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Theory of magnetic order in the three-dimensional spatially anisotropic Heisenberg model
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A spin-rotation-invariant Green’s-function theory of long- and short-range ¢®R0O) in the S=1/2 anti-
ferromagnetic Heisenberg model with spatially anisotropic couplings on a simple cubic lattice is presented. The
staggered magnetization, the two-spin correlation functions, the correlation lengths, and the static spin suscep-
tibility are calculated self-consistently over the whole temperature region, where the effects of spatial anisot-
ropy are explored. As compared with previous spin-wave approaches, gi¢ei®erature is reduced by the
improved description of SRO. The maximum in the temperature dependence of the uniform static susceptibility
is shifted with anisotropy, and is ascribed to the decrease of SRO with increasing temperature. Comparing the
theory with experimental data for the magnetization and correlation length,@fu@, a good agreement in
the temperature dependences is obtained.

. INTRODUCTION =0.02), all previous approaches overestimate huotland
Ty - This deficiency is calling for a theory that provides an
The magnetic properties of spatially anisotropic antiferroimproved description of SRO over the whole temperature
magnetic(AFM) quantum spin systems, such as the quasiregion. In Ref. 16, a spin-rotation-invariant Green’s-function
two-dimensional(2D) parent compounds of highz super-  theory for the 2D isotropic Heisenberg abd models was
conductors[e.g., LaCuQ, and Ca(Sr)Cug),' and the developed, which yields a good description of spin-
quasi-1D cuprates §EuO;, CaCuQ;,>2 and SrCuQ,* are  correlation functions of arbitrary range and at arbitrary tem-
of current interest. The main problem is the influence ofperatures. Moreover, the susceptibility maximum was ob-
spatial anisotropy on the staggered magnetizaticand the  tained in good agreement with quantum Monte Carlo
Neel temperatureTy in the 3D spiny AFM Heisenberg calculations. Applying this approach to the 2D anisotropic
model Heisenberg modéf, the short-ranged spin correlationsTat
=0 are well reproduced as compared with exact diagonal-
ization (ED) data. Accordingly, we also expect such a theory
to describe the SRO properties quite well in the 3D model
[Eq. (D]
HereR,=J,/J,, R,=J,/J, (throughout we sel,=1), and In this paper we extend the Green’s-function approach of
(ij)xy,z denote nearest-neighb@iN) bonds along the, y, Refs. 16 and 17, and present a theory of AFM long-range
or z directions of a simple cubic lattice. For real systems, weorder (LRO) and SRO for the 3D anisotropic Heisenberg
consider 6<R,<R,<1. model(1) (Sec. l). Thereby, the correlations along all spatial
In the paramagnetic phase, there exists a pronouncetirections are described on the same footing. In Sec. Il the
AFM short-range orde(SRO which is reflected by a maxi- ground state is investigated, where the magnetization and
mum in the temperature dependence of the magnetic susceghort-ranged spin correlation functions are calculated. In Sec.
tibility at Tp,.y, where 0.64 T,,,<1.2° However, random |V we present our finite-temperature results on Ehelepen-
phase approximatiofRPA) spin-wave theoriés’ and mean- dence ofTy andm(T), and of the AFM correlation lengths.
field theories using auxiliary-field representations Moreover, the effects of an arbitrary spatial anisotropy on the
(Schwinger-bosoft®  Holstein-Primakoff®!*  Dyson- temperature dependence of the uniform static spin suscepti-
Maleevi®*? and boson-fermion representatibhs which  bility, especially onT,,y, are investigated. The results are
were developed for the quasi-2D model wiRy=1, are compared with experiments on 4@uQO, (magnetization,
valid only at sufficiently low temperatures. In those theories,correlation length, and magnetic susceptibjlith summary
the temperature-dependent SRO is not adequately taken intd our work can be found in Sec. V.
account; in particular, the maximum in the magnetic suscep-
tibility cannot be reproduced. In the chain mean-field
approache$! recently improved by spin-fluctuation Il. DYNAMIC SPIN SUSCEPTIBILITY
correction$® which lowermandTy, an asymmetry between , o L
intrachain and interchain correlations is introduced. As 10 dfter[mne the dynamic spin Suscept'b"w (9, 0)
shown in Ref. 3 on the basis of a detailed estimate of the —((Sq ;S-¢)) by the projection method outlined in Ref.
exchange integrals for the quasi-1D cuprates using a firstt6, we choose the two-operator ba@iy(sg ,iSar)T and
principles calculation (SCuO;:R,=0.004; CaCuQ;:R,  consider the two-time retarded matrix Green’s function in a

