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The effect of thermodynamical equilibrium transfer of electrons between clasediay orbits and mag-
netic field independent states near the Fermi surface on the magnetoquantum oscillations in quasi-two-
dimensional2D) metals is investigated. The general relationship between magnetization and chemical poten-
tial oscillations in such a model is derived, and a variety of wave forms are obtained in the entire temperature—
magnetic field region. It is shown quite generally that such an electron transfer suppresses the chemical
potential oscillations, whereas the magnetization amplitude remains unchanged. A specific model of the rel-
evant band structure in which the field independ@nt reservoiy states correspond to quasiplanar energy
surfaces is considered in detail. In this model, the chemical potential oscillations diminish when the bottom of
the subband with the quasiplanar energy surfaces nearly coincides with the Fermi energy, and the correspond-
ing one-dimensional van Hove singularity dominates the electron transfer. Similarly, the chemical potential
may be pinned due to electrons in localized states near the Fermi energy. In both cases the de Haas—van
Alphen oscillations are shown to have an inverse-sawtooth shape at sufficiently low temperatures. In the more
common situation when the Fermi energy is relatively far from any sharp peak of the reservoir density of
states, the wave form of the magnetization oscillations is symmetrized at all temperatures. All shapes of
magnetization oscillations observed in the organic quasi-2D metals of the (BEDTAT¥)e, from the rare
sawtooth and inverse-sawtooth to the usual symmetrical ones, can be accounted for by this model.

[. INTRODUCTION inverse-sawtoothshape of magnetic oscillations &t~ 0 is
obtained, so that the only difference between the two cases is
The phenomenon of magnetoquantum oscillations irthe sign of the slopes of the linear part®:* Usually, how-
Fermi liquids under high quantizing magnetic figldhich is  ever, neither limit is realized, since on a macroscopic time
the essence of the de Haas—van AlpkeiHvA) effect] pro-  scale the electrons can be transferred to states that are not
vides a powerful tool for investigating the Fermi surfaces ofinfluenced by the magnetic field. A concrete example of such
three-dimensional(3D) and two-dimensional(2D) metals.  field independent states is the continuous subband corre-
The main attention has been paid so far to the temperatuigponding to the open, quasiplanar parts of the Fermi surface
dependence of the dHvVA amplitude from which the cyclo-[quasi-one-dimensiondlLlD) sheet$ found in some of the
tron masses can be extracted by applying the standaf®BEDT-TTF),X type compound$,impurity (defeci local
analysi$? based on the Lifshitz-Kosevich formuld©nly a  states, or the localized intercalant states in layered intercala-
little work has been devoted to the observation and interpretion compounds? etc. Consequently, as a result of electron
tation of the wave forn{shape of the magnetoquantum os- transfer between the two subsets of energy levels, the num-
cillations. In 3D metals the shape of the oscillations is quiteber of electrons filling both the Landau levels and the field
smooth and symmetrical. In 2D metals the sawtooth oscillaindependent levels changes on varying the magnetic field.
tions predicted by the thedhhave been observed in only a This electron transfer is a purely thermodynamical equilib-
few experiments:® Asymmetrical Shubnikov—de Haas and rium phenomenon, since it is associated exclusively with the
dHvA oscillations were also observed recently by Brookschemical potential oscillations. As will be shown later, this
et al. in 2D organic metalé? in which the variety of wave transfer is most effective for field independent levels situated
forms was attributed to the influence of the quasiplananear the Fermi energy.
sheets of the Fermi surface. For a model of a Fermi surface consisting of a quasicy-
The magnetoquantum oscillations in 2D electron systemdjndrical and a quasiplanar sheet the degree of this transfer
such as the conduction electrons in 2D organic métal®  depends on the energy barrier and the gap in momentum
usually considered in two extreme limitét) the limit of a  space between the cylinder and the quasiplanar shHe®he
fixed number of electrons filling a discrete spectrunilain-  influence of such an electron transfer on magnetoquantum
dau levels(LLs), which constitutes a canonical ensemble ofoscillations in quasi-2D organic conductors was considered
electrons’ or (2) the limit of fixed chemical potential, which analytically in Ref. 12 and numerically in Ref. 13. A rather
can be represented by a grand canonical ensemble. In tlsmilar model, but for two coupled closed pockets of elec-
latter case it is implicitly assumed that some electrons catrons, was considered by Alexandrov and Bratkovkky.
also occupy field independent energy levels which pin the Here we first address the general problem of equilibrium
chemical potential® In both cases an extreme sawtodtin  transfer of electrons between a spectrum of Landau levels
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and a field independent energy spectrum, without specifyinger energy band. These materials also contain some impurity
the transfer mechanism, in order to determine the condition&efec} levels.
for observation of the various wave forms of dHvA oscilla- In high enough magnetic fields the quasicylindrical en-
tions in 2D metals. We will consider the relations betweenergy surfaces will be quantized and electrons will be moving
magnetization and chemical potential oscillations in such ®&n closed(usually holelike orbits. The quasiplanar energy
general situation. sheets form a continuous band with electrons moving on
We shall then consider the case of a quasi-2D organi®Pen orbits under the influgnce of an gxternal magnetic field.
metal having disconnected closed and open sheets of the e assume magnetic fields at which the tunneling prob-
Fermi surfacé58 We find that the parameters determining 2Pility of magnetic breakdown between closed and open or-
the transfer of electrons between these sheets are the ene i/s is negligible, Py, ~exp(—By /B)<1 (By, is the break-
difference between the bottoms of the correspondin wn .magnet.lc field. Under these cwcumstar_]cgs the
quasi-2D and 1D subbands as well as the corresponding e unneling rate is much smaller than the characteristic cyclo-

fective masses. In the special case when the bottom of the ﬂson freqllj_lency and Lhere |s”no| influence or; th% dHVA fr(;-
subband nearly coincides with the Fermi energy, andTfor guency. However, the small electron transfer between the

—.0, the van Hove singularity at the bottom of the 1D Sub_cyllndrlcal and planar sheeftand/or impurity(defec} levels|

band pins the chemical potential and thus leads to an inverscan significantly influence the thermodynamical equilibrium

i e Between the two electronic subsystems.
sawtooth shape of the oscillations at sufficiently low tem- Let us consider now the general relationship between

perature. In the more common situation when the bottom 0f’nagnetization and chemical potential oscillations in the

the 1D subband is not very close to the Fermi energy, O"fodel described above. To describe the subsystem of elec-

gggzrz/he% uiiug: 1%?5'2’22:?%13’:?’; tfeorg; ﬂ;r?i‘:’lc'lli?otﬂztrons in the closed orbits we use the expression for the ther-
: g ' plE pinning modynamical potential of 2D electron gas in high magnetic
chemical potential can occur when all kinds of field mdepen-ﬁeld_g,ls

dent states are situated far away from the Fermi energy. This
situation corresponds to the rarely observed sawtooth wave

form of oscillations at ultralow temperature. QwBHV_ B > In(L+exp[£—en(B) 1)),
The paper is organized as follows. In Sec. Il a general A B n=o
relationship between the chemical potential and magnetiza- (1)

tion oscillations is derived for a model consisting of field
dependentLanday levels and a field independent energy =1/kgT, c* is the lattice constant in the anisotropic direc-

spectrum near the Fermi energy. In Sec. lll an exact para- gy . -
metrical method of calculating the wave form of the magne?t'on’ and® is the angle between the anisotropic asisand

toquantum oscillations in a 2D metal is presented. We Con'gheNmflgpheth_ |ndu_(€_t|ont;]/§cttB. ion th ic field i
sider the chemical potential oscillations in our model and 0 edta t:n ‘r’]\.'”r:ng Ishexpristshlo?th ebma(?\,&e;,:nﬁ IS
determine the conditions under which the chemical potentia?lssume 0 be high enough such that the banduiid €

oscillations are suppressed. The shape of magnetization o§Nergy _dlsper_smn in the, direction can be neglected in

cillations is studied in detall. In Sec. IV available experimen—compa”Son with the cyclotron energy. We fi_lso neglect spin

tal data concerning the wave form of magnetization in 2Dspl|tt|n%; of the Laqdau levels. This is Just|f|ed fqr special

organic metals are compared with the relevant band structw%ngleé ®p for which G:G.O/COS@SPZI [I is an Integer

of some quasi-2D organic compounds of thenumber,GoE(g/2)mc0./m,s, gis the'elec.trorgfactor,mco is

(BEDT-TTF),X type. the cyclotron mass in th&=0 direction, andm, is the
electron maglsor for electron systems with negligibly small

g factor,g<1.

