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Quantum phase transitions of a square-lattice Heisenberg antiferromagnet with two kinds
of nearest-neighbor bonds: A high-order coupled-cluster treatment
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We study the zero-temperature phase diagram and the low-lying excitations of a square-lattice spin-half
Heisenberg antiferromagnet with two types of regularly distributed nearest-neighbor exchange bonds@J.0
~antiferromagnetic! and2`,J8,`# using the coupled cluster method~CCM! for high orders of approxima-
tion ~up to LSUB8!. We use a Ne´el model state as well as a helical model state as a starting point for the CCM
calculations. We find a second-order transition from a phase with Ne´el order to a finite-gap quantum disordered
phase for sufficiently large antiferromagnetic exchange constantsJ8.0. For frustrating ferromagnetic cou-
plings J8,0 we find indications that quantum fluctuations favor a first-order phase transition from the Ne´el
order to a quantum helical state, by contrast with the corresponding second-order transition in the correspond-
ing classical model. The results are compared to those of exact diagonalizations of finite systems~up to 32
sites! and those of spin-wave and variational calculations. The CCM results agree well with the exact diago-
nalization data over the whole range of the parameters. The special case ofJ850, which is equivalent to the
honeycomb lattice, is treated more closely.
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I. INTRODUCTION

The subject of quantum spin-half antiferromagnetism
low-dimensional systems has attracted a great deal of inte
in recent times in connection with the magnetic properties
the cuprate high-temperature superconductors. Howe
low-dimensional quantum spin systems are of interest
their own right as examples of strongly interacting quant
many-body systems. Although we know from the Merm
Wagner theorem1 that thermal fluctuations are strong enou
to destroy magnetic long-range order at any finite tempe
ture, the role of quantum fluctuations is less understood. A
result of intensive work in the late 1980’s it is now we
established that the ground-state of the Heisenberg antife
magnet on the square lattice with nearest-neighbor inte
tions is long-range ordered~see, for example, the review i
Ref. 2!. However, Anderson’s and Fazekas’ investigatio3

of the triangular lattice led to a conjecture that quantum fl
tuations plus frustration may be sufficient to destroy
Néel-like long-range order in two dimensions. Another sp
cific area of recent research is the spin-halfJ1-J2 antiferro-
magnet on the square-lattice where the frustrating diago
J2 bonds plus quantum fluctuations are able to realiz
second-order transition from Ne´el ordering to a disordered
quantum spin liquid~see, for example, Refs. 4–7, and refe
ences therein!. On the other hand, there are cases in wh
frustration causes a first-order transition in quantum spin s
tems in contrast to a second-order transition in the co
sponding classical model~see, for example, Refs. 8–11!.

In addition to frustration, there is another mechanism
realize the ‘‘melting’’ of Néel ordering in the ground state
of unfrustrated Heisenberg antiferromagnets, namely,
formation of local singlet pairs of two coupled spins. Th
mechanism may be relevant for the quantum disordered s
in bilayer systems12–15 as well as in CaV4O9 ~see, for ex-
PRB 610163-1829/2000/61~21!/14607~9!/$15.00
st
f
r,

n

-

a-
a

ro-
c-

-
e
-

al
a

h
s-
-

o

e

te

ample, Refs. 16–18, and references therein!. The formation
of local singlets is connected with a gap in the excitati
spectrum. By contrast, the opening of a gap in the excita
spectrum of frustrated systems seems to be less clear
might be dependent on details of the exchange interactio

In the present paper, we study a model which conta
both mechanisms, frustration, and singlet formation, in d
ferent parameter regions. We mainly use in this article
coupled cluster method,19–21 which has become widely rec
ognized as one of the most powerful and most univer
techniques in quantum many-body theory. In recent ye
there has been increasing success in applying the CCM
quantum spin systems,7,22–29 especially with the advent o
high-order approximations which utilize computer algebra28

Subsequently, high-order CCM approximations have b
applied to theXXZ model,28 the anisotropicXY model,26 and
the J1-J2 model.7 In addition to the CCM results we als
present variational, spin-wave theory~SWT! and exact di-
agonalization~ED! results for the sake of comparison.

