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Exact ground state for one-dimensional electronic models
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We have found the exact ground state for two electronic models on a linear chain. The first model describes
a half-filling electron system at the ferromagnet-antiferromagnet transition point. In the singlet ground state the
spin correlators show giant spiral magnetic ordering, with the period of a spiral equal to the system size. The
second electronic model describes the point where the ground state has giant spiral off-diagonal long-range
order and is, therefore, superconducting. We suggest the formation of a ground state with giant spiral order
~ferromagnetic or off-diagonal! as a probable scenario of the subsequent destruction of the ferromagnetism and
the superconductivity.
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I. INTRODUCTION

In recent years there has been a growing interest in stu
ing systems of strongly correlated electrons in relation w
high-Tc superconductivity. Because of the difficulty in dea
ing with the many-body problems, exact results are rare.
well known that some one-dimensional~1D! electron models
can be exactly solved by the Bethe ansatz. However, m
1D quantum systems do not obey the Yang-Baxter equat
and thus are nonintegrable. Another approach leading to
act results consists of the construction of an exact grou
state wave function for some quantum systems. Rece
considerable progress in this problem was achieved by u
the so-called matrix product~MP! form of the ground-state
wave function. It allowed one to find the exact ground st
for various 1D spin models.1–3 Its origin can be traced bac
to theS51 spin chain model.4 For higher-dimensional spin
and electronic systems, there are also some methods fo
construction of an exact ground-state wave function.5–8

There is a class of 1D quantum spin models describing
ferromagnet-antiferromagnet transition point, for which
exact ground state wave function was found in Refs. 9
10. The singlet ground-state wave function at this point ha
special recurrent form, and for special values of model
rameters it can be reduced to the MP form or resonat
valence bond~RVB! form.9 Spin correlations in the single
ground state show a giant spiral magnetic structure, with
period of the spiral equal to the system size. On the anti
romagnetic side of this point the ground state can be ei
gapless, with an algebraic decay of spin correlations,11 or
gapped with the exponential decay of correlations.12 Thus,
this model describes the boundary between the ferromagn
phase and the singlet phase without long-range order.

In this paper we present the singlet ground-state w
function of this spin model in another form, which can
easily generalized for 1D electronic models. Then we c
PRB 610163-1829/2000/61~21!/14592~9!/$15.00
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sider two 1D electronic models. The first model describe
half-filling electron system at the point where the singlet a
ferromagnetic states are degenerate. The exact calculatio
the correlation functions in the singlet ground state shows
same giant spiral magnetic ordering as for the original s
model, while all other correlations vanish in the thermod
namic limit. The second electronic model describes
boundary on the phase diagram between the supercondu
phase with off-diagonal long-range order~ODLRO! and the
non-superconducting phase. The correlation functions in
ground state of this model show a giant spiral off-diago
long-range order. We presume that in one-dimensional s
tems the destruction of the long-range order~ferromagnetic
or off-diagonal! can be followed by the appearance of
ground state with giant spiral order.

We generalize this form of the wave function for the ele
tronic ladder model. This model possesses both giant sp
spin order and giant spiral ODLRO in the ground sta
Therefore, this electron ladder model describes the bound
points on the phase diagram between four different pha
two singlet phases with and without ODLRO, and two fe
romagnetic phases with and without ODLRO. For some s
cial cases the ground-state wave function can be reduce
the usual MP form.

The paper is organized as follows. In Sec. II we constr
an exact singlet ground state for the quantum spin mode
Sec. III two electronic models with exact ground states
considered, and the correlation functions are exactly ca
lated. Section IV gives a brief summary. In the Appendixe
technique for the calculation of correlators is developed.

II. QUANTUM SPIN MODEL

First we consider as5 1
2 spin chain model with nearest

and next-nearest neighbor interactions given by the Ham
tonian
14 592 ©2000 The American Physical Society
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H52(
i 51

N S Si•Si 112
1

4D1
1

4 (
i 51

N S Si•Si 122
1

4D , ~1!

with periodic boundary conditions and evenN.
This model describes the ferromagnet-antiferromag

transition point where the ferromagnetic and singlet sta
are degenerate. Hamiltonian~1! was considered in Refs.
and 10 where the singlet ground-state wave function w
constructed in two different forms. In this paper we repres
another form of this singlet function, which allows us
generalize this function for the electronic model, and to
velop a technique to calculate correlators.