The corresponding energy spectribandau levelsis

where A=2 cosO/c* ¢y,pp=hde is the flux quantum,B

Il. GENERAL CONSIDERATIONS

We consider a model of a quasi-2D metal under high en(B)=hw(B)(nN+1/2, n=012..., 2
guantizing magnetic field having an energy subband near the )
Fermi energy represented by quasicylindrical energy survhere oc(B)=eB/mcc is the cyclotron frequencym.
faces. Generally there is also a “reservoir” of electrons fill- =Mco/c0sO is the cyclotron massimg, is the cyclotron
ing extended statege.g., corresponding to open energy Mass at®=0. The intersections of Landau levels, &@),
sheetyor localized stategdue to impurities or other defegts  With the Fermi energy on varying the magnetic field strength
not influenced by the magnetic field. lead to the magnetoquantum oscillations. Let us define dis-
More specifically, the band structure of some of theCrete magnetic field valués; andBy. ; so thats is situated
(BEDT-TTF),X type organic conductors serves as a proto-at equal distance _from ihe two successive levels with fixed
type of such a quasi-2D metal. In these compounds the corguantum numbera andn—1 andn andn+ 1, respectively
duction electron energy dispersion along the anisotropic axi¢see Fig. 1,
(i.e., alongk,) is negligible in comparison with the disper-
sion in the plane perpendicular kg, so that the bandwidth [en(Byn) +en_1(By)1/2=¢f. 3
in thek, direction,A ,<eg, whereeg is the Fermi energy. In
addition to the corresponding quasicylindrical energy sheetX€arranging the summation in the thermodynamical poten-
the typical Fermi surface of these compounds consists of Hal [Ed.(1)] over levels below and above the level with fixed
disconnected quasiplanar sheet arising from an additional ugtuantum numben (see Fig. 1, we have



14618 M. A. ITSKOVSKY, T. MANIV, AND I. D. VAGNER PRB 61

(see Fig. 1, the thermodynamical potential for electrons in

””””” 27Tg, :
,,,,,,, fha the Landau levels can be written as
I I e
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Actually, only a few levels around the Fermi energy play an

305 31 Kb 00 important role in determining the magnetoquantum oscilla-

B.,, B, i B. tions. Therefore, in the representation of the thermodynami-
cal potential, Eq.(7), the contributions of the levels with

FIG. 1. Landau levels around the Fermi energy giving the mainquantum numbera=(2n+1) are omitted, since their con-
contribution to the chemical potential and magnetization oscilla- —

tions in a 2D metal in a separated period of magnetic field. Thistrlbutlons are negligibly small fon>1 relative to the re-

period, situated on the left-hand side relative to the magnetic ﬁelanaining terms associated with the levels on both sides of the

B (which corresponds to the crossing by the middle curve betweeff€'Mi €nergy. _ N
levels of the Fermi energyis in the range of magnetic fields As discussed above, a collection of electrons filling states

B—.,<B<B, or equivalently —2b,<b=B—B-<0, whereb  Situated around the open parts of the Fermi surface, and/or
=B, ,B/2F is the half periodF is the fundamental frequency of localized states, may be regarded as a reservoir of carriers
oscillations relative to the inverse magnetic fieldBl/and k; ~ Ooccupying a magnetic field independent spectrum. The elec-
= 7/b, is the fundamental cyclic frequency relative to the magnetictrons in this reservoir are in thermal equilibrium with elec-
field difference b=B—B;. The chemical potential oscillations trons in the closedquantized orbits, and in this manner
(curve 4 are drawn according to the parametric E@5) and (26) influence the quantum oscillations. If the spin splitting in the
for parameter€)=20, cg=0.1. Energies, measured from, are  reservoir spectrum is also neglected the only magnetic field
given in units ofi /2. Curves 1, 2, and 3 correspond to the energydependence remaining is through the oscillating chemical
levels &y, &1, anden_;. The midpoints between energy levels potential. Hence, since in this case the thermodynamical po-
are shown by the dashed lines. Magnetic fields corresponding to thential of the electronic reservoir is explicitly independent of
edges of the separated period & , andB,,. The center of the  the magnetic fieldi.e., depends only implicitly through the
period, B, where separated levej, crosses:¢, is shown by the  chemical potentialit does not contribute directly to the mag-
thin solid line. Note the symmetry of the IeveuzllsposmonsL relative netization, i.e.,M = —[a(QIV)]9B] ;= —[ (2 IV)]B],,

to the Fermi energy at magnetic fiel®s,,, By and B;;. Z(b) where Q=Q,(B,{) +Qg({) is the total thermodynamic
={(B)—ef is the oscillating part of the chemical potenti{B), potential, and)z(¢) is the thermodynamical potential of the
and x(b)/B=¢e,(B)—¢(B) is the energy difference between the reservoir.

separated level crossing the chemical potential inside the pefiod Assuming a continuous reservoir spectrum, the corre-

and the oscillating chemical potenti&(B) [x(b,{) is the paramet-  sponding thermodynamical potential can be written as
ric variabld.

Qlenyv=—(2/8)>, Infl+exd ({—e B}, (8)
> Infl+exd({—en) B} k

n=0
B whereg, is the energy dispersion law in the continuous sub-
n-1 band. A similar expression can be written for a reservoir of
=B ({—en)+ In{1+exd ({—en)B1} localized impurity states.
n=0 The densities of electrons filling the Landau levéls )
1 and the reservoifR) spectrumn,; andng, respectively, are
+n§=:O {1+ exd (,— &) B} connected through
ne=—{d(Qu +Qr)/V]/ditg=n + R, 9
+ IN{1+exd ({— . 4
n§+l { (e AL} @ wheren, is the total number density of electrons, which is

constant in the magnetic field, Qr(2)=QE"(?)
+Q8°9(¢), andng={d0r/3¢}s. Expanding the reservoir
x(B)=[e5(B)—¢(B)]S (5) densitynR(§)~in powers of the oscillating part of the chemi-
cal potential {(B)=¢(B) — &g,

Introducing the dimensionless parameters

and

Q(B,T)=tiw.f3 (6) NR({)=NR(er) +NR(ep) I+ 3NR(sp) P+ - - -,



PRB 61 WAVE FORM OF de HAAS—van ALPHEN . .. 14 619

Nk PNk =27F/B,, 1By, is the fundamental frequency relative to the
—) ng(sp)s( 5 ) , (10)  reduced magnetic field. Note also that Eq(14) holds in
9 e, every quasiperio®,, ;<B=<By, (or —2b,<b=<0), and that
o . it is a valid approximation as long as,<B, [a factor
and taking into account Ed7), the total density may be B, ,/B=1 on the left-hand side of Eq14) is omitted.
written as If we retain in the series of Eq10) terms of higher than

_ — , ~ the first order in we should use in Eq14), instead of the

Ne=AB[N+9(x.Q)]*Nr(2r) T Nr(er){(B), transfer parameter independent of chce(mical potential oscilla-

NR(ep)=

1
£F

1 n sinhx tions defined by Eq.(15), the transfer functioncg(?)
9(x,Q)= -> . (1) =(whc*/mg)[ng+(1/2)ng {+ - - -]. The additive terms in
1+ expx) k=1 coshx+ costkQ) Eq. (14) should be taken into account when chemical poten-

tial oscillations are relatively large, which may be the case in
extremely large fieldsh w.(B) ~¢ef.

