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Theory of magnetic order in the three-dimensional spatially anisotropic Heisenberg model
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A spin-rotation-invariant Green’s-function theory of long- and short-range order~SRO! in the S51/2 anti-
ferromagnetic Heisenberg model with spatially anisotropic couplings on a simple cubic lattice is presented. The
staggered magnetization, the two-spin correlation functions, the correlation lengths, and the static spin suscep-
tibility are calculated self-consistently over the whole temperature region, where the effects of spatial anisot-
ropy are explored. As compared with previous spin-wave approaches, the Ne´el temperature is reduced by the
improved description of SRO. The maximum in the temperature dependence of the uniform static susceptibility
is shifted with anisotropy, and is ascribed to the decrease of SRO with increasing temperature. Comparing the
theory with experimental data for the magnetization and correlation length of La2CuO4, a good agreement in
the temperature dependences is obtained.
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I. INTRODUCTION

The magnetic properties of spatially anisotropic antifer
magnetic~AFM! quantum spin systems, such as the qua
two-dimensional~2D! parent compounds of high-Tc super-
conductors @e.g., La2CuO4 and Ca(Sr)CuO2#,1 and the
quasi-1D cuprates Sr2CuO3, Ca2CuO3,2,3 and SrCuO2,4 are
of current interest. The main problem is the influence
spatial anisotropy on the staggered magnetizationm and the
Néel temperatureTN in the 3D spin-12 AFM Heisenberg
model

H5JxF (
^ i j &x

SiSj1Ry(
^ i j &y

SiSj1Rz(
^ i j &z

SiSj G . ~1!

HereRy5Jy /Jx , Rz5Jz /Jx ~throughout we setJx51), and
^ i j &x,y,z denote nearest-neighbor~NN! bonds along thex, y,
or z directions of a simple cubic lattice. For real systems,
consider 0<Rz!Ry<1.

In the paramagnetic phase, there exists a pronoun
AFM short-range order~SRO! which is reflected by a maxi
mum in the temperature dependence of the magnetic sus
tibility at Tmax, where 0.64,Tmax,1.2.5 However, random
phase approximation~RPA! spin-wave theories6,7 and mean-
field theories using auxiliary-field representatio
~Schwinger-boson,8,9 Holstein-Primakoff,10,11 Dyson-
Maleev,10,12 and boson-fermion representations13! which
were developed for the quasi-2D model withRy51, are
valid only at sufficiently low temperatures. In those theori
the temperature-dependent SRO is not adequately taken
account; in particular, the maximum in the magnetic susc
tibility cannot be reproduced. In the chain mean-fie
approaches,14 recently improved by spin-fluctuatio
corrections15 which lowerm andTN , an asymmetry betwee
intrachain and interchain correlations is introduced.
shown in Ref. 3 on the basis of a detailed estimate of
exchange integrals for the quasi-1D cuprates using a fi
principles calculation (Sr2CuO3:Ry.0.004; Ca2CuO3:Ry
PRB 610163-1829/2000/61~21!/14601~6!/$15.00
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.0.02), all previous approaches overestimate bothm and
TN . This deficiency is calling for a theory that provides a
improved description of SRO over the whole temperat
region. In Ref. 16, a spin-rotation-invariant Green’s-functi
theory for the 2D isotropic Heisenberg andt-J models was
developed, which yields a good description of sp
correlation functions of arbitrary range and at arbitrary te
peratures. Moreover, the susceptibility maximum was
tained in good agreement with quantum Monte Ca
calculations. Applying this approach to the 2D anisotrop
Heisenberg model,17 the short-ranged spin correlations atT
50 are well reproduced as compared with exact diagon
ization ~ED! data. Accordingly, we also expect such a theo
to describe the SRO properties quite well in the 3D mo
@Eq. ~1!#.