The singlet ground state wave function for Hamiltoni
~1! can be written as

C05P0C, C5^0bug1^ g2^ . . . ^ gNu0b&, ~2!

where

gi5b1u↑& i1bu↓& i . ~3!

Here we introduced auxiliary Bose particleb1 ~the Bose
operatorsb1 and b do not act on spin statesu↑& i and u↓& i)
and the Bose vacuumu0b&. Therefore, the direct productg1
^ g2^ . . . ^ gN is the superposition of all possible spin co
figurations multiplied on the corresponding Bose operato
like b1bbb1 . . . u↑↓↓↑ . . . &. P0 is a projector onto the sin
glet state. This operator can be written as13

P05
1

8p2E0

2p

daE
0

2p

dbE
0

p

singdg eiaSz
eigSx

eibSz
,

~4!

whereSx(z) are components of the total spin operator.
This form of wave function resembles the MP form, b

with an infinity matrix which is represented by Bose ope
tors. Therefore, we have to pick out the^0bu . . . u0b& element
of the matrix product instead of the usual trace in the M
formalism,1–3 because the trace is undefined in this case.
function C contains components with all possible values
spin S (0<S<N/2) and, in fact, a fraction of the singlet i
exponentially small at largeN. This component is filtered ou
by the operatorP0.

In order to show thatC0 is the ground-state wave func
tion for Hamiltonian~1!, let us represent Hamiltonian~1! as
a sum of Hamiltonianshi of cells containing three sites

H5(
i 51

N

hi , ~5!

where

hi52
1

2 S Si•Si 112
1

4D2
1

2 S Si 11•Si 122
1

4D
1

1

4 S Si•Si 122
1

4D .

One can easily check that each cell Hamiltonianhi for
i 51, . . . (N22) gives zero when acting ongi ^ gi 11
^ gi 12. Since eachhi is a non-negatively defined operato
then C is the exact ground-state wave function of an op
chain:
et
s

s
t

-

s,

t
-

e
f

n

Hopen5 (
i 51

N22

hi .

As mentioned above, the functionC contains components
of all possible values of total spinS, and, therefore, the
ground state of the open chain is multiply degenerate. Ho
ever it can be proven~as was done in Ref. 10!, that for the
cyclic chain~1! only singlet and ferromagnetic componen
of C have zero energy. Therefore, for cyclic chain~1! C0 is
the singlet ground-state wave function degenerate with
ferromagnetic state.

The exact calculation of the norm and spin correlati
function ^Si•Si 1 l& ~see Appendix A! in the singlet ground
state~2! results in the following expressions:

^C0uC0&5
dN

djN S 1

cos2S j

2D D U
j50

, ~6!

^C0uSi•Si 1 l uC0&5
] l

]j l

]N2 l 22

]zN2 l 22

3S 2
3

8

cos~j2z!

cos4S j1z

2 D D U
j5z50

. ~7!

It can be shown that in the thermodynamic limit, Eqs.~6!
and ~7! result in

^Si•Si 1 l&5
1

4
cosS 2p l

N D . ~8!

So, we reproduce the result obtained in Refs. 9 and 10,
in the thermodynamic limit a giant spiral spin structure
realized, with the period of the spiral equal to the syst
size.

III. ELECTRONIC MODELS

Now we will construct electronic models by generaliz
tion of wave function~2!,

Ce15PS50 Trf^0bug1^ g2^ •••^ gNu0b&, ~9!

where

gi5~b1 ci ,↑
1 1bci ,↓

1 1x f1ci ,↑
1 ci ,↓

1 1x f !u0& i , ~10!

ci ,s
1 andci ,s are the Fermi operators andu0& i is the vacuum

state on thei th site of the electronic model;b1 ~b! and f 1 ~f!
are the auxiliary Bose and Fermi operators, respectiv
u0b& is the Bose vacuum; andx is a parameter of the mode
We note that the Fermi operatorsf 1 and f anticommute
with the electronic operatorsci ,s

1 and ci ,s . So the product
g1^ •••gN is the operator in the auxiliary Bose and Ferm
spaces. We pick out thê0bu . . . u0b& element in the Bose
space, which can be written as

^0bu g1^ g2^ •••^ gNu0b&5f01~ f 1 f 2 f f 1!f1 , ~11!
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and then we take the trace over the Fermi operators:

Trf^0bug1^ g2^ •••^ gNu0b&52f0 .