Using Eq.(7) we obtain the component of the magnetiza-
as well as at the field, where the fixed levek; in this  tion along magnetic field:
period coincides with the Fermi ener¢gee Fig. 1 At these

up to first order in{. Note that the chemical potential coin-
cides with the Fermi energy at magnetic fieBisandB,,, 1,

magnetic fields the LLs are arranged symmetrically relative M(B) -1 P der

to the Fermi energjelectron—@le symmetjyso that at the A 20 (g—sn— Bﬁ) - BEQ(X,Q)
center of the period, wheng(B,,) =0, the functiong(0,Q) "

=1/2, whereas at the right edge of the period, whe@;,) +(1/B)f(x,Q)—hw:h(X,Q),

=Q/2 the functiong(Q/2,Q)=0 and at the left edge of the _

period, wherex(By,1)=—Q/2, the functiong(—Q/2,Q) n k[ coshx+ exp(—kQ)]

=1. It is remarkable that these values of the function h(x,Q)= E (16

g(x,Q) do not depend on the parametgri.e., are indepen- =1 coshx+coshtkQ)

dent of temperature for the magnetic field valigs.; (left  performing the summation in the first term of E@6) over
edge of the periog and B, (center of the period andB;,  the Landau levels lying below the Fermi energy, we obtain
(right edge of the period

From Eq.(11) it follows that the fundamental frequency ~"~* e, n-1 _ _ b
of oscillations,F, can be determined by the relations 20 e,+B B ) =220 sn=n2ﬁwc(B)=nsF( 1+ B/
n= n=
F— 8|: . nc_nR(SF) N eh 12 (17)
e A G (12 The term in Eq(16) containing the functiomy(x,Q) can be

. . . - written with the help of the equation for the chemical poten-
The last equality constitutes the equation determining th ial, Eq. (14), as

Fermi energysg as measured from the bottom of the 2D

subband corresponding to the closed orlgd#se Fig. 7 be- howy(B) b
low). —+(B = @ciBn fr 2
_ en(B)g(x.Q)=| ept+ — ——
The fixed quantum number can be related t8, by [Eq. hwc(Bn) By
(3)] ]
R ~
. + PR B )g) . (19
_ w (B
L (13) o _
hwe(Bn) By In deriving this expression we used the relatidgh®8,=n
where in deriving the last equality the relatidnwy(B) = &r/f@c(By) anden(B)/B=2gn(B)/By. _
— 11.B was used. Taking into account this relation we obtain Substituting Eqs(17) and (18) into Eq. (16), we obtain
from Eq. (11), for the magnetization in the fixed pericd2b,<b=<0
F F 7 M(b) ~ . hodBy [ b b
———=—l=g(x,Q)+cRLb), (14) Mo (1+CR)§(b)+% — +Cg
B B, 2by, hio(B) 0 fiwc(By) n eF
where the reduced magnetic fiddds defined with respect to 2kgT 2hw(B)
BF’ |e'b: B—BH' and + 8|: f(ny)_ 8|: h(XlQ) 1 (19)

_nﬁﬂc B whec* , whereM ;=g cos®/¢p,c* is the saturation magnetization at
CRTTA T Meo MR (19 T—0. The second term in the large parentheses represents a
_ o small correction to the oscillating part of the magnetization
is the parameter characterizing the strength of the electrog,g the first and last terms contribute to the unifodia-
transfer. ) magneti¢ part (Landau diamagnetism The first term in
Note that b,=Bg, 1B/2F=(B,/2F)/(1+B,/F)=m/ky  square brackets contains temperature dependence only
is the half period of the oscillation, wherek, through the chemical potential oscillations and remains finite
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at T—0 [as in this cas€(b—0T—0)—%w/2 (see Fig. closed hole orbits being antisymmetric (relative to the Fermi
1)], while the terms in the large parentheses will be of thelevel) to those of closed electron orbits.
order (~hwleg).

Thus, at temperatures and magnetic fields satisfying the Ill. CHEMICAL POTENTIAL AND MAGNETIZATION

conditions OSCILLATIONS
2b, B fiw.(B) In this section we will develop a parametric method of
keT=hw(B)(Q=1), 5 =F=—_—<1 (20 calculating the chemical potential and magnetization oscilla-
F tions. All results will be shown to be valid irrespective of the
we obtain, to leading order iB/F, the general relation mechanism of the electron transfer, i.e., for any reservoir of

electrons filling either a continuous or a discrete field inde-
M(b) 2 ~ pendent energy spectrum.
Mo - hwc(Bﬁ)(l“LCR)g(b)' (2D IDstead of solving the complex transcendental equation
for {(b) [see Eq(14)], which cannot be solved analytically
Hence,under the conditions represented by the expresfor arbitrary numbers of levels in all regions of the parameter
sions (20) the oscillating part of the magnetization is propor-Q=1 (see also Ref. 9, where it was solved for two levels and
tional to the oscillating part of the chemical potential. This is therefore applicable fo©=10), we will try to solve it
result remains valid regardless of the presence of field indeparametrically. We express the variabddrom Eq. (5) by
pendent (reservoir) states. using the conditiorb,<Bj, [which is equivalent to the con-
Relation(21) was used in Ref. 12 for calculation of the ditions expressed in Eq§20)] in the form
magnetization for a canonical ensemble of electrons in
closed electron orbit§.e., for cg=0 in the present modgl 2 b 2 _
It was shown there that the magnetic susceptibily/JB at 6)(: 1+—-— m((b)- (24

B, and B, where the LL spectrum has electron-hole sym- ¢

metry (see Fig. 1, is proportional to the derivative of the Solving Egs.(14) and (24) for 7 and b/b,, they can be
oscillating part of the chemical potential: written as explicit functions ok (which will serve here as
the parametric variabei.e.,

1 M
Mg B

2 Jt

BFVEF h We 0B

. (22) 5
B,,.B;

ﬁa)cg(X) - 1+ CR

2
1—29(x,Q)—GX),

In the more realistic model of the (BEDT-TT§X com-

pounds studied here, the relevant closed orbits are situated in () kob(X) 2 Cr 2
hole pockets of the Fermi surface. In this case the effective — =— = g(x,Q)+ = 1—=<x]||.