II. THE MODEL

We consider a spin-half Heisenberg model on a squ
lattice with nearest-neighbor bondsJ and J8 in a regular
zigzag pattern as shown in Fig. 1. The Hamiltonian is giv
by

H5J(
^ i j &1

si•sj1J8 (
^ i j &2

si•sj

5
J51

(
i PA

(
p

@11dp,pJ8
~J821!#si•si 1p . ~1!
14 607 ©2000 The American Physical Society
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The sums over̂ i j &1 and ^ i j &2 represent sums over th
nearest-neighbor bonds shown in Fig. 1 by dashed and s
lines, respectively. Throughout the paper we fix theJ bond to
be antiferromagnetic (J.0) and henceforth scale it to th
value J51, and considerJ8 as the free parameter of th
model. We also split the square lattice into the equivalenA
andB sublattices shown in Fig. 1. In Eq.~1! the sum overi
runs over the sites of the sublatticeA, with vectorsp5$(0,
61),(61,0)% connecting nearest neighbors. In particul
pJ85(1,0) pertains to the coupling withJ8 bonds.

Each square lattice plaquette consists of threeJ51 bonds
and oneJ8 bond. In the case of ferromagneticJ8 bonds~i.e.,
J8,0), the plaquettes are frustrated. Conversely, for anti
romagneticJ8 bonds~i.e., J8.0) there is no frustration in
the system, although the difference of the coupling streng
J andJ8 leads to quantum competition. This model has be
treated previously using perturbation theory,30 renormalized
spin wave theory~RSWT!,31 and exact diagonalization
~ED!.32 It allows us to study the influence of local singl
formation (J8.1) and frustration (J8,0) on the stability of
the Néel order within a single model.

Ferromagnetic bonds in an antiferromagnetic matrix h
been discussed in recent times4,33–36 in connection with the
proposal by Aharony and co-workers37 to model localized
oxygen holes in the Cu-O-planes by local ferromagne
bonds between the copper spins. It was argued that ran
ferromagnetic bonds may influence the antiferromagnetic
der drastically and may support the realization of a quan
spin-liquid state.4,35,36

On the other hand, the case of antiferromagneticJ8 bonds
with J8.1 resembles the situation in bilayer systems and
the depleted square-lattice antiferromagnet CaV4O9, in
which the competition between two different antiferroma
netic bonds leads to a phase transition from antiferrom
netic long-range order to quantum disorder with a finite g
It is seen in this article that the transition point obtained
the model of Eq.~1! is quite close to that obtained for th
bilayer model.13

FIG. 1. Illustration of the classical helical state for the squa
lattice Heisenberg antiferromagnet of Eq.~1!, with two kinds of
regularly distributed nearest-neighbour exchange bondsJ ~dashed
lines! andJ8 ~solid lines!. The spin orientations atA andB lattice
sites are defined by the anglesun5nF and un5nF1p, respec-
tively, wheren50,1,2, . . . , andF is the characteristic angle of th
helical state. The state is shown forF5p/12 andn50,1, . . . ,7.
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There are some special cases of the model Hamiltonia
Eq. ~1!. ~i! J851: square-lattice antiferromagnet, for whic
the ground state is long-range ordered;~ii ! J850:
honeycomb-lattice antiferromagnet, for which the grou
state is long-range ordered;~iii ! J852`: spin-1 triangular
lattice, for which the ground state is long-range ordered; a
~iv! J851`: valence-bond solid, for which the ground sta
is a rotationally invariant quantum dimer state with an ex
tation gap.

Classical ground state.For J8.21/3 the Néel state is the
classical ground state of the Hamiltonian of Eq.~1!. At Jc8
521/3 there is classically a second-order phase transitio
a ground state of helical nature~see Fig. 1!, with a charac-
teristic pitch angleF56uFclu given by

uFclu55
0 J8.2

1

3
,

arccosS 1

2
A12

1

J8
D J8<2

1

3
,

~2!

where the different signs correspond to the two chiralitie38

of this helical state. Note that forF50 this is just the Ne´el
state. More generally, the pitch angle varies withJ8 from
uFclu50 for J8.21/3 to uFclu5p/3 for J852`. Note that
uFclu5p/3 ~realized atJ852`) corresponds to the groun
state of the spin-1 triangular lattice. We describe the dir
tions of the spinssA andsB , belonging to theA andB sub-
lattices respectively, for the classical helical state with
characteristic angleF as follows31 ~and see Fig. 1!,

sA~R!5û cosQ•R1 v̂ sinQ•R, ~3!

sB~R1 x̂!5û cos~Q•R1p13F!1 v̂ sin~Q•R1p13F!,

where û and v̂ are perpendicular unit vectors in the sp
space,R runs over the sites of the sublatticeA, and we have
Q5(2F,0) for the pitch vectorQ. We note that this genera
helical state does not have a periodicity in thex direction
becauseF is in general not of the formmp/n with m andn
integral. We also note that we have only three differe
angles between nearest-neighbor spins, namely,6(p2F)
for theJ51 couplings andp23F for the coupling withJ8.