The projectorPS50 filters out the singlet component from
the functionf0. Thus we obtain a singlet wave functionCe1
describing the state with one electron per site.

In order to find the Hamiltonian for which the wave fun
tion ~9! is the exact ground-state wave function, let us co
sider what states are present on the two nearest sites in
wave function~9!. One can easily check that there are on
nine states from the total 16 states in the productgi ^ gi 11.
They are

u↑↑&, u↓↓&, u↑↓1↓↑&,

u20202&, u↑↓2↓↑&2x2u20102&, u↑020↑&,
~12!

u↑222↑&, u↓020↓&, u↓222↓&.

Here we denote an empty site byu0&, a site occupied by one
electron byu↑& and u↓&, and a doubly occupied site byu2&.

The elementary Hamiltonianhi ,i 11 for which all these
states are the exact ground states can be written as the su
the projectors onto the seven missing statesuwk& with arbi-
trary positive coefficientslk :

hi ,i 115 (
k51

7

lkuwk&^wku.

The total Hamiltonian is the sum of the elementary Ham
tonians:

H5(
i 51

N

hi ,i 11 . ~13!

So, for each value ofx there is a family of the Hamilto-
nians depending on seven positive parameterslk . The
analysis shows that the most simple form of the Hamilton
for x.1 corresponds to the choice oflk in the forms

l15414/x4, uw1&5x2u↑↓2↓↑&1u20102&,

l2,35222/x4, uw2&5u00&, uw3&5u22&,

l4,5,6,752, uw4,5&5u0s1s0&, uw6,7&5u2s1s2&.

The elementary Hamiltonianshi ,i 11 in this case depend
only on the model parameterx:

hi ,i 115124Si•Si 1114S 12
3

x4D h i
zh i 11

z 1
4

x4
h ih i 11

1(
s

~ci ,s
1 ci 11,s1ci 11,s

1 ci ,s!~12ni ,2s2ni 11,2s!

1
2

x2 (
s

~ci ,s
1 ci 11,s1ci 11,s

1 ci ,s!~ni ,2s2ni 11,2s!2.

~14!
-
the

of

-

n

Hereni ,s5ci ,s
1 ci ,s , and the SU~2! spin operators are given

by Si
15ci ,↑

1 ci ,↓ , Si
25ci ,↓

1 ci ,↑ , and Si
z5 1

2 (ni ,↑2ni ,↓). Here
we also useh operators,

h i
15ci ,↓

1 ci ,↑
1 , h i

25ci ,↑ci ,↓ , h i
z5

12ni ,↑2ni ,↓
2

,

which form another SU~2! algebra,15,16 andh1h2 is a scalar
product of pseudospinsh1 andh2.

Hamiltonian ~14! does not conserve the total number
empty and doubly occupied sites because of the last term
the elementary Hamiltonianshi ,i 11 , in contrast to the mod-
els considered in Ref. 16. Each elementary Hamilton
hi ,i 11 ( i 51, . . . ,N21) acting on functionsf0 and f1
gives zero, since all of states~12! are eigenstates ofhi ,i 11
with zero energy, while the energies of all other states ax
.1 are positive. Therefore, the functionsf0 and f1 are
ground-state wave functions of the open chain:

Hopen5 (
i 51

N21

hi ,i 11 . ~15!

To determine the degeneracy of model~15!, we need to
classify the functionsf0 andf1. Analogously to spin mode
~2!, the functionsf0 and f1 contain components with al
possible values of total spinS. Therefore,f0 contains mul-
tiplets with S50, . . . ,N/2, and f1 contains components
with values of the total spinS50, . . . ,N/221 (f1 does not
contain a ferromagnetic component, since at least two s
in f1 are nonmagnetic:u0& and u2&). Thus,N11 multiplets
are degenerated for the open chain.

However, for cyclic model~14! it can be proved that only
three multiplets are the ground states: singlet state~9! with
the momentump50 ~singlet component off0), the trivial
ferromagnetic state withp5p, and the state withS5N/2
21 andp5p ~which is the component off1 with S5N/2
21). The last state withS5N/221 can be written as

CN/2215(
i , j

~ci ,↑
1 cj ,↓1cj ,↑

1 ci ,↓! )
n51

N

cn,↓
1 u0&.

Thus the ground states of the electronic model@Eq. ~14!#
with one electron per site are the singlet state, the ferrom
netic state, and the state withS5Smax21.

It is interesting to note that the singlet wave function~9!
can be also written in the form~see Appendix B!

