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Wave form of de Haas–van Alphen oscillations in a two-dimensional metal
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The effect of thermodynamical equilibrium transfer of electrons between closed~Landau! orbits and mag-
netic field independent states near the Fermi surface on the magnetoquantum oscillations in quasi-two-
dimensional~2D! metals is investigated. The general relationship between magnetization and chemical poten-
tial oscillations in such a model is derived, and a variety of wave forms are obtained in the entire temperature–
magnetic field region. It is shown quite generally that such an electron transfer suppresses the chemical
potential oscillations, whereas the magnetization amplitude remains unchanged. A specific model of the rel-
evant band structure in which the field independent~or reservoir! states correspond to quasiplanar energy
surfaces is considered in detail. In this model, the chemical potential oscillations diminish when the bottom of
the subband with the quasiplanar energy surfaces nearly coincides with the Fermi energy, and the correspond-
ing one-dimensional van Hove singularity dominates the electron transfer. Similarly, the chemical potential
may be pinned due to electrons in localized states near the Fermi energy. In both cases the de Haas–van
Alphen oscillations are shown to have an inverse-sawtooth shape at sufficiently low temperatures. In the more
common situation when the Fermi energy is relatively far from any sharp peak of the reservoir density of
states, the wave form of the magnetization oscillations is symmetrized at all temperatures. All shapes of
magnetization oscillations observed in the organic quasi-2D metals of the (BEDT-TTF)2X type, from the rare
sawtooth and inverse-sawtooth to the usual symmetrical ones, can be accounted for by this model.
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I. INTRODUCTION

The phenomenon of magnetoquantum oscillations
Fermi liquids under high quantizing magnetic field@which is
the essence of the de Haas–van Alphen~dHvA! effect# pro-
vides a powerful tool for investigating the Fermi surfaces
three-dimensional1 ~3D! and two-dimensional2 ~2D! metals.

The main attention has been paid so far to the tempera
dependence of the dHvA amplitude from which the cyc
tron masses can be extracted by applying the stan
analysis1,2 based on the Lifshitz-Kosevich formulas.3 Only a
little work has been devoted to the observation and interp
tation of the wave form~shape! of the magnetoquantum os
cillations. In 3D metals the shape of the oscillations is qu
smooth and symmetrical. In 2D metals the sawtooth osc
tions predicted by the theory4 have been observed in only
few experiments.5,6 Asymmetrical Shubnikov–de Haas an
dHvA oscillations were also observed recently by Broo
et al. in 2D organic metals,7,8 in which the variety of wave
forms was attributed to the influence of the quasipla
sheets of the Fermi surface.

The magnetoquantum oscillations in 2D electron syste
such as the conduction electrons in 2D organic metals,2 are
usually considered in two extreme limits:~1! the limit of a
fixed number of electrons filling a discrete spectrum of~Lan-
dau! levels~LLs!, which constitutes a canonical ensemble
electrons,9 or ~2! the limit of fixed chemical potential, which
can be represented by a grand canonical ensemble. In
latter case it is implicitly assumed that some electrons
also occupy field independent energy levels which pin
chemical potential.10 In both cases an extreme sawtooth~or
PRB 610163-1829/2000/61~21!/14616~12!/$15.00
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inverse-sawtooth! shape of magnetic oscillations atT→0 is
obtained, so that the only difference between the two case
the sign of the slopes of the linear parts.1,10,4 Usually, how-
ever, neither limit is realized, since on a macroscopic ti
scale the electrons can be transferred to states that are
influenced by the magnetic field. A concrete example of su
field independent states is the continuous subband co
sponding to the open, quasiplanar parts of the Fermi sur
@quasi-one-dimensional~1D! sheets# found in some of the
(BEDT-TTF)2X type compounds,2 impurity ~defect! local
states, or the localized intercalant states in layered interc
tion compounds,11 etc. Consequently, as a result of electr
transfer between the two subsets of energy levels, the n
ber of electrons filling both the Landau levels and the fie
independent levels changes on varying the magnetic fi
This electron transfer is a purely thermodynamical equil
rium phenomenon, since it is associated exclusively with
chemical potential oscillations. As will be shown later, th
transfer is most effective for field independent levels situa
near the Fermi energy.

For a model of a Fermi surface consisting of a quasi
lindrical and a quasiplanar sheet the degree of this tran
depends on the energy barrier and the gap in momen
space between the cylinder and the quasiplanar sheets.12 The
influence of such an electron transfer on magnetoquan
oscillations in quasi-2D organic conductors was conside
analytically in Ref. 12 and numerically in Ref. 13. A rath
similar model, but for two coupled closed pockets of ele
trons, was considered by Alexandrov and Bratkovsky.14

Here we first address the general problem of equilibri
transfer of electrons between a spectrum of Landau le
14 616 ©2000 The American Physical Society
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and a field independent energy spectrum, without specify
the transfer mechanism, in order to determine the conditi
for observation of the various wave forms of dHvA oscill
tions in 2D metals. We will consider the relations betwe
magnetization and chemical potential oscillations in suc
general situation.

We shall then consider the case of a quasi-2D orga
metal having disconnected closed and open sheets of
Fermi surface.2,5–8 We find that the parameters determinin
the transfer of electrons between these sheets are the e
difference between the bottoms of the correspond
quasi-2D and 1D subbands as well as the corresponding
fective masses. In the special case when the bottom of the
subband nearly coincides with the Fermi energy, and foT
→0, the van Hove singularity at the bottom of the 1D su
band pins the chemical potential and thus leads to an inve
sawtooth shape of the oscillations at sufficiently low te
perature. In the more common situation when the bottom
the 1D subband is not very close to the Fermi energy,
finds the usual quasisymmetrical wave form of oscillatio
observed in organic metals. A complete depinning of
chemical potential can occur when all kinds of field indepe
dent states are situated far away from the Fermi energy.
situation corresponds to the rarely observed sawtooth w
form of oscillations at ultralow temperature.

The paper is organized as follows. In Sec. II a gene
relationship between the chemical potential and magnet
tion oscillations is derived for a model consisting of fie
dependent~Landau! levels and a field independent ener
spectrum near the Fermi energy. In Sec. III an exact p
metrical method of calculating the wave form of the magn
toquantum oscillations in a 2D metal is presented. We c
sider the chemical potential oscillations in our model a
determine the conditions under which the chemical poten
oscillations are suppressed. The shape of magnetization
cillations is studied in detail. In Sec. IV available experime
tal data concerning the wave form of magnetization in
organic metals are compared with the relevant band struc
of some quasi-2D organic compounds of t
(BEDT-TTF)2X type.

II. GENERAL CONSIDERATIONS

We consider a model of a quasi-2D metal under h
quantizing magnetic field having an energy subband near
Fermi energy represented by quasicylindrical energy s
faces. Generally there is also a ‘‘reservoir’’ of electrons fi
ing extended states~e.g., corresponding to open energ
sheets! or localized states~due to impurities or other defects!
not influenced by the magnetic field.

