are the intersite exchange parameters,s are
the Pauli matrices,Ha is the anisotropy Hamiltonian which
results in occurrence of the gapv0 in the spin-wave spec
trum. As well as in Refs. 16–18, we investigate the interp
14 640 ©2000 The American Physical Society
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of the Kondo effect and intersite interactions by the ren
malization group approach. The latter starts from the seco
order perturbation theory with the use of the equation-
motion method ~within the diagram technique in th
pseudofermion representation for the spin operators, suc
approximation corresponds to the one-loop scaling!.

We apply the ‘‘poor man scaling’’ approach.19 In this
method one considers the dependence of effective~renormal-
ized! model parameters on the flow cutoff parameterC→
20 ~here and hereafter the energy is referred to the Fe
energyEF50) which occurs at picking out the Kondo sin
gular terms. The relevant variables are the effective~renor-
malized! parameter ofs- f couplingge f(C)522rI e f(C) (r
is the bare density of electron states at the Fermi lev!,
characteristic ‘‘exchange’’ spin-fluctuation energyv̄ex(C),
gap in the spin-wave spectrumv0(C), and magnetic momen
S̄ef(C). The derivation of the scaling equations is describ
in detail in Ref. 17. In the magnetically ordered phase,v̄ex is
the magnon frequencyvq , which is averaged over the wav
vectorsqÄ2k wherek runs over the Fermi surface; in th
case of dissipative spin dynamics~paramagnetic phase! v̄ex
is determined by the second moment of the spin spec
density. Here we write down the set of scaling equatio
with account of the spin-wave dampingḡ(C) which is de-
termined from the imaginary part of the magnon polarizat
operator~see the next section!. In this sense, the following
equations generalize Eqs.~31!–~34! from Ref. 17:

]ge f~C!/]C5L,] ln S̄ef~C!/]C52L/2, ~2!

] ln v̄ex~C!/]C52aL/2,] ln v0~C!/]C52bL/2, ~3!

] ln ḡ~C!/]C52cL/2 ~4!

with

L5L@C,v̄ex~C!,v0~C!#

5
gef

2 ~C!

uCu
hS v̄ex~C!

uCu
,
v0~C!

uCu
,
ḡ~C!

uCu D , ~5!

a512a for the paramagnetic~PM! phase,a512a8,b51
for the antiferromagnetic~AFM! phase,a52(12a9),b52
for the ferromagnetic~FM! phase;a,a8,a9 are some aver-
ages over the Fermi surface~see Ref. 17!; the quantityc is
discussed below. The scaling functionh is determined by

h5ReE
2`

`

dv^Jk2k8~v!& tk5tk850

1

12~v1 i0!/C
, ~6!

where the electron spectrumtk is referred to the Fermi en
ergy, Jq(v) is the normalized spectral density of the tran
verse spin susceptibilityx12(q,v), ~for the AFM phase, in
the local coordinate system!. Equations that are similar to
Eqs. ~2!–~4! can be obtained for the Coqblin-Schrieff
model17 and in the case of anisotropics- f coupling.18

Further we shall need the expression fora8 in the case of
the staggered AFM ordering for the 2D and 3D cubic lattic
where
-
d-
-

an
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s
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-

s

Jq52J1(
i 51

d

cosqi14J2(
i . j

d

cosqi cosqj

with J1 andJ2 being the exchange integrals between nea
and next-nearest neighbors (uJ1u@uJ2u). By averaging the
Kondo correction to the magnon frequency~see Refs. 17,18!
over the Fermi surface and using the expansion in sm
wave vectorsq one can derive

a8.2~d21!
J2

J1
u^exp~ ikR2!& tk50u2, ~7!

whereR2 runs over the next-nearest neighbors.
Using Eqs.~2!–~4! we obtain the explicit expressions

v̄ex~C!5v̄exexp~2a@ge f~C!2g#/2!,

v0~C!5v0 exp~2b@ge f~C!2g#/2!,
~8!

Se f~C!5Sexp~2@ge f~C!2g#/2!,

ḡ~C!5kge f
2 ~C!v̄ exp@2c@ge f~C!2g#/2#.