Ce15( @ i , j #@k,l #@m,n# . . . )
n51

N

cn,↓
1 u0&, ~16!

where

@ i , j #5Si
12Sj

11x2 ~ci ,↑
1 cj ,↓2cj ,↑

1 ci ,↓!,

and the summation is made for any combination of si
under the condition thati , j ,k, l ,m,n . . . . This form of
the wave function is analogous to the RVB form found
Ref. 9 for spin model~1!.

The norm and the correlators of the electronic model~14!
in the singlet ground state are calculated in the same wa
for the spin model~Appendix A!:
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^Ce1uCe1&5
dN

djN S 2
11cosh~x2j!

cos2S j

2D D U
j50

, ~17!

^Ce1uSi•Si 1 l uCe1&5
] l

]j l

]N2 l 22

]zN2 l 22 S 2
3

4

cos~j2z!@11cosh~x2j1x2z!#

cos4S j1z

2 D D U
j5z50

, ~18!

^Ce1ci ,s
1 ci 1 l ,suCe1&5

] l

]j l

]N2 l 22

]zN2 l 22 S 2x2
@cos~j!1cos~z!#@cosh~x2j!1cosh~x2z!#

2 cos4S j1z

2 D D U
j5z50

, ~19!

^Ce1uh i
zh i 1 l

z uCe1&5
] l

]j l

]N2 l 22

]zN2 l 22 S 2
x4 cosh~x2j2x2z!

2 cos2S j1z

2 D D U
j5z50

, ~20!

^Ce1uh i
2h i 1 l

1 uCe1&5
dN22

djN22 S x4

cos2S j

2D D U
j50

. ~21!
e

p
E

-

of

in

m

d
n

f

As can be seen from Eq.~21!, the expectation value
^h1

2h i 1 l
1 &, which determines the off-diagonal long-rang

order,14 does not depend on the distancel. But in the ther-
modynamic limit ODLRO vanishes:

^h i
zh i 1 l

z &5OS 1

N2D , ^h i
2h i 1 l

1 &5OS 1

N2D ,

~22!

^ci ,s
1 ci 1 l ,s&5OS 1

ND , ^Si•Si 1 l&5
1

4
cosS 2p l

N D ;

however for finite systems all correlators~19!–~21! are
nonzero.

The second electronic model can be obtained by sim
interchanging of the Bose and the Fermi operators in
~10!. Thus, the wave function of this model has the form

Ce25Ph50 Trf^0bug1^ g2^ •••^ gN u0b&, ~23!

with

gi5~x f1 ci ,↑
1 1x f ci ,↓

1 1b1ci ,↑
1 ci ,↓

1 1b!u0& i . ~24!

The projectorPh50 filters out the state with totalh5(h i
50. Therefore, the functionC0 hasSz50, but it is not an
eigenfunction ofS2. Instead, it is an eigenfunction ofh2 with
h50.

Wave function~23! can be also written in a form analo
gous to the RVB one:

Ce25( @ i , j #@k,l #@m,n# . . . u0&,

where

@ i , j #5h i
12h j

11x2~ci ,↑
1 cj ,↓

1 1ci ,↓
1 cj ,↑

1 !,
ly
q.

and the summation is also done over any combinations
sites under the condition thati , j ,k, l ,m,n . . . .

Considering the productgi ^ gi 11 one can find that there
are only the following nine states on two nearest sites
wave function~23!:

u22&, u00&, u20102&, u↑↓2↓↑&,

u20202&1x2u↑↓1↓↑&, u↑010↑&, ~25!

u↑212↑&, u↓010↓&, u↓212↓&.

The most simple Hamiltonian for this model has a for
which is similar to the previous one given by Eq.~14!:

H5(
i 51

N

hi ,i 11 ,

~26!

hi ,i 115124h ih i 1114S 12
3

x4D Si
zSi 11

z 1
4

x4
Si•Si 11

2(
s

~ci ,s
1 ci 11,s1ci 11,s

1 ci ,s!~12ni ,2s2ni 11,2s!

1
2

x2 (
s

s~ci ,s
1 ci 11,s1ci 11,s

1 ci ,s!

3~ni ,2s2ni 11,2s!2.