In this paper we extend the Green’s-function approach
Refs. 16 and 17, and present a theory of AFM long-ran
order ~LRO! and SRO for the 3D anisotropic Heisenbe
model~1! ~Sec. II!. Thereby, the correlations along all spati
directions are described on the same footing. In Sec. III
ground state is investigated, where the magnetization
short-ranged spin correlation functions are calculated. In S
IV we present our finite-temperature results on theRz depen-
dence ofTN andm(T), and of the AFM correlation lengths
Moreover, the effects of an arbitrary spatial anisotropy on
temperature dependence of the uniform static spin susc
bility, especially onTmax, are investigated. The results a
compared with experiments on La2CuO4 ~magnetization,
correlation length, and magnetic susceptibility!. A summary
of our work can be found in Sec. V.

II. DYNAMIC SPIN SUSCEPTIBILITY

To determine the dynamic spin susceptibilityx12(q,v)
52^^Sq

1 ;S2q
2 &&v by the projection method outlined in Re

16, we choose the two-operator basisA5(Sq
1 ,iṠq

1)T and
consider the two-time retarded matrix Green’s function in
14 601 ©2000 The American Physical Society
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generalized mean-field approximation,̂^A;A1&&v5@v

2M 8M21#21M with M5^@A,A1#& and M 85^@ i Ȧ,A1#&,
using Zubarev’s notation.18 We obtain

x12~q,v!52
Mq

(1)

v22vq
2

. ~2!

The spectral momentMq
(1)5^@ iṠq

1 ,S2q
2 #& is given by

Mq
(1)524C1,0,0~12cosqx!24RyC0,1,0~12cosqy!

24RzC0,0,1~12cosqz!. ~3!

The two-spin correlation functionsCr5^S0
1Sr

2&[Cn,m,l ,
with r5nex1mey1 lez , are calculated from

Cr5
1

N (
q

Cqe
iq•r, Cq5

Mq
(1)

2vq
@112n~vq!#, ~4!
io
on
wheren(vq)5(evq /T21)21. The NN correlation functions
are directly related to the internal energy per site bye
5 3

2 (C1,0,01RyC0,1,01RzC0,0,1).
To obtain the spectrum in the approximation2S̈q

1

5vq
2Sq

1 , we take the site representation and decouple

products of three spin operators in2S̈i
1 along NN se-

quences, introducing vertex parameters in the spirit of
scheme proposed by Shimahara and Takada19 and extending
the decoupling given in Ref. 17:

Si
1Sj

1Sl
25a1

x,y,z^Sj
1Sl

2&Si
11a2^Si

1Sl
2&Sj

1 . ~5!

Here a1
x ,a1

y , and a1
z are attached to NN correlation func

tions along thex, y, andz directions, respectively, anda2 is
associated with the longer ranged correlation functions.
obtain
vq
2511Ry

21Rz
22cosqx2Ry

2cosqy2Rz
2cosqz12a1

xC1,0,0cos~2qx!22a2C2,0,0cosqx12Ry
2@a1

yC0,1,0cos~2qy!

2a2C0,2,0cosqy#12Rz
2~a1

zC0,0,1cos~2qz!2a2C0,0,2cosqz!22a1
xC1,0,0cosqx12a2C2,0,022Ry

2~a1
yC0,1,0cosqy

2a2C0,2,0!22Rz
2~a1

zC0,0,1cosqz2a2C0,0,2!14Ry@~a1
xC1,0,01a1

yC0,1,0!cosqxcosqy2a2C1,1,0~cosqx1cosqy!#

14Rz@~a1
xC1,0,01a1

zC0,0,1!cosqxcosqz2a2C1,0,1~cosqx1cosqz!#14RyRz@~a1
yC0,1,01a1

zC0,0,1!cosqycosqz

2a2C0,1,1~cosqy1cosqz!#24Ry~a1
xC1,0,0cosqy1a1

yC0,1,0cosqx22a2C1,1,0!24Rz~a1
xC1,0,0cosqz

1a1
zC0,0,1cosqx22a2C1,0,1!24RyRz~a1

yC0,1,0cosqz1a1
zC0,0,1cosqy22a2C0,1,1!. ~6!
s

n,
We have checked that our scheme preserves the rotat
symmetry in spin space. That is, the calculation of the l
gitudinal susceptibility using, instead ofA5(Sq