More specifically, the band structure of some of t
(BEDT-TTF)2X type organic conductors serves as a pro
type of such a quasi-2D metal. In these compounds the c
duction electron energy dispersion along the anisotropic
~i.e., alongkz) is negligible in comparison with the dispe
sion in the plane perpendicular tokz , so that the bandwidth
in thekz direction,Dz!«F , where«F is the Fermi energy. In
addition to the corresponding quasicylindrical energy sh
the typical Fermi surface of these compounds consists
disconnected quasiplanar sheet arising from an additiona
g
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per energy band. These materials also contain some imp
~defect! levels.

In high enough magnetic fields the quasicylindrical e
ergy surfaces will be quantized and electrons will be mov
on closed~usually holelike! orbits. The quasiplanar energ
sheets form a continuous band with electrons moving
open orbits under the influence of an external magnetic fi

We assume magnetic fields at which the tunneling pr
ability of magnetic breakdown between closed and open
bits is negligible,Ptun;exp(2Bbr /B)!1 (Bbr is the break-
down magnetic field1!. Under these circumstances th
tunneling rate is much smaller than the characteristic cyc
tron frequency and there is no influence on the dHvA f
quency. However, the small electron transfer between
cylindrical and planar sheets@and/or impurity~defect! levels#
can significantly influence the thermodynamical equilibriu
between the two electronic subsystems.

Let us consider now the general relationship betwe
magnetization and chemical potential oscillations in t
model described above. To describe the subsystem of e
trons in the closed orbits we use the expression for the t
modynamical potential of 2D electron gas in high magne
field:3,15

VLL~B,z!/V

A
52

B

b (
n50

ln„11exp$@z2«n~B!#b%…,

~1!

where A[2 cosQ/c*f0,f05hc/e is the flux quantum,b
[1/kBT, c* is the lattice constant in the anisotropic dire
tion, andQ is the angle between the anisotropic axisc* and
the magnetic induction vectorB.

Note that in writing this expression the magnetic field
assumed to be high enough such that the bandwidthDz of the
energy dispersion in thekz direction can be neglected i
comparison with the cyclotron energy. We also neglect s
splitting of the Landau levels. This is justified for speci
angles16 Qsp for which G5G0 /cosQsp5I @ I is an integer
number,G0[(g/2)mc0 /me , g is the electrong factor,mc0 is
the cyclotron mass in theQ50 direction, andme is the
electron mass# or for electron systems with negligibly sma
g factor,g!1.

The corresponding energy spectrum~Landau levels! is

«n~B!5\vc~B!~n11/2!, n50,1,2, . . . , ~2!

where vc(B)5eB/mcc is the cyclotron frequency,mc
5mc0 /cosQ is the cyclotron mass,mc0 is the cyclotron
mass atQ50. The intersections of Landau levels, Eq.~2!,
with the Fermi energy on varying the magnetic field stren
lead to the magnetoquantum oscillations. Let us define
crete magnetic field valuesBn̄ andBn̄11 so that«F is situated
at equal distance from the two successive levels with fix
quantum numbersn̄ and n̄21 andn̄ and n̄11, respectively
~see Fig. 1!,

@« n̄~Bn̄!1« n̄21~Bn̄!#/25«F . ~3!

Rearranging the summation in the thermodynamical pot
tial @Eq. ~1!# over levels below and above the level with fixe
quantum numbern̄ ~see Fig. 1!, we have
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(
n50

ln$11exp@~z2«n!b#%

5b (
n50

n̄21

~z2«n!1 ln$11exp@~z2« n̄!b#%

1 (
n50

n̄21

ln$11exp@~«n2z!b#%

1 (
n5n̄11

ln$11exp@~z2«n!b#%. ~4!

Introducing the dimensionless parameters

x~B![@« n̄~B!2z~B!#b ~5!

and

Q~B,T![\vcb ~6!

FIG. 1. Landau levels around the Fermi energy giving the m
contribution to the chemical potential and magnetization osci
tions in a 2D metal in a separated period of magnetic field. T
period, situated on the left-hand side relative to the magnetic fi
Bn̄ ~which corresponds to the crossing by the middle curve betw
levels of the Fermi energy!, is in the range of magnetic field
Bn̄11<B<Bn̄ or equivalently 22bn̄<b5B2Bn̄<0, where bn̄

5Bn̄11Bn̄/2F is the half period,F is the fundamental frequency o
oscillations relative to the inverse magnetic field 1/B, and kn̄

[p/bn̄ is the fundamental cyclic frequency relative to the magne
field difference b5B2Bn̄ . The chemical potential oscillation
~curve 4! are drawn according to the parametric Eqs.~25! and~26!
for parametersQ520, cR50.1. Energies, measured from«F , are
given in units of\vc/2. Curves 1, 2, and 3 correspond to the ene
levels « n̄ , « n̄11, and « n̄21. The midpoints between energy leve
are shown by the dashed lines. Magnetic fields corresponding to
edges of the separated period areBn̄11 andBn̄ . The center of the

period,B̄n̄ , where separated level« n̄ crosses«F , is shown by the
thin solid line. Note the symmetry of the level dispositions relat

to the Fermi energy at magnetic fieldsBn̄11 , B̄n̄ and Bn̄ . z̃(b)
5z(B)2«F is the oscillating part of the chemical potentialz(B),
and x(b)/b[« n̄(B)2z(B) is the energy difference between th
separated level crossing the chemical potential inside the perio« n̄

and the oscillating chemical potentialz(B) @x(b,z̃) is the paramet-
ric variable#.
~see Fig. 1!, the thermodynamical potential for electrons
the Landau levels can be written as

~VLL /V!

A
52B(

n50

n̄21

~z2«n!2
B

b
f ~x,Q!,

f ~x,Q![ ln@11exp~2x!#1 (
k51

n̄

ln@112 exp~2kQ!coshx

1exp~22kQ!#. ~7!

Actually, only a few levels around the Fermi energy play
important role in determining the magnetoquantum osci
tions. Therefore, in the representation of the thermodyna
cal potential, Eq.~7!, the contributions of the levels with
quantum numbersn>(2n̄11) are omitted, since their con
tributions are negligibly small forn̄@1 relative to the re-
maining terms associated with the levels on both sides of
Fermi energy.

As discussed above, a collection of electrons filling sta
situated around the open parts of the Fermi surface, an
localized states, may be regarded as a reservoir of car
occupying a magnetic field independent spectrum. The e
trons in this reservoir are in thermal equilibrium with ele
trons in the closed~quantized! orbits, and in this manne
influence the quantum oscillations. If the spin splitting in t
reservoir spectrum is also neglected the only magnetic fi
dependence remaining is through the oscillating chem
potential. Hence, since in this case the thermodynamical
tential of the electronic reservoir is explicitly independent
the magnetic field~i.e., depends only implicitly through the
chemical potential! it does not contribute directly to the mag
netization, i.e.,M52@](V/V)/]B#z52@](VLL /V)/]B#z ,
where V5VLL(B,z)1VR(z) is the total thermodynamic
potential, andVR(z) is the thermodynamical potential of th
reservoir.