This Hamiltonian forx.1 is also a non-negatively define
operator, andCe2 is the exact ground-state wave functio
with zero energy. This Hamiltonian commutes withh2, but
does not commute withS2. Therefore, the eigenfunctions o
Hamiltonian ~26! can be described by quantum numbersh
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andhz. Making the same analysis as for the previous mo
we find that for the cyclic model~26!, states with three dif-
ferent values ofh have zero energy@as it was for model
~14!#. These are states withh50 and momentump5p @Eq.
~23!#, all states withh5N/2 andp50,

CN/2,hz5~h1!N/22hz
u0&, ~27!

and states withh5N/221 andp50:

CN/221,hz5~h1!N/2212hz

(
i , j

~ci ,↑
1 cj ,↓

1 2ci ,↓
1 cj ,↑

1 !u0&.

~28!

Therefore, for the case of one electron per site (hz50) the
ground state of model~26! is threefold degenerate.

The correlation functions in ground states~27! and ~28!
obviously coincide with each other in the thermodynam
limit, and for the half-filling case (hz50) they are

^ci ,s
1 ci 1 l ,s&5OS 1

ND , ^Si•Si 1 l&5OS 1

N2D ,

~29!

^h i
zh i 1 l

z &5OS 1

ND , ^h i
2h i 1 l

1 &5
1

4
1OS 1

ND .

The existence of ODLRO immediately follows from th
form of the wave functions~27! and ~28!.

The correlation functions in the ground state~23! have
similar forms to that in Eqs.~18!–~21!, and in the thermody-
namic limit they reduce to

^ci ,s
1 ci 1 l ,s&5OS 1

ND , ^Si•Si 1 l&5OS 1

N2D ,

~30!

^h i
2h i 1 l

1 &52^h i
zh i 1 l

z &5
1

6
cosS 2p l

N D .

The giant spiral ordering in the last equation implies t
existence of ODLRO and, therefore, superconductivity14 in
the ground state@Eq. ~23!#. We note that though all thre
ground states of model~26! are superconducting, the prope
ties of these wave functions are essentially different. Let
consider the density-density correlator^nini 1 l&. For wave
functions~27! and~28! in the thermodynamic limit this cor
relator decouples:̂ nini 1 l&5^ni&^ni 1 l&51. However for
wave function~23! it is equal to^nini 1 l&511 1

3 cos(2pl/N).
It is interesting to note that another model having t

ground-state wave function~23! with x50 and the same
spiral ODLRO@Eq. ~30!# can be obtained from model~1! by
simply replacing operatorsS with h:

H52(
i 51

N

h ih i 111
1

4 (
i 51

N

h ih i 12 . ~31!

The direct analogy of this model to spin model~1! results in
the conclusion that model~31! describes the boundary poin
on the phase diagram between superconducting and
superconducting phases, where the off-diagonal long-ra
order is destroyed. We suppose that model~26! also de-
scribes such a point. Thus wave functions~9! and ~23! are
the ground states for 1D electronic systems in the bound
l

s

n-
ge

ry

points between the phases with and without long-range o
@ferromagnetic for Eq.~14! and off-diagonal for Eq.~26!#.
We suggest the formation of a ground state with long-ran
spiral order like Eqs.~22! and~30! as a probable scenario t
the subsequent destruction of the ferromagnetism and su
conductivity.

This proposed form of wave function can be further ge
eralized for the electronic ladder model~Fig. 1!. The wave
function for a cyclic ladder model containing 2N sites has
the form

C ladder5PS5h50^0ug1^ g2^ •••^ gNu0&, ~32!

where eachgi corresponds to thei th rung of the ladder:

gi5c1@a1~2x2a1a!u↑↑& i2au↓↓& i1~a1a2x!u↑↓1↓↑& i ]

1c2u↑↓2↓↑& i1c3@b1~2y2b1b!u22& i2bu00& i

1~b1b2y!u20102& i ] 1c4u20202& i , ~33!

wherea1 andb1 are Bose operators,u0& in Eq. ~32! is the
Bose vacuum ofa1 andb1 particles, andci , x, andy are
the parameters of the model.Ph5S50 is the projector onto
the state, withS5h50.

Let us first consider the casec35c450. In this case the
wave function~32! describes a spin ladder model dependi
on two parametersc2 /c1 and x. It can be shown that this
model coincides with that considered in Ref. 12. It has
singlet ground state@Eq. ~32!# degenerate with the ferromag
netic state. The spin correlators in the singlet ground s
show double-spiral ordering with a small shift anglenw
5(2p/N)(2c2 /c1) between two giant spirals formed on tw
legs of the ladder:

^Sn•Sn12l&5
1

4
cosS 2p l

N D ,

~34!