In the last equation of Eq.~8!, we have taken into accoun
that the magnon damping is proportional tog2,ḡ5kg2v̄ ~the
factor k is determined by the bandstructure and magne
ordering!, and the scaling equations should contain on
renormalized quantities.

One can see from Eqs.~8! that the behavior of all the
relevant variables is determined by a single functionge f(j)
@for the sake of convenience we introduce the variablej
[ lnuD/Cu, the scaleD of order of the electron bandwidth
being defined byge f(2D)5g#. Generally speaking, depend
ing on the bare model parameters, two simplest situations
possible:~i! ge f(j) diverges atj5j* 5 ln(D/TK* ). Within our
approach, that is based on perturbation theory, one ca
describe the scaling behavior of the system atj.j* . By
analogy with the exact results for the one-impurity Kon
problem, one can propose that the formation of a hea
fermion state takes place with a characteristic energy s
TK* . It should be noted thatTK* can differ considerably from
TK , see Ref. 17.~ii ! ge f(j) remains finite at arbitraryj. This
case corresponds to the usual magnet with local mom
which are partially suppressed owing to the Kondo effec

It is clear that a NFL behavior is in a sense intermedi
between these cases. In particular, one has to expect fo
magnetic susceptibilityx(T)}1/TK* 5const(T) in the case
~i!, and x(T)}1/T in the case~ii !, whereasx(T)}T2z,0
,z,1 in the NFL state. Below we demonstrate that t
NFL behavior can be associated with the marginal beha
of ge f(j), wherege f(j)→` at j→`. Alternatively, the in-
crease ofge f(j) can take place in a widej region. Of course,
details of description of such situations in our approach~e.g.,
concrete exponents in the temperature dependences of p
cal characteristics! are not quite reliable, since higher-ord
corrections to the scaling function~beyond the one-loop ap
proximation! may be important. However, it is natural t
expect that the fact of existence of the marginal regime
reproduced correctly by the lowest-order scaling. Theref
we believe that our approach enables one, at least, to ind
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14 642 PRB 61V. YU. IRKHIN AND M. I. KATSNELSON
physical factors which are favorable for the NFL state. In
next sections we consider concrete scenarios of the marg
behavior.

III. THE SCALING BEHAVIOR IN THE PRESENCE
OF DAMPING

As demonstrated in Ref. 17, the singularities of the sc
ing functionh can result in occurrence of a NFL behavior
a restricted region due to fixing of the argument of the fu
tion h at the singularity during the scaling process, so t
v̄(C).uCu,

ge f~j!2g.2~j2l!/a,l[ ln~D/v̄ !. ~9!

This region becomes not too narrow only provided that
bare coupling constantg522Ir is very close to the critica
value gc for the magnetic instability (ug2gcu/gc
;1024– 1026). Here we treat the scaling process with a
count of a not too small magnon dampinggq ~only very
small damping was introduced in Ref. 17 to provide ex
tence of the magnetic-nonmagnetic ground-state transitio
g5gc).

Consider the scaling functionh in the FM and AFM
phases for simple magnetic structures. We use the expres
for the spectral density, corresponding to the case of
magnon mode

Jq~v!5
gq

p

1

~v2vq!21gq
2

. ~10!

Substituting this into Eq.~6!, we obtain

h~v̄ex /uCu,ḡ/uCu!

5Rê ~12~vk2k81 igk2k8!
2/C2!21& tk5tk850

~11!

~for simplicity, magnetic anisotropy is neglected in this se
tion!. For an isotropic three-dimensional~3D! ferromagnet
integration in Eq.~11! for gq5const and quadratic spin
wave spectrum yields

h~x,z!5
11z2

4x
ln

~11x!21z2

~12x!21z2
1

11x

z
arctan

z

11x

2
12x

z
arctan

z

12x
, ~12!

wherex5v̄ex /uCu,z5ḡ/uCu. Note that last two terms in Eq
~12! play a role similar to that of the ‘‘incoherent’’ contribu
tion to the functionh, which was treated in Ref. 17.

For a 3D antiferromagnet integration in Eq.~11! for the
linear spin-wave spectrum gives

h~x,z!5
1

2
Re@~11 iz!ln~11x1 iz!

1~12 iz!ln~11x2 iz!#, ~13!

where we take into account the intersubband damping o

gq5p2I 2S̄~Jq2JQ!r2lq1Q , ~14!
e
al

l-

-
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lq5r22(
k

d~ tk!d~ tk1q!. ~15!

