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Exact ground state for one-dimensional electronic models
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We have found the exact ground state for two electronic models on a linear chain. The first model describes
a half-filling electron system at the ferromagnet-antiferromagnet transition point. In the singlet ground state the
spin correlators show giant spiral magnetic ordering, with the period of a spiral equal to the system size. The
second electronic model describes the point where the ground state has giant spiral off-diagonal long-range
order and is, therefore, superconducting. We suggest the formation of a ground state with giant spiral order
(ferromagnetic or off-diagonphs a probable scenario of the subsequent destruction of the ferromagnetism and
the superconductivity.

[. INTRODUCTION sider two 1D electronic models. The first model describes a
half-filling electron system at the point where the singlet and
In recent years there has been a growing interest in studyerromagnetic states are degenerate. The exact calculation of
ing systems of strongly correlated electrons in relation withthe correlation functions in the singlet ground state shows the
high-T, superconductivity. Because of the difficulty in deal- Same giant spiral magnetic ordering as for the original spin
ing with the many-body problems, exact results are rare. It ighodel, while all other correlations vanish in the thermody-
well known that some one-dimensiorfaD) electron models namic limit. The seconq electronic model describes the
can be exactly solved by the Bethe ansatz. However, mangoundary on the'phase diagram between the superconducting
1D quantum systems do not obey the Yang-Baxter equatioPhase with off-diagonal long-range ord@®DLRO) and the
and thus are nonintegrable. Another approach leading to elOn-superconducting phase. The correlation functions in the
act results consists of the construction of an exact grounddround state of this model show a giant spiral off-diagonal
state wave function for some quantum systems. Recentl{Png-range order. We presume that in one-dimensional sys-
considerable progress in this problem was achieved by usingms the destruction of the long-range orderromagnetic
the so-called matrix produ¢MP) form of the ground-state ©OF Off-diagonal can be followed by the appearance of a
wave function. It allowed one to find the exact ground statedround state with giant spiral order. _
for various 1D spin models:? Its origin can be traced back e generalize this form of the wave function for the elec-
to the S=1 spin chain modél.For higher-dimensional spin tronic ladder modgl. Thls.model possesses both giant spiral
and electronic systems, there are also some methods for t§@in order and giant spiral ODLRO in the ground state.
construction of an exact ground-state wave functich. Th_erefore, this electror_l ladder model descrlbe_s the boundary
There is a class of 1D quantum spin models describing th@0ints on the phase diagram between four different phases:
ferromagnet-antiferromagnet transition point, for which anfWo singlet phases with and without ODLRO, and two fer-
exact ground state wave function was found in Refs. 9 anfiomagnetic phases with and without ODLRO. For some spe-
10. The singlet ground-state wave function at this point has §la! cases the ground-state wave function can be reduced to
special recurrent form, and for special values of model pathe usual MP form.
rameters it can be reduced to the MP form or resonating- The paper is organized as follows. In Sec. Il we construct
valence bondRVB) form? Spin correlations in the singlet a" exact singlet grou_nd state for_the quantum spin model. In
ground state show a giant spiral magnetic structure, with th&€c- Il two electronic models with exact ground states are
period of the spiral equal to the system size. On the antifergon&dered_, and the correl_atlon functions are exactly .calcu-
romagnetic side of this point the ground state can be eithd@t€d- Section IV gives a brief summary. In the Appendixes a
gapless, with an algebraic decay of spin correlatidnst technique for the calculation of correlators is developed.
gapped with the exponential decay of correlatithdhus,
this model descri_bes the boundgry between the ferromagnetic IIl. QUANTUM SPIN MODEL
phase and the singlet phase without long-range order.
In this paper we present the singlet ground-state wave First we consider &= 3 spin chain model with nearest-
function of this spin model in another form, which can be and next-nearest neighbor interactions given by the Hamil-
easily generalized for 1D electronic models. Then we contonian
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N 1y 12 1 N-2
H:_Z]_(SS+1_Z)+Z|Z]_(SS+2_Z)’ (1) HOpen:iZ]_ hi'

with periodic boundary conditions and evih
This model describes the ferromagnet—antiferromagne&c

transition point where the ferromagnetic and singlet statearound state of the open chain is multiply degenerate. How-

are degenerate. Hamiltonigi) was considered in Refs. 9 . .
and 10 where the singlet ground-state wave function waiver it can be provefas was done in Ref. 10that for the

constructed in two different forms. In this paper we represen yclic chain(1) only singlet and ferromagnetic components
another form of this singlet function, which allows us to f¥ have zero energy. Therefore, for cyclic chélp W is

generalize this function for the electronic model, and to de-the singlet ground-state wave function degenerate with the

; ferromagnetic state.
velop a technique to calculate correlators.

