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We study the zero-temperature phase diagram and the low-lying excitations of a square-lattice spin-half
Heisenberg antiferromagnet with two types of regularly distributed nearest-neighbor exchang¢ Jrefds
(antiferromagneticand — o <J’ <] using the coupled cluster meth¢@dCM) for high orders of approxima-
tion (up to LSUBS. We use a Nel model state as well as a helical model state as a starting point for the CCM
calculations. We find a second-order transition from a phase witth déder to a finite-gap quantum disordered
phase for sufficiently large antiferromagnetic exchange constEnt®. For frustrating ferromagnetic cou-
plings J’ <0 we find indications that quantum fluctuations favor a first-order phase transition from éhe Ne
order to a quantum helical state, by contrast with the corresponding second-order transition in the correspond-
ing classical model. The results are compared to those of exact diagonalizations of finite SysamS82
siteg and those of spin-wave and variational calculations. The CCM results agree well with the exact diago-
nalization data over the whole range of the parameters. The special cadse @f which is equivalent to the
honeycomb lattice, is treated more closely.

[. INTRODUCTION ample, Refs. 16—18, and references therelime formation
of local singlets is connected with a gap in the excitation
The subject of quantum spin-half antiferromagnetism inspectrum. By contrast, the opening of a gap in the excitation
low-dimensional systems has attracted a great deal of interespectrum of frustrated systems seems to be less clear and
in recent times in connection with the magnetic properties ofnight be dependent on details of the exchange interactions.
the cuprate high-temperature superconductors. However, In the present paper, we study a model which contains
low-dimensional quantum spin systems are of interest irboth mechanisms, frustration, and singlet formation, in dif-
their own right as examples of strongly interacting quantunferent parameter regions. We mainly use in this article the
many-body systems. Although we know from the Mermin- coupled cluster methad;2* which has become widely rec-
Wagner theorefthat thermal fluctuations are strong enoughognized as one of the most powerful and most universal
to destroy magnetic long-range order at any finite temperatechniques in quantum many-body theory. In recent years
ture, the role of quantum fluctuations is less understood. As there has been increasing success in applying the CCM to
result of intensive work in the late 1980's it is now well- quantum spin systeni€?~%° especially with the advent of
established that the ground-state of the Heisenberg antiferrd¥igh-order approximations which utilize computer algetira.
magnet on the square lattice with nearest-neighbor interacsubsequently, high-order CCM approximations have been
tions is long-range ordere@ee, for example, the review in applied to theXXZ model?® the anisotropick Y model?® and
Ref. 2. However, Anderson’s and Fazekas' investigations the J;-J, model’ In addition to the CCM results we also
of the triangular lattice led to a conjecture that quantum flucpresent variational, spin-wave theofWT) and exact di-
tuations plus frustration may be sufficient to destroy theagonalizationED) results for the sake of comparison.
Neel-like long-range order in two dimensions. Another spe-
cific area of recent research is the spin-iBHJ, antiferro-
magnet on the square-lattice where the frustrating diagonal Il. THE MODEL
J, bonds plus quantum fluctuations are able to realize a
second-order transition from Meordering to a disordered
guantum spin liquidsee, for example, Refs. 4—7, and refer-
ences therein On the other hand, there are cases in whic
frustration causes a first-order transition in quantum spin sys-
tems in contrast to a second-order transition in the corre-
sponding classical modésee, for example, Refs. 8—-11
In addition to frustration, there is another mechanism to H=J, §-5+J > S-S
realize the “melting” of Neel ordering in the ground states (1 ()2
of unfrustrated Heisenberg antiferromagnets, namely, the
formation of local singlet pairs of two coupled spins. This -1
mechanism may be relevant for the quantum disordered state _ r_ )
in bilayer system€~1% as well as in CayO, (see, for ex- EA % (1400, (= D)IS S4p- @

We consider a spin-half Heisenberg model on a square
lattice with nearest-neighbor bondsand J’ in a regular
zigzag pattern as shown in Fig. 1. The Hamiltonian is given
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I There are some special cases of the model Hamiltonian of

________________ Eqg. (1). (i) J’=1: square-lattice antiferromagnet, for which
“« f‘:: U2 5 16 the ground state is long-range orderedi) J'=0:
: i i honeycomb-lattice antiferromagnet, for which the ground

state is long-range orderedii) J’ = —«: spin-1 triangular
________ AQ® lattice, for which the ground state is long-range ordered; and
d: ; 3 7 (iv) 3’ = +: valence-bond solid, for which the ground state
BO is a rotationally invariant quantum dimer state with an exci-

tation gap.
4/@ ________ " o i Classical ground statezor J' > — 1/3 the Nel state is the
| 2 i 5 i 6 classical ground state of the Hamiltonian of Eg). At J/
i i J = —1/3 there is classically a second-order phase transition to
i i a ground state of helical natufeee Fig. 1, with a charac-

Wé’ ------- 7Y, teristic pitch angleb = +|® | given by

FIG. 1. lllustration of the classical helical state for the square- 0 J>-— E
lattice Heisenberg antiferromagnet of EG), with two kinds of 3
regularly distributed nearest-neighbour exchange bahtashed |q)cl| = { 1 1 ) 1 2
lines) andJ’ (solid lineg. The spin orientations & andB lattice arccos =\/1-—| J=-=,
sites are defined by the anglés=n® and 6,=n® + 7, respec- 2 J’ 3
tively, wheren=0,1,2 . .., and® is the characteristic angle of the

helical state. The state is shown &= #/12 andn=0,1, ...,7. ] ] .
where the different signs correspond to the two chirafifies

The sums over(ij); and (ij), represent sums over the of this helical state. Note that fab=0 this is just the Nel
nearest-neighbor bonds shown in Fig. 1 by dashed and soligtate. More generally, the pitch angle varies wdthfrom
lines, rgspectwely. Throughout the paper we f|xjitg)nd to |y =0 for J'>—1/3 to|dy| = /3 for I = — . Note that
be antiferromagneticJ;>0) and henceforth scale it to the || = m/3 (realized at)’ = —x) corresponds to the ground

Va“ée IJ Cvl' Elmd cci_nsir(]jed’ as tf|1e .free. parerl]meter_og}éhe state of the spin-1 triangular lattice. We describe the direc-
model. We also split the square lattice into the equivakent o ¢ 1o spins, andss, belonging to theA and B sub-

andB sublattlce_s shown in Fig. 1.' In E.ql) the sum over lattices respectively, for the classical helical state with a
runs over the sites of the sublattiée with vectorsp={(0, characteristic anglé as follows (and see Fig. 1
+1),(+1,0)} connecting nearest neighbors. In particular,

p;=(1,0) pertains to the coupling with’ bonds. ~ R

Each square lattice plaquette consists of thired bonds sa(R)=ucosQ-R+vsinQ-R, 3
and onel’ bond. In the case of ferromagnei¢ bonds(i.e.,
J'<0), the plaquettes are frustrated. Conversely, for antifer-
romagnetic)’ bonds(i.e., J’>0) there is no frustration in
the system, although the difference of the coupling strengths . .
JandJ’ leads to quantum competition. This model has beefwhere u and v are perpendicular unit vectors in the spin
treated previously using perturbation thedtyenormalized spaceR runs over the sites of the sublattiée and we have
spin wave theory(RSWT),®! and exact diagonalization Q=(2®,0) for the pitch vectoQ. We note that this general
(ED).* It allows us to study the influence of local singlet helical state does not have a periodicity in thelirection
formation ' >1) and frustration ' <0) on the stability of ~becauseb is in general not of the forrmz/n with m andn
the Neel order within a single model. integral. We also note that we have only three different

Ferromagnetic bonds in an antiferromagnetic matrix havéngles between nearest-neighbor spins, namefyy— @)
been discussed in recent tifié$3%in connection with the for theJ=1 couplings andr—3® for the coupling withJ".
proposal by Aharony and co-workéfso model localized The maximum frustration is in the region aroudd~
oxygen holes in the Cu-O-planes by local ferromagnetic—1. Bearing in mind the situation for thi-J, model, one
bonds between the copper spins. It was argued that randomight expect that for the extreme quantum césgin-half
ferromagnetic bonds may influence the antiferromagnetic orquantum fluctuations might be able to open the window to a
der drastically and may support the realization of a quantunspin-liquid phase for a finite range of parameters around this
spin-liquid staté35-3 region of maximum frustration. On the other hand, for strong

On the other hand, the case of antiferromagn&tibonds  antiferromagnetic bonds)(>1) there is, of course, no/indi-
with J’>1 resembles the situation in bilayer systems and ircation in the classical model for the breakdown of theeNe
the depleted square-lattice antiferromagnet g2y in  order.
which the competition between two different antiferromag- Simple variational ansatz for the quantum ground state.
netic bonds leads to a phase transition from antiferromag the quantum case, the region of strong antiferromagnetic
netic long-range order to quantum disorder with a finite gapJ’ bonds ('>1) is characterized by a tendency to singlet
It is seen in this article that the transition point obtained forpairing of the two spins corresponding tddabond. Using a
the model of Eq(1) is quite close to that obtained for the high-order series expansitithe Neel order was found to be
bilayer modef:® stable up to a critical valug.~2.56.

ss(R+X)=0cogQ-R+7+3P)+Vvsin(Q-R+ 7+3D),
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A comparable value can be obtained using a simple varia- |DYy=|---||]---), C=s",s's",s's"s’, ...,
tional wave function similar to that us¥dfor bilayer sys- ' o @)
tems, namely,
(where the indices,r’,r”, ... denote any lattice sitae-
spectively, for the model state and the multispin creation
W o) = H 1 T R (R 4) operators, which now consist of spin-raising operators only.
R S NN R AL P In order to make the spig point down let us suppose we

need to perform such a rotation of the spin axes by an angle
where the lattice sitesandi+X correspond to @’ bond, &;. This is equivalent to the transformation
and where the product in E¢4) is thus effectively taken
over theJ’ bonds of the lattice of Eq1). The trial function
depends on the variational parameteand interpolates be-
tween a valence-bond state realized ferl and the Nel
state fort=0. Fort=1, the singlet pairing is complete and s/ —sY, (8)
| W) represents an eigenstate of the model of @gin the
limit J’—c (dimer statg By minimizing (W 4/H| ¥4,

S —C0ss;s +sin s/,

with respect to the variational parametewe get an upper Si— —sin s+ cossis! .
E(():]u?:l(.j) for the ground-state energy per spin of the model OfA similar rotation about the/-axis by an angles; is per-

formed for the spirs;. Thus we get for the transformation of

the scalar product of the two spiss s—(s-s)),, where
—(J'?+3J'+9)/24, J'<3,

BvalN=1 -33'/8, 3'>3, ® (-5 ,=sing[s's/—s/s{]+ cosg[ s/ +s7s7] + 5!

The relevant order parameter describing thelNeder is 1

=5sing[s"s{—sfs/ +s; s/ —sfs; ]+ coses(s]
1/21-3'%19, J'<3,
= Z = 12 1
Myar (qjvar|s||q,var> 0, J'>3. (6) +Z(COS(p+ 1)[Si+SJ—7+SFS]-+]
showing a breakdown of the Meorder at a critical value 1 e
Ji=3. +Z(cos<p—1)[si sy +ss ] 9)
Ill. COUPLED CLUSTER CALCULATIONS The anglep= 6;— 6; is the angle between the two spins, and
. s*=s*+is¥ are the spin-raising and spin-lowering operators.
A. The ground-state formalism Note that this product of two spins after the rotation depends

The starting point for any CCM calculatidsee overwiew N0t only on the angléetweerthem, but also on the sign of
in Ref. 2)) is the choice of a normalized model or referencethis angle. In case of the emodel state  =0), the angle
state|®), together with a set of mutually commuting multi- Petween any n?lgh+b(1r|ngisp7|ns~zs and hence Eq9) be-

. ) b , s —ilgtst+g5 51— g2z
spin creation operator§;” which are defined over a com- COMeSS-§——3[ss; +§; 5 | —Sis;. o
plete set of many-body configuratiohsThe operator€, are Using the helical state of Eq3) with the characteristic
the multispin destruction operators and are defined to be th@ngle®, the Hamiltonian of Eq(1) is now rewritten in the
Hermitian adjoints of the€;" . We choosd|®);C;'} in such  local coordinates as
a way that we havé®|C,;"=0=C,|®), VI+#0, where, by
definiton,Cg =1, the identity operator. ,

For spin systems, an appropriate choice for the CCM HIEA zp: [1+5p,py(‘] _1)](5'3+p)¢pv (10)
model statd®) is often a classical spin statéin which the
most general situation is that each spin can point in an arbwhere the angles between neighboring spins @rg=m
trary direction. For the case of the Hamiltonian of Ef), +®, ¢_;=7—® and¢;= 7+ 3. While the general heli-
we choose the helical state illustrated in Fig. 1 to be ourcal state(see Fig. 1 does not have translational symmetry in
model state. Although the classical ground state of(Egis  thex direction, the transformed Hamiltonian of E40) does
precisely of this form, we do not choose the classical resulhave this symmetry since it depends only on the angles be-
for the pitch angled but we consider it rather as a free tween neighboring spins.
parameter in the CCM calculation. Having defined an appropriate model stpe with cre-

In order to perform a CCM calculation, we would like to ation operator€,” , the CCM parametrizations of the ket and
treat each site equivalently and we do this by performing &ra ground states are given by
rotation of the local spin axes at each site aboutytlaxis
such that all spins in the model state align in the same direc-
tion, say down(along the negative axis). After this trans- w)y=eSd), S=> SC, (11)
formation we have i#0
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_ - ~ ~ TABLE I. Number of fundamental ground-state configurations
(VU|=(®[Se”S, S=1+ > SC. (120 of the LSUB approximation for the Hamiltonian of Eql), using
1#0 a Neel state (P=0) and a helical stated{+ 0) for the CCM model
The correlation operatoB is expressed in terms of the cre- state, and :[he number of fundamental excited state configurations
ation operator<C,” and the ket-state correlation coefficients Using the Nel model state only.
S, . We can now write the ground-state energy as

LSUBn  ground stated=0 $®+#0  excited stateb=0

E=(d|e SHeS ). (13 2 3 5 1
. . 22 76 16
To describe the magnetic order of the system, we use a
. S . 6 267 1638 331
simple order parameter which is expressed in terms of the
. N 8 4986 42160 7863
local, rotated spin axes, and which is given by
M= _<xTr|siZ|xp>, (14) we exclude configurations with an odd number of spins, and

therefore we do not use LSUB3, LSUB5, etc., approxima-
Nf6ns. The helical state is not an eigenstatesbfand we
cannot apply this property when using the helical model
the case of the N state as the CCM model state. state. The fundamental configurations can now be calculated

To find the ket-state and bra-state correlation CoefﬁCientﬁomputationally’-g and the resulting numbers of LSWRon-
we have to require that the expectation vakie (¥|H|¥)  figurations forn=8 are given in Table I.

is a minimum with I’espect to the bra-state and ket-state cor- The ket-state and bra-state equations are calculated
relation coefficients. This formalism is exact if we include all computationally?® For the Nel model state, we are able to
possible multispin configurations in the correlation operatorgarry out the CCM up to the LSUBS levakhere we need to
SandS, which is usually impossible in a practical situation. solve 4986 coupled equationsvhereas for the helical state
We use the LSUB approximation schenito truncate the we could do this only up to the LSUB6 levelhere we need

such that the order parameter represents the on-site mag
tization. Note thaM is the usual sublattice magnetization for

expansion oSandS in Egs.(11) and(12). to solve 1638 coupled equations
Using the lattice symmetries, we have now to find all
differentpossible configurations with respect to the point and B. The excited state formalism

space group symmetries of both the lattice and Hamiltonian \ye se the excited-state formalism of EmEEH4 to

with up ton spins spanning a range of no more theadja-  555rqximate the excited-state wave functions. We apply an
cent lattice sitesLSUBn approximation and these are re- o citation operatok® linearly to the ket state wave function
ferred to as the fundamental configurations. (11), such that

The Hamiltonian of Eq(1) has four lattice point-group
symmetries, namely, two rotational operatiof°,180°)

and two reflectiongalong thex andy axes, defined by W) =X D), X°= 2 XEC] (17)
1#0
X=X, y=y, X—=—(x+1), y—--y, Using the Schidinger equationH| ¥ )=E|¥,), we find
that

X—X, y—-—Yy, Xx——(x+1), y—v. (15

e —a— e S|
The rotation of 180° and the reflection along thexis are eeX®|®)=e TH X% _eS@), (18

connected by a shift of=(1,0). The translational operatdr ~where e, (=E,—E) is the difference between the excited-
is defined by state energyK,) and the ground-state energg)( Applying
(®|C, to Eq. (18) we find that

T=(n+m)§<+(m—n)§/, n,m integral, (16)
_ _ €eXT=(P|C,e”[H,X°]_eS D), (19
such that translational symmetry is preserved.

The Neel model state also contains these symmetries, and/hich is an eigenvalue equation with eigenvalugsand
so for this model state we can directly apply all these sym<corresponding eigenvectoss; .
metries in finding the fundamental configurations. On the As for the ground state, we must use an approximation
other hand the general helical model stafe#0) has only  scheme foiX® in Eq. (17). Although it is not necessat$to
two of the above four lattice point-group symmetries, use the same approximation for the excited state as for the
namely,x—x, y—y, andx—X, y——y, andso thisre- ground state, we in fact do so to keep the CCM calculations
duced symmetry yields a larger number of fundamental conas systematic and self-consistent as possible. We define the
figurations. fundamental configurations for LSWB(for the Neel state

In the case of the N model state® =0), the number of as previously, but we now restrict the choice of configura-
fundamental configurations can further be reduced by explictions to contain only those which produce a changsjobf
ity conserving the total uniform magnetizatios==3,s; +1 with respect to the model stdtéSince we are only
(the sum ork runs over all lattice sitgsbecause the ground interested in the lowest-lying excitations, the restriction to
state is known to lie in the?=0 subspace. This means that these single-magnon spin-wave-like excitations is the correct
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choice. The number of fundamental excited-state configurafound to be a reasonable assumptiorthere are several
tions for LSUB is given in Table I. additional arguments to suggest tdat ®| g g, is indeed a
To calculate the terms of the right hand side of Etf)  better choice thad=d, as indicated below.
we use the same computational algorithm as for the calcula- In the first place we note that we cannot find solutions for
tion of the ground-state ket equation. The terms contain théhe LSUB6 equations using =®4(J’) in the region—0.7
ground ket-state correlation coefficienfs, so once these =J’'<-0.47 insofar as the Newton method used to solve
coefficients have been determined the eigenvalue equaticdhese equations does not converge in that region. This is a
(19 can be solvednumerically. We furthermore choose the clear indication that this model state is not a good one. By
lowest energy eigenvalue of E(.9) in order to calculate the contrast, such behavior is not found for=® g g, .
excitation energy gap. We note that the eigenvalues of Eq.  Secondly, it is generally known that quantum fluctuations
(19) are not guaranteed to be real, since as a generalizadnd to prefer collinear ordéf? (e.g., Nel orde). We will
eigenvalue equation it is not symmetric. However, over theéndeed find(and see Fig. 7 belowthat the Nel ordering
entire regime of interest, the values Af so obtained are (d=0) seems to survive for somE < —1/3, in which re-
found to be real. We have performed these calculations fogion it has already broken down in the classical case. This is
the excited state up to the LSUBG6 level of approximation. also in agreement with results of exact diagonalizations for
our model(and see Fig. 5 below
C. Extrapolation of the CCM-LSUBN results Thirdly we find better agreement of the CCM results for

. . the energy compared to exact diagonalization results by us-
Although no scaling theory for results of LSURpproxi- ing the helical state as the model state with the value

mg}(';;?;n §Q%%,28}2§t been proven, there are emplrlca'I:q)LSUBn rather than with the classical valde=® . We

e of sc_aling laws for the energy, th? Mag- find that CCM results for the ground-state energy usually
netization, and the excited-state energy gap for various spi

models.

These scaling laws can be justified by the observation
that they fit the results welii.e., with low mean-square de-
viation), and that the extrapolated results are in good agre€sm model state throughout this paper. Note that Joe
mgmewg;]rIroeSc;Jrltze?i]ceSﬂ(;i;r)amgitgr?dfag}gt'heG[\?v(ca)r-] difrtrjlr(]a?s(i)cr)]nal_ 1/3 this model state is identical to the classical ground

' [ T<— it i .
(2D) XXZ modef*?¥ or with exact resultse.g., 1D XY state of Eq{1) but that forJ /3 itis not
modef®). In accordance with those previous results we use
the following scaling laws: for the ground-state energy,

Qgree well with the corresponding ED resuléd with re-
sults of other methodg® provided that a good CCM model
3tate is chosen.

We therefore use the helical state with= @, g5, as the

IV. RESULTS
E=ay+ay(1/n?) +ay(1/n?)?; (20) Using the CCM scheme described above, we calculate the
approximate ground state and the low-lying excitations of
for the ground-state magnetization, the Hamiltonian of Eq(1). For comparison we also exactly
diagonalize finite sized lattices of square shape. We use pe-
M =bg+b;(1/n)+b,(1/n)?; (22) riodic boundary conditions witiN=16,18,20,26, and 32
) o spins, and we extrapolate to the infinite system using stan-
and for the gap of the lowest-lying excitations, dard finite-size scaling law&:*> We present results for the
ground-state energy, the order parameter and the excitation
A=cy+cy(1/n)+cy(1n)?; (220 gap. We examine the formation of local singléfsr J’
) ) ] >1), the effects of frustratioitfor J'<0), and the special
wheren is the LSUB approximation level. case of the honeycomb latticd’(=0).
J’'>1: Formation of local singletsUsing the CCM we
D. Choice of the CCM model state obtain clear indications of a second-order phase transition to

As stated previously, we use the helical state of &y. @ disordered dimerlike phase at a certain critical valud’ of
with the characteristic angl®, illustrated in Fig. 1, as the hamely,J;. Ford’>J, the Neel-like long range order melts
model state for the CCM. We must therefore make a seledi-e., the sublattice magnetizatidvi given by Eq.(14) be-
tion of an appropriate value fab. A possible choice would comes zerp Our estimate fodg using the four extrapolated
be the classical ground state of the Hamiltonian of &. LSUBnN results forM with n=2,4,6,8 (see Fig. 2 is J;
[i.e., = as given by Eq(2)]. ~3.41. However, using only the three CCM LSWBap-

Another possibility is to perform a CCM-LSUBapproxi-  proximations withn=4,6,8 for the extrapolation, we obtain
mation calculation and then to minimize the correspondinga valueJ.~3.16, which indicates that the true value could be
LSUBnN approximation to the energy with respectdqg even somewhat smaller. This is in agreement with our cor-

responding result using exact diagonalizations of small sys-
(23) tems. By using the extrapolation scheme of Ref. 42, we find

a critical valueJ.~2.45 for the magnetization. Note, how-
The results ford | g g, Will be given later(Fig. 7). However,  ever, that better accuracy requires larger systems because of
we note now that although the CCM does not yield a stricthe exact diagonalizatiofED) extrapolation ansatz foM
upper bound for the ground-state energy, using ®, gug, (i.e., M=M_+constx N" 2. Therefore, we cannot con-
(i.e., using the CCM with a variational parametbas been sider the ED results for the magnetizati@nd see Fig. Pas

Eisugn(®)—min &  O=0 gyp,.
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FIG. 2. Ground-state magnetic order paramfer. (14)] versus FIG. 3. The gap\ between the lowest-lying excitation energy

J', for the CCM-LSUBh approximation. The results are compared gnd the ground-state energy verslisusing the CCM-LSUB ap-

(for the Neel region only with M (=), using exact diagonalization proximations, in comparison with the extrapolated result of exact

(ED) data of the antiferromagnetic structure factor, using the ansatgiagonalization[ED) (using the ansatA =A ..+ constx N~ 1).

MZ=(1N?)Z; j(—1)'")(s- 5)=Mg(=)?+const N2 Note that

both extrapolated results fit poorly in a region arourie-—1, and  slightly smaller than the variational result. While both CCM

we therefore plot them here as isolated poifsiitting the solid  and SWT calculations have the dlestate as starting point,

lines). we find the CCM is much better able than SWT to describe
the transition to the rotationally invariant disordered state

quantitatively correct. Our two results for the criticilalso ~ @nd to the completely dimerized stetepresented by the
agree with the estimatd/~2.56 from series expansidh, vgrlanonal function of E_q(4).W|th t=1]. N_ote that even the
and even the resull, =3 from the simple variational ansatz simplest CCM approximatior(LSUB2) gives the correct

.- : asymptotic result for the enerdye., Eq.(5)] for very large
of Eq. (4) agrees surprisingly well W'th the;e values. By values ofl’, whereas SWT does not. For the case of the pure
contrast, the second-order renormalized spin wave theo

rg . - . . ,
. , o quare-lattice Heisenberg antiferromagfiet., J’=1), we
(RSWT) (Ref. 3D gives the larger resulls_w?o, |n_d_|cat|ng reproduce the CCM results of Refs. 28,40, which have al-
tha_t the _standard Spin-wave approach is insufficient to der'eady been demonstrated to agree well with those from other
scribe this type of transition.

Another indicati f adi ved oh is th methods.
nother indication of a dimerized phase is the appearance j _ . honeycomb latticeFor the special case of =0

of a gapA between the ground state and the lowest-lyingicp is equivalent to the honeycomb latticere find that
excited state. We clearly expect a spectrum with gaples e CCM and the ED results are in good agreem@ee

Goldstone modes if th(_a ground state iseNng-range or- e I). However, the magnetizatiavi for ED is found to
dered, whereas for a disordered singlet ground-state the for-

mation of triplet excitations may cost a finite amount of en- -
ergy. This behavior is reflected by our results using both _0.55
CCM and exact diagonalizatiosee Fig. 3, which agree E
well with each other. Fod’>J/, there is a gap proportional

to J’, corresponding to the dimerlike nature of the ground

state. The gap obviously opens in the ranges215<3.0 in 3
both the ED and CCM calculations. This is in good agree- —0.9F
ment with the corresponding estimates for the critical point E/N :
using the order parameter. Note, that the standard linear spin
wave theory fails in calculating the gdpe., gives gapless
modes for all values o’ with J’>0) .3

—07f 7

-1.1F

extrapolated LSUBn

By comparing the results for the ground-state energy, we ~1.3f LSWT V3
find excellent agreement between the CCM results and the e, ESWT “nd F
results from exact diagonalizatigeee Fig. 4 for J'>0. By 15 EL L Ll A E
contrast, spin-wave theofBWT) calculations! show a sig- -4.0 —2.0 (},0 2.0 4.0

nificant deviation from these results for largEe>1. These

spin-wave results are obviously poor since the simple upper Fig. 4. Ground-state enerdiEq. (13)] versusd’ for the ex-
bound for the energy given by E¢) (e.9.,Eo=—1.5for  trapolated CCM-LSUR approximations, in comparison with re-
J'=4) is smaller than the corresponding SWT res(#g).,  sults of spin-wave theorylinear and second-order renormalized
Eo=—1.42 from second-order RSWTBy contrast, CCM  (Ref. 31 and with the extrapolated result of exact diagonalization
and ED resultgboth are abouE,=—1.54 forJ’=4) are  (ED) data(using the ansatE/N=E., /N+constk N~%?),
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TABLE II. Ground-state energy per spin, sublattice magnetiza- ~0.481 F LSUB4 A

tion, and excitation energy gap for the Hamiltonian of E.with F ., min. Eisuse
"=0. This special case is equivalent to the honeycomb lattice. We F v classical min.

present(extrapolatefi LSUBN results and extrapolated ED results. —I'=1.0

—0.491 |

LSUB2 LSUB4 LSUB6 LSUB8 extrapolated ED

E/N —0.525 —0.540 —0.542 —0.543 —0.5447 —0.543 E/N_0501 [

M 0.399 0.354 0.334 0.321 0.28 0.23
gap 1182 0.678 0.476 0.02 0.06

—0.511

be smaller then the CCM result. We note, however, that the E
CCM result for M at this point agrees with the result of -0.52} G
high-order SWT(Ref. 3) (M=0.28) as well as with the '
result of series expansioh(M = 0.26), although it does not
agree so well with the result of Monte Carlo calculatifhs ~ FIG. 6. Ground-state energy of the Hamiltonian of Eq.using
(M=0.22). We note too that our CCM results here agredcCM-LSUB4 versus the parametdr of the helical CCM model
perfectly with previous lower-order CCM calculatioffs. state for certain values df in the range-1.5<J'<—1.0. A local
J'<0: Frustration.ForJ’' < — 2, we find that the extrapo- mlnlmrum of E(P) atd #0 appears fod' < —.1..1, WhI.Ch for values
lated ED results for the energy lie appreciably above thepf J 571,'35_ b_ecqmes a _global mn_mmun{_l.e., at @
CCM (and SWT results(see Fig. 4 This is because the :ch_Sl_JB4(J ), |nd|cat|ng tht_e typical scenario ofaflrst-or_der phase
energies for the small lattices considered do not fit well goransition. ,The arrowsv) indicate the value ofb, for the different
the finite-size scaling lawH/N=E.,/N+constk N~*?) in values ofJ".

this region. The finite-size effects for systems with an INCOM—piet of the transition to stronger ferromagnetl¢ bonds.

mensurate_ helical structure are found t.o b‘? Iarger than foéoth correspond to the general picture that quantum fluctua-
systems with, for example, leeorder or with dimerized Spin ¢ prefer a collinear orderinguch as Kel orde). Hence

pajrs. I-r|1owever,l we find thﬁt douf best ?D resh(JAti(t:hC&Z this ordered state can survive for the quantum case into a
sping shows only very small deviations from the re- region where classically it is already unstable. TheelNe

sult, even in the frustrated region. model state @ =0) gives the minimum ground-state energy

While classically we have a second-order phase tran5|t|op0r all values)’ > J!, whered, is also dependent on the level

(from Nee! order_ to.hellcal orderat ‘]C:._l./:.;’ using the of LSUBN approximation level. Fod’<J. another mini-
CCM we find indications for a shift of this critical point to a . . .
mum in the energy forb#0 is found to lie lower than the

\_ll_?llu?z‘ll:;:_tl'?ﬁrgseet F'?' 7 ?el?w n ;[:he gsualmtun; Case. minimum at®=0 (see Fig. & The state ford+#0 is be-
€ ata of the structure factdeee Fig. 3 also show a lieved to be a quantum analog of the classical ground state in

two dimensions. Furthermore, the crossover from one mini-
40 EED (N=32)' """"" AR AR mum solution to the other is not smooth but is abrupt at this
F point (see Fig. 6 and Fig.)7 This behavior is assumed here
to be an indication of a phase transition. Furthermore, it
might also indicate that this is a first-order phase transition
and, consequently, that due to quantum fluctuations the na-
ture of this phase transition is changed from the classical
second-order type to a first-order type.

The behavior of the order parameteee Fig. 2 in the
region around).~ —1.35 where we expect the abovemen-
tioned quantum phase transition is also quite marked. We
cannot extrapolate the LSWBresults directly, because the
phase transition points shift with the order of the LSUB
approximationgFig. 7). We thus find a large statistical de-
viation of the extrapolated results in the regierl.4<J'=<

[ ot S 0,0)
—_— Sc150,0)
_________ Scl ﬂ/zyo)

w@
o
S ARAREEEER

structure factor
[Av]
o

—
(]
CBLLELE B e

|

0.0 b —1.0. Hence, we use the minima fé in that region to

=30 -20 -10_ 00 1.0 .0 extrapolate an estimation of the order parameter. We find
J that minimum (M ~0.05) to be at a value af ~—1.2. The

FIG. 5. Ground-state structure factBfk)=S; ; _xe'®i~R) k(s extrapolated ED results do not agree very well with this re-
-5 (i.e., the summation is taken over one sublajticethe Hamil- ~ Sult, since these givél to be zero atl’~—0.8. However,

tonian of Eq.(1) with 32 spins, for the quantum and the classical these results are also very poor in that region because of the
case. The Nel order[k=(0,0)] becomes unstable against the heli- Strong influence of the boundary conditions and large statis-
cal order in the classical model fdf <—0.5, but in the quantum tical errors. As a result of these difficulties we are not able to
model the Nel ordering gives way to helical order only fdf < decide whether or not quantum fluctuations and frustration
—1.1 (i.e., the Nel ordering is stable quantum-mechanically in a are able to form a disordered quantum spin liquid pHase
region where it is classically already unstgble with M =0) between the Nal state and the helical state for



14614 SVEN E. KRUGERet al. PRB 61

1.0 e V. SUMMARY
- == classical
ET - —— LSUBn Using the CCM we have studied the influence of quantum

2 spin fluctuations on both the ground-state phase diagram and
the excited states of a spin-half square-lattice Heisenberg an-
tiferromagnet with two kinds of nearest-neighbor exchange
bonds. The phase diagram is found to contain a quantum
helical phase, a N# ordered phase, and a finite-gap quantum
disordered phase. While we have clearly a second-order tran-
sition from the Nel phase to the finite-gap quantum disor-
dered phase, we also found indications of a quantum-induced

first-order transition from the Mg phase to the helical phase,

o 1
0.2t ". for which classically we have a second-order transition.
E ! While our CCM results were in general in good agreement
g . . L with the ED data, we found the CCM particularly good at
00, "985 1o 205 oo describing the dimerized phase. By contrast, spin wave

J' theory™ fails in that region due to enhanced longitudinal spin
fluctuations. Accurate high-order CCM results for the anti-

FIG. 7. The angleb syg, [which minimizes the energ(®).  forromagnet on the honeycomb lattice were also presented.

see Eq(23)] versusd’, compared with the corresponding classical
result® [see Eq.(2)]. We find in the quantum cagéSUBN) a
first-order phase transitiofe.g., for LSUB6 at)’ ~—1.35 where
@ sugn jumps discontinuously from zero to about 068y ACKNOWLEDGMENTS
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