The damping~14! can be put nearly constant at not too lar
q ~the threshold value determined by the AFM gap can
neglected due to formal smallness inI ). In the 2D AFM case
we obtain in the same approximation

h~x,z!5
n3~x,z!

n4~x,z!1z2
, ~16!

n2~x,z!5
1

2
@12x21A~12x2!214z2#.

These expessions modify somewhat the cutoff proced
made in Ref. 17.

The functionlq determines, in particular, the factork in
Eq. ~8!. For a parabolic electron spectrum we obtain

lq5
u~12x!

zx
3H 1/6, d53,

~4p!21~12x2!21/2, d52,
~17!

wherex5q/2kF ,u(x) is the step function,z is the electron
concentration~with both spin projections!.

The main Kondo renormalization of the magnon damp
comes from its proportionality to the factor ofS̄. Spin fluc-
tuations can give correction to this factor, as well as for
magnon frequency.17 For simplicity, we restrict ourselves in
numerical calculations to the AFM case withdgq /gq

5dvq /vq5dS̄/S, so thatc51 in Eqs.~4!, ~8!. The corre-
sponding scaling trajectories are shown in Fig. 1. One
see that, unlike Ref. 17, the ‘‘linear’’ behavior, although b
ing somewhat smeared, is pronounced in a considerable
gion of j for not too smallug2gcu, especially in the 2D case
In the 3D case the linear region~9! is followed by a quasi-
linear behavior with

ge f~j!.A~j2l!,v̄~C!}uCuaA/2,S̄e f~C!}uCuA/2, ~18!

whereA,2/a.
To investigate the latter behavior in more details, it

instructive to consider also the case of a paramagnet w
pure dissipative dynamics. In the case of spin-diffusion
havior we have~see Ref. 17!

FIG. 1. The scaling trajectoriesge f(j) in isotropic 2D antifer-
romagnets~solid lines,g50.154,gc , g50.155.gc) and 3D an-
tiferromagnets~dashed lines,g50.139,gc , g50.140.gc) with

k50.5, a5c51, l5 ln(D/v̄)55.
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hPMS v̄

C
D 5(

q
lq@11~Dq2/C!2#21,v̄54DkF

2 , ~19!

whereD is the spin diffusion constant. As demonstrate n
merical calculations~see Fig. 2!, for g<gc the one-impurity
behavior 1/ge f(j)51/g2j is changed atj.l by the behav-
ior ~18! with

A.@ge f~l!#2C~0!,ge f~l!.g/~12lg!,C~0!5h~1!;0.5.
~20!

In the 3D case wherehPM(x)5arctanx/x the quasi-linear
NFL-like behaviorge f(j) takes place in a rather narrow re
gion. However, in the 2D case we obtain

hPM~x!5F11~11x2!1/2

2~11x2!
G 1/2

~21!

and the NFL-like region becomes more wide due to a m
slow decrease ofhPM(x) at x→`. Note that such regions
are not observed forg.gc .

IV. SINGULARITIES OF THE SCALING FUNCTION

To get further insight into the NFL-behavior problem, w
perform a general analysis of singularities of the scal
function h. In the absence of damping, after averaging o
the Fermi surface we can rewrite Eq.~11! as

h~v̄ex /uCu,v0 /uCu!5(
q

lq~12vq
2/C2!21. ~22!

The singularities ofh correspond to the Van Hove singular
ties in the magnon spectrum and to the boundary pointq
50 andq52kF .

For q→2kF the magnon spectrum has the Kohn anom

dvq}H ~q22k̇F!lnuq22kFu, d53,

Aq224kF
2u~q22kF!, d52.

~23!

Taking into account the dependences~17!, which hold quali-
tatively in a general situation, we obtain forv5C22v̄2

→0

FIG. 2. The scaling trajectoriesge f(j) in 2D ~solid lines! and
3D ~dashed lines! paramagnets witha51/2,l55. The bare cou-
pling parameters areg50.135 andg50.145, higher curves corre
sponding to largerg. The values ofgc in 2D and 3D cases are 0.14
and 0.152.
-

e

g
r

y

h~v !}H ln lnuvu, d53,

u~v !v21/2, d52.
~24!