_ . . b w 1+CR 2 Q
band mass is negative and the cyclotron mass is also nega- n

tive, so that the wave form of the chemical potential oscilla- (29)
tions is expected to be an inverse replica of the oscillations/arying x in the interval corresponding to the separated fixed
associated with electron orbifs the sense that in the case period (see Fig. 1,
of closed hole orbits an inversion of the chemical potential
oscillation relative to the Fermi level should be made, Q Q
TM(b)=—7(b), whereZ™(b) is the chemical potential os- Ty SXs5 (26)
cillations due to the closed hole orbits associated with a hole
pocket of the Fermi surface ardgb) is the chemical poten- We obtain an explicit solution for the oscillating part of the
tial oscillation due to the closed electron orbits associate@¢hemical potential(b) as a function of magnetic field in the
with an electron pocket of the Fermi surface; see Fig. 1  separated quasiperiod2b,<b=<0 (see the left period rela-
The relation between magnetization and the chemical potive to the fixed magnetic fiel&, in Fig. 1).
tential oscillations for electrons moving in closed hole orbits As seen from the Eqg25) and the condition26) (see
and open electron orbits is Fig. 1), the solution is determined by the key dimensionless
parameterQ, which reflects the combined influence of the
M(b) ~h) magnetic field and temperatuf®or numerical estimates the
My 7o (B (1+cp)[—£M(b)]. (23 relationQ=[1.38B(T)]/(m./m)[T(K)] is usefu}, and the
e transfer parametecg. It is seen that a finite value afg
For a system consisting of a closed electron pocket and asignificantly suppresses the chemical potential oscillations at
open hole sheet the magnetization is given by the same el Q: from Eqgs.(25) it follows that atcg>1 the oscillating
pression as Eq(21) but the transfer parameter isg  part of the chemical potentiaj—0 at all magnetic fields
~[dpsn/ 9¢|,., where dpsp({) is the hole concentration in inside the period-2b,=<b=0.
the hole sheet. Chemical potential oscillations for various transfer param-
Hence, the shape of the magnetization oscillations is ineterscg are shown in Fig. 2. It is seen that ey~1 the
variant relative to electrons moving on closed electron orchemical potential oscillation are symmetrized, whereas for
hole orbits situated in the electron or hole pockets of theck=10 they are almost completely suppressed. It will be
Fermi surface, the chemical potential oscillations due toshown in what follows that magnetization oscillations ampli-
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FIG. 2. Suppression of the chemical potential oscillations by FIG. 4. Wave form of the chemical potential oscillations in a 2D
equilibrium electron transfer. Curves 1, 2, and 3 are calculated aanetal in the presence of an electron reserfopen parts of the

cording to the parametric Eq$25) and (26) for corresponding
transfer constantsg=0.1, 1.0, and 10, and for a fixed value Qf
=hw./kgT=20. Curve 4 is the leveky(b), that is, [en(b)

Fermi surface and/or localized state€urves are calculated ac-
cording to the parametric Eq$25) and (26) (in the three-level
approximation with cg=1 for various values of the paramet@r

—ep|lhwe(By)/2, crossing the chemical potential in the separated=5-25. These curves show oscillations smearing with increasing

period. The three-level approximation, used h&ed in calcula-
tions of oscillation curves in Figs. 3—6 belpwields a very accu-
rate shape of the chemical potential oscillations. Here and also i
the subsequent Figs. 3—6 a period shifted by 2lative to the
period chosen in Fig. 1 will be used=k,b=2.

tudes are independent of the transfer paranttethe shape
of the oscillations being greatly influenced by this transfer,
however.

Thermal smoothing of the chemical potential oscillations

temperaturgat fixed magnetic fieldor with decreasing magnetic
field (at fixed temperatuje Note the symmetrical form of the os-
pillations at largeQ=10-25, i.e., at low temperatures for fixed
magnetic fieldfor comparison see Fig. 3, where chemical potential
and magnetization oscillations have a strongly asymmetrical shape
in the absence of open parts of the Fermi surface and/or localized
states.

grand canonical ensemble in Fig. 4. Note the symmetrical
and sawtooth shapes at very low temperatures obtained in the

is shown for the canonical ensemble in Fig. 3 and for thepresence and the absence of electron transfer, respectively.

2
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¢

E Q=25

0.5

Q=5-25 m
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03 + 10
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2.0 kﬁb 4.0 6.0

FIG. 3. Wave form of the chemical potential and magnetization

The magnetization can also be calculated via a parametric
method in which only the functiog(x,Q) [Eqg. (11)] needs
to be calculated. The advantage of this method for 2D metals
is that it allows one to sum over an arbitrary number of
levels around the chemical potential and in this way to get an
exact solution in the entire temperature—magnetic field range
for an arbitraryQ=rw./kgT=1. As will be shown later,
except for the high temperature—low magnetic field region
(Q<5), a single term in this sum is sufficient to get very
accurate resultdIn this approach only three levels around
the Fermi energy are taken into acco(thtree-level approxi-
mation). ]

Some general relations for the magnetization can be ob-
tained without explicitly calculating the functiar(x,Q) in a
fixed quasiperiod. The magnetization, as it should be, is ex-
plicitly independent of the transfer parametgy, but de-
pends on the parametric variable since magnetization is
determined only by the electrons in the quantized olflsite

oscillations in a metal without open parts of the Fermi surfaceEq_(16)]_ Substituting the expression for the chemical poten-

and/or localized statesg=0. Curves, drawn according to the para-
metric Eqs.(25) and(26) (in the three-level approximatigncan be
interpreted as taken at different temperatures for fixed magneti
field (or at different fields for fixed temperatyreorresponding to
the values of the key paramet®r=5-25. Note the nearly sawtooth
shape of oscillations at larg® (i.e., Q=10-25) and nearly sym-
metrical form of the oscillations in the high temperature—low mag-
netic field regionQ=<5. Note that according to E¢37) the mag-
netization oscillations in this cagmamely, M(b)/Mg] are also
presented by this drawing.

tial [first of Egs.(25)] into the expression for the magnetiza-

tion, Eq.(21), we obtain
Cc

M(x)

2
My —X.

=1-29(x,Q)— o)

(27)

The magnetic field values at which the magnetization is
extremal (e.g., maximal at the magnetic field,) are the
same as those where the chemical potential is extremal, and
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are determined by the conditiaff (b)/dbl, =0. Differenti- llt’l_ll N =100 10 10 01
ating Egs.(24) and(14) with respect td and taking them at 0% ! A
the maximal points, we obtain an equation for the corre- Q=11 - intermediate } 3
sponding value of the parametric variatlg=x(b,,), i.e., temperature-magnetic 4
field region | 5
02t !
x| Q ¢=0.1, 1.0, 10, 100 /
b, 2by —
0.0 | LKS
si::(harmonic
l — M (28) approximation
Qx| 0z} 1
Using EC](ll) we have i syml?etry
! axis
- -05 ‘ : ‘ ‘
ag9(x,Q) 1 é 1 0.0 20 kb 40 60
— — +
X 2(1+coshx) =1\ 2[1+cosikQ+x)] 08 :
b) 100 10 10 g1
1 M Q=30 low temperature 4 A
+ . M. high'magnetic field ]
2[1+Costhx)]) (29 Y reen N\
. . ’ = 5
Note that the value of the parametric variablg can be ¢x=0.1, 1.0, 10, 100
obtained from the last equations, which are independent of
the transfer parameter. 00
Hence, the magnetization amplitudd (x,) obtained ' ' LKS
from Eq.(27) is also independent of the transfer parameter. six harmonic
The connection betwedn,, andx,, is through the second of approximation
Egs. (25). We see that the magnetic fielbg, at which the 04 ¢ !
magnetization is extremal depend strongly on the transfer N
. . | symmetry
parametercg. Thus, only the shape of the magnetization U axis
oscillations is influenced by the thermal transfer of electrons ‘ , ‘
00 20 4.0 6.0

between closed and open parts of the Fermi surface (and/or
localized states), the magnetization amplitudes being un-
changed.These results are illustrated in Fig. 5 for different
values of the transfer parameteg=0.1 for curve 1, 1.0 for
curve 2, 10 for curve 3, and 100 for curve 4.