H=J, <§‘, ss,-+Ry2>

i])x (j)y

sspLRZ(;> SSi|. (1)
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generalized mean-field approximationi(A;A™)),=[w

—M’'M 17 IM with M=([A,A*]) and M’ =([iA,A*]),
using Zubarev's notatiotf We obtain
MSY

X (qo)=——1—. 2)

w —wq

The spectral momeri {V=([iS; ,S_,1) is given by
M= —4Cy ¢ 1—cosay) —4R,Co 1 o 1 - cosay)
—4R,Co,0,1(1—cosq;). 3

The two-spin correlation function€,=(S§S; Y=Cp,
with r=ne,+me,+le,, are calculated from
1 _ M@
__ iq-r __ 14
Cr=y % Cg®" Cy=g, (1+2n(0g] (@
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wheren(wq)z(e“’q”— 1)~ 1. The NN correlation functions
are directly related to the internal energy per site by
=3(C100+RyCo1.0TR,Co0.0)-

To obtain the spectrum in the approximaticmég
=w§S§ , we take the site representation and decouple the
products of three spin operators inS" along NN se-
quences, introducing vertex parameters in the spirit of the
scheme proposed by Shimahara and Takhalad extending
the decoupling given in Ref. 17:

S'S'S =a1"(S'S)S +axS'S)S . (5

Here o} ,@}, and o] are attached to NN correlation func-
tions along thex, y, andz directions, respectively, and, is
associated with the longer ranged correlation functions. We
obtain

w§=1+ R+ RZ— costy— R;cosgy — R2c0sq, + 24 C1 o €05 20)) — 2a,C5 o £0STx+ 2RI @ Cy 1, £0K 20y )

— a,Cq €00y ] + 2RZ(a§Cg 0,1€09 20],) — @,C0 0, £0S0,) — 25 C1 0,£0STx + 222C 00~ 2R32/( a§Co,1,0c0S0y

—a,Co20 — 2R%(ajCp 1080, — @2Co0.0) + 4Ry[(a1Cy g ot ayCq1,0)C0OSQ,COSYy — a,C1 1 o COSU,+ COSYy) ]

+4R,[(a1Cy oot a1Cp1)€C0S0,COSq, — a2C1  1(COSA,+ €OST,) |+ 4RyR,[ (a)Cq 1 g+ a1Cg 1) C0SA,COST,

— @;Co,1,1(c0Sqy+€080,) ] — 4Ry (a1C1 0 £0Sq, + afCq 1 £0SAx— 2a,C1 1 0) — 4R,(@1C1 0 £0ST,

+a7C0,1c080x— 2a,C1 0.1) —4RyR () Cq 1 £0S0,+ @1Cp 9 1€0S0y — 2,Cp 1 1) - (6)

We have checked that our scheme preserves the rotational
symmetry in spin space. That is, the calculation of the lon-

gitudinal susceptibility using, instead #f=(S; ,iS;)", the
basis  A=(S(,iS)T  vields  x*4q,0)=x(d,»)

=3x"(q,0). For|g|<1, we have

2_ 2.2 2.2 2.2
w0q= CYax+ quy+ €20z, (7)

with the squared spin-wave velocities

C)Z(:E —3a}Cy oot @3Cr00— 2Ry(a’{C1,0,o— @,Cy 1,0

— 2Ry a)l(Cl,O,O_ aZCl,O,l)a (8)

1
2_p2
Cy— Ry E - 30(31’C0’1’0+ azco’zyo

—2Ry(e3Co 10~ @2C1,10
—2RyR,(a}Cq 1 0~ @2Cq1,1), 9

and

2 oo L 2
c,=R; 27 3a1Cpo1t+ a2Coo2

—2R,(@1Cq o1~ a2Cy 0,0
—2RyR,(a7Cp 01— @,Cp1,1). (10)
Considering the uniform static spin susceptibilify

=limg_oM{V/(20), the ratio of the anisotropic functions

M{" and »? must be isotropic in the limig—0. That is,
the conditions

(cy/c)*=R,Cp10/C100 (11)

and

(€,/c)?=R,Cp01/C100 (12

have to be fulfilled.

The critical behavior of mode(l) is reflected in our
theory by the closure of the spectrum gafat (7,7, 7) as
T approached from above, so that “[FLTN x Y(Q)=0.