1 ,iṠq
1)T, the

basis Ã5(Sq
z ,iṠq

z)T yields xzz(q,v)[x(q,v)
5 1

2 x12(q,v). For uqu!1, we have

vq
25cx

2qx
21cy

2qy
21cz

2qz
2 , ~7!

with the squared spin-wave velocities

cx
25

1

2
23a1

xC1,0,01a2C2,0,022Ry~a1
xC1,0,02a2C1,1,0!

22Rz~a1
xC1,0,02a2C1,0,1!, ~8!

cy
25Ry

2S 1

2
23a1

yC0,1,01a2C0,2,0D
22Ry~a1

yC0,1,02a2C1,1,0!

22RyRz~a1
yC0,1,02a2C0,1,1!, ~9!

and
nal
- cz

25Rz
2S 1

2
23a1

zC0,0,11a2C0,0,2D
22Rz~a1

zC0,0,12a2C1,0,1!

22RyRz~a1
zC0,0,12a2C0,1,1!. ~10!

Considering the uniform static spin susceptibilityx
5 limq→0Mq

(1)/(2vq
2), the ratio of the anisotropic function

Mq
(1) and vq

2 must be isotropic in the limitq→0. That is,
the conditions

~cy /cx!
25RyC0,1,0/C1,0,0 ~11!

and

~cz /cx!
25RzC0,0,1/C1,0,0 ~12!

have to be fulfilled.
The critical behavior of model~1! is reflected in our

theory by the closure of the spectrum gap atQ5(p,p,p) as
T approachesTN from above, so that lim

T→TN
x21(Q)50.

At T<TN we havevQ50, and, separating the condensatio
part C,

Cr5
1

N (
q(ÞQ)

Cqe
iq•r1CeiQ•r, ~13!
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whereC results from Eq.~13! with r50 employing the sum
rule C0,0,05

1
2 . Then the staggered magnetizationm is calcu-

lated as

m25
1

N (
r

^S0Sr&e
2 iQ•r5

3

2
C. ~14!

The theory has 14 quantities to be determined s
consistently~nine correlation functions invq

2, m, and four
vertex parameters! and 13 self-consistency equations@ten
Eqs. ~13! including C0,0,05

1
2 , the LRO conditionvQ50,

and Eqs.~11! and ~12!#. If there is no LRO, we havevQ
.0, and the number of quantities and equations is redu
by one. As an additional condition for determining the freea
parameter atT50, we adjust the ground-state energy per s
which we compose approximately ase(Ry ,Rz)5e(Ry,0)
1e(0,Rz)2e(0,0), wheree(Ry,0) @and e(0,Rz)# is taken
from the Ising-expansion results by Afflecket al. for the 2D
spatially anisotropic Heisenberg model,20 and e(0,0)5
20.4431 is the Bethe-ansatz value. This approximation
suggested to be good at least forRz!Ry ~or Ry!Rz). To
obtain an additional condition at finite temperatures, where
data are not available and all vertex parameters are temp
ture dependent, following Refs. 19 and 16 we assume
ratio

r a~T![
a2~T!21

a1
x~T!21

5r a~0! ~15!

as temperature independent.