Note that the singularity of the form lnv obtained for the 3D
case in Ref. 17~see also previous section!, is a consequence
of a simplified ‘‘Debye’’ model of the magnon spectrum. I
fact, such a dependence corresponds qualitatively to an
termediate asymptotics at approaching the singularity. In
case, a small damping of spin excitations should be in
duced to cut the singularity. In the calculations below we p
the damping parameterd51/100 ~see Ref. 17!. In fact, pro-
nounced extrema ofh, but not singularities themselves tur
out to be important for the scaling behavior discussed bel

For q→0 we havelq}q21. Near the points of minimum
~maximum! in the magnon spectrum we havevq

22vm
2 }

6q 2, and forv5C22vm
2 →0 we obtain

h~v !}H 6 lnuvu, d53,

7u~7v !uvu21/2, d52
~25!

so thath→2` near the band bottom andh→1` near the
band top. The Van Hove singularities in the magnon band
v5vc for qÞ0 yield weaker singularities inh(v) (uvu1/2 for
d53 and a finite jump ford52) and will not be treated
below.

V. THE SCALING PICTURE AND NFL BEHAVIOR
IN MANY-SUBLATTICE MAGNETS

Using the results of the previous section we can propos
rather realistic and universal mechanism of the NFL beh
ior. Suppose that the spin excitation spectrum contains s
eral branches which make additive contributions to the fu
tion h.

As a simple model example we can consider a tw
sublattice ferrimagnet with the localized-system Hamilton

H f5 (
i PA, j PA

Ji j SiSj1 (
i PB, j PB

Ji j8 SiSj1 (
i PA, j PB

J̃i j SiSj

5(
q

~JqS2qSq1Jq8S2q8 Sq81 J̃qS2qSq8!, ~26!

thes- f exchange interaction being taken into account only
one sublatticeA ~spins without primes!. Similar to Eq.~22!
we obtain

h5 (
q,i 51,2

lq

vqi

Bq
S 12

vqi
2

C2 D 21

, ~27!

where

Bq5$@S~Jq2J0!1S8~Jq82J08!2~S1S8!J̃0#224SS8J̃q
2%1/2,

~28!
vq1,25Bq7uS~Jq2J0!2S8~Jq82J08!1~S2S8!J̃0u

are the acoustical and optical modes.
The dependence

C~j!5(
i

zih i@~v̄ex,i /D !ej,~v0,i /D !ej# ~29!
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is shown in Fig. 3 for the case of two excitation modes in
3D antiferromagnet~the expressions for the functionh i in
the case of one mode with inclusion of anisotropy are giv
in Ref. 18!. The only property of the functionC, which will
be important below, is the occurrence of thesecondzero
with decreasinguCu ~or increasingj). This property follows
immediately from existence of the ‘‘positive’’ singularity i
C near the maximum frequency of the lower branch and
the ‘‘negative’’ singularity near the minimum frequency
the upper branch@e.g., for v1(q52kF),v2(q50)#. One
can expect that this is a general property of many-sublat
magnets. The singularities can be also connected with
crystal-field excitations.3

As demonstrate both numerical calculations and analyt
treatment, in some interval of the bare coupling parame
gc1,g,gc2, the argument of the functionC becomes fixed
at the second zero,C5C0, during the scaling process whic
is described by Eq.~2!. This can be illustrated for the simpl
case wherea5b for all the modes~e.g., for an antiferromag
net in the nearest-neighbor approximation we havea5b
51). On substituting Eq.~8! into Eq. ~2! we obtain

]~1/ge f!/]j52C~j2a@ge f2g#/2!. ~30!

Then we derive

ge f~j→`!.~2/a!~j2j0!21/@C8~j0!j2#, ~31!

wherej0; ln(D/v̄) is the second zero of the functionC(j).
Note that the first zero does not work since the unrestric
increase ofge f corresponds to a decrease of the argumen
the functionC in Eq. ~30!, so thatC→10. According to
Eq. ~8! we obtain

v̄ex~C!,v0~C!}uCu,S̄e f~C!}uCu1/a. ~32!