Assuming a continuous reservoir spectrum, the cor
sponding thermodynamical potential can be written as

VR
(cont)/V52~2/b!(

k
ln$11exp@~z2«k!b#%, ~8!

where«k is the energy dispersion law in the continuous su
band. A similar expression can be written for a reservoir
localized impurity states.

The densities of electrons filling the Landau levels~LL !
and the reservoir~R! spectrum,nLL andnR , respectively, are
connected through

nc52$]@~VLL1VR!/V#/]z%B5nLL1nR , ~9!

wherenc is the total number density of electrons, which
constant in the magnetic field,VR(z)5VR

(cont)(z)
1VR

( loc)(z), andnR5$]VR /]z%B . Expanding the reservoi
densitynR(z) in powers of the oscillating part of the chem
cal potential,z̃(B)5z(B)2«F ,

nR~z!5nR~«F!1nR8 ~«F!z̃1 1
2 nR9 ~«F!z̃21•••,
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nR8 ~«F![S ]nR

]z D
«F

, nR9 ~«F![S ]2nR

]z2 D
«F

, ~10!

and taking into account Eq.~7!, the total density may be
written as

nc5AB@ n̄1g~x,Q!#1nR~«F!1nR8 ~«F!z̃~B!,

g~x,Q!5
1

11 exp~x!
2 (

k51

n̄
sinhx

coshx1 cosh~kQ!
. ~11!

up to first order inz̃. Note that the chemical potential coin
cides with the Fermi energy at magnetic fieldsBn̄ andBn̄11,

as well as at the fieldB̄n̄ where the fixed level« n̄ in this
period coincides with the Fermi energy~see Fig. 1!. At these
magnetic fields the LLs are arranged symmetrically relat
to the Fermi energy~electron-hole symmetry!, so that at the

center of the period, wherex(B̄n̄)50, the functiong(0,Q)
51/2, whereas at the right edge of the period, wherex(Bn̄)
5Q/2 the functiong(Q/2,Q)50 and at the left edge of th
period, wherex(Bn̄11)52Q/2, the functiong(2Q/2,Q)
51. It is remarkable that these values of the functi
g(x,Q) do not depend on the parameterQ: i.e., are indepen-
dent of temperature for the magnetic field valuesBn̄11 ~left
edge of the period!, and B̄n̄ ~center of the period!, and Bn̄
~right edge of the period!.

From Eq.~11! it follows that the fundamental frequenc
of oscillations,F, can be determined by the relations

F5
«F

mc
5

nc2nR~«F!

A
, mc[

e\

mcc
. ~12!

The last equality constitutes the equation determining
Fermi energy«F as measured from the bottom of the 2
subband corresponding to the closed orbits~see Fig. 7 be-
low!.

The fixed quantum numbern̄ can be related toBn̄ by @Eq.
~3!#

n̄5
«F

\vc~Bn̄!
5

F

Bn̄

, ~13!

where in deriving the last equality the relation\vc(B)
5mcB was used. Taking into account this relation we obt
from Eq. ~11!,

F

B
2

F

Bn̄

52
b

2bn̄

5g~x,Q!1cR

z̃~b!

\vc~B!
, ~14!

where the reduced magnetic fieldb is defined with respect to
Bn̄ , i.e., b5B2Bn̄ , and

cR5
nR8mc

A
5

p\2c*

mc0
nR8 ~15!

is the parameter characterizing the strength of the elec
transfer.

Note that bn̄5Bn̄11Bn̄/2F5(Bn̄
2/2F)/(11Bn̄ /F)5p/kn̄

is the half period of the oscillation, wherekn̄
e

e

n

n

[2pF/Bn̄11Bn̄ is the fundamental frequency relative to th
reduced magnetic fieldb. Note also that Eq.~14! holds in
every quasiperiodBn̄11<B<Bn̄ ~or 22bn̄<b<0), and that
it is a valid approximation as long asbn̄!Bn̄ @a factor
Bn̄11 /B>1 on the left-hand side of Eq.~14! is omitted#.

If we retain in the series of Eq.~10! terms of higher than
the first order inz̃ we should use in Eq.~14!, instead of the
transfer parameter independent of chemical potential osc
tions defined by Eq.~15!, the transfer functioncR( z̃)
5(p\c* /mc0)@nR81(1/2)nR9 z̃1•••]. The additive terms in
Eq. ~14! should be taken into account when chemical pot
tial oscillations are relatively large, which may be the case
extremely large fields,\vc(B);«F .

Using Eq.~7! we obtain the component of the magnetiz
tion along magnetic field:

M ~B!

A
5 (

n50

n̄21 S z2«n2B
]«n

]B D2B
]« n̄

]B
g~x,Q!

1~1/b! f ~x,Q!2\vch~x,Q!,

h~x,Q![(
k51

n̄
k@coshx1exp~2kQ!#

coshx1cosh~kQ!
. ~16!

Performing the summation in the first term of Eq.~16! over
the Landau levels lying below the Fermi energy, we obta

(
n50

n̄21 S «n1B
]«n

]B D52(
n50

n̄21

«n5n̄2\vc~B!5n̄«FS 11
b

BD .

~17!

The term in Eq.~16! containing the functiong(x,Q) can be
written with the help of the equation for the chemical pote
tial, Eq. ~14!, as

2« n̄~B!g~x,Q!5S «F1
\vc~Bn̄!

2 D S «F

\vc~Bn̄!

b

Bn̄

1
cR

\vc~Bn̄!
z̃ D . ~18!

In deriving this expression we used the relationsF/Bn̄5n̄
5«F /\vc(Bn̄) and« n̄(B)/B5« n̄(Bn̄)/Bn̄ .

Substituting Eqs.~17! and ~18! into Eq. ~16!, we obtain
for the magnetization in the fixed period22bn̄<b<0

M ~b!

M0
5

2

\vc~Bn̄!
F ~11cR!z̃~b!1

\vc~Bn̄!

2 S b

Bn̄

1cR

z̃~b!

«F

1
2kBT

«F
f ~x,Q!2

2\vc~B!

«F
h~x,Q!D G , ~19!

whereM05«F cosQ/f0c* is the saturation magnetization a
T→0. The second term in the large parentheses represe
small correction to the oscillating part of the magnetizati
and the first and last terms contribute to the uniform~dia-
magnetic! part ~Landau diamagnetism!. The first term in
square brackets contains temperature dependence
through the chemical potential oscillations and remains fin
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at T→0 @as in this casez̃(b→0,T→0)→\vc/2 ~see Fig.
1!#, while the terms in the large parentheses will be of
order (;\vc /«F).

Thus, at temperatures and magnetic fields satisfying
conditions

kBT&\vc~B!~Q*1!,
2bn̄

B
>

B

F
5

\vc~B!

«F
!1, ~20!

we obtain, to leading order inB/F, the general relation

M ~b!

M0
5

2

\vc~Bn̄!
~11cR!z̃~b!. ~21!