III. GROUND-STATE PROPERTIES

In Fig. 1 our results for the zero-temperature stagge
magnetizationm0[m(T50) as a function ofRy andRz are
shown. They indicate an order-disorder transition at

FIG. 1. Staggered magnetization atT50 as a function of spatia
anisotropy. The inset shows the stability region of Ne´el order.
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phase boundaryRz,c(Ry) or Ry,c(Rz) ~cf. inset!. For Rz50
we obtain the critical ratioRy,c(0).0.24, which was already
found in Ref. 17. In that paper the suppression of LRO bel
the finite value ofRy,c was interpreted, in combination with
ED data, as an indication of a rather sharp crossover in
spatial dependence of the spin-correlation functions in
LRO phase at the coupling ratioRy,0.0.2. The finite value
of Ry,c , however, seems to be due to the approximations
our theory, since there are strong indications forRy,c50 ~see
Ref. 14!. Accordingly, we cannot explain the tiny magnet
moments of Sr2CuO3 and Ca2CuO3,2 since, forRy!1,3 we
havem50. This result is just opposite to the overestimati
of m by all previous spin-wave theories. As seen in the ph
diagram~inset of Fig. 1!, the inclusion of the interplane cou
pling Rz stabilizes the LRO, where this effect is quite co
siderable even at very small values ofRz .

Figure 2 exhibits some short-ranged spin-correlation fu
tions at T50. For Rz50, in Ref. 17 the correlators
C1,0,0, C0,1,0, and C1,1,0 as functions ofRy were found to
agree well with the ED data. ForRz50.02 ~cf. Fig. 2! our
results deviate only slightly from those atRz50. The sign
changes and magnitudes ofCr reflect the AFM SRO. In the
limit Ry→0 the correlations between thex-z planes vanish.
At Rz.Rz,c(0).0.24 the LRO enhances the inter-x-z plane
correlators and results in their sharp drop toward their lim
ing value CeiQ•r as Ry→0. This is visible in the data for
Rz50.35 in Fig. 2.

IV. FINITE-TEMPERATURE RESULTS

At nonzero temperatures we have solved the s
consistency equations~13!, supplemented by conditions~11!,
~12!, and ~15!, to obtain the magnetizationm(T), the Néel
temperature@m(TN)50#, the static spin susceptibility, an
the anisotropic correlation lengths.

In Fig. 3 the Ne´el temperature is plotted as a function
Rz . For Rz50 we obtainTN50 ~see Ref. 16!, in agreement
with the Mermin-Wagner theorem. The increase ofTN with
Rz is governed by the intra-x-y plane anisotropy. At a fixed
value of Rz , the decrease ofTN with decreasingRy is in
accordance with the reduced zero-temperature magnetiza
~cf. Fig. 1!. Comparing our results forRy51 with previous

FIG. 2. Spin correlation functions atT50 for different spatial
anisotropies.
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14 604 PRB 61L. SIURAKSHINA, D. IHLE, AND R. HAYN
RPA and mean-field approaches~see Table I!, we ascribe the
reduction ofTN as compared with Refs. 6,8, and 12 to t
improved description of SRO. That is, the LRO is suppres
in favor of a paramagnetic phase with pronounced AF
SRO. IfRz is fit to the Néel temperatures of real systems, t
strong overestimation ofTN by previous theories results i
very small values of the interplane coupling. In our approa
the resultingRz values turn out to be higher. Considerin
La2CuO4 with TN5325 K,9,21 and puttingJ5130 meV (J
[Jx5Jy) or J5117 meV,16 we obtain Rz.1023 or Rz
.1.631023, respectively, in contrast toRz,1024 according
to Refs. 6 and 12. For Ca0.85Sr0.15CuO2 (TN5540 K andJ
5125 meV),22 we obtainRz.1.231022 as compared with
Rz.2.531022 obtained from a fit of the low-temperatur
magnetization data.22

Figure 4 shows the temperature dependence of the s
gered magnetization atRy51 ~for the zero-temperature va
ues, compare with Fig. 1!. The shape of the normalized curv
m/m0 versusT/TN ~see the inset! depends on the single pa
rameterRz , and is similar to that found in previous spin
wave theories.6–8,10 At low enough temperatures the syste
exhibits 3D behavior, so that the decrease ofm follows aT2

law. This was also observed by NMR experiments
La2CuO4 ~Ref. 11! (TN5312 K), yielding m/m051
2a(T/TN)2 with a50.67 for T&100 K. The NMR data is
indicated in the inset of Fig. 4~marked by a bold curve!, and
agrees well with our theory forRz51023 ~as estimated
above!. For temperatures close toTN our numerical results
for m(T) are described by the lawm(T)}(12T/TN)1/2. The
square-root temperature behavior agrees with the finding
Refs. 7,8, and 10, and with the neutron scattering data
La2CuO4,9 but contradicts the result of Ref. 13 (m}1
2T/TN).