At T<Ty we havewy=0, and, separating the condensation,
partC,

Ci= Cet +Ce?r, (13

a(#Q)

Z|l -
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FIG. 2. Spin correlation functions dt=0 for different spatial
anisotropies.

phase boundarR, .(R,) or Ry .(R,) (cf. inse). For R,=0
we obtain the critical rati&®, .(0)=0.24, which was already
found in Ref. 17. In that paper the suppression of LRO below
FIG. 1. Staggered magnetizationTat 0 as a function of spatial  the finite value ofR, . was interpreted, in combination with
anisotropy. The inset shows the stability region oeNerder. ED data, as an indication of a rather sharp crossover in the
spatial dependence of the spin-correlation functions in the
whereC results from Eq(13) with r=0 employing the sum LRO phase at the coupling ratR, =0.2. The finite value
rule Co 0= 5. Then the staggered magnetizatioris calcu-  of R, ., however, seems to be due to the approximations in
lated as our theory, since there are strong indicationsRor=0 (see
Ref. 14. Accordingly, we cannot ezxplain the tiny m3agnetic
1 o moments of SYCuO; and CaCu0;, since, forR,<1,” we
mZZN Er: (SSe rZEC' (14) havem=0. This result is just opposite to the O\B/Ierestimation
of mby all previous spin-wave theories. As seen in the phase
The theory has 14 quantities to be determined selfdiagram(inset of Fig. 1, the inclusion of the interplane cou-
consistently(nine correlation functions iraoé, m, and four pling R, stabilizes the LRO, where this effect is quite con-
vertex parametejsand 13 self-consistency equatioften  siderable even at very small valuesRyf.
Egs. (13) including Cyo=3, the LRO conditionwg=0, Figure 2 exhibits some short-ranged spin-correlation func-
and Egs.(11) and (12)]. If there is no LRO, we havenq tions at T=0. For R,=0, in Ref. 17 the correlators
>0, and the number of quantities and equations is reduce@; 09, Co1,0 andC; o as functions ofR, were found to
by one. As an additional condition for determining the feee agree well with the ED data. Fd®,=0.02 (cf. Fig. 2) our
parameter at =0, we adjust the ground-state energy per siteresults deviate only slightly from those BL,=0. The sign
which we compose approximately agR,,R,)=€(R,,0) changes and magnitudes ©f reflect the AFM SRO. In the
+€(0,R,) — €(0,0), wheree(R,,0) [and €(0R,)] is taken limit R,—0 the correlations between tixez planes vanish.
from the Ising-expansion results by Affleek al. for the 2D At R,>R, ;(0)=0.24 the LRO enhances the inteiz plane
spatially anisotropic Heisenberg mod8l,and €(0,0)= correlators and results in their sharp drop toward their limit-
—0.4431 is the Bethe-ansatz value. This approximation isng value Ce'Q®'" as R,—0. This is visible in the data for
suggested to be good at least ®Ry<R, (or Ry;<R,). To  R,=0.35in Fig. 2.
obtain an additional condition at finite temperatures, where
data are not available and all vertex parameters are tempera-
ture dependent, following Refs. 19 and 16 we assume the

IV. FINITE-TEMPERATURE RESULTS

ratio At nonzero temperatures we have solved the self-
consistency equatior{&3), supplemented by conditioris1),
ay(T)—1 (12), and(15), to obtain the magnetizatiom(T), the Neel
ra(T)EW:ra(o) (15 temperaturdg m(Ty)=0], the static spin susceptibility, and
1 the anisotropic correlation lengths.
as temperature independent. In Fig. 3 the Nel temperature is plotted as a function of

R,. ForR,=0 we obtainTy=0 (see Ref. 1§ in agreement
with the Mermin-Wagner theorem. The increasergfwith
R, is governed by the intra-y plane anisotropy. At a fixed

In Fig. 1 our results for the zero-temperature staggeredalue of R,, the decrease ofy with decreasingR, is in
magnetizatiormy=m(T=0) as a function oR, andR, are  accordance with the reduced zero-temperature magnetization
shown. They indicate an order-disorder transition at thecf. Fig. 1). Comparing our results fdR,=1 with previous

Ill. GROUND-STATE PROPERTIES
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RPA and mean-field approach@ge Table), we ascribe the
reduction of Ty as compared with Refs. 6,8, and 12 to the
improved description of SRO. That is, the LRO is suppresse
in favor of a paramagnetic phase with pronounced AFM
SRO. IfR, is fit to the Nel temperatures of real systems, the Considering the AFM correlation lengths aba¥g and
strong overestimation of \y by previous theories results in for R=1, the expansion ofy(q) around Q (@
very small values of the interplane coupling. In our approach YT o % kB 2.2 _1X 'qh K= X IdX qh
the resultingR, values turn out to be higher. Considering '—X(Q)[1+§Xy( Xj.L y) T &k ]with k=g-Q, yields the
La,CuO, with Ty=325 K22'and putting)=130 mev ¢  Mntaplane correlation length