Within the approach used, the behavior~31!, ~32! takes place
up to C50(j5`). As discussed in Sec. II, the one-loo
scaling equations themselves may become invalid with
creasingge f , but the tendency to the formation of the ‘‘soft
magnon mode seems to be physically correct. The sca
picture for three possible cases is shown in Fig. 4. One
see that the interval@gc1 ,gc2# where the NFL behavior oc
curs is not too small, unlike Ref. 17.

In a more general case, whereaÞb and the exponents in
Eq. ~3! differ for different frequencies, the linearC depen-

FIG. 3. The scaling functionsC(j) defined by Eq.~29! in the
case of a 3D antiferromagnet with two excitation modes. The

rameters arez150.4,z250.6, ln(D/v̄2)54, v̄2 /v̄153, v0,1/v̄ex,1

50.2, v0,2/v̄ex,250.6 (v̄ i
25v̄ex,i

2 1v0,i
2 ).
a

n

f

e
he

al
r,

d
f

-

g
n

dence takes place only for the total characteristic freque
v̄ ~e.g., for an anisotropic antiferromagnet with one mode
havev̄25v0

21v̄ex
2 ), and the behaviorge f(j) and S̄e f(j) is

more complicated. As follows from Eq.~7!, for the AFM
state with small next-nearest exchange interactions the
of small ua21u andb51 is realized.

VI. NFL BEHAVIOR OF PHYSICAL PROPERTIES

Consider the temperature dependence of the magn
susceptibility. In the spin-wave region we have for an AF
structure with the wave vectorQ

x5 lim
q→0

^^Sq
xuS2q

x &&v505~J02JQ!21}S̄/v̄. ~33!

One can assume that the spin-wave description of
electron-magnon interaction is adequate not only in the A
phase, but also for systems with a strong short-range A
order ~e.g., for 2D and frustrated 3D systems at finite te
peratures!. Using the scaling arguments we can replacev̄

→v̄(C),S̄→S̄e f(C) with uCu;T, which yields

x~T!}T2z,z5~a21!/a. ~34!

According to Eq.~7!, the nonuniversal exponentl is deter-
mined by details of magnetic structure and can be both p
tive and negative. For a qualitative discussion, we can
use Fig. 4 and treat the differencea21 as a perturbation
The increase ofx(T→0) ~which is usually called NFL be-
havior! takes place fora.1 and, as follows from Eq.~8!,
corresponds to an increase of magnetic anisotropy param
with lowering T ~see Ref. 18!. Such a correlation may be
verified experimentally. The negativez values correspond to
an anomalous power-law temperature dependencex(T). It
should be noted that corrections tox(T) andCel(T)/T that
are proportional toT1/2, are discussed sometimes for som
f 2systems, e.g., UxY12xPd3,1 but picking out them is not
unambiguous~see the fittings of experimental data in Refs
and 6!.

The temperature dependence of electronic specific h
can be estimated from the second-order perturbation the

-
FIG. 4. The scaling trajectoriesge f(j) in a 3D antiferromagnet

with the parameters of Fig. 3 andai5bi51. The bare coupling
parameters areg50.158.gc2 ~upper solid line with the asymptot
ics!, g50.154.gc1 ~lower solid line!, and gc1,g50.156,gc2

~dashed line!.
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Cel(T)/T}1/Z(T) whereZ(T) is the residue of the electro
Green’s function at the distanceT from the Fermi level~see
Ref. 20!. Then we have

Cel~T!/T}ge f
2 ~T!S̄e f~T!/v̄ex~T!}x~T!ln2~T/T* !,

~35!

whereT* is a characteristic energy scale~crossover tempera
ture in the scaling process!. With decreasing temperature, th
Wilson ratio

W~T!5Tx~T!/Cel~T!} ln22~T/T* ! ~36!

should decrease with loweringT(T,T* ).
Generally, the temperature behavior of magnetic cha

teristics (S̄ andv̄), which depend exponentially on the co
pling constant, is decisive for our NFL mechanisms. T
transport relaxation rate determining the temperature de
dence of the resistivity owing to scattering by spin fluctu
tions in AFM phase is given by22

1

t
5

2p

vF
2

I 2S̄2~J02JQ!r^~vk1Q2vk!2& tk50 (
q.Q

lqS 2
]Nq

]vq
D .

~37!