The maximum frustration is in the region aroundJ8'
21. Bearing in mind the situation for theJ1-J2 model, one
might expect that for the extreme quantum case~spin-half!
quantum fluctuations might be able to open the window t
spin-liquid phase for a finite range of parameters around
region of maximum frustration. On the other hand, for stro
antiferromagnetic bonds (J8@1) there is, of course, no indi
cation in the classical model for the breakdown of the N´el
order.

Simple variational ansatz for the quantum ground sta
In the quantum case, the region of strong antiferromagn
J8 bonds (J8@1) is characterized by a tendency to sing
pairing of the two spins corresponding to aJ8 bond. Using a
high-order series expansion30 the Néel order was found to be
stable up to a critical valueJs8'2.56.

-
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A comparable value can be obtained using a simple va
tional wave function similar to that used14 for bilayer sys-
tems, namely,

uCvar&5)
i PA

1

A11t2
@ u↑ i↓ i 1 x̂&2tu↓ i↑ i 1 x̂&], ~4!

where the lattice sitesi and i 1 x̂ correspond to aJ8 bond,
and where the product in Eq.~4! is thus effectively taken
over theJ8 bonds of the lattice of Eq.~1!. The trial function
depends on the variational parametert and interpolates be
tween a valence-bond state realized fort51 and the Ne´el
state fort50. For t51, the singlet pairing is complete an
uCvar& represents an eigenstate of the model of Eq.~1! in the
limit J8→` ~dimer state!. By minimizing ^CvaruHuCvar&
with respect to the variational parametert we get an upper
bound for the ground-state energy per spin of the mode
Eq. ~1!,

Evar/N5H 2~J8213J819!/24, J8<3,

23J8/8, J8.3. ~5!

The relevant order parameter describing the Ne´el order is

M var5^Cvarusi
zuCvar&5H 1/2A12J82/9, J8<3,

0, J8.3. ~6!

showing a breakdown of the Ne´el order at a critical value
Js853.

III. COUPLED CLUSTER CALCULATIONS

A. The ground-state formalism

The starting point for any CCM calculation~see overwiew
in Ref. 21! is the choice of a normalized model or referen
stateuF&, together with a set of mutually commuting mult
spin creation operatorsCI

1 which are defined over a com
plete set of many-body configurationsI. The operatorsCI are
the multispin destruction operators and are defined to be
Hermitian adjoints of theCI

1 . We choose$uF&;CI
1% in such

a way that we havêFuCI
1505CI uF&, ;IÞ0, where, by

definiton,C0
151, the identity operator.

For spin systems, an appropriate choice for the CC
model stateuF& is often a classical spin state,23 in which the
most general situation is that each spin can point in an a
trary direction. For the case of the Hamiltonian of Eq.~1!,
we choose the helical state illustrated in Fig. 1 to be
model state. Although the classical ground state of Eq.~1! is
precisely of this form, we do not choose the classical re
for the pitch angleF but we consider it rather as a fre
parameter in the CCM calculation.

In order to perform a CCM calculation, we would like t
treat each site equivalently and we do this by performin
rotation of the local spin axes at each site about they axis
such that all spins in the model state align in the same di
tion, say down~along the negativez axis!. After this trans-
formation we have
a-

f

he

i-

r

lt

a

c-

uF&5u•••↓↓↓•••&, CI
15sr

1 ,sr
1sr 8

1 ,sr
1sr 8

1sr 9
1 , . . . ,

~7!

~where the indicesr ,r 8,r 9, . . . denote any lattice site! re-
spectively, for the model state and the multispin creat
operators, which now consist of spin-raising operators on

In order to make the spinsi point down let us suppose w
need to perform such a rotation of the spin axes by an an
d i . This is equivalent to the transformation

si
x→cosd isi

x1sind isi
z ,

si
y→si

y , ~8!

si
z→2sind isi

x1cosd isi
z .