^Sn•Sn12l 11&5
1

4
cosS 2p l

N
1~21!nnw D .

For cases of integer or half-integerx5 j , which corre-
spond to the special cases of the model,12 in Eq. ~33! one can
easily recognize Maleev’s boson representation of spinS
5 j operators:

S15a1~2 j 2a1a!, S25a, Sz5a1a2 j .

Therefore, in these special cases the infinite matrices form
by the Bose operatorsa1 anda can be broken off to the size
n52 j 11 and wave function~32! is reduced to the usual MP
form. The spin correlators in the special cases have an e
nential decay.

Now let us return to the general case of the electro
ladder model Eq.~32!. In order to find the Hamiltonian for
which Eq.~32! is the exact ground-state wave function, o

FIG. 1. The two-leg ladder.
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should consider what states are present inC ladderon the two
nearest rungs of the ladder. There are only 26 states from
total 256 states in the productgi ^ gi 11. Therefore, the
Hamiltonian of the ladder model can be written as the sum
the projectors onto the 230 missing statesuwk& with arbitrary
positive coefficientslk :

H5(
i 51

N

hi ,i 11 , hi ,i 115 (
k51

230

lkuwk&^wku. ~35!

Unfortunately, we cannot give an explicit form like E
~14! or Eq. ~26! for this Hamiltonian, because it has a ve
cumbersome form. But we are able to determine some p
erties of Hamiltonian~35!. This Hamiltonian commutes with
both S2 andh2. It has a multiply degenerated ground sta
the state withS5h50 @Eq. ~32!#, and all the states withS
1h5N have zero energy. Hence the electronic ladder mo
@Eq. ~35!# describes the boundary point between phases w
and without ferromagnetic and off-diagonal long-range
der. The correlation functions in ground state~32! can be
calculated with the use of the technique developed in
Appendixes. For the casec1.c3 there is the same double
spiral spin ordering@Eq. ~34!# as for the spin ladder mode
while all other correlations are exponentially small. For t
casec1,c3 the double-spiral ODLRO is realized. In th
most interesting symmetric casesc15c3 , c25c4, andx5y,
the system possesses both giant spiral spin order and
spiral ODLRO:

^Sn•Sn12l&5^hnhn12l&5
1

8
cosS 2p l

N D ,

~36!

^Sn•Sn12l 11&5^hnhn12l 11&5
1

8
cosS 2p l

N
1~21!nDw D ,

whereDw5(2p/N)(2c2 /c1).
Therefore, in this case the wave function~32! describes

the boundary points on the phase diagram between the
different phases: singlet phases with and without ODLR
and ferromagnetic phases with and without ODLRO. In
special cases whenx(y) is an integer or half-integer, the spi
~off-diagonal! correlations decay exponentially and the wa
function in the corresponding Bose space can be represe
in MP form with finite matrices of sizen52x11 or n
52y11. When bothx and y are integers or half-integers
wave function~32! can be written in the usual MP form wit
the size of matricesn5(2x11)(2y11).

IV. SUMMARY

We have found another form of the singlet ground-st
wave function for the quantum spin model considered pre
ously in Refs. 9 and 10. The special technique was de
oped for an exact calculation of the norm and the correla
functions. This form of the wave function allowed us to ge
eralize it for two 1D electronic models.

The first model describes a half-filling electronic syste
at the ferromagnet-antiferromagnet transition point when
singlet and ferromagnetic states are degenerate. In the si
ground state the spin correlators show giant spiral magn
ordering with the period of the spiral equal to the syst
he

f

p-

:

el
th
-

e

ant

ur
,

e

ted

e
i-
l-
n
-

e
let

tic

size, while all other correlations vanish in the thermod
namic limit.

The second electronic model in the half-filling case ha
threefold-degenerate ground state. All ground states h
off-diagonal long-range order and, therefore, are superc
ducting. The calculation of the correlation functions sho
that one of the ground states has giant spiral ODLRO.

The comparison of these electronic models with the or
nal spin model11,12 leads us to the conclusion that these tw
electronic models describe the boundary points on the ph
diagram between the phases with and without long-ra
order~ferromagnetic for the first model and off-diagonal f
the second model!. Therefore, we presume that if the Ham
tonian of the 1D quantum system commutes with opera
forming the SU~2! algebra~it can be the spinS operator or
the pseudo-spinh operator!, then the appearance of a groun
state with giant spiral order predicts the ensuing destruc
of ferromagnetism or superconductivity.