Noting that, according to Eq$28) and(29) the paramet-

kb

FIG. 5. Influence of equilibrium transfer of electrons between

closed parts of the Fermi surface and reser(ojiren orbits and/or
localized statéson the magnetization oscillations in a 2D meta):
at intermediate temperature and magnetic fie@s,11, and(b) at

ric variable at a maximum of the chemical potential andlow temperature—high magnetic field3=30. Magnetization oscil-

magnetization is a function of) only, x,,(Q), we obtain
from Eqgs.(25) the maximum position in the limit of almost
pinned chemical potentiacg>1):

(26)

for

different

transfer

lation curves are drawn according to the parametric E2fS. and
and Eqg. (22)
=0.1,1.0,10,100 at fixe®. (&) Q=11 (corresponding to param-

constant cg

eters from Ref. 6, Fig.(®): B=23 T, T=2.3 K; effective cyclotron

il 1 : Q)
=1-—Xq ,
by Q Q

(30

massm,=1.2 is taken from Ref. B (b) Q=30. Curves 1-4 are
drawn in the level approximatiorithree-level approximation
Curves 5[in (a) and (b), dotted curvek are drawn in the six-

L . harmonic approximation of the Lifshitz-Kosevich-ShoenbigrigS)
and the corresponding limiting value of the amplitude of theyp formula(see Ref. 10 Note the near coincidence of curves 3 and

chemical potential oscillations:

zem
fioe :?R

1 2
—9(Xm, Q)+ 2(1— QXm(Q)) , (3D

whereZ(P"W=7(b{P'M). From the last equation we see that %
the chemical potential oscillations are almost completeI)F

suppressed at largs;, i.e.,7(b)—0 atcg— (see Fig. 2

In the one-level approximation we obtain the following
explicit solution forx,, [from Egs.(28) and(29), neglecting
all terms in the sums

Xm(Q)=In(Q—2),

and the corresponding value of thgéx,Q) function is

(32

4, obtained in the level approximation with large transfer constant
cg=10,100, at which the chemical potential oscillations are nearly
suppressedsee Fig. 2, curve )3 with curve 5, obtained from the
LKS formula for a 2D metal, derived in the case of complete sup-
pression of the chemical potential oscillations. Note the symmetri-
ation of the magnetization oscillations with increasing transfer of
arriers(for cg=1), the inverse-sawtooth wave formagt>1, and

the sawtooth wave form atz<<1. Note also the independence of
the magnetization oscillation amplitude on electron transfer.

9(Xm,Q) (33

1
:ﬁ.

These expressions are independentgfand are valid for
Q=5 .
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We can now obtaijusing the second of Eq$25)] the 038
positions of the magnetization maxima in two limiting cases. Q=5-25 Q=25
For a pinned chemical potentiat{— ), M 70
Mo c=1.0 — grand canonical 15
. 04+ ensemble of quantized
b #I) ") ( ) carriers 10
— =1-—=In(Q—2), 34
b =1 g2 0
0.0
and for a freely oscillating chemical potentiag=0) 2 L
bd 2 0a | 2
_m -1 (35) o4 3
b, 4
It is seen that in the case of a pinned chemical potential at_ 5

very low temperatures@>1) the magnetization maximum 0.0 20 kb 40 6.0

is shifted to the center of the perio@,, (b,/b,— —1), i.e.,

we obtain the inverse-sawtooth wave form of oscillations FIG- 6. Wave form of the magnetization oscillations in a metal
observed in Ref. Gsee Fig. ), curves 3 and } In the with electron_reservoir of_fie!d indepen_dent states for _diff_erent tem-
absence of any reservoic—0) atQ>1 the maximum is peraturegat fixed magnetic fieldor for different magnetic field&t
shifted to the right edge of the peridg, i.e., we obtain the fixed temperatune (;urves are drawn agcorQing to the parametric
sawtooth wave form of oscillations observed in Ref.sBe Egs. (29 and_(26) (in three-level approximationand Eq.(21) for
Fig. 5(b), curve 1. cg=1 and different values of the parame®®r=5-25. Note the

Note that the deviati f th . it f nearly symmetric shape of the magnetization oscillationsgat 1
ote that the devialion or the maximum positions from compared with the strongly asymmetric magnetization oscillations

the_limi_ting_values pf the magnetic fields in the positive half- [Fig. 3, right-hand side sawtooth shajaé low temperatures or high
period is different in the two extreme casgs—= andCr  magnetic fields in the absence of electron transfeg=0 and at
—0. For the same temperature and magnetic fitsketd Q) large transfercg>1 [see Fig. B), curves 3 and 4, left-hand side
the maximum atgr— > [see Eq(34)] shifts farther from the  inverse-sawtooth shapeThe wave forms shown closely resemble
center of period than the maximum @— 0 [see Eq(35)] the tendency to retain symmetrical forms of magnetization oscilla-
from the right end of the period. This reflects the fact that ation on lowering temperature observed in Refs. 8 and 7.

fixed Q the sawtooth shape characteristic of a freely oscillat-

ing chemical potential is more pronounced than the inversethe magnetization oscillations in this case have a sawtooth
sawtooth wave form characteristic of the pinned chemicakhape at low temperaturgarge Q=10). In this case the

potential. general relation holds:

An explicit solution for the magnetization as a function of
magnetic fieldM (b), can be obtained only for a completely M(b) 2 . b 3
pinned chemical potentidicg—, Z(b)—0]. In this case Mg ﬁwcg( ): 37

the parametric variable can be found as an explicit function_ B
of the magnetic field. Then a substitution of thig) [found ~ T1hiS follows from Eqs.(24) and (27) at —b/by=29(x,Q),

from Eq. (24) at7=0] into the expression for magnetization which is the equation for the chemical potential oscillations
[Eq. (27)] solves the problem explicitly inside the period " (N absence of electron transfeee Eq/(14) with cr=0
—2b-<b=<0: and Ref. 12: (A w;){=1+b/b,—(2/Q)x=1-29(x,Q)
—(2IQ)x=M(b)/Mg]. A relation similar to Eq.(37) holds

for electrons on closed hole orbitisole pockets of the Fermi

(pin) ~ ~
M—(b):_g_zg(X’Q)’ X(b)zg 1+B _ surfac@, but the substitutionZ(b)— —7("(b) should be
Mo by 2 o made.
(36) Magnetization oscillations in the presence of a quasipla-

nar Fermi surface sheet and/or localized states are shown in
This is the level approximation analog of the Lifshitz- Fig. 6. We see the almost symmetrical wave form of magne-
Kosevich-Shoenberg formula for a 2D metlthe latter  tization oscillations focg=1 even aff —0 (largeQ at fixed
containing all harmonics with the chemical potential re-magnetic fielgl At larger cg=10 the magnetization maxi-
placed by the Fermi energy, i.e., with the chemical potentiamum shifts to the left and at small temperatures the oscilla-
oscillations completely neglectddee Figs. &) and §b),  tions have the inverse-sawtooth shdpee Fig. ), curves

curves §. 3 and 4.
It should be noted that even in the case of completely

suppressed chemical potential oscillations the magnetization
oscillations retain their amplitudes, their shape being drasti-
cally changed compared to those of freely oscillating chemi-
cal potentials. To compare the predictions of our model to the available
Magnetization oscillations in the absence of the electronie@xperimental data in organic metals let us estimate the value
reservoir(i.e., forcg=0) are shown in Fig. 3. As expected, of the transfer parameter for a specific situation. Such a two-