A similar rotation about they-axis by an angled j is per-
formed for the spinsj . Thus we get for the transformation o
the scalar product of the two spinssi•sj→(si•sj )w , where

~si•sj !w[sinw@si
xsj

z2si
zsj

x#1cosw@si
xsj

x1si
zsj

z#1si
ysj

y

5
1

2
sinw@si

1sj
z2si

zsj
11si

2sj
z2si

zsj
2#1coswsi

zsj
z

1
1

4
~cosw11!@si

1sj
21si

2sj
1#

1
1

4
~cosw21!@si

1sj
11si

2sj
2#. ~9!

The anglew[d j2d i is the angle between the two spins, a
s6[sx6 isy are the spin-raising and spin-lowering operato
Note that this product of two spins after the rotation depe
not only on the anglebetweenthem, but also on the sign o
this angle. In case of the Ne´el model state (F50), the angle
between any neighboring spins isp, and hence Eq.~9! be-
comessi•sj→2 1

2 @si
1sj

11si
2sj

2#2si
zsj

z .
Using the helical state of Eq.~3! with the characteristic

angleF, the Hamiltonian of Eq.~1! is now rewritten in the
local coordinates as

H5(
i PA

(
p

@11dp,pJ8
~J821!#~si•si 1p!wp

, ~10!

where the angles between neighboring spins arew6 ŷ5p
1F, w2 x̂5p2F andw x̂5p13F. While the general heli-
cal state~see Fig. 1! does not have translational symmetry
thex direction, the transformed Hamiltonian of Eq.~10! does
have this symmetry since it depends only on the angles
tween neighboring spins.

Having defined an appropriate model stateuF& with cre-
ation operatorsCI

1 , the CCM parametrizations of the ket an
bra ground states are given by

uC&5eSuF&, S5(
IÞ0

SICI
1 , ~11!
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^C̃u5^FuS̃e2S, S̃511(
IÞ0

S̃ICI . ~12!

The correlation operatorS is expressed in terms of the cre
ation operatorsCI

1 and the ket-state correlation coefficien
SI . We can now write the ground-state energy as

E5^Fue2SHeSuF&. ~13!

To describe the magnetic order of the system, we us
simple order parameter which is expressed in terms of
local, rotated spin axes, and which is given by

M[2^C̃usi
zuC&, ~14!

such that the order parameter represents the on-site ma
tization. Note thatM is the usual sublattice magnetization f
the case of the Ne´el state as the CCM model state.

To find the ket-state and bra-state correlation coefficie
we have to require that the expectation valueH̄5^C̃uHuC&
is a minimum with respect to the bra-state and ket-state
relation coefficients. This formalism is exact if we include
possible multispin configurations in the correlation operat
S andS̃, which is usually impossible in a practical situatio
We use the LSUBn approximation scheme28 to truncate the
expansion ofS and S̃ in Eqs.~11! and ~12!.

Using the lattice symmetries, we have now to find
differentpossible configurations with respect to the point a
space group symmetries of both the lattice and Hamilton
with up to n spins spanning a range of no more thann adja-
cent lattice sites~LSUBn approximation! and these are re
ferred to as the fundamental configurations.

The Hamiltonian of Eq.~1! has four lattice point-group
symmetries, namely, two rotational operations(0°,180°)
and two reflections~along thex andy axes!, defined by

x→x, y→y, x→2~x11!, y→2y,

x→x, y→2y, x→2~x11!, y→y. ~15!

The rotation of 180° and the reflection along they-axis are
connected by a shift ofx̂5(1,0). The translational operatorT
is defined by

T5~n1m!x̂1~m2n!ŷ, n,m integral, ~16!

such that translational symmetry is preserved.
The Néel model state also contains these symmetries,

so for this model state we can directly apply all these sy
metries in finding the fundamental configurations. On
other hand the general helical model state (FÞ0) has only
two of the above four lattice point-group symmetrie
namely,x→x, y→y, andx→x, y→2y, and so this re-
duced symmetry yields a larger number of fundamental c
figurations.

In the case of the Ne´el model state (F50), the number of
fundamental configurations can further be reduced by exp
itly conserving the total uniform magnetizationsT

z[(ksk
z

~the sum onk runs over all lattice sites! because the groun
state is known to lie in thesT

z50 subspace. This means th
a
e
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we exclude configurations with an odd number of spins, a
therefore we do not use LSUB3, LSUB5, etc., approxim
tions. The helical state is not an eigenstate ofsT

z and we
cannot apply this property when using the helical mo
state. The fundamental configurations can now be calcula
computationally,28 and the resulting numbers of LSUBn con-
figurations forn<8 are given in Table I.