We have briefly considered the generalization of the p
posed form of the wave function for the electronic ladd
model. The general case of this model has a much ric
phase diagram than the two first models. In some partic
cases this model describes boundary points on the phase
gram between four different phases: with and without fer
magnetic and off-diagonal long-range order. There are a
some special cases of the electronic ladder model when
ground-state wave function is reduced to the usual MP fo
In addition, the proposed form of the wave function can
also generalized for the 2D case and different types of
tices.
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APPENDIX A

First we calculate the norm and correlation function of t
wave functionC0 @Eq. ~2!#. The norm of the singlet wave
function C0 is

^C0uC0&5^CuP0uC& . ~A1!

Since the functionC hasSz50, then the projectorP0 in Eq.
~4! takes the form10

P05
1

2E0

p

singdgeizS2
eiz8S1

, ~A2!

where z5tan(g/2),z85sin(g/2)cos(g/2) and S1(2) are the
operators of the total spin.

Therefore, the norm takes the form

^C0uC0&5
1

2E0

p

singdg

3^0a ,0bu)
i 51

N

~gi
1eizSi

2

eiz8Si
1

gi !u0a ,0b&,

where
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gi
1eizSi

2

eiz8Si
1

gi

5~a1^↑ i u1a^↓ i u!eizSi
2

eiz8Si
1

~b1u↑& i1bu↓& i !

5a1b11~12z8z!ab1 izab11 iz8a1b,

anda1 anda are the Bose operators. Thus the norm can
rewritten as

^C0uC0&5
1

2E0

p

singdg^0uGNu0&, ~A3!

where u0&5u0a,0b& is the Bose vacuum ofa1 and b1 par-
ticles and

G5u~a1b11ab!1 iv~ab11a1b!,

whereu5cos(g/2),v5sin(g/2).
Let us introduce the auxiliary functionP(j):

P~j!5^0uejGu0&; ~A4!

then

^0uGNu0&5
dNP

djNU
j50

.

In order to findP(j) we perform the following manipula
tions. First, we take the derivative ofP(j):

dP

dj
5^0uGejGu0&5^0uejGGu0&5u^0uabejGu0&

5u^0uejGa1b1u0&. ~A5!

Now we need to carrya1b1 over G in the last expression:

ejGa1b15ejGa1e2jGejGb1e2jGejG . ~A6!

This can be done by using the following equations:

ejGa1e2jG5a1 cosj1~ub1 ivb1!sinj,

ejGae2jG5a cosj2~ub11 ivb!sinj,
~A7!

ejGb1e2jG5b1 cosj1~ua1 iva1!sinj,

ejGbe2jG5b cosj2~ua11 iva!sinj .

Substituting Eqs.~A6! and ~A7! into Eq. ~A5!, we find

^0uejGa1b1u0&5u sinj cosj^0uejGu0&

1u2 sin2 j^0uabejGu0&.

The last equation can be rewritten as the differential equa
on P(j),

dP

dj
5u2 sinj cosjP~j!1u2 sin2j

dP

dj
, ~A8!

with boundary conditionP(0)51.
The solution of Eq.~A8! is

P~j!5
1

A12u2 sin2j
. ~A9!
e

n

Integrating Eq.~A3! over g, we obtain

^C0uC0&5
1

2E0

p

singdg
dNP

djN U
j50

5
dN

djN S 1

cos2S j

2D D U
j50

.

~A10!

Thus, finally, we arrive at

^C0uC0&52
dN11

djN11 S tan
j

2D U
j50

5
4~2N1221!

N12
uBN12u.

~A11!

HereBN are the Bernoulli numbers.
To calculate the spin correlators we need to introdu

operators:

Gz5gi
1eizSi

2

eiz8Si
1

2Si
zgi5u~a1b12ab!1 iv~ab12a1b!,

G15gi
1 eizSi

2

eiz8Si
1

Si
1gi5ua1b1 ivab,

G25gi
1 eizSi

2

eiz8Si
1

Si
2gi5uab11 iva1b1 .