FIG. 3. Néel temperature as a function ofRz5Jz /Jx .

TABLE I. Néel temperatureTN /Jx at Ry51 compared with
other approaches.

2 log10(Rz) Fig. 3 Ref. 6 Ref. 8 Ref. 12

4 0.17 0.48 0.29 0.25
3 0.22 0.65 0.38 0.34
2 0.36 0.80 0.54 0.47
1 0.56 1.15 0.68
d

h

g-

n

of
n

Considering the AFM correlation lengths aboveTN and
for Ry51, the expansion ofx(q) around Q, x(q)
5x(Q)@11jxy

2 (kx
21ky

2)1jz
2kz

2#21 with k5q2Q, yields the
intraplane correlation length

jxy
2 52vQ

22F1

2
111a1

xC1,0,01a2~C2,0,012C1,1,0!

12Rz~a1
xC1,0,012a1

zC0,0,11a2C1,0,1!G2
2C1,0,0

MQ
(1)

,

~16!

and the interplane correlation length

jz
252RzvQ

22F4~2a1
xC1,0,01a1

zC0,0,11a2C1,0,1!

1RzS 1

2
15a1

zC0,0,11a2C0,0,2D G2
2RzC0,0,1

MQ
(1)

.

~17!

In Fig. 5 the influence of the interplane coupling on the te
perature dependence ofjxy

21 and jz
21 ~inset! is shown. For

comparison, the intraplane correlation length atRz50 ~see
also Ref. 16! is plotted, where the low-temperature expa
sion jxy52(2a1

xuC1,0,0(0)u)1/2T21exp@2pa1
xm0

2/(3T)# holds
up to T50.2 within a deviation of about 6% from the fu
temperature dependence calculated by Eq.~16!. For Rz.0
the correlation lengths diverge atTN , since the gapvQ
closes asT approachesTN from above. In the vicinity of
TN , jxy

21 andjz
21 behave asT2TN also found by previous

mean-field approaches.12,13

Let us compare our results for the intraplane correlat
length with the neutron-scattering data on La2CuO4 ~Ref. 21!
in the range 340 K<T<820 K shown in Fig. 6. TakingJ
as obtained previously16 from a least-squares fit ofjxy in the
2D model (a53.79 Å), J5117 meV, forT.500 K and

FIG. 4. Staggered magnetization vs temperature forRy51. The
inset shows theRz dependence of the normalized curves compa
with the NMR data on La2CuO4 ~Ref. 11! ~bold curve!.
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Rz&3.531023 we obtain a good quantitative agreeme
with experiments. In Ref. 16 the deviation of the theory
Rz50 and T,500 K from the experimental data was a
cribed to the appearance of the preexponential factorT21 in
the low-temperature expansion ofjxy which is an artifact of
our mean-field approach. However, this deviation may
reduced by the inclusion of the interplane coupling, sin
jxy

21(TN)50. For TN5325 K,21 we obtainRz.1.631023

~see above, Fig. 3!, and the theoreticaljxy
21 curve lies be-

tween theRz50 result and the experiments. The discrepan
between the theoretical and experimental low-tempera
correlation lengths may be further reduced by the choice
higher Rz values. Taking, for example,Rz53.431023, we
obtain a very good quantitative agreement~cf. Fig. 6! down
to 360 K; however, the Ne´el temperature turns out to b
somewhat higher (TN5353 K).