The singlet ground state wave function for Hamiltonian The exact calculation of the norm and spin correlation
(1) can be written as function (S-S ;) (see Appendix Ain the singlet ground

state(2) results in the following expressions:

As mentioned above, the functioh contains components
all possible values of total spi§, and, therefore, the

Po=Po¥, ¥=(0,/0:®0,® ...209n[0p), (2

n (oo L[ ©
where =—| — ,
0 (0] dgN Cosz(é)
gi=b"[1)i+b|]):. () 2]/ 1o
Here we introduced auxiliary Bose particke” (the Bose
operatorsb™ andb do not act on spin statd$); and||);) A
and the Bose vacuum®,). Therefore, the direct produgy (WolS- S| Wo)= a_gl geN—1-2
®0,® . ..R®gy Is the superposition of all possible spin con-
figurations multiplied on the corresponding Bose operators, 3 cogé—{)
like b*bbb™ ...|T1]1...). Py is a projector onto the sin- 8T Térl) (7)
glet state. This operator can be writtert’as cod >
£§={=0
o 2 e [0S i yS¥ i BS?
PO:FL d“jo dﬁfo sinydy e'*7e" e’ It can be shown that in the thermodynamic limit, E€.
™ and(7) result in
4)

whereS*? are components of the total spin operator. 1 (2l

This form of wave function resembles the MP form, but (S-S+)=7008 | - ®
with an infinity matrix which is represented by Bose opera-
tors. Therefore, we have to pick out t{@,| . . .|0,) element  So, we reproduce the result obtained in Refs. 9 and 10, that

of the matrix product instead of the usual trace in the MPin the thermodynamic limit a giant spiral spin structure is
formalism!~3because the trace is undefined in this case. Theealized, with the period of the spiral equal to the system
function ¥ contains components with all possible values ofsize.
spin S (0=S=<NJ/2) and, in fact, a fraction of the singlet is
exponentially small at larghl. This component is filtered out IIl. ELECTRONIC MODELS
by the operatoP,,.

In order to show thatV, is the ground-state wave func- Now we will construct electronic models by generaliza-
tion for Hamiltonian(1), let us represent Hamiltoniai) as  tion of wave function(2),
a sum of Hamiltonian$); of cells containing three sites

" We1=Ps—o Tr(0p|91892® - - - ®gy|Op), 9
H= 2 h;, (5)  where
i=1
where gi=(b* ¢’ +bc’ +xfrel ¢ +xH[0);, (10
1 1\ 1 1 cifg andc; , are the Fermi operators anfd); is the vacuum
hi=— E(S' Siq— Z) — 5( S.1-Sio— Z) state on théth site of the electronic modet;™ (b) andf™ (f)
are the auxiliary Bose and Fermi operators, respectively;
1 1 |0p) is the Bose vacuum; andis a parameter of the model.
+—=1S S ~]. We note that the Fermi operatofs and f anticommute
4 4

with the electronic operatorsif(r andc; ,. So the product
One can easily check that each cell Hamiltonlanfor  g,®---gy is the operator in the auxiliary Bose and Fermi
i=1,...(N—2) gives zero when acting org;®g;+;  spaces. We pick out th€0,| . ..|0,) element in the Bose
®0i;0. Since each; is a non-negatively defined operator, space, which can be written as

thenW¥ is the exact ground-state wave function of an open

chain: (0p 91®92® - - @GN|Op) = o+ (F T T —T1 )y, (12)



14 594 D. V. DMITRIEV, V. YA. KRIVNOV, AND A. A. OVCHINNIKOV PRB 61

and then we take the trace over the Fermi operators: Here ni’,,zcif(,ci,{,, and the SW2) spin operators are given
by S"=cici,|. S =¢/ci;, andS'=3(n;;—n; ). Here
Tri(0p|91®92® - - - @G| 0p) =2¢by .- we also usey operators,
The projectorPs_ filters out the singlet component from 1—1 . —n
the functiong,. Thus we obtain a singlet wave functidn,, n=cich, mi=ciciy, 77i2=%-

describing the state with one electron per site.
_ In orc_ier to find the Hamiltonian for which the wave func- \ hich form another S() algebrai®and 7,7, is a scalar
tion (9) is the exact ground-state wave function, let us con-