Hence,under the conditions represented by the expr
sions (20) the oscillating part of the magnetization is prop
tional to the oscillating part of the chemical potential. Th
result remains valid regardless of the presence of field in
pendent (reservoir) states.

Relation ~21! was used in Ref. 12 for calculation of th
magnetization for a canonical ensemble of electrons
closed electron orbits~i.e., for cR50 in the present model!.
It was shown there that the magnetic susceptibility]M /]B at
Bn̄ and B̄n̄ , where the LL spectrum has electron-hole sy
metry ~see Fig. 1!, is proportional to the derivative of th
oscillating part of the chemical potential:

1

M0

]M

]B U
Bn̄ ,B̄n̄

5
2

\vc

]z̃

]B
U

Bn̄ ,B̄n̄

. ~22!

In the more realistic model of the (BEDT-TTF)2X com-
pounds studied here, the relevant closed orbits are situate
hole pockets of the Fermi surface. In this case the effec
band mass is negative and the cyclotron mass is also n
tive, so that the wave form of the chemical potential oscil
tions is expected to be an inverse replica of the oscillati
associated with electron orbits@in the sense that in the cas
of closed hole orbits an inversion of the chemical poten
oscillation relative to the Fermi level should be mad
z̃ (h)(b)52 z̃(b), wherez̃ (h)(b) is the chemical potential os
cillations due to the closed hole orbits associated with a h
pocket of the Fermi surface andz̃(b) is the chemical poten
tial oscillation due to the closed electron orbits associa
with an electron pocket of the Fermi surface; see Fig. 1#.

The relation between magnetization and the chemical
tential oscillations for electrons moving in closed hole orb
and open electron orbits is

M ~b!

M0
5

2

\vc~Bn̄!
~11cR!@2 z̃ (h)~b!#. ~23!

For a system consisting of a closed electron pocket and
open hole sheet the magnetization is given by the same
pression as Eq.~21! but the transfer parameter iscR
;u]psh /]zu«F

, where ]psh(z) is the hole concentration in
the hole sheet.

Hence, the shape of the magnetization oscillations is
variant relative to electrons moving on closed electron
hole orbits situated in the electron or hole pockets of
Fermi surface, the chemical potential oscillations due
e
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closed hole orbits being antisymmetric (relative to the Fer
level) to those of closed electron orbits.

III. CHEMICAL POTENTIAL AND MAGNETIZATION
OSCILLATIONS

In this section we will develop a parametric method
calculating the chemical potential and magnetization osci
tions. All results will be shown to be valid irrespective of th
mechanism of the electron transfer, i.e., for any reservoi
electrons filling either a continuous or a discrete field ind
pendent energy spectrum.

Instead of solving the complex transcendental equa
for z̃(b) @see Eq.~14!#, which cannot be solved analyticall
for arbitrary numbers of levels in all regions of the parame
Q*1 ~see also Ref. 9, where it was solved for two levels a
is therefore applicable forQ*10), we will try to solve it
parametrically. We express the variablex from Eq. ~5! by
using the conditionbn̄!Bn̄ @which is equivalent to the con
ditions expressed in Eqs.~20!# in the form

2

Q
x511

b

bn̄

2
2

\vc
z̃~b!. ~24!

Solving Eqs.~14! and ~24! for z̃ and b/bn̄ , they can be
written as explicit functions ofx ~which will serve here as
the parametric variable!, i.e.,

2

\vc
z̃~x!5

1

11cR
S 122g~x,Q!2

2

Q
xD ,

2
b~x!

bn̄

[2
kn̄b~x!

p
5

2

11cR
Fg~x,Q!1

cR

2 S 12
2

Q
xD G .

~25!

Varying x in the interval corresponding to the separated fix
period ~see Fig. 1!,

2
Q

2
<x<

Q

2
, ~26!

we obtain an explicit solution for the oscillating part of th
chemical potentialz̃(b) as a function of magnetic field in th
separated quasiperiod22bn̄<b<0 ~see the left period rela
tive to the fixed magnetic fieldBn̄ in Fig. 1!.

As seen from the Eqs.~25! and the condition~26! ~see
Fig. 1!, the solution is determined by the key dimensionle
parameterQ, which reflects the combined influence of th
magnetic field and temperature$for numerical estimates the
relationQ>@1.34B(T)#/(mc /me)@T(K) # is useful%, and the
transfer parametercR . It is seen that a finite value ofcR
significantly suppresses the chemical potential oscillation
all Q: from Eqs.~25! it follows that atcR@1 the oscillating
part of the chemical potentialz̃→0 at all magnetic fields
inside the period22bn̄<b<0.

Chemical potential oscillations for various transfer para
eterscR are shown in Fig. 2. It is seen that atcR;1 the
chemical potential oscillation are symmetrized, whereas
cR*10 they are almost completely suppressed. It will
shown in what follows that magnetization oscillations amp
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tudes are independent of the transfer parametercR , the shape
of the oscillations being greatly influenced by this transf
however.

Thermal smoothing of the chemical potential oscillatio
is shown for the canonical ensemble in Fig. 3 and for

FIG. 2. Suppression of the chemical potential oscillations
equilibrium electron transfer. Curves 1, 2, and 3 are calculated
cording to the parametric Eqs.~25! and ~26! for corresponding
transfer constantscR50.1, 1.0, and 10, and for a fixed value ofQ
[\vc /kBT520. Curve 4 is the level« n̄(b), that is, @« n̄(b)
2«F#/\vc(Bn̄)/2, crossing the chemical potential in the separa
period. The three-level approximation, used here~and in calcula-
tions of oscillation curves in Figs. 3–6 below!, yields a very accu-
rate shape of the chemical potential oscillations. Here and als
the subsequent Figs. 3–6 a period shifted by 2p relative to the
period chosen in Fig. 1 will be used: 0>kn̄b>2p.

FIG. 3. Wave form of the chemical potential and magnetizat
oscillations in a metal without open parts of the Fermi surfa
and/or localized states,cR50. Curves, drawn according to the par
metric Eqs.~25! and~26! ~in the three-level approximation!, can be
interpreted as taken at different temperatures for fixed magn
field ~or at different fields for fixed temperature! corresponding to
the values of the key parameterQ55 –25. Note the nearly sawtoot
shape of oscillations at largeQ ~i.e., Q510–25) and nearly sym
metrical form of the oscillations in the high temperature–low ma
netic field region,Q&5. Note that according to Eq.~37! the mag-
netization oscillations in this case@namely, M (b)/M0] are also
presented by this drawing.
,

e

grand canonical ensemble in Fig. 4. Note the symmetr
and sawtooth shapes at very low temperatures obtained in
presence and the absence of electron transfer, respectiv

The magnetization can also be calculated via a parame
method in which only the functiong(x,Q) @Eq. ~11!# needs
to be calculated. The advantage of this method for 2D me
is that it allows one to sum over an arbitrary number
levels around the chemical potential and in this way to get
exact solution in the entire temperature–magnetic field ra
for an arbitraryQ[\vc /kBT*1. As will be shown later,
except for the high temperature–low magnetic field reg
(Q,5), a single term in this sum is sufficient to get ve
accurate results.@In this approach only three levels aroun
the Fermi energy are taken into account~three-level approxi-
mation!.#

Some general relations for the magnetization can be
tained without explicitly calculating the functiong(x,Q) in a
fixed quasiperiod. The magnetization, as it should be, is
plicitly independent of the transfer parametercR , but de-
pends on the parametric variablex, since magnetization is
determined only by the electrons in the quantized orbits@see
Eq. ~16!#. Substituting the expression for the chemical pote
tial @first of Eqs.~25!# into the expression for the magnetiz
tion, Eq. ~21!, we obtain

M ~x!