Finally, we consider the uniform static spin susceptibil
x(T)5 limq→0x(q). In Fig. 7 the anisotropy effects on th
temperature dependence are demonstrated. ForRz50 and a
strong intraplane anisotropy (Ry,0.2) the minimum ofx(T)
at a finite temperature, being an artifact of our approach, m
signal the crossover in the spatial dependence of the s

FIG. 5. Inverse antiferromagnetic correlation lengths with
(jxy

21) and between thex-y planes (jz
21 , see inset! for Ry51.

FIG. 6. Inverse antiferromagnetic intraplane correlation len
in La2CuO4 obtained by the neutron-scattering experiments of R
21 and from the theory (Ry51) for differentRz values.
t
r

e
e

y
re
f

y
in-

correlation functions atRy,0.0.2, as discussed in Sec. II
Note that such a minimum in the 1D model (Ry50) was
also found in Ref. 23. AtRy.0.2, the increase ofx with
temperature, the maximum atTmax near the exchange energ
Jx51 ~see the inset!, and the crossover to the high
temperature Curie-Weiss behavior are due to the decreas
AFM SRO with increasing temperature~cf. Ref. 16!. Let us
point out that the susceptibility maximum is totally missed
RPA theories.7 With increasingRy , we obtain an increase o
Tmax which agrees with a general tendency found in vario
spin–1/2 Heisenberg models, and analyzed in Ref. 5.
comparison, the exact values atRy50 and 1 are given by
Tmax50.64 ~Ref. 24! and Tmax50.94,25 respectively. Since
our theory allows the calculation ofTmax at any spatial an-
isotropy, it may provide a reliable interpretation of expe
mental data on low-dimensional spin systems. Conside
the maximum spin susceptibilityxmax5x(Tmax), our results
again are in accordance with the general behavior:5 xmax
increases with decreasingTmax, i.e., with decreasingRy .
Concerning the influence of the interplane coupling, the
hancement of the low-temperature susceptibility byRz may
be explained by the weakening of the SRO effect in hig
dimensions. As seen from Figs. 7 and 3, the uniform susc
tibility reveals no peak at the Ne´el temperature, contrary to
the RPA result of Ref. 7. Concerning the maximum inx(T)
of La2CuO4, we obtainTmax51.19J51615 K ~cf. Fig. 7,
J5117 meV). This value roughly agrees with the estima
given by Johnston,26 Tmax51460 K, by means of a scaling
analysis of the susceptibility data below 800 K.

V. SUMMARY

In this paper we have extended the spin-rotation-invari
Green’s-function theory of magnetic LRO and SRO in 2
Heisenberg models16,17 to a 3D Heisenberg antiferromagn
with arbitrary spatial anisotropy. Our theory provides a s
isfactory interpolation between the low- and hig
temperature behavior, where the temperature-depen
SRO, described in terms of two-spin correlation functions
adequately taken into account. The main results are sum
rized as follows.

~i! The incorporation of SRO results in a strong suppr

h
f.

FIG. 7. Uniform static spin susceptibility vsT. The inset exhib-
its the positionTmax of the maximum inx(T) vs Ry .
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14 606 PRB 61L. SIURAKSHINA, D. IHLE, AND R. HAYN
sion of Néel order with increasing anisotropy and in a r
duced Ne´el temperature as compared with previous sp
wave approaches.

~ii ! The temperature dependence of the uniform static s
susceptibility reveals a maximum in the short-range-orde
paramagnetic phase and a crossover to the Curie-Weiss
The position of the maximum is influenced by the spa
anisotropy.

~iii ! Comparing the theory with experiments on the ma
netization and correlation length of La2CuO4, a good quan-
titative agreement is found.

From the results of our theory we conclude that the ap
a
8

e

B

-
-

in
d
w.
l

-

i-

cation of this approach to extended Heisenberg models~an-
isotropy in spin space, frustration! may be promising to de-
scribe the SRO effects on the unconventional magn
properties of real low-dimensional spin systems.
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