. 2 r;])roduct of pseudosping, and 7.
sider what states are present on the two nearest sites in the Hamiltonian (14) does not conserve the total number of

wave function(9). One can easily check that there are only ooy and doubly occupied sites because of the last term in
nine states from the total 16 states in the prod)@igi+ 1. the elementary Hamiltoniarts ;. , in contrast to the mod-
They are els considered in Ref. 16. Each elementary Hamiltonian
hii+1 (i=1,...N—1) acting on functions¢, and ¢,
RPN RO R ANt gives zero, since all of statd42) are eigenstates df; ;. ;
B w2 B with zero energy, while the energies of all other states at
20-02),  [11-11)=x*20+02), [10-01), >1 are positive. Therefore, the functiory, and ¢, are

(12) ground-state wave functions of the open chain:
[12—21), [l0-0l), |l2-2]). N-1
Here we denote an empty site [§), a site occupied by one Hoper= Z‘l LEEER (15
electron by|T) and||), and a doubly occupied site Bg).

The elementary Hamiltoniah, ;. for which all these To determine the degeneracy of mod#b), we need to
states are the exact ground states can be written as the sumaddissify the functionsb, and ¢,. Analogously to spin model
the projectors onto the seven missing stdtgg with arbi-  (2), the functions¢, and ¢, contain components with all
trary positive coefficienta, : possible values of total spi& Therefore,¢, contains mul-

, tiplets with S=0, ... N/2, and ¢; contains components
with values of the total spi®=0, ... N/2—1 (¢, does not
hi,i+1:gl M @) (@i - contain a ferromagnetic component, since at least two sites

in ¢, are nonmagnetid0) and|2)). Thus,N+ 1 multiplets
The total Hamiltonian is the sum of the elementary Hamil-are degenerated for the open chain.
tonians: However, for cyclic mode(14) it can be proved that only
three multiplets are the ground states: singlet st@tewith
N the momentunp=0 (singlet component of,), the trivial
HZZ i1 (13)  ferromagnetic state witpp=, and the state witts=N/2
=t —1 andp= (which is the component of; with S=N/2

So, for each value of there is a family of the Hamilto- 1). The last state witls=N/2—1 can be written as

nians depending on seven positive parametegs The N
analysis shows that the most simple form of the Hamiltonian ¥ _ cte +etc c* 1o
for x>1 corresponds to the choice bf in the forms N2-1 2’1 (Ci1G.1765161.0) nﬂl 110
Na=4+4%, @) =x3T] —|1)+|20+02), Thus the ground states of the electronic molded). (14)]
with one electron per site are the singlet state, the ferromag-
Nog=2—25%  |@a)=]00), |@3)=|22) netic state, and the state wigr S;,,—1.

It is interesting to note that the singlet wave functi@

can be also written in the forrtsee Appendix
Nase7=2, |@s5=[00+00), |@g7)=|20+02). i PP B

N
The elementary Hamiltoniarts ;. in this case depends P :2 [,k ITm,nT . . . H ¢’ o) (16)
only on the model parameter el e ’ ST

4 where

3
hi,i+1:1_43‘3+1+4 1- F) 77iz7/iz+1+ Fﬂi Ti+1

[i,j]zS,*—Sj*ﬁLx2 (CfTCj,L_CITCi,l):

n + and the summation is made for any combination of sites
+; (CioCiv 1o CivaoCi) (1M o= Mivs o) under the condition that<j,k<I,m<n.... This form of
the wave function is analogous to the RVB form found in
N N 5 Ref. 9 for spin mode(1).
+ = 2 (C1,Cit 10T GGl (N o= Nii1 o). The norm and the correlators of the electronic madé)
X in the singlet ground state are calculated in the same way as
(14 for the spin modelAppendix A):
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dV [ 1+coshx?¢)
(Ve Vep=—y| 2—7— , (17)
deN 5)

cog >

£=0

§ N2 3 cog é— O)[1+cosix?E+x2¢)]