Then we obtain

1

t
}ge f

2 ~T!S̄e f~T!/v̄ex~T!T2}T2Cel~T!/T}T22z. ~38!

Considering electron-electron scattering as the main sca
ing mechanism one can expect another temperature de
dence, namely,

1

t
}@r/Z~T!#2T2}T2@Cel~T!/T#2}T222z. ~39!

One can expect that the dependence close to Eq.~38! should
hold in localized-moment systems, and that close to Eq.~39!
in itinerant-electron compounds.

As for paramagnets with purely dissipative spin dyna
ics, the value ofz is always negative sincea,1. Thus, to
produce NFL behavior with positivez, spin dynamics should
include strong spin fluctuations~short-range order, suffi
ciently well defined spin waves!. The temperature depen
dences of specific heat, magnetic susceptibility and resis
ity in the case of a NFL-like behavior considered in Sec.
differ from those discussed above by the value ofz5(a
21)A/2 ~for the second ‘‘linear’’ region!.

The results for the exponentz in various magnetic phase
are summarized in Table I. Remember once more that
corresponding behavior takes place in a restricted reg
except for the AFM case with several excitation branche

TABLE I. Scenarios of the NFL behavior~the values of the
exponentz! in various magnetic phases.

3D AFM
~two regions! 2D AFM PM

AFM,
several branches

a21 both signs both signs ,0 both signs
z (a21)/a,

(a21)A/2
(a21)/a (a21)A/2,0 (a21)/a
c-

e
n-
-

r-
en-

-

v-
I

e
n,

VII. DISCUSSION OF EXPERIMENTAL DATA
AND CONCLUSIONS

Now we discuss relevant experimental data on the ano
lous f systems. They demonstrate indeed pronounced
fluctuations. These can have quasi-2D nature, see, e.g.,
of Refs. 15,21,23 for the systems CeCu62xAux and
CePd2Si2. Note that for other compositions the first syste
demonstrates complicated magnetic ordering.24 According to
Ref. 25, for x50.45 the system UxY12xPd3 has antiferro-
magnetic ordering withTN.20 K and the saturation momen
about 1mB . The inelastic neutron scattering demonstra
existence of several branches in spin excitation spectr
which is probably connected with crystal field effects.

The systems CePd2Si2 and CeNi2Ge2 ~Ref. 12! possess
complicated magnetic structure with several magnetic ato
per unit cell~and, consequently, spin-wave branches!. Under
pressure, these systems demonstrate anomalous tempe
dependencer(T);Tm,m51.2– 1.5. Unfortunately, data o
specific heat and magnetic susceptibility for these syste
are not presented. The data of Ref. 5 on CeNi2Ge2 yield for
the resistivity exponentm53/2, and the dependenc
Cel(T)/T is described by a logarithmic law with square-ro
corrections. Provided that electron-electron scattering do
nates, we obtain from Eq.~39! the dependenceCel(T)/T
}T20.25, which cannot be easily distinguished from the log
rithmic one@see different fittings of the dependencesCel(T)
in Refs. 6 and 1 for the same systems#. Thus the question
needs further investigations.

The dependenceCel(T)/T}x(T) has been recently ob
tained experimentally for a wide class of NFL systems, e
UxY12xPd3, UCu4Pd,UCu4Pt, the value ofz being about
0.2– 0.3.6 Such a correlation itself is in agreement with
number of theoretical microscopic mechanisms, includ
the Griffiths point one, and cannot provide any definite arg
ments. At the same time, the Griffiths point mechanism p
dicts nearly temperature independent Wilson ratio, but
mechanism yields the dependence~36!. One can expect tha
usually the accuracy of the experimental data is insuffici
to pick out the factor of ln2(T/T* ). However, the data of Ref
24 for the system CeCu62xAux definitely demonstrate a con
siderable dependenceW(T), which is in a qualitative agree
ment with Eq.~36! ~unfortunately, no quantitative fitting is
presented in Ref. 24!.