M0
5122g~x,Q!2

2

Q
x. ~27!

The magnetic field values at which the magnetization
extremal ~e.g., maximal at the magnetic fieldbm) are the
same as those where the chemical potential is extremal,

y
c-

d

in

n
e

tic

-

FIG. 4. Wave form of the chemical potential oscillations in a 2
metal in the presence of an electron reservoir~open parts of the
Fermi surface and/or localized states!. Curves are calculated ac
cording to the parametric Eqs.~25! and ~26! ~in the three-level
approximation! with cR51 for various values of the parameterQ
55 –25. These curves show oscillations smearing with increas
temperature~at fixed magnetic field! or with decreasing magnetic
field ~at fixed temperature!. Note the symmetrical form of the os
cillations at largeQ510–25, i.e., at low temperatures for fixe
magnetic field~for comparison see Fig. 3, where chemical poten
and magnetization oscillations have a strongly asymmetrical sh
in the absence of open parts of the Fermi surface and/or local
states!.
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are determined by the condition]z̃(b)/]bubm
50. Differenti-

ating Eqs.~24! and~14! with respect tob and taking them at
the maximal points, we obtain an equation for the cor
sponding value of the parametric variablexm[x(bm), i.e.,

]x

]b U
bm

5
Q

2bn̄

,

1

Q
52

]g~x,Q!

]x U
xm

. ~28!

Using Eq.~11! we have

2
]g~x,Q!

]x
5

1

2~11coshx!
1 (

k51

n̄ S 1

2@11cosh~kQ1x!#

1
1

2@11cosh~kQ2x!# D . ~29!

Note that the value of the parametric variablexm can be
obtained from the last equations, which are independen
the transfer parametercR .

Hence, the magnetization amplitudeM (xm) obtained
from Eq. ~27! is also independent of the transfer parame
The connection betweenbm andxm is through the second o
Eqs. ~25!. We see that the magnetic fieldsbm at which the
magnetization is extremal depend strongly on the tran
parametercR . Thus, only the shape of the magnetizati
oscillations is influenced by the thermal transfer of electro
between closed and open parts of the Fermi surface (an
localized states), the magnetization amplitudes being
changed.These results are illustrated in Fig. 5 for differe
values of the transfer parameter:cR50.1 for curve 1, 1.0 for
curve 2, 10 for curve 3, and 100 for curve 4.

Noting that, according to Eqs.~28! and~29! the paramet-
ric variable at a maximum of the chemical potential a
magnetization is a function ofQ only, xm(Q), we obtain
from Eqs.~25! the maximum position in the limit of almos
pinned chemical potential (cR@1):

2
bm

(pin)

bn̄

>12
2

Q
xm~Q!, ~30!

and the corresponding limiting value of the amplitude of t
chemical potential oscillations:

z̃m
(pin)

\vc
>

2

cR
F2g~xm ,Q!1

1

2 S 12
2

Q
xm~Q! D G , ~31!

where z̃m
(pin)[z̃(bm

(pin)). From the last equation we see th
the chemical potential oscillations are almost complet
suppressed at largecR , i.e., z̃(b)→0 at cR→` ~see Fig. 2!.

In the one-level approximation we obtain the followin
explicit solution forxm @from Eqs.~28! and~29!, neglecting
all terms in the sums#:

xm~Q!> ln~Q22!, ~32!

and the corresponding value of theg(x,Q) function is
-

of

r.

er

s
or
n-

y

g~xm ,Q!>
1

Q21
. ~33!

These expressions are independent ofcR and are valid for
Q*5 .

FIG. 5. Influence of equilibrium transfer of electrons betwe
closed parts of the Fermi surface and reservoir~open orbits and/or
localized states! on the magnetization oscillations in a 2D metal:~a!
at intermediate temperature and magnetic fields,Q511, and~b! at
low temperature–high magnetic fields,Q530. Magnetization oscil-
lation curves are drawn according to the parametric Eqs.~25! and
~26! and Eq. ~21! for different transfer constant cR

50.1,1.0,10,100 at fixedQ. ~a! Q511 ~corresponding to param
eters from Ref. 6, Fig. 2~b!: B523 T,T52.3 K; effective cyclotron
massmc51.2 is taken from Ref. 8!; ~b! Q530. Curves 1–4 are
drawn in the level approximation~three-level approximation!.
Curves 5 @in ~a! and ~b!, dotted curves# are drawn in the six-
harmonic approximation of the Lifshitz-Kosevich-Shoenberg~LKS!
2D formula~see Ref. 10!. Note the near coincidence of curves 3 a
4, obtained in the level approximation with large transfer const
cR510,100, at which the chemical potential oscillations are nea
suppressed~see Fig. 2, curve 3!, with curve 5, obtained from the
LKS formula for a 2D metal, derived in the case of complete su
pression of the chemical potential oscillations. Note the symme
zation of the magnetization oscillations with increasing transfer
carriers~for cR*1), the inverse-sawtooth wave form atcR@1, and
the sawtooth wave form atcR!1. Note also the independence o
the magnetization oscillation amplitude on electron transfer.
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We can now obtain@using the second of Eqs.~25!# the
positions of the magnetization maxima in two limiting cas
For a pinned chemical potential (cR→`),

2
bm

(pin)

bn̄

>12
2

Q
ln~Q22!, ~34!

and for a freely oscillating chemical potential (cR50),12

2
bm

(os)

bn̄

5
2

Q21
. ~35!

It is seen that in the case of a pinned chemical potentia
very low temperatures (Q@1) the magnetization maximum
is shifted to the center of the period,B̄n̄ (bm /bn̄→21), i.e.,
we obtain the inverse-sawtooth wave form of oscillatio
observed in Ref. 6@see Fig. 5~b!, curves 3 and 4#. In the
absence of any reservoir (cR→0) at Q@1 the maximum is
shifted to the right edge of the period,Bn̄ , i.e., we obtain the
sawtooth wave form of oscillations observed in Ref. 5@see
Fig. 5~b!, curve 1#.

Note that the deviation of the maximum positions fro
the limiting values of the magnetic fields in the positive ha
period is different in the two extreme casescR→` and cR
→0. For the same temperature and magnetic field~fixed Q)
the maximum atcR→` @see Eq.~34!# shifts farther from the
center of period than the maximum atcR→0 @see Eq.~35!#
from the right end of the period. This reflects the fact tha
fixed Q the sawtooth shape characteristic of a freely oscil
ing chemical potential is more pronounced than the inve
sawtooth wave form characteristic of the pinned chem
potential.