<‘I’eﬂ3'3+||‘l’e1>:&_§|&gm|fz 2 (g+§ ; (18)
COé1 T
=20
. g oNTI=2 [coq &)+ cog ¢)][coshx?&) + coshix?() ]
<‘Pelci,(rci+|,(r|lpel>: (9_§| (9§N_|_2 _X2 §+§ ' (19)
2 COé( T)
g=¢=0
g N2 x* coshx?£—x2¢)
(PedminialVYed=——5| — : (20)
o8 o1 2co§(¥)
£=1=0
N—-2 4
<\Pe:1J v 77i++||\lfel> = X (22)

deN-2 (é)
co<| =
2/,

As can be seen from Eq2l), the expectation value and the summation is also done over any combinations of
{1 7)), which determines the off-diagonal long-range sites under the condition that j,k<I,m<n....
order}* does not depend on the distaricéBut in the ther- Considering the produd;®g;,, one can find that there
modynamic limit ODLRO vanishes: are only the following nine states on two nearest sites in
wave function(23):
. Am m)=0

(minf)=0 - 122), [00), [20+02), [1l—1|T),

N2 N2
. 1 L (2my P 20-02 1L +11), [10+07), (29

<Ci,lrci+|,0'>zo<ﬁ)v <S'S+|>:ZCO{W);
however for finite systems all correlatofd9—(21) are

nonzero.
The second electronic model can be obtained by simpl

|12+21), [l0+0]), [l2+2]).

The most simple Hamiltonian for this model has a form
)yvhich is similar to the previous one given by HG4):

interchanging of the Bose and the Fermi operators in Eq. N
(10). Thus, the wave function of this model has the form H=> N1,
=1
Wer=P,-0Tr(0p|g1®9,® - - - @00y, (23) (26)
with 3 4
Niiv1=1-4nni 4| 1- _4) S’S1t 5SS
gi=(xfrch +xfc +b*cl ¢ +b)[0). (29 X X
The projectorP,_, filters out the state with totah=ZX», D (e Cir1 gt Cr Ci (1= =iy )
=0. Therefore, the functio’, hasS*=0, but it is not an G L heritle T e he e

eigenfunction of?. Instead, it is an eigenfunction af with
n=0.

Wave function(23) can be also written in a form analo-
gous to the RVB one:

2
+ n
+ 2 > (¢ 4Cit16TCit1,Ci o)
g

2
><(ni,ftr_niJrl,fo') .

\PefE [i,j1[k,1][m,n] ...|0), This Hamiltonian forx>1 is also a non-negatively defined
operator, and¥, is the exact ground-state wave function
where with zero energy. This Hamiltonian commutes with, but
o o 4 does not commute wit8?. Therefore, the eigenfunctions of
[i,j]1=m" —ny +x°(ci ¢ +¢i (¢ ), Hamiltonian (26) can be described by quantum numbers
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and »*. Making the same analysis as for the previous model 2 4 6 8
we find that for the cyclic moddl26), states with three dif-
ferent values ofp have zero energyas it was for model
(14)]. These are states with=0 and momentunp= 7 [Eq.
(23)], all states withy=N/2 andp=0,

1 3 5 7
Wz 2= ()N 7|0), (27 FIG. 1. The two-leg ladder.
and states witty=N/2—1 andp=0: points between the phases with and without long-range order
[ferromagnetic for Eq(14) and off-diagonal for Eq(26)].
\I’N,Z,lvnz:(nJ“)N’z‘l"?ZE (¢ —¢' ¢/ lo). We suggest the formation of a ground state with long-range
=< spiral order like Egs(22) and(30) as a probable scenario to
28 the subsequent destruction of the ferromagnetism and super-
Therefore, for the case of one electron per sité=£0) the  conductivity.
ground state of moddPR6) is threefold degenerate. This proposed form of wave function can be further gen-
The correlation functions in ground stat€x7) and (28)  eralized for the electronic ladder mod@lig. 1). The wave
obviously coincide with each other in the thermodynamicfunction for a cyclic ladder model containing\2sites has

limit, and for the half-filling case 4*=0) they are the form
. 1 1 W jadder Ps=,-0(0/91©9,® - - - ®gy|0), (32
(Ci.oCis1,0)=O N/ (S:S.1)=0 N2/ where eachy; corresponds to thigh rung of the ladder:

1 @Y g=clatx—ata)lith-allly+(@ata- 1L+ 1)
_) +¢o| 11— 1T)i+cs[b™(2y—b*b)|22);—b|00);