Therefore obtaining data on resistivity for the sam
samples is of crucial importance~as demonstrated in Ref. 1
the resistivity for U12xThxPd2Al3 is described by different
power-law temperature dependences at varyingx in the in-
terval 0.6,x,0.95). It should be noted that our approa
does yield nonuniversal exponents in the temperature de
dences, which depend on characteristics of the Fermi surf
For the systems such as UxY12xPd3 the experimental data1

demonstrate the negative contribution to resistivity,dr(T)
;2Tm,m51.1– 1.4. However, the negative temperature
efficient probably indicates importance of disorder effects

In the whole, despite existence of plentiful data on t
NFL behavior, it is difficult to choose unambiguously a th
oretical mechanism because of the problem of fitting exp
mental data and absence of the complete set of physical c
acteristics@temperature dependences ofCel(T),x(T),r(T),
and spin dynamics# for the same sample compositions. O
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of more features of our mechanism is correlation of el
tronic properties with magnetic anisotropy parameter. T
existing data seem to not exclude the NFL mechanism p
posed, at least for the systems with pronounced magn
ordering. To get further insight, detailed measurements
stoichiometric systems such as CeNi2Ge2 would be useful.

To conclude, phenomenon of the NFL behavior seem
have a complicated nature~both magnetic fluctuations an
the on-site Kondo effect are important!. The mechanisms
considered above are not based on disorder effects, bu
scribe naturally the NFL state in ideal crystals. At the sa
time, the damping makes the quasi-NFL behavior conside
in Sec. III more pronounced and in a sense plays the rol
disorder.

The damping is not important for the NFL behavi
mechanism considered in Sec. V. This NFL picture is ‘‘tru
~i.e., holds up to lowest temperatures! within the lowest-
i
.

r

r

s

h

-
e
o-
tic
r

to

e-
e
d

of

order scaling approach; treatment of higher-order correcti
to the scaling equations would provide additional inform
tion. Unlike previous phenomenological works, existence
peculiar long-range critical fluctuations near the quant
phase transition is not needed for this mechanism, but lo
reconstruction of electronic states owing to the Kondo eff
is essential, the concrete form of spin spectral function be
of crucial importance. More detailed investigations of t
NFL behavior for complicated spectral functions, in partic
lar with account of crystal-field effects and incoherent co
tributions, would be also of interest.

ACKNOWLEDGMENTS

The research described was supported in part by G
No. 99-02-16279 from the Russian Basic Research Foun
tion.
tt.

-

-

r,
*Electronic address: Valentin.Irkhin@imp.uran.ru
1M.B. Maple et al., J. Low Temp. Phys.95, 225 ~1994!; 99, 223

~1995!; in Proceedings of the Conference on Non-Fermi-Liqu
Behavior in Metals, Santa Barbara, 1996@J. Phys.: Condens
Matter.8, 9773~1996!#.

2Proceedings of the Conference on Non-Fermi-Liquid Behavio
Metals ~Ref. 1!, p. 9675.

3P. Fulde and M. Lo¨wenhaupt, Adv. Phys.34, 589 ~1986!.
4K. Umeo, H. Kadomatsu, and T. Takabatake,Proceedings of the

Non-Fermi-Liquid Behavior in Metals~Ref. 1!, p. 9743.
5F. Steglichet al., Proceedings of the Non-Fermi-Liquid Behavio

in Metals ~Ref. 2!, p. 9909.
6M.C. Andradeet al., Phys. Rev. Lett.81, 5620~1998!.
7It should be noted that a possibility of a NFL behavior of tran

port properties in disordered systems has been discussed m
years ago in the paper by B.L. Altshuler and A.G. Aronov, Z
Eksp. Teor. Fiz.77, 2028 ~1979! @Sov. Phys. JETP50, 968
~1979!#.

8B. Andraka and A.M. Tsvelik, Phys. Rev. Lett.67, 2886~1991!;
A.M. Tsvelick and M. Rivier, Phys. Rev. B48, 9887~1993!.

9D.L. Cox and M. Jarrell, J. Phys.: Condens. Matter8, 9825
~1996!.
d

in

-
any
.

10P. Coleman, L.B. Ioffe, and A.M. Tsvelik, Phys. Rev. B52, 6611
~1995!.

11A.H. Castro-Neto, G. Castilla, and B.A. Jones, Phys. Rev. Le
81, 3531~1998!.

12S. R. Julianet al., in Proceedings of the Non-Fermi-Liquid Be
havior in Metals~Ref. 1!, p. 9675.
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