IV. TRANSFER PARAMETER AND COMPARISON
WITH EXPERIMENT
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0.8 : : : : 1.0
& n,(©) 1 - kyT/eg=0.1
ke A Ky _shtel
SF nsh,l)
1D band 08 - 2Kk T/e,=0.01
0.6 r m/m =4 (FS sheet)
€ Sk 3 - [ at ((-A)>0] - T=0

m,/m=3 06 |

a=b
0.4 I V:l | 0 4 3

d=A/gg=0.48 /2D band
. (FS cylinder) A
02 ¢,=08 1 02+
‘/
0'0—0 5 2 (; 0 05 1.0
0.0 : : : : g . § —A)/e, -
0.0 0.2 04 . 06 0.8 1.0 (G-8Verg

. . FIG. 8. Concentration of electrons in the 1D subband vs chemi-
FIG. 7. A simple band structure model of the electronic energy | potential. Curves 1 and 2 are drawn according to the exact

near the cylindrical and planar Fermi surfd&®) sheets forming an formula Eq.(38): ksT/ero=0.1 for curve 1 and 0.01 for curve 2.
energy barrier above the Fermi energy. Energies are measured &E‘urve 3 is drawn according to the approximate formula @)
units of the Fermi energy, in the absence of a planar sheet, ., responding to the limif=0. Note the maximal value of the
Hs/spg, etc. Wave vector components in tkg direction are in _ derivativeang,(£)/d¢ at {—A=0, due to the van Hove singularity
/b Un|.tS;|(~>k/(7T/b), etc., and masse§ are in electron mass unitSy, the 1D density of states, and the degenefdte- A)>0] and
m. . ke is thek, component of the Fermi vector of the FS cylinder, nondegenerate(¢ — A)<0] regions for carriers filling the 1D sub-

« is the half width of the FS planar she@e Fermi vector of the 504 Note that at finite temperature this derivative is always finite,
sheet is measured from the Brillouin zone edge corresponding tBecoming extremely large at—0.

k=/b), and 6k is the barrier width. Energies are measured from
the bottom of the subband corresponding to the cylindrical energ
surfaces.eg is the Fermi energy and is the energy separation
between the bottoms of the corresponding 2D and 1D conduction
subbands. Here and in the subsequent Fig. 9 the isotropic case in A
a-b plane is shown with the number of electrons in a unit cell

Yion (alongc*) is completely neglected.
The density of electrons filling the continuo(rgservoiy
pectrum can be written as

=1. The transfer constant calculated for the parameters used here 'j.if(sh) _ _ jw -1 de
=n = l+expe+A— —,

C(R;sh):().& R (0)=ngy({) 20 el o [ o {)B] \/g
(38)

band model was considered by us in Ref. 12, where the two
bands are nearly intersecting along one of the directiofs in whereA is the energy difference between the bottoms of the
space. This direction was chosen along Ithexis. The unit  two subbandgsee Fig. 7, { is the chemical potential mea-
cell vectorsa, b, andc* are supposed to be perpendicular tosured from the bottom of the band corresponding to the
each otherc* being the unit cell vector in the anisotropic closed orbitsgs,=%2(/b)?/2mgy, is the bandwidth around
direction @ andb form the conducting plane in the organic the planar sheet, and=abc* is the unit cell volume. At
metalg). The Brillouin zone in this case is approximated as a8magnetic fields where/(B)=e+¢(B)=¢¢ the chemical

rectangle with dimensions7@a, 2m/b, and 2r/c* where  potential coincides with the zero field valieg . This func-
a=|al, b=|b|, andc* =|c*| are the lattice constants in the tjon, Eq.(38), is shown in Fig. 8.

corresponding directions. In the degenerate case, wheie—(A)>kgT, the density
The two highest occupied energy bands are assumed ¥ electrons filling the quasi-1D subband and moving in the
overlap so as to form a gap kispace along the axis(i.e.,  magnetic field in open orbits is

the k, direction between the cylindrical and planar Fermi
surface sheetsee Fig. 7. Note the energy barrier created in [—A\? 1 J[egg
this model between the two separated Fermi surface sheets, nsh(g):nsh,o(s_) v Ngho=—\/— (39

. . . FO v €sh
which does not appropriately describe the actual band struc-
ture of the materials studied. This discrepancy is not exwhereeg is the Fermi energy in the absence of this subband
pected to lead to any serious problem, however, since thesee below. Equation(12) determining the Fermi energy can
equilibrium transfer process is independent of the presendee written as
of such a barrier.

The dispersion of the electron energy in both sheets is 2
assumed to be parabolic. For the planar sheets the 1D dis- nc:c*¢ et Nsn(er), (40)

LT . . . . 0Mco

persion is in thek, direction with effective mass,. In the
cylinder the dispersion is in thk, andk, directions with ~ where u=efi/m,c and megp=mymy is the cyclotron
effective masses, andm,, respectively(we take into ac- mass a®=0.
count the anisotropy in tha-b plane when considering the  The total electron density is field independemg=v/v,
elliptical Fermi surface cylinderHere the ideal case of a 2D wherev is the number of valence electrons per unit cell. We
metal is considered, and hence the dispersion irkjltirec-  consider for definiteness the case of a half-filled Brillouin
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zone, that is, the number of valence electrons in a unit cell is 20 ;
v=1. Introducing the Fermi energy in the absence of the 5 m,/m, =4
continuous subband,ro=N.C* pouco/2= mrhZ/mab, we 4
obtain the solution of Eq40) for the Fermi energy in the st a=h
degenerate cag&q. (39)], ‘ d=d/er=0.96 vl
8F _1 2
eFES—FO=§[(esh+ 2)—\es tdesp(1—d)], (41 0L 0.72 3
where egp=e4n/epo= (2/7v) (Mg, /Mgg) (b/a) is a reduced 048
characteristic energy for the continuous subband dnd i
=Al/egq is the parameter characterizing the separation be- 0.24
tween the bottoms of the two subbar(@se Fig. 7. Taking : 0
into account that the effective mass in tkg direction is ] 1
my=m,/+/b/a (assuming thatn, /m,=b/a), we can deter- 00 : : : :
J . . . . 0.0 1.0 2.0 3.0 4.0 5.0
mine the width of the energy barrier at the Fermi surféne m,/m,
units of 7/b), i.e., the gap in k space between the two Fermi
surface sheetsee Fig. T: FIG. 9. Characteristic strength of the equilibrium transfer of
electrons between closed and open sheets of the Fermi surface:
ok= ok, /(mIb)=1—(Ke+ kg), transfer parameter vs effective mass of the 1D subband. Curves are
calculated according to E¢43) at various separations between the

1/2 bottoms of the 2D and 1D conduction subbandis:A/e-,=0 for
, curve 1; 0.24 for curve 2; 0.48 for curve 3; 0.72 for curve 4; 0.96
for curve 5. Effective mass is in electron mass units. Curves 1 and

1/2 2 are drawn up to the point where the barrier width between the
, (42) cylindrical and the planar sheets vanishéls=0 (see Fig. J. Note

the large values of the transfer parameter for shallow 1D subbands

(those having large effective masaith the bottom of the 1D sub-

band situated near the Fermi enerdy; A/ero=<1, curve 5.