Then, the correlator̂S1Sl 11& will be defined by

^C0uS1Sl 11uC0&5
1

2E0

p

singdg^0u
1

4
GzG

lGzG
N2 l 22

1
1

2
G1GlG2GN2 l 22u0& ~A12!

~since^0uG2 . . . u0&50).
The expectation values in Eq.~A12! can be represented a

^0uGzG
lGzG

N2 l 22u0&

5
] l

]j l

]N2 l 22

]zN2 l 22
^0uGze

jGGze
zGu0&uj5z50 ,

~A13!
^0uG1GlG2GN2 l 22u0&

5
] l

]j l

]N2 l 22

]zN2 l 22
^0uG1ejGG2ezGu0&uj5z50.

After a procedure similar to that for the norm and the in
gration overg, we obtain

^C0uS1Sl 11uC0&5
] l

]j l

]N2 l 22

]zN2 l 22

3 S 2
3

8

cos~j2z!

cos4S j1z

2 D D U
j5z50

.

~A14!

Now we generalize these calculations for the electro
wave functionCe1 @Eq. ~9!#. The norm ofCe1 has a form
similar to ~A3!,
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^Ce1uCe1&5
1

2E0

p

singdg Trf 1 , f 2
^0uGNu0&, ~A15!

where u0&5u0a,0b& is the Bose vacuum of thea1 and b1

particles, and

G5Gb1Gf ,

Gb5u~a1b11ab!1 iv~ab11a1b!,

Gf5x2~ f 2
1 f 1

11 f 1f 2!,

where f 1
1 and f 2

1 are the Fermi operators, anticommutin
with each other.

The integrating function in Eq.~A15! can be written as

Trf 1 , f 2
^0uGNu0&5

dN

djN
@Trf 1 , f 2

~ejGf !^0uejGbu0&#uj50 .

~A16!

The trace over Fermi operators is calculated easily:

Trf 1 , f 2
~ejGf !5Trf 1 , f 2

$11@cosh~x2j!21#~ f 1
1 f 1f 2

1 f 2

1 f 1f 1
1 f 2f 2

1!%

5212 cosh~x2j! .

Noting that the quantity

1

2E0

p

singdg^0uejGbu0&5
1

cos2S j

2D
has been already calculated in Eq.~A10!, we finally obtain:

^Ce1uCe1&5
dN

djN S 2
11cosh~x2j!

cos2S j

2D D U
j50

. ~A17!

The correlation functions over the functionCe1 are calcu-
lated by a similar procedure to that as in the spin model c
@Eqs.~A12!–~A14!# leading to expressions~18!–~21!.

APPENDIX B

In this appendix we show the equivalence of the t
forms ~9! and ~16! of the wave functionCe1. First, let us
at

on

tt

.

se

calculate the anticommutator of two operatorsgi andgj de-
fined by Eq.~10!:

$gi ,gj%5~2ci ,↑
1 cj ,↓

1 1ci ,↓
1 cj ,↑

1 1x2ci ,↑
1 ci ,↓

1

1x2cj ,↑
1 cj ,↓

1 !u0& i u0& j . ~B1!

Thus the anticommutator$gi ,gj% does not contain auxiliary
operatorsb1, b, f 1 and f and presents singlet function lo
cated on sitesi and j.

Now we can write

g1^ g2 . . . gN52g2^ g1 . . . gN1$g1 ,g2% ^ g3 . . . gN

52g2^ g3 . . . gN^ g11 (
n52

N

~21!n$g1 ,gn%

^ g2^ g3 . . . gn21^ gn11 . . . gN . ~B2!

Averaging the latter equation by the Bose vacuu
^0bu . . . u0b&, making Trace over the Fermi operatorsf 1 and
f and filtering out the singlet component, we obtain

Ce152Ce11 (
n52

N

~21!n$g1 ,gn%Ce1
(1,n) , ~B3!

where

Ce1
(1,n)5PS50 Trf^0bug2^ g3^ •••^ gn21

^ gn11^ •••^ gNu0b&.

Here we used the fact that the functionCe1 has a momentum
p50.

Repeating this procedure for functionCe1
(1,n) and so on,

we arrive finally at

Ce15
1

2 (
n52

N

~21!n$g1 ,gn%Ce1
(1,n)

5
1

2N/2 (
i , j . . .

~21!P$gi ,gj%$gk ,gl%$gm ,gn% . . . , ~B4!

where P5( i , j ,k,l , . . . ) is the permutation of numbers
(1,2, . . . ,N), and the summation is done over all combin
tions of sites under the condition thati , j ,k, l ,m,n . . . .
Expressions forCe1 @Eq. ~B4! and ~16!# coincide with each
other up to a constant factor.
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