An explicit solution for the magnetization as a function
magnetic field,M (b), can be obtained only for a complete
pinned chemical potential@cR→`, z̃(b)→0]. In this case
the parametric variable can be found as an explicit funct
of the magnetic field. Then a substitution of thisx(b) @found
from Eq.~24! at z̃50] into the expression for magnetizatio
@Eq. ~27!# solves the problem explicitly inside the period
22bn̄<b<0:

M (pin)~b!

M0
52

b

bn̄

22g~x,Q!, x~b!5
Q

2 S 11
b

bn̄
D .

~36!

This is the level approximation analog of the Lifshit
Kosevich-Shoenberg formula for a 2D metal,10 the latter
containing all harmonics with the chemical potential r
placed by the Fermi energy, i.e., with the chemical poten
oscillations completely neglected@see Figs. 5~a! and 5~b!,
curves 5#.

It should be noted that even in the case of complet
suppressed chemical potential oscillations the magnetiza
oscillations retain their amplitudes, their shape being dra
cally changed compared to those of freely oscillating che
cal potentials.

Magnetization oscillations in the absence of the electro
reservoir~i.e., for cR50) are shown in Fig. 3. As expected
.

at

s

t
t-
e-
l

n

-
l

y
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ti-
i-
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the magnetization oscillations in this case have a sawto
shape at low temperature~large Q*10). In this case the
general relation holds:

M ~b!

M0
5

2

\vc
z̃~b!. ~37!

This follows from Eqs.~24! and ~27! at 2b/bn̄52g(x,Q),
which is the equation for the chemical potential oscillatio
in the absence of electron transfer@see Eq.~14! with cR50
and Ref. 12: (2/\vc) z̃511b/bn̄2(2/Q)x5122g(x,Q)
2(2/Q)x5M (b)/M0]. A relation similar to Eq.~37! holds
for electrons on closed hole orbits~hole pockets of the Ferm
surface!, but the substitutionz̃(b)→2 z̃ (h)(b) should be
made.

Magnetization oscillations in the presence of a quasip
nar Fermi surface sheet and/or localized states are show
Fig. 6. We see the almost symmetrical wave form of mag
tization oscillations forcR51 even atT→0 ~largeQ at fixed
magnetic field!. At larger cR*10 the magnetization maxi
mum shifts to the left and at small temperatures the osc
tions have the inverse-sawtooth shape@see Fig. 5~b!, curves
3 and 4#.

IV. TRANSFER PARAMETER AND COMPARISON
WITH EXPERIMENT

To compare the predictions of our model to the availa
experimental data in organic metals let us estimate the v
of the transfer parameter for a specific situation. Such a t

FIG. 6. Wave form of the magnetization oscillations in a me
with electron reservoir of field independent states for different te
peratures~at fixed magnetic field! or for different magnetic fields~at
fixed temperature!. Curves are drawn according to the paramet
Eqs. ~25! and ~26! ~in three-level approximation! and Eq.~21! for
cR51 and different values of the parameterQ55 –25. Note the
nearly symmetric shape of the magnetization oscillations atcR51
compared with the strongly asymmetric magnetization oscillati
@Fig. 3, right-hand side sawtooth shape~at low temperatures or high
magnetic fields!# in the absence of electron transfer,cR50 and at
large transfer,cR@1 @see Fig. 5~b!, curves 3 and 4, left-hand sid
inverse-sawtooth shape#. The wave forms shown closely resemb
the tendency to retain symmetrical forms of magnetization osc
tion on lowering temperature observed in Refs. 8 and 7.
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band model was considered by us in Ref. 12, where the
bands are nearly intersecting along one of the directionsk
space. This direction was chosen along theb axis. The unit
cell vectorsa, b, andc* are supposed to be perpendicular
each other,c* being the unit cell vector in the anisotrop
direction (a andb form the conducting plane in the organ
metals2!. The Brillouin zone in this case is approximated a
rectangle with dimensions 2p/a, 2p/b, and 2p/c* where
a5uau, b5ubu, andc* 5uc* u are the lattice constants in th
corresponding directions.

The two highest occupied energy bands are assume
overlap so as to form a gap ink space along theb axis ~i.e.,
the ky direction! between the cylindrical and planar Ferm
surface sheets~see Fig. 7!. Note the energy barrier created
this model between the two separated Fermi surface sh
which does not appropriately describe the actual band st
ture of the materials studied. This discrepancy is not
pected to lead to any serious problem, however, since
equilibrium transfer process is independent of the prese
of such a barrier.

The dispersion of the electron energy in both sheet
assumed to be parabolic. For the planar sheets the 1D
persion is in theky direction with effective massmsh . In the
cylinder the dispersion is in thekx and ky directions with
effective massesmx andmy , respectively~we take into ac-
count the anisotropy in thea-b plane when considering th
elliptical Fermi surface cylinder!. Here the ideal case of a 2D
metal is considered, and hence the dispersion in thekz direc-

FIG. 7. A simple band structure model of the electronic ene
near the cylindrical and planar Fermi surface~FS! sheets forming an
energy barrier above the Fermi energy. Energies are measur
units of the Fermi energy«F0 in the absence of a planar sheet,«
→«/«F0, etc. Wave vector components in theky direction are in
p/b units; k→k/(p/b), etc., and masses are in electron mass u
me . kF is theky component of the Fermi vector of the FS cylinde
kF is the half width of the FS planar sheet~the Fermi vector of the
sheet is measured from the Brillouin zone edge correspondin
k5p/b), anddk is the barrier width. Energies are measured fro
the bottom of the subband corresponding to the cylindrical ene
surfaces.«F is the Fermi energy andD is the energy separatio
between the bottoms of the corresponding 2D and 1D conduc
subbands. Here and in the subsequent Fig. 9 the isotropic case
a-b plane is shown with the number of electrons in a unit celn
51. The transfer constant calculated for the parameters used h
cR

(sh)50.8.
o

a

to

ts,
c-
-
e

ce

is
is-

tion ~alongc* ) is completely neglected.
The density of electrons filling the continuous~reservoir!

spectrum can be written as

nR
(sh)~z![nsh~z!5

1

2vA«sh
E

0

`

@11exp~«1D2z!b#21
d«

A«
,

~38!

whereD is the energy difference between the bottoms of
two subbands~see Fig. 7!, z is the chemical potential mea
sured from the bottom of the band corresponding to
closed orbits,«sh[\2(p/b)2/2msh is the bandwidth around
the planar sheet, andv5abc* is the unit cell volume. At
magnetic fields wherez(B)5«F1 z̃(B)5«F the chemical
potential coincides with the zero field value«F . This func-
tion, Eq. ~38!, is shown in Fig. 8.