=J,=Jy) or J=117 meV:i® we obtainR,~10 % or R,
=1.6x10"3, respectively, in contrast t&,< 10 * according
to Refs. 6 and 12. For GasSry 1=CuO, (Ty=540 K andJ
=125 meV)?? we obtainR,=1.2x10 2 as compared with

FIG. 4. Staggered magnetization vs temperaturéRfor 1. The
(i:pset shows th&, dependence of the normalized curves compared
with the NMR data on LgCuQ, (Ref. 11 (bold curve.

11
§>2<y: - wQZ >t 11a7Cy 001 a2(Cp 00t 2Cy 10)

R,=2.5x10 2 obtained from a fit of the low-temperature +2R,(a1C1 oot 2a7iChp1tT @2Ci01) | — —ch'o’o,
magnetization dat& o O 0, MD
Figure 4 shows the temperature dependence of the stag- 16

gered magnetization &,=1 (for the zero-temperature val-
ues, compare with Fig.)1The shape of the normalized curve and the interplane correlation length
m/mg versusT/Ty (see the insgtdepends on the single pa-
rameterR,, and is similar to that found in previous spin-
wave theorie§-81° At low enough temperatures the system
exhibits 3D behavior, so that the decreasendbllows a T2

£=—R,05° 4(2a’Cy oot 5Co 01+ @2C1 1)

law. This was also observed by NMR experiments on 1 2R,Cpo1
La,CuO, (Ref. 11 (Ty=312 K), vyielding m/my=1 +R; §+5aiCo,o,1+ a’ZCO,O,z) } - W
—a(T/Ty)? with a=0.67 forT<100 K. The NMR data is Q
indicated in the inset of Fig. dnarked by a bold curyeand (17)

agrees well with our theory foR,=10 2 (as estimated ) ) ) )

above. For temperatures close f, our numerical results " Fig. 5 the influence of tlhe mterPlIar?e coupling on the tem-
for m(T) are described by the |aW(T)°C(1_T/TN)1/2. The peraturg dependgnce éfy and ffz .(|nseb is shown. For
square-root temperature behavior agrees with the findings gomparison, the intraplane correlation lengthRat=0 (see
Refs. 7,8, and 10, and with the neutron scattering data o@lSO Ref. 16 is plotted, where the low-temperature expan-
La,Cu0,° but contradicts the result of Ref. 13mg1l  SION &y =2(2a%|Cy10d(0)))"*T exd2ma}mg/(3T)] holds
—TITy). up to T=0.2 within a deviation of about 6% from the full
temperature dependence calculated by @6). For R,>0
the correlation lengths diverge aty, since the gapwg
closes asT approachesly from above. In the vicinity of
Tn, &y andé; ' behave ag —Ty also found by previous

TABLE I. Néel temperatureTy/J, at R,=1 compared with
other approaches.

—log,(R,) Fig. 3 Ref. 6 Ref. 8 Ref. 12 mean-field approaché%*.”‘
4 0.17 0.48 0.29 0.25 Let us compare our results for the intraplane correlation
3 0.22 0.65 0.38 0.34 length with the neutron-scattering data on,CaQ, (Ref. 21
2 0.36 0.80 0.54 0.47 in the range 340 KT=<820 K shown in Fig. 6. Taking
1 0.56 1.15 0.68 as obtained previousi§from a least-squares fit @, in the

2D model @=3.79 A), J=117 meV, forT>500 K and
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FIG. 7. Uniform static spin susceptibility v& The inset exhib-
its the positionT ,,, of the maximum iny(T) vs R, .

FIG. 5. Inverse antiferromagnetic correlation lengths within
(&) and between the-y planes €, *, see insetfor R,=1.