NI
The existence of ODLRO immediately follows from the +(b*b—y)|20+02);] +c,|20—02); , (33
form of the wave function$27) and (28). . . _ )

The correlation functions in the ground sta@8) have ~Wherea™ andb™ are Bose operator$0) in Eq. (32 is the

similar forms to that in Eq918)—(21), and in the thermody- B0Se vacuum oh" andb” particles, and;, x, andy are
namic limit they reduce to the parameters of the modé®.,_s—, is the projector onto

the state, withS= =0.
Let us first consider the casg=c,=0. In this case the

' wave function(32) describes a spin ladder model depending

on two parameters,/c; and x. It can be shown that this

(300 model coincides with that considered in Ref. 12. It has a

singlet ground statfEq. (32)] degenerate with the ferromag-
netic state. The spin correlators in the singlet ground state
show double-spiral ordering with a small shift angtep
=(27/N)(2c,/c,) between two giant spirals formed on two
legs of the ladder:

<7,i277§+|>:o(%), (m n)=7+0

1

<Ci+,o'ci+|,0'>zo N2

N (ss.=0

_ 1 2l
(m 77i++|>=2(77iz77iz+|>=5005(T .

The giant spiral ordering in the last equation implies the
existence of ODLRO and, therefore, superconducti{ity
the ground staté¢Eq. (23)]. We note that though all three
ground states of modé€26) are superconducting, the proper- 1 2.4l
ties of these wave functions are essentially different. Let us (Sy- Sn+2|>=ZCOS< W)
consider the density-density correlatomn; ). For wave
functions(27) and(28) in the thermodynamic limit this cor- 1 2.7
relator decouples{n;n;;;)=(n;){n;;;)=1. However for <3q.sn+2,+1)=—cos(—+(—1)”A¢) )
wave function(23) it is equal to{n;n; ;)= 1+ 3cos(27l/N). 4 N

It is interesting to note that another model having the
ground-state wave functiof23) with x=0 and the same
spiral ODLRO[EQ. (30)] can be obtained from modél) by
simply replacing operatorS with #:

(39)

For cases of integer or half-integerj, which corre-
spond to the special cases of the modeéh Eq. (33) one can
easily recognize Maleev's boson representation of <pin
=] operators:

N 1N S R —_ 7 oo

H=-2> 77i77i+1+12 NiMi+2- (31) S'=al(2j-ata), S =a, S=ataj.

1 =t Therefore, in these special cases the infinite matrices formed
The direct analogy of this model to spin modg) results in by the Bose operatos’ anda can be broken off to the size
the conclusion that modéB1) describes the boundary point n=2j+1 and wave functioit32) is reduced to the usual MP
on the phase diagram between superconducting and noferm. The spin correlators in the special cases have an expo-
superconducting phases, where the off-diagonal long-rangeential decay.
order is destroyed. We suppose that mo@8) also de- Now let us return to the general case of the electronic
scribes such a point. Thus wave functioi® and (23) are  ladder model Eq(32). In order to find the Hamiltonian for
the ground states for 1D electronic systems in the boundarwhich Eq.(32) is the exact ground-state wave function, one
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should consider what states are presen¥igqe,0n the two  size, while all other correlations vanish in the thermody-
nearest rungs of the ladder. There are only 26 states from tH&mic limit.

total 256 states in the produd;®g;,,. Therefore, the The second electronic model in the half-filling case has a
Hamiltonian of the ladder model can be written as the sum othreefold-degenerate ground state. All ground states have

the projectors onto the 230 missing stdteg) with arbitrary ~ off-diagonal long-range order and, therefore, are supercon-
positive coefficients\, : ducting. The calculation of the correlation functions shows

that one of the ground states has giant spiral ODLRO.
N The comparison of these electronic models with the origi-
H=2 hiivi, hijei=2 Mded(ed. (39 nal spin modéi-*2leads us to the conclusion that these two
i=1 k=1 . . .
electronic models describe the boundary points on the phase

Unfortunately, we cannot give an explicit form like Eq. diagram between the phases with and without long-range
(14) or Eq. (26) for this Hamiltonian, because it has a very order (ferromagnetic for the first model and off—.dlagonal fpr
cumbersome form. But we are able to determine some propghe second modglTherefore, we presume that if the Hamil-
erties of Hamiltoniar(35). This Hamiltonian commutes with tonian of the 1D quantum system commutes with operators
both S? and 2. It has a multiply degenerated ground state:forming the SU2) algebra(it can be the spir§ operator or
the state withS=7=0 [Eq. (32)], and all the states wits the pseudo-spin operatoy, then the appearance of a ground
+ 7=N have zero energy. Hence the electronic ladder modestate with giant spiral order predicts the ensuing destruction
[Eq. (35)] describes the boundary point between phases witRf ferromagnetism or superconductivity.
and without ferromagnetic and off-diagonal long-range or- We have briefly considered the generalization of the pro-
der. The correlation functions in ground sta82) can be posed form of the wave function for the electronic ladder
calculated with the use of the technique developed in thé&"odel. The general case of this model has a much richer
Appendixes. For the casg>c, there is the same double- phase diagram than the two first models. In some particular
spiral spin orderindEq. (34)] as for the spin ladder model, CaSe€s this model despribes boundary p_oints on the phase dia-
while all other correlations are exponentially small. For the9ram between four different phases: with and without ferro-

casec,<c, the double-spiral ODLRO is realized. In the magnetic a_nd off-diagonal Iong-range order. There are also
most interesting symmetric caseg=Cs, C,=Cy, andx=y some special cases of the electronic ladder model when the

the system possesses both giant spiral spin order and gia%ound-state wave function is reduced to the usual MP form.

230

spiral ODLRO: In addition, the proposed form of the wave function can be
also generalized for the 2D case and different types of lat-
1 27l tices.
<Sn'Sﬁ+2|>:<77n77n+2l>:§C0{W)v
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Therefore, in this case the wave functit82) describes
the boundary points on the phase diagram between the four APPENDIX A

different phases: singlet phases with and without ODLRO,

and ferromagnetic phases with and without ODLRO. In the First we calculate the norm and correlation function of the
special cases whex(y) is an integer or half-integer, the spin wave function¥, [Eq. (2)]. The norm of the singlet wave
(off-diagona) correlations decay exponentially and the wavefunction ¥ is
function in the corresponding Bose space can be represented

in MP form with finite matrices of sizen=2x+1 or n (WolWo)=(W[Po|W). (A1)
=2y+1. When bothx andy are integers or half-integers, Since the functionl hasS?=0, then the projectoP, in Eq.
wave function(32) can be written in the usual MP form with (4) takes the forrt

the size of matrices=(2x+1)(2y+1).

sinydvye (A2)

_ i izS aiz'St
IV. SUMMARY Po_zfo e
We have found another form of the singlet ground-statevhere z=tan(y/2),z’ = sin(y/2)cos¢/2) andS*(™) are the
wave function for the quantum spin model considered previoperators of the total spin.
ously in Refs. 9 and 10. The special technique was devel- Therefore, the norm takes the form
oped for an exact calculation of the norm and the correlation
functions. This form of the wave function allowed us to gen- (Wo| W)= _J
eralize it for two 1D electronic models. orr 2 1,
The first model describes a half-filling electronic system
at the ferromagnet-antiferromagnet transition point when the b oizs iz'st
singlet and ferromagnetic states are degenerate. In the singlet X<0a,0b|ﬂl (9?9 €79 g))[04,0p),
ground state the spin correlators show giant spiral magnetic -
ordering with the period of the spiral equal to the systemwhere

w

sinydy

N
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greizqfeiz/s,*gi Integrating Eq.(A3) over v, we obtain
aN 1

eo 0 cos’-(%)

(Wl Wo) 1]”' ay 0P
==| sinydy—-
ol*o/ =35 | 77d§N

=(a*(1;|+a(;)e?S €' (b*|1)+b]|))

=a'b*+(1-z'z)ab+izab*+iz’a'b,

anda® anda are the Bose operators. Thus the norm can be =0
rewritten as (A10)
Thus, finally, we arrive at
1 (=
= — 1 N
<\P0|\P0> 2]0 Slnydy<0|G |0>1 (A3) dN+1 g 4(2N+2_1)
. (Wo|Woy=2—7(tans || =—1 5 [Bnsal-

where|0)=0,,0,) is the Bose vacuum cd™ andb™ par- d¢ £=0
ticles and (Al11)

G=u(a*b*+ab)+iv(ab*+a*b) HereBy are the Bernoulli numbers.

' To calculate the spin correlators we need to introduce

whereu=cos(y/2),v =sin(y/2). operators:
Let us introduce the auxiliary functioR(&):

G,=g €S eiZ'S 28%g;=u(a"b* —ab)+iv(ab" —a’b),

P(£)=(0e®[0); (A4)
then G,=g' €S e?'S'Stg,=uab+ivab,
dNP o i lot
(0|GN0)= FrrE G_=g; €% e?'S 5 gi=uab" +iva*b".
&,
0 Then, the correlatoS,S ;) will be defined by
In order to findP(¢) we perform the following manipula-
tions. First, we take the derivative &f(¢): 1(7 1 | N2
(VoIS 41| Vo) =5 f sinyd (0| 7G,G'G,GN"'~
dP 0
d—f=<0|Ge§G|O>=(O|e§GG|O>=u<O|abe§G|0) L
+-G,G'G_GN"'2)0) (A12)
=u(0|efCa*b*|0). (A5) 2
Now we need to carra™b™ overG in the last expression: (since(0|G_ ...[0)=0).
The expectation values in EGA12) can be represented as
etCathT=etCate CetChTe ¢CetC (AB)

| N—-1-2
This can be done by using the following equations: (0IG,G'G,G 10)

| N—I1-2
£G At -G o+ i bF)si Jg a
eta’e a’ cosé+ (ub+ivb™)sing, :&_éﬂW<O|Gze§GGze{G|0>|g=§=o=
etCae ®=acosé— (ub' +ivb)siné, (A13)
(A7) 0/G,G'G_GN"""2)0
e®bte ¢¢=b* cosé+ (uativat)sing, (olc. 102
5' (9N*|*2
et®he ¢®=bcosé—(ua’ +iva)siné. =(9—§|—%N_|_2<0|G+e§GG—e§G|O>|§:{:o-

Substituting Eqs(A6) and (A7) into Eq. (AS), we find After a procedure similar to that for the norm and the inte-

(0|efCa*b*|0)=u sin& cos&(0|eC|0) gration overy, we obtain
+Uu?sin® £0labe®|0). v " g ogN-1-2
The last equation can be rewritten as the differential equation (Vo181 Wo)= (9_5' aeNT172
dp dp B
d—§=uzsin§cos§P(§)+uzsin2§ dE (A8) 8 cod &2%
. " §=¢=0
with boundary conditiorP(0)=1. (A14)

The solution of Eq(A8) is

Now we generalize these calculations for the electronic
(A9)  Wwave functionW¥¢; [Eq. (9)]. The norm ofV¥; has a form

1
P&)= m similar to (A3),
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1(m
(Wl ¥ey=5 [ sinyay T, (0/GM0), (A15)

where|0)=10,4,0,) is the Bose vacuum of tha” andb*
particles, and

G=G,+G;,
Gy,=u(a"b*+ab)+iv(ab*+a*b),

Gi=x*(f5 f{ +1f1f),
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calculate the anticommutator of two operatgysandg; de-
fined by Eq.(10):
{gi.gib=(=csc) +c jof  +x%e e
+x%¢;¢;)[0)i]0); . (BY)

Thus the anticommutatdig; ,g;} does not contain auxiliary
operatorsh™, b, f* andf and presents singlet function lo-
cated on sites and].

Now we can write

where f; and f; are the Fermi operators, anticommuting 91®9z .. .9n=—92®091 . . .On+1{01,02}®J3 . . . On

with each other.
The integrating function in EqA15) can be written as

dN
Tr, 1,{0|GN|0)= @[Trfl,fz(eng)(O|e§Gb|O>]|§=0.

(A16)
The trace over Fermi operators is calculated easily:

Tre, 1, (€500 =Tr_ ¢ {1+[coshx?¢)—1](f; f1f; f,
+f,f7faf5))
=2+ 2 coshix?¢) .

Noting that the quantity

1 1
—J sinydy(0|efC|0) = ———
cog >

has been already calculated in E410), we finally obtain:

dV [ 1+coshx?¢)

e

(A17)

£=0

The correlation functions over the functiok,, are calcu-
lated by a similar procedure to that as in the spin model case

[Egs.(A12)—(A14)] leading to expressiond 8)—(21).

APPENDIX B

N
=—0,®03. . -9N®91+n§2 (—1)"{91,0n}

®02®093...0n-1®0n+1---On- (B2)

Averaging the latter equation by the Bose vacuum
(Op| .. .|0p), making Trace over the Fermi operatdrs