The ket-state and bra-state equations are calcul
computationally.28 For the Néel model state, we are able t
carry out the CCM up to the LSUB8 level~where we need to
solve 4986 coupled equations!, whereas for the helical stat
we could do this only up to the LSUB6 level~where we need
to solve 1638 coupled equations!.

B. The excited state formalism

We use the excited-state formalism of Emrich39,23,40 to
approximate the excited-state wave functions. We apply
excitation operatorXe linearly to the ket state wave functio
~11!, such that

uCe&5XeeSuF&, Xe5(
IÞ0

X I
eCI

1 . ~17!

Using the Schro¨dinger equationHuCe&5EeuCe&, we find
that

eeX
euF&5e2S@H,Xe#2eSuF&, ~18!

whereee ([Ee2E) is the difference between the excite
state energy (Ee) and the ground-state energy (E). Applying
^FuCI to Eq. ~18! we find that

eeX I
e5^FuCIe

2S@H,Xe#2eSuF&, ~19!

which is an eigenvalue equation with eigenvaluesee and
corresponding eigenvectorsX I

e .
As for the ground state, we must use an approximat

scheme forXe in Eq. ~17!. Although it is not necessary40 to
use the same approximation for the excited state as for
ground state, we in fact do so to keep the CCM calculatio
as systematic and self-consistent as possible. We define
fundamental configurations for LSUBn ~for the Néel state!
as previously, but we now restrict the choice of configu
tions to contain only those which produce a change ofsT

z of
61 with respect to the model state.40 Since we are only
interested in the lowest-lying excitations, the restriction
these single-magnon spin-wave-like excitations is the cor

TABLE I. Number of fundamental ground-state configuratio
of the LSUBn approximation for the Hamiltonian of Eq.~1!, using
a Néel state (F50) and a helical state (FÞ0) for the CCM model
state, and the number of fundamental excited state configurat
using the Ne´el model state only.

LSUBn ground state:F50 FÞ0 excited state:F50

2 3 5 1
4 22 76 16
6 267 1638 331
8 4986 42160 7863
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choice. The number of fundamental excited-state configu
tions for LSUBn is given in Table I.

To calculate the terms of the right hand side of Eq.~19!
we use the same computational algorithm as for the calc
tion of the ground-state ket equation. The terms contain
ground ket-state correlation coefficientsSI , so once these
coefficients have been determined the eigenvalue equa
~19! can be solved~numerically!. We furthermore choose th
lowest energy eigenvalue of Eq.~19! in order to calculate the
excitation energy gapD. We note that the eigenvalues of E
~19! are not guaranteed to be real, since as a genera
eigenvalue equation it is not symmetric. However, over
entire regime of interest, the values ofD so obtained are
found to be real. We have performed these calculations
the excited state up to the LSUB6 level of approximation

C. Extrapolation of the CCM-LSUBn results

Although no scaling theory for results of LSUBn approxi-
mations has yet been proven, there are empir
indications24,26,28,40of scaling laws for the energy, the mag
netization, and the excited-state energy gap for various
models.

These scaling laws can be justified by the observati
that they fit the results well~i.e., with low mean-square de
viation!, and that the extrapolated results are in good ag
ment with results of other methods@e.g., Green function
Monte Carlo or series expansion for the two-dimensio
~2D! XXZ model24,28# or with exact results~e.g., 1D XY
model26!. In accordance with those previous results we u
the following scaling laws: for the ground-state energy,

E5a01a1~1/n2!1a2~1/n2!2; ~20!

for the ground-state magnetization,

M5b01b1~1/n!1b2~1/n!2; ~21!

and for the gap of the lowest-lying excitations,

D5c01c1~1/n!1c2~1/n!2; ~22!

wheren is the LSUBn approximation level.

D. Choice of the CCM model state

As stated previously, we use the helical state of Eq.~3!
with the characteristic angleF, illustrated in Fig. 1, as the
model state for the CCM. We must therefore make a se
tion of an appropriate value forF. A possible choice would
be the classical ground state of the Hamiltonian of Eq.~1!
@i.e., F5Fcl as given by Eq.~2!#.

Another possibility is to perform a CCM-LSUBn approxi-
mation calculation and then to minimize the correspond
LSUBn approximation to the energy with respect toF,

ELSUBn~F!→min ⇔ F5FLSUBn . ~23!