In the degenerate case, where (z2D)@kBT, the density
of electrons filling the quasi-1D subband and moving in t
magnetic field in open orbits is

nsh~z!5nsh,0S z2D

«F0
D 1/2

, nsh,0[
1

v
A«F0

«sh
, ~39!

where«F0 is the Fermi energy in the absence of this subba
~see below!. Equation~12! determining the Fermi energy ca
be written as

nc5
2

c* f0mc0

«F1nsh~«F!, ~40!

where mc0[e\/mc0c and mc05Amxmy is the cyclotron
mass atQ50.

The total electron density is field independent,nc5n/v,
wheren is the number of valence electrons per unit cell. W
consider for definiteness the case of a half-filled Brillou

y

in

s

to

y

n
the

e is

FIG. 8. Concentration of electrons in the 1D subband vs che
cal potential. Curves 1 and 2 are drawn according to the ex
formula Eq.~38!: kBT/«F050.1 for curve 1 and 0.01 for curve 2
Curve 3 is drawn according to the approximate formula Eq.~39!
corresponding to the limitT50. Note the maximal value of the
derivative]nsh(z)/]z at z2D50, due to the van Hove singularity
in the 1D density of states, and the degenerate@(z2D).0# and
nondegenerate@(z2D),0# regions for carriers filling the 1D sub
band. Note that at finite temperature this derivative is always fin
becoming extremely large atT→0.
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zone, that is, the number of valence electrons in a unit ce
n51. Introducing the Fermi energy in the absence of
continuous subband,«F05ncc* f0mc0/25pn\2/mc0ab, we
obtain the solution of Eq.~40! for the Fermi energy in the
degenerate case@Eq. ~39!#,

eF[
«F

«F0
5 1

2 @~esh12!2Aesh
2 14esh~12d!#, ~41!

where esh[«sh /«F05(2/pn)(msh /mc0)(b/a) is a reduced
characteristic energy for the continuous subband andd
[D/«F0 is the parameter characterizing the separation
tween the bottoms of the two subbands~see Fig. 7!. Taking
into account that the effective mass in theky direction is
my5mc0 /Ab/a ~assuming thatmx /my5b/a), we can deter-
mine the width of the energy barrier at the Fermi surface~in
units ofp/b), i.e., the gap in k space between the two Fer
surface sheets~see Fig. 7!:

dk[dky /~p/b!512~kF1kF!,

kF[
kyF

p/b
5S 2

p
nAb

a
eFD 1/2

,

kF[
kyF

p/b
5F 2

p S b

aD n~eF2d!G1/2

, ~42!

where kF is the half width of the planar sheet in theky
direction andkF[kyF is the Fermi vector component of th
cylinder in this direction.

Now we can calculate the transfer parameter in the c
sidered model. Using Eqs.~15!, ~10! and Eqs.~39!, ~41!, we
obtain

cR
(sh)5

1

2

A«sh

A«F2D

5
1

A11~2p/n!~mc0 /msh!~a/b!~12d!21
. ~43!

It is seen that the transfer parameter, Eq.~43!, significantly
increases only for a very large ratiomsh /me , when the 1D
dispersion of the open energy surfaces is very weak an
when the bottom of this 1D subband approaches the Fe
energy, i.e., ford→1 ~see Fig. 9, curve 5!. Note, however,
that this enhancement occurs even if (z2D)@kBT @i.e., (1
2d)@kBT/«F0], that is, when the ‘‘carriers’’ filling the
open energy surfaces are still degenerate and the approx
tion Eq. ~39! is still valid @see Fig. 8, curve 3 at (z2D)
.0].

In the special case when the bottom of the 1D subban
too close to the chemical potential, i.e.,uz2Du&kBT, we
should analyze the situation with the help of the exact fu
tion Eq. ~38! ~see Fig. 8, curves 1 and 2!. We see that the
transfer parameter determined by Eq.~15! ~here cR

(sh)

;]nsh /]z) can become maximal and very large in the ca
when the bottom of the 1D subband is situated near
Fermi energy~nearz2D50). This is due to the van Hove
singularity of the density of states~DOS! at the 1D band
edge @see Eq.~38!#. Note, however, that in this case th
expansion ofnsh(z) in z̃ @Eq. ~10!# is valid as long asz̃
is
e

e-

i

-

or
i

a-

is

-

e
e

!kBT ~see Fig. 8, curves 1 and 2!. Under these circumstance
the value of the transfer parameter becomes temperature
pendent and greatly increases with decreasing tempera
@for estimating the derivative]nsh(z)/]z, see Fig. 8, curves
1 and 2#. The chemical potential oscillations in this case a
strongly suppressed (z̃!kBT), that is, the chemical potentia
is almost pinned to the large, field independent peak of
1D DOS.

When the bottom of the 1D subband is above the che
cal potential, (D2z).0, the ‘‘carriers’’ enclosed by the pla
nar sheets become nondegenerate, their concentration i
limit ( D2z)@kBT is nsh(z);exp@2(D2z)/kBT# @see Fig. 8,
curves 1 and 2 at (z2D),0], and the transfer paramete
cR

(sh);]nsh /]z is greatly reduced.
Let us now discuss our results in connection with t

available experimental data. The asymmetrical~inverse-
sawtooth! shape of the magnetization oscillations observ
in a-(BEDT-TTF)2KHg(SCN)4, as reported in Ref. 6, Fig
2~b!, is well described by our analytical formulas~see Fig.
5~a!, curves 3 and 4! except at magnetic fields in the vicinit
of the antiferromagnetic–normal metal phase transition,BK
;23–24 T, observed in this metal.17,8 The wave form of the
magnetization oscillations in the right part of Fig. 2~b! of
Ref. 6 resembles our Fig. 5~a!, curves 3 and 4, forQ>11
@This value ofQ corresponds to the data of the experime
reported in Ref. 6, Fig. 2~b!: B523 T, T52.3 K with cyclo-
tron mass near the above mentioned phase transition t
from Ref. 8:mc /me>1.2.# Curve 3 of Fig. 5~a! corresponds
to cR510, curve 4 tocR5100. Such large values for th
transfer parameter may be obtained if the bottom of the
band is situated near the Fermi energy~see Fig. 9, curve 5!,
which is not the case for the pure limit of the material co

FIG. 9. Characteristic strength of the equilibrium transfer
electrons between closed and open sheets of the Fermi sur
transfer parameter vs effective mass of the 1D subband. Curve
calculated according to Eq.~43! at various separations between th
bottoms of the 2D and 1D conduction subbands:d5D/«F050 for
curve 1; 0.24 for curve 2; 0.48 for curve 3; 0.72 for curve 4; 0.
for curve 5. Effective mass is in electron mass units. Curves 1
2 are drawn up to the point where the barrier width between
cylindrical and the planar sheets vanishes,dk50 ~see Fig. 7!. Note
the large values of the transfer parameter for shallow 1D subba
~those having large effective mass! with the bottom of the 1D sub-
band situated near the Fermi energy,d5D/«F0&1, curve 5.
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sidered here.2 The presence of an impurity with levels ne
the bottom of the 1D subband can lead to the situation wh
both the impurity level and the van Hove singularity w
appear near the Fermi level, leading to large transfer of e
trons and large values of the transfer parameter.

But even for such large values of the transfer param
the extremely sharp inverse-sawtooth wave form seen in
left part of Fig. 2~b! of Ref. 6 ~in the vicinity of the phase
transition! cannot be explained for the experimental para
eters given in Ref. 6, even with the cyclotron mass from R
8. Thus in the framework of the model considered here o
a drastic reduction of the cyclotron mass can lead to
observed inverse-sawtooth wave form of oscillations near
above mentioned phase transition. In Fig. 5~b!, curves 3 and
4, which correspond toQ530, the cyclotron mass should b
reduced by nearly a factor of 3~to obtainQ530 instead of
Q511), so as to lead to the observed inverse-sawtooth sh
of the magnetization oscillations.

It should be noted that spin splitting of Landau levels c
also contribute to the change of the wave form of magn
zation oscillations in 2D metals. In the material discussed
clear spin-splitting structure is seen at very low temperat
~in Ref. 8 atT50.48 K!. In the experiment reported in Re
6, the temperature was raised toT52.3 K to avoid the ap-
pearance of the spin-split structure. According to our th
retical conditions for the appearance of the spin-split str
ture derived in Ref. 16, at the experimental parameters of
material discussed in the region of magnetic fields less t
BK;23 T, such as the spin-splitting parameters50.35 ~cor-
responding to the valuegmc /me54.70 from Ref. 17! and
Q511, the spin-split structure is forbidden to appear. Hen
we can apply our approach neglecting the spin-splitting
fect in this particular experimental case.

Another possible mechanism for shifting the maxima
the oscillations to the left, which could lead to an invers
sawtooth-like-shape, is due to the effect of magne
interaction.1,18 The corresponding shift of the maximum
the left relative to the symmetrical position can be writt
as Dhe /bn̄[4p(12ndem)(M0 /bn̄)@M (xm)/M0#, where
M0 /bn̄5@(e2/c* )/pmec

2#(F0 /Bn̄)2/(mc0 /me) (F0 is the
fundamental frequency atQ50 andndem is the demagneti-
zation factor!. For the parameters of Ref. 6, Fig. 2~b!, F0
5674 T,Bn̄523 T, T52.3 K, with mc0 /me51.2 from Ref.
8 andM (xm)/M0;0.4 @taken from our Fig. 5~a! (Q511)],
we find Dhe /bn̄;1023(12ndem). The corresponding shif
due to the presence of the planar Fermi surface sheet is
22 ln (Q22)/Q;1021 for Q510 @see Eq.~34!#. Hence, the
influence of magnetic interaction on the shape of magnet
tion oscillations in the organic metal under study is neg
gible in comparison with the electron transfer mechani
discussed above.

Judging from the band structure of the considered orga
metal without impurities the value of the transfer const
should becR;1. Hence, a nearly symmetrical wave form
oscillations is predicted by our theory for this material,
relatively pure, down to the lowest temperature used~see
Fig. 6!, in agreement with the observed oscillations repor
in Refs. 8 and 7. Our theoretical curve 2 from Fig. 5~b! well
recalls the wave shape of experimental magnetization o
lations obtained for the discussed material in its meta
phase at magnetic fieldB;27 T and temperatureT;0.5 K
re
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by Honoldet al.19 @see Fig. 2~b! from Ref. 19#. For the ex-
periment of Ref. 19, we get for the metallic phase the va
for the parameterQ;36 (B527 T, T50.5 K, andmc /me
;2), which together with the transfer parametercR;1 gives
an even better fit with the experimental curve.

Interesting experimental results concerning the wa
shape of magnetoresistance oscillations, also including
quantized Hall effect, the magnetic breakdown effect, a
the spin-splitting effect in organic 2D metals have appea
recently.20–23 But their proper explanation, it seems, is b
yond the scope of the theory proposed here for magnetiza
oscillations~dHvA effect!. We hope to generalize our theor
by taking such phenomena into consideration.

The different wave forms of magnetization oscillatio
reported for the same material may be attributed to the
ferent purity of the samples used, which is expressed
terms of different Dingle temperatures. The possibility
equilibrium electron transfer between impurity levels and
extended 2D states could lead to more asymmetrical osc
tion wave forms, especially in the case when the impur
levels are situated near the Fermi energy. This situation
sembles the influence of the 1D van Hove singularity d
cussed above. The combined influence of both continu
and localized levels can lead to an inverse-sawtooth w
form of oscillations for materials with low cyclotron mas
even at relatively high temperatures.

V. CONCLUSION

The influence of electrons occupying magnetic field ind
pendent energy levels@i.e., forming an effective reservoir o
electrons on open sheets of the Fermi surface, or in local
impurity ~defect! and intercalant states, etc.# on the magne-
toquantum oscillations of the chemical potential and mag
tization in a 2D metal has been investigated. It is sho
quite generally that the magnetization oscillation wave fo
is a replica of the chemical potential oscillation pattern. Th
oscillate in phase if the quantized orbits are electronlike~i.e.,
there are electron pockets of the Fermi surface! and in an-
tiphase if the orbits are holelike~i.e., there are hole pocket
of the Fermi surface!; hence, the wave form of magnetizatio
oscillations is invariant relative to electrons moving in ele
tron or hole orbits. It is also proved quite generally that eq
librium transfer of carriers between a reservoir of field ind
pendent states near the Fermi energy and the Landau le
influences only the shape~wave form! of the magnetization
oscillations, the amplitude of the magnetization being u
changed.

The chemical potential oscillations are suppressed by
ficiently large transfer of carriers. In the case when the r
ervoir states correspond to an open quasiplanar sheet o
Fermi surface, a situation characterizing many of the orga
conductors under study, the quasi-1D nature of the co
sponding subband can lead to a large enhancement of
electron transfer. For near coincidence of the Fermi ene
with the bottom of the quasi-1D subband, the chemical
tential is pinned to the corresponding van Hove singularity
the band edge, leading to extreme left-handed asymmetr
the magnetization oscillation wave form at sufficiently lo
temperatures~inverse-sawtooth shape!.

The opposite limit,cR!1, for which the magnetization
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oscillations have atT→0 the right-handed sawtooth shap
~see Ref. 9!, corresponds to a broader range of the relev
band structure parameters, and so within the present mod
is expected to be a more common phenomenon. This i
~canonical ensemble! situation is, however, very sensitive t
the presence of extrinsic types of electron reservoir, suc
intercalant or impurity~defect! states,11 which could lead to
the symmetrization of magnetization oscillations.

The typical transfer constant for the quasi-2D orga
metals (BEDT-TTF)2X, which iscR&2, leads to only partial
suppression of the chemical potential oscillations, but is
the range where the shape of the magnetization oscillatio
nearly symmetrical at all temperatures. The transfer par
eter is larger for open 1D bands with effective massmsh
.me , i.e., for shallower sheets with bottom nearer to t
rs

H

.T
H.

to

ku
i,

K

s.
t
l it
al

as

c

n
is
-

Fermi energy. For such materials more asymmetrical os
lations at low temperatures may be observed. The prese
of impurity levels near the Fermi energy can also lead to t
situation.
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