k 2 \ﬁ
=Y _|Z =z
ke= /b (ﬂ'V a‘r

_KyF_ 2
“wlb | 7w

where ¢ is the half width of the planar sheet in thg
direction andkg=k is the Fermi vector component of the

cylinder in this direction. . <kgT (see Fig. 8, curves 1 and.2Jnder these circumstances

~ Now we can calculate the transfer parameter in the congne value of the transfer parameter becomes temperature de-
sidered model. Using Eq¢15), (10) and Eqs(39), (41), we  pendent and greatly increases with decreasing temperature
obtain [for estimating the derivativeng,(£)/d{, see Fig. 8, curves
1 and 2. The chemical potential oscillations in this case are

b
V(eF_d)

P bl
F a

C&sh)zl \/8_3“ strongly suppressed &kgT), that is, the chemical potential
2 \Jeg—A is almost pinned to the large, field independent peak of the
1D DOS.
1 When the bottom of the 1D subband is above the chemi-

(43

cal potential, A — ¢) >0, the “carriers” enclosed by the pla-
) o nar sheets become nondegenerate, their concentration in the
It is seen that the transfer parameter, E4p), significantly  |imit (A — ¢)>kgT is nep(¢) ~exd — (A —)/ksT] [See Fig. 8,

increases only for a very large ratogn/me, when the 1D cyrves 1 and 2 at{(—A)<0], and the transfer parameter
dispersion of the open energy surfaces is very weak and/Qish_ sn_ /57 is greatly reduced.
when the bottom of this 1D subband approaches the Fermi” | ot s now discuss our results in connection with the

energy, i.e., fod—1 (see Fig. 9, curve)5 Note, however, 5yailable experimental data. The asymmetri¢aiverse-
that this enhancement occurs evendf{(A)>kgT [i.e,, (1  sawtooth shape of the magnetization oscillations observed
—d)>kgT/egg], that is, when the “carriers” filling the ;, a-(BEDT-TTF),KHg(SCN),, as reported in Ref. 6, Fig.
open energy §urfa_ces are still de_generate and the approximg(b), is well described by our analytical formulésee Fig.
tion Eq. (39 is still valid [see Fig. 8, curve 3 at{t-A)  5(g) curves 3 and Yexcept at magnetic fields in the vicinity
>0]. ) of the antiferromagnetic—normal metal phase transiti®p,

In the special case when the bottom of the 1D subband is_3_24 T, observed in this metdt® The wave form of the
too close to the chemical potential, i.¢,—A[<kgT, We  magnetization oscillations in the right part of Figb® of
should analyze the situation with the help of the exact funcref. 6 resembles our Fig.(®, curves 3 and 4, foQ=11
tion Eq. (38) (see Fig. 8, curves 1 and.2WVe see that ;Ehe [This value ofQ corresponds to the data of the experiment
transfer parameter determined by E(L5) (here c&”  reported in Ref. 6, Fig. (®): B=23 T, T=2.3 K with cyclo-
~dnsp/d¢) can become maximal and very large in the caseron mass near the above mentioned phase transition taken
when the bottom of the 1D subband is situated near thgom Ref. 8:m./m,=1.2] Curve 3 of Fig. %a) corresponds
Fermi energy(near{—A=0). This is due to the van Hove o c,=10, curve 4 tocg=100. Such large values for the
singularity of the density of state®OS) at the 1D band transfer parameter may be obtained if the bottom of the 1D
edge[see Eq.(38)]. Note, however, that in this case the pand is situated near the Fermi enetgge Fig. 9, curve)s
expansion ofngy(¢) in ¢ [Eqg. (10)] is valid as long a¥  which is not the case for the pure limit of the material con-

Lt (2710) (Mg Imap)(alb)(1—d)— 1
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sidered heré.The presence of an impurity with levels near by Honold et al!° [see Fig. 2b) from Ref. 19. For the ex-
the bottom of the 1D subband can lead to the situation wherperiment of Ref. 19, we get for the metallic phase the value
both the impurity level and the van Hove singularity will for the parameteQ~36 (B=27 T, T=0.5 K, andm,/m,
appear near the Fermi level, leading to large transfer of elec=2), which together with the transfer parametgr- 1 gives
trons and large values of the transfer parameter. an even better fit with the experimental curve.

But even for such large values of the transfer parameter Interesting experimental results concerning the wave
the extremely sharp inverse-sawtooth wave form seen in thehape of magnetoresistance oscillations, also including the
left part of Fig. 2b) of Ref. 6 (in the vicinity of the phase quantized Hall effect, the magnetic breakdown effect, and
transition cannot be explained for the experimental param-the spin-splitting effect in organic 2D metals have appeared
eters given in Ref. 6, even with the cyclotron mass from Refrecently?’=2 But their proper explanation, it seems, is be-
8. Thus in the framework of the model considered here onlyond the scope of the theory proposed here for magnetization
a drastic reduction of the cyclotron mass can lead to th@scillations(dHVA effecy. We hope to generalize our theory
observed inverse-sawtooth wave form of oscillations near th&y taking such phenomena into consideration.
above mentioned phase transition. In Fi¢b)5curves 3 and The different wave forms of magnetization oscillations
4, which correspond t@ = 30, the cyclotron mass should be reported for the same material may be attributed to the dif-
reduced by nearly a factor of 8o obtainQ=230 instead of ferent purity of the samples used, which is expressed in
Q=11), so as to lead to the observed inverse-sawtooth shajjerms of different Dingle temperatures. The possibility of
of the magnetization oscillations. equilibrium electron transfer between impurity levels and the

It should be noted that spin splitting of Landau levels canextended 2D states could lead to more asymmetrical oscilla-
also contribute to the change of the wave form of magnetition wave forms, especially in the case when the impurity
zation oscillations in 2D metals. In the material discussed, &Vels are situated near the Fermi energy. This situation re-
clear spin-splitting structure is seen at very low temperaturéembles the influence of the 1D van Hove singularity dis-
(in Ref. 8 atT=0.48 K). In the experiment reported in Ref. cussed above. The combined influence of both continuous
6, the temperature was raised Te=2.3 K to avoid the ap- and localized levels can lead to an inverse-sawtooth wave
pearance of the spin-split structure. According to our theoform of oscillations for materials with low cyclotron mass
retical conditions for the appearance of the spin-split struceven at relatively high temperatures.
ture derived in Ref. 16, at the experimental parameters of the
material discussed in the region of magnetic fields less than
Bx~23 T, such as the spin-splitting parameter0.35 (cor-