The results forFLSUBn will be given later~Fig. 7!. However,
we note now that although the CCM does not yield a st
upper bound for the ground-state energy, usingF5FLSUBn
~i.e., using the CCM with a variational parameter! has been
a-
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e

or

al

in

s

e-

l

e

c-

g

t

found to be a reasonable assumption.25 There are severa
additional arguments to suggest thatF5FLSUBn is indeed a
better choice thanF5Fcl , as indicated below.

In the first place we note that we cannot find solutions
the LSUB6 equations usingF5Fcl(J8) in the region20.7
&J8&20.47 insofar as the Newton method used to so
these equations does not converge in that region. This
clear indication that this model state is not a good one.
contrast, such behavior is not found forF5FLSUBn .

Secondly, it is generally known that quantum fluctuatio
tend to prefer collinear order4,42 ~e.g., Néel order!. We will
indeed find~and see Fig. 7 below! that the Ne´el ordering
(F50) seems to survive for someJ8,21/3, in which re-
gion it has already broken down in the classical case. Thi
also in agreement with results of exact diagonalizations
our model~and see Fig. 5 below!.

Thirdly we find better agreement of the CCM results f
the energy compared to exact diagonalization results by
ing the helical state as the model state with the valueF
5FLSUBn rather than with the classical valueF5Fcl . We
find that CCM results for the ground-state energy usua
agree well with the corresponding ED results~and with re-
sults of other methods!,28 provided that a good CCM mode
state is chosen.

We therefore use the helical state withF5FLSUBn as the
CCM model state throughout this paper. Note that forJ8>
21/3 this model state is identical to the classical grou
state of Eq.~1! but that forJ8,21/3 it is not.

IV. RESULTS

Using the CCM scheme described above, we calculate
approximate ground state and the low-lying excitations
the Hamiltonian of Eq.~1!. For comparison we also exactl
diagonalize finite sized lattices of square shape. We use
riodic boundary conditions withN516,18,20,26, and 32
spins, and we extrapolate to the infinite system using s
dard finite-size scaling laws.41,42 We present results for the
ground-state energy, the order parameter and the excita
gap. We examine the formation of local singlets~for J8
.1), the effects of frustration~for J8,0), and the specia
case of the honeycomb lattice (J850).

J8.1: Formation of local singlets.Using the CCM we
obtain clear indications of a second-order phase transitio
a disordered dimerlike phase at a certain critical value ofJ8,
namely,Js8 . ForJ8.Js8 , the Néel-like long range order melts
@i.e., the sublattice magnetizationM given by Eq.~14! be-
comes zero#. Our estimate forJs8 using the four extrapolated
LSUBn results for M with n52,4,6,8 ~see Fig. 2! is Js8
'3.41. However, using only the three CCM LSUBn ap-
proximations withn54,6,8 for the extrapolation, we obtai
a valueJs8'3.16, which indicates that the true value could
even somewhat smaller. This is in agreement with our c
responding result using exact diagonalizations of small s
tems. By using the extrapolation scheme of Ref. 42, we fi
a critical valueJs8'2.45 for the magnetization. Note, how
ever, that better accuracy requires larger systems becau
the exact diagonalization~ED! extrapolation ansatz forM
~i.e., M5M`1const3N21/2). Therefore, we cannot con
sider the ED results for the magnetization~and see Fig. 2! as
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quantitatively correct. Our two results for the criticalJs8 also
agree with the estimateJs8'2.56 from series expansion,30

and even the resultJs853 from the simple variational ansat
of Eq. ~4! agrees surprisingly well with these values. B
contrast, the second-order renormalized spin wave the
~RSWT! ~Ref. 31! gives the larger resultJs8'5.0, indicating
that the standard spin-wave approach is insufficient to
scribe this type of transition.

Another indication of a dimerized phase is the appeara
of a gapD between the ground state and the lowest-ly
excited state. We clearly expect a spectrum with gap
Goldstone modes if the ground state is Ne´el long-range or-
dered, whereas for a disordered singlet ground-state the
mation of triplet excitations may cost a finite amount of e
ergy. This behavior is reflected by our results using b
CCM and exact diagonalization~see Fig. 3!, which agree
well with each other. ForJ8@Js8 , there is a gap proportiona
to J8, corresponding to the dimerlike nature of the grou
state. The gap obviously opens in the range 2.5&Js8&3.0 in
both the ED and CCM calculations. This is in good agre
ment with the corresponding estimates for the critical po
using the order parameter. Note, that the standard linear
wave theory fails in calculating the gap~i.e., gives gapless
modes for all values ofJ8 with J8.0).31

By comparing the results for the ground-state energy,
find excellent agreement between the CCM results and
results from exact diagonalization~see Fig. 4! for J8.0. By
contrast, spin-wave theory~SWT! calculations31 show a sig-
nificant deviation from these results for largerJ8@1. These
spin-wave results are obviously poor since the simple up
bound for the energy given by Eq.~5! ~e.g.,E0521.5 for
J854) is smaller than the corresponding SWT results~e.g.,
E0521.42 from second-order RSWT!. By contrast, CCM
and ED results~both are aboutE0521.54 for J854) are

FIG. 2. Ground-state magnetic order parameter@Eq. ~14!# versus
J8, for the CCM-LSUBn approximation. The results are compar
~for the Néel region only! with Ms(`), using exact diagonalization
~ED! data of the antiferromagnetic structure factor, using the an
Ms

25(1/N2)( i , j (21)i 1 j^si•sj&5Ms(`)21const3N21/2. Note that
both extrapolated results fit poorly in a region aroundJ8'21, and
we therefore plot them here as isolated points~omitting the solid
lines!.
ry
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slightly smaller than the variational result. While both CC
and SWT calculations have the Ne´el state as starting point
we find the CCM is much better able than SWT to descr
the transition to the rotationally invariant disordered st
and to the completely dimerized state@represented by the
variational function of Eq.~4! with t51#. Note that even the
simplest CCM approximation~LSUB2! gives the correct
asymptotic result for the energy@i.e., Eq.~5!# for very large
values ofJ8, whereas SWT does not. For the case of the p
square-lattice Heisenberg antiferromagnet~i.e., J851), we
reproduce the CCM results of Refs. 28,40, which have
ready been demonstrated to agree well with those from o
methods.

J850: honeycomb lattice.For the special case ofJ850
~which is equivalent to the honeycomb lattice!, we find that
the CCM and the ED results are in good agreement~see
Table II!. However, the magnetizationM for ED is found to

tz

FIG. 3. The gapD between the lowest-lying excitation energ
and the ground-state energy versusJ8 using the CCM-LSUBn ap-
proximations, in comparison with the extrapolated result of ex
diagonalization~ED! ~using the ansatzD5D`1const3N21).

FIG. 4. Ground-state energy@Eq. ~13!# versusJ8 for the ex-
trapolated CCM-LSUBn approximations, in comparison with re
sults of spin-wave theory~linear and second-order renormalized!,
~Ref. 31! and with the extrapolated result of exact diagonalizat
~ED! data~using the ansatzE/N5E` /N1const3N23/2).
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be smaller then the CCM result. We note, however, that
CCM result for M at this point agrees with the result o
high-order SWT~Ref. 31! (M50.28) as well as with the
result of series expansion43 (M50.26), although it does no
agree so well with the result of Monte Carlo calculation44

(M50.22). We note too that our CCM results here ag
perfectly with previous lower-order CCM calculations.27

J8,0: Frustration.For J8&22, we find that the extrapo
lated ED results for the energy lie appreciably above
CCM ~and SWT! results ~see Fig. 4!. This is because the
energies for the small lattices considered do not fit well
the finite-size scaling law (E/N5E` /N1const3N23/2) in
this region. The finite-size effects for systems with an inco
mensurate helical structure are found to be larger than
systems with, for example, Ne´el order or with dimerized spin
pairs. However, we find that our best ED result~with 32
spins! shows only very small deviations from the CCM r
sult, even in the frustrated region.

While classically we have a second-order phase transi
~from Néel order to helical order! at Jc8521/3, using the
CCM we find indications for a shift of this critical point to
value Jc8'21.35 ~see Fig. 7! below in the quantum case
The ED data of the structure factors~see Fig. 5! also show a

TABLE II. Ground-state energy per spin, sublattice magneti
tion, and excitation energy gap for the Hamiltonian of Eq.~1! with
J850. This special case is equivalent to the honeycomb lattice.
present~extrapolated! LSUBn results and extrapolated ED result

LSUB2 LSUB4 LSUB6 LSUB8 extrapolated ED

E/N 20.525 20.540 20.542 20.543 20.5447 20.543
M 0.399 0.354 0.334 0.321 0.28 0.23
gap 1.182 0.678 0.476 0.02 0.06

FIG. 5. Ground-state structure factorS(k)}( i , j PAei(Rj 2Ri )•k^si

•sj& ~i.e., the summation is taken over one sublattice! for the Hamil-
tonian of Eq.~1! with 32 spins, for the quantum and the classic
case. The Ne´el order@k5(0,0)# becomes unstable against the he
cal order in the classical model forJ8,20.5, but in the quantum
model the Ne´el ordering gives way to helical order only forJ8&
21.1 ~i.e., the Ne´el ordering is stable quantum-mechanically in
region where it is classically already unstable!.
e

e

e

o

-
or

n

shift of the transition to stronger ferromagneticJ8 bonds.
Both correspond to the general picture that quantum fluc
tions prefer a collinear ordering~such as Ne´el order!. Hence
this ordered state can survive for the quantum case in
region where classically it is already unstable. The N´el
model state (F50) gives the minimum ground-state energ
for all valuesJ8.Jc8 , whereJc8 is also dependent on the leve
of LSUBn approximation level. ForJ8,Jc8 another mini-
mum in the energy forFÞ0 is found to lie lower than the
minimum atF50 ~see Fig. 6!. The state forFÞ0 is be-
lieved to be a quantum analog of the classical ground stat
two dimensions. Furthermore, the crossover from one m
mum solution to the other is not smooth but is abrupt at t
point ~see Fig. 6 and Fig. 7!. This behavior is assumed her
to be an indication of a phase transition. Furthermore
might also indicate that this is a first-order phase transit
and, consequently, that due to quantum fluctuations the
ture of this phase transition is changed from the class
second-order type to a first-order type.

The behavior of the order parameter~see Fig. 2! in the
region aroundJc8'21.35 where we expect the aboveme
tioned quantum phase transition is also quite marked.
cannot extrapolate the LSUBn results directly, because th
phase transition points shift with the order of the LSUBn
approximations~Fig. 7!. We thus find a large statistical de
viation of the extrapolated results in the region21.4&J8&
21.0. Hence, we use the minima forM in that region to
extrapolate an estimation of the order parameter. We
that minimum (M'0.05) to be at a value ofJ8'21.2. The
extrapolated ED results do not agree very well with this
sult, since these giveM to be zero atJ8'20.8. However,
these results are also very poor in that region because o
strong influence of the boundary conditions and large sta
tical errors. As a result of these difficulties we are not able
decide whether or not quantum fluctuations and frustrat
are able to form a disordered quantum spin liquid phase~i.e.,
with M50) between the Ne´el state and the helical state fo

-

e

l

FIG. 6. Ground-state energy of the Hamiltonian of Eq.~1! using
CCM-LSUB4 versus the parameterF of the helical CCM model
state for certain values ofJ8 in the range21.5<J8<21.0. A local
minimum ofE(F) at FÞ0 appears forJ8&21.1, which for values
of J8&21.35 becomes a global minimum@i.e., at F
5FLSUB4(J8)#, indicating the typical scenario of a first-order pha
transition. The arrows~v! indicate the value ofFcl for the different
values ofJ8.
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some finite frustratingJ8,0 regime. However, the CCM
results suggest that there is either no quantum spin liq
phase or that, if it does exist, it does so only in a very sm
region.

FIG. 7. The angleFLSUBn @which minimizes the energyE(F),
see Eq.~23!# versusJ8, compared with the corresponding classic
result Fcl @see Eq.~2!#. We find in the quantum case~LSUBn) a
first-order phase transition~e.g., for LSUB6 atJ8'21.35 where
FLSUBn jumps discontinuously from zero to about 0.65!. By
contrast, in the classical case a second-order transition occu
J8521/3.
a

en

n

id
ll

V. SUMMARY

Using the CCM we have studied the influence of quant
spin fluctuations on both the ground-state phase diagram
the excited states of a spin-half square-lattice Heisenberg
tiferromagnet with two kinds of nearest-neighbor exchan
bonds. The phase diagram is found to contain a quan
helical phase, a Ne´el ordered phase, and a finite-gap quantu
disordered phase. While we have clearly a second-order t
sition from the Ne´el phase to the finite-gap quantum diso
dered phase, we also found indications of a quantum-indu
first-order transition from the Ne´el phase to the helical phase
for which classically we have a second-order transitio
While our CCM results were in general in good agreem
with the ED data, we found the CCM particularly good
describing the dimerized phase. By contrast, spin w
theory31 fails in that region due to enhanced longitudinal sp
fluctuations. Accurate high-order CCM results for the an
ferromagnet on the honeycomb lattice were also present
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