R,=3.5x10°3 we obtain a good quantitative agreementCorrelation functions aR, ,=0.2, as discussed in Sec. Ill.
with experiments. In Ref. 16 the deviation of the theory forNOte that such a minimum in the 1D modeR/(=0) was
R,=0 and T<500 K from the experimental data was as- &lS0 found in Ref. 23. AR,>0.2, the increase of with
cribed to the appearance of the preexponential faEtdrin ~ emperature, the maximum &, ,, near the exchange energy
the low-temperature expansion &f, which is an artifact of Jx=1 (see the insef and the crossover to the high-
our mean-field approach. However, this deviation may bdemperature Curie-Weiss behavior are due to the decrease of
reduced by the inclusion of the interplane coupling, since"FM SRO with increasing temperatutef. Ref. 16. Let us
£.1(Ty)=0. For Ty=325 K2 we obtainR,=1.6x103  Pointout that the susceptibility maximum is totally missed in
Xy . ) .

(see above, Fig.)3and the theoretica.fx‘yl curve lies be- RPA theories. With increasingR,, we obtain an increase of

tween theR,= 0 result and the experiments. The discrepancmiaX which agrees with a general tendency found in various

between the theoretical and experimental Iow—temperaturgpm_1/.2 He?henberg tmO(IjeIs, an_doanalélzled N Ref. 5b' For
correlation lengths may be further reduced by the choice of®MParson. e exact vaues Y= 25an are given oy
higher R, values. Taking, for example},=3.4x 10"%, we max=0.64 (Ref. 24 and T,,,,= 0.94;” respectively. Since

obtain a very good quantitative agreeméeft Fig. 6) down our theory allows the_ calculat_ion dT.maX at any spatial an- .

to 360 K; however, the N temperature turns out to be Isotropy, It may prowc_ie a rghable Interpretation of expert-

somewha’t higherT, ’_353 K) mental data on low-dimensional spin systems. Considering
N_ .

Finally, we consider the uniform static spin susceptibility € maximum spin Zusceptlb_llrl]tyr%afX(Tmalx)borl:;%_esylts
X(T)=limy_ox(q). In Fig. 7 the anisotropy effects on the 29aIN are in accordance with the general behavighax

temperature dependence are demonstratedREe10 and a gcrease_s W;Lh qlef(I:reasmgT%atxH ".e;[’ W'lth decreal_smg'\;{q.
strong intraplane anisotropyr(<0.2) the minimum ofy(T) oncerning e infiuénce of the interpiane coupling, the en-

at a finite temperature, being an artifact of our approach, margancement of the low-temperature susceptibilityRymay

signal the crossover in the spatial dependence of the spi e explained by the weakening of the SRO effect in higher

dimensions. As seen from Figs. 7 and 3, the uniform suscep-
tibility reveals no peak at the & temperature, contrary to

7Y

0.1

0.08

. RE00
——- R=16x10"
— R=34x10"

the RPA result of Ref. 7. Concerning the maximumyifir)

of La,CuQ,, we obtainT,,,=1.19=1615 K (cf. Fig. 7,
J=117 meV). This value roughly agrees with the estimate
given by JohnstofS T,.=1460 K, by means of a scaling
analysis of the susceptibility data below 800 K.

V. SUMMARY

In this paper we have extended the spin-rotation-invariant
Green’'s-function theory of magnetic LRO and SRO in 2D
Heisenberg modet&!’ to a 3D Heisenberg antiferromagnet
with arbitrary spatial anisotropy. Our theory provides a sat-
isfactory interpolation between the low- and high-
temperature behavior, where the temperature-dependent
SRO, described in terms of two-spin correlation functions, is

FIG. 6. Inverse antiferromagnetic intraplane correlation lengthadequately taken into account. The main results are summa-
in La,CuQ, obtained by the neutron-scattering experiments of Refrized as follows.

21 and from the theoryR,=1) for differentR, values. (i) The incorporation of SRO results in a strong suppres-

900
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sion of Neel order with increasing anisotropy and in a re- cation of this approach to extended Heisenberg mogels
duced Nel temperature as compared with previous spindsotropy in spin space, frustratipmay be promising to de-
wave approaches. scribe the SRO effects on the unconventional magnetic
(ii) The temperature dependence of the uniform static spiproperties of real low-dimensional spin systems.
susceptibility reveals a maximum in the short-range-ordered
paramagnetic phase and a crossover to the Curie-Weiss law.
The position of the maximum is influenced by the spatial
anisotropy. The authors, especially L.S., are very grateful to the DFG
(i) Comparing the theory with experiments on the mag-for financial support. Additional support by the Max-Planck
netization and correlation length of 4auQ,, a good quan- society and the INTAS organizatidiNTAS-97-1106 is ac-
titative agreement is found. knowledged. The authors thank S.-L. Drechsler for many
From the results of our theory we conclude that the appli-useful discussions.
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