responding to the valugm./m,=4.70 from Ref. 17 and The influence of electrons occupying magnetic field inde-
Q=11, the spin-split structure is forbidden to appear. Hencependent energy leve[s.e., forming an effective reservoir of
we can apply our approach neglecting the spin-splitting efelectrons on open sheets of the Fermi surface, or in localized
fect in this particular experimental case. impurity (defect and intercalant states, etmn the magne-
Another possible mechanism for shifting the maxima oftoquantum oscillations of the chemical potential and magne-
the oscillations to the left, which could lead to an inverse-tization in a 2D metal has been investigated. It is shown
sawtooth-like-shape, is due to the effect of magneticquite generally that the magnetization oscillation wave form
interaction:*® The corresponding shift of the maximum to s a replica of the chemical potential oscillation pattern. They
the left relative to the symmetrical position can be writtenoscillate in phase if the quantized orbits are electronlile,
as Ahe/bp=4m(1—nNgen) (Mo/by)[M(Xr)/Mo], where  there are electron pockets of the Fermi surfaaed in an-
Mo/br=[(e*/c*)/mmc?](Fo/By)?/(meo/me) (Fo is the tiphase if the orbits are holeliké.e., there are hole pockets
fundamental frequency & =0 andng.n, is the demagneti- of the Fermi surface hence, the wave form of magnetization
zation facto). For the parameters of Ref. 6, Figlb2 F,  oscillations is invariant relative to electrons moving in elec-
=674 T,B;=23 T,T=2.3 K, withmgy/m,=1.2 from Ref.  tron or hole orbits. It is also proved quite generally that equi-
8 andM (X,,)/My~0.4 [taken from our Fig. 8) (Q=11)], librium transfer of carriers between a reservoir of field inde-
we find Ahg/b~10 3(1—nge,). The corresponding shift pendent states near the Fermi energy and the Landau levels
due to the presence of the planar Fermi surface sheet is Oiffluences only the shap@vave form of the magnetization
—21In (Q—2)/Q~10* for Q=10[see Eq(34)]. Hence, the oscillations, the amplitude of the magnetization being un-
influence of magnetic interaction on the shape of magnetizachanged.
tion oscillations in the organic metal under study is negli- The chemical potential oscillations are suppressed by suf-
gible in comparison with the electron transfer mechanisnficiently large transfer of carriers. In the case when the res-
discussed above. ervoir states correspond to an open quasiplanar sheet of the
Judging from the band structure of the considered organi€ermi surface, a situation characterizing many of the organic
metal without impurities the value of the transfer constantconductors under study, the quasi-1D nature of the corre-
should becg~1. Hence, a nearly symmetrical wave form of sponding subband can lead to a large enhancement of this
oscillations is predicted by our theory for this material, if electron transfer. For near coincidence of the Fermi energy
relatively pure, down to the lowest temperature ussee  with the bottom of the quasi-1D subband, the chemical po-
Fig. 6), in agreement with the observed oscillations reportedential is pinned to the corresponding van Hove singularity at
in Refs. 8 and 7. Our theoretical curve 2 from Figh)swell the band edge, leading to extreme left-handed asymmetry of
recalls the wave shape of experimental magnetization oscithe magnetization oscillation wave form at sufficiently low
lations obtained for the discussed material in its metalliccemperaturesinverse-sawtooth shape
phase at magnetic fiel8~27 T and temperaturé~0.5 K The opposite limit,cg<<1, for which the magnetization
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oscillations have af —O0 the right-handed sawtooth shape Fermi energy. For such materials more asymmetrical oscil-
(see Ref. § corresponds to a broader range of the relevantations at low temperatures may be observed. The presence
band structure parameters, and so within the present modelaf impurity levels near the Fermi energy can also lead to this
is expected to be a more common phenomenon. This ideaituation.
(canonical ensemblesituation is, however, very sensitive to
the presence of extrinsic types of electron reservoir, such as
intercalant or impurity(defec) states;' which could lead to
the symmetrization of magnetization oscillations. Valuable discussions with A. Gordon are acknowledged.
The typical transfer constant for the quasi-2D organicThis research was supported by the German-Israeli Founda-
metals (BEDT-TTF)X, which iscg=2, leads to only partial tion for scientific research and development, Grant No.
suppression of the chemical potential oscillations, but is inG-0456-220.07/95, and the Israel Science Foundation
the range where the shape of the magnetization oscillation i®unded by the Israel Academy of Sciences and Humanities.
nearly symmetrical at all temperatures. The transfer paramfhe support of the Center for Absorption in Science, Minis-
eter is larger for open 1D bands with effective masg,  try of Immigrant Absorption, State of IsraéGil'adi Foun-
>m,, i.e., for shallower sheets with bottom nearer to thedation is also acknowledged.

ACKNOWLEDGMENTS

ID. ShoenbergMagnetic Oscillations in Metal§Cambridge Uni-  *3N. Harrison, R. Bogaerts, P.H.P. Reinders, J. Singleton, S.J.
versity Press, Cambridge, 1984 Blundell, and F. Gerlach, Phys. Rev.5, 9977(1996.

23. Wosnitza, Int. J. Mod. Phys. B 2707(1993; Fermi Surfaces 1A S. Alexandrov and A.M. Bratkovsky, Phys. Rev. L&t6, 1308
of Low-Dimensional Organic Metals and Superconductors (1996.

(Springer, Berlin, 1996 i 15E. Lifshitz and L. PitaevskyStatistical Physic§Pergamon, Ox-
3].M. Lifshitz and A.M. Kosevich, Zh. Esp. Teor. Fiz.29, 730 ford, 1986, Pt. 2.

(1956 [Sov. Phys. JETR, 636 (1956)]. 18M.A. Itskovsky, S. Askenazy, T. Maniv, I.D. Vagner, E. Balthes,
4R. Peierls, Z. Phys31, 186 (1933. and D. Schweitzer, Phys. Rev. 38, R13 347(1998.
SM. Tokumoto, A.G. Swanson, J.S. Brooks, M. Tamura, H.l'T. Sasaki and T. Fukase, Phys. Rev5® 13 872(1999.

Tajima, and H. Kuroda, Solid State Commuis, 439 (1990. 18M.A. Itskovsky, G.F. Kventsel, and T. Maniv, Phys. Rev5B,

5M. Tokumoto, A.G. Swanson, J.S. Brooks, C.C. Agosta, S.T. 6779(1994).
Hannahs, N. Kinoshita, H. Anzai, M. Tamura, H. Tajima, H. *®M.M. Honold, N. Harrison, J. Singleton, H. Yaguchi, C. Mielke,

Kuroda, A. Ugawa, and K. Yakushi, PhysicalB4, 508(1993. D. Rickel, I. Deckers, P.H.P. Reinders, F. Herlach, M. Kurmoo,
7].S. Brooks, P. Sandhu, J.S. Qualls, S. Hill, and M. Tokumoto, and P. Day, J. Phys.: Condens. Mat®eiL533 (1997.
Physica B246-247 307 (1998. 20N, Harrison, A. House, M.V. Kartsovnik, A.V. Polisski, J. Single-

83, Uji, J.S. Brooks, M. Chaparala, L. Seger, T. Szabo, M. Toku- ton, F. Herlach, W. Hayes, and N.D. Kushch, Phys. Rev. Lett.
moto, N. Kinoshita, T. Kinoshita, Y. Tanaka, and H. Anzai, 77, 1576(1996.

Solid State CommuriL00, 825 (1996. 2IM.M. Honold, N. Harrison, M.-S. Nam, J. Singleton, C.H.
I.D. Vagner, T. Maniv, and E. Ehrenfreund, Phys. Rev. L&1f. Mielke, M. Kurmoo, and P. Day, Phys. Rev.38, 7560(1998.

1700(1983. 22N. Harrison, C.H. Mielke, D.G. Rickel, J. Wosnitza, J.S. Qualls,
10D, Shoenberg, J. Low Temp. Physs, 417 (1984. J.S. Brooks, E. Balthes, D. Schweitzer, I. Heinen, and W.
2D. Vagner, T. Maniv, W. Joss, J.M. van Ruitenbeck, and K.  Strunz, Phys. Rev. B8, 10 248(1998.

Jauregui, Synth. MeB4, 393 (1989. 23M.M. Honold, N. Harrison, J. Singleton, M.-S. Nam, S.J. Blun-

2Mm.A. Itskovsky, T. Maniv, and I.D. Vagner, Z. Phys. B: Condens. dell, C.H. Mielke, M.V. Kartsovnik, and N.D. Kushch, Phys.
Matter 101, 13 (1996. Rev. B59, R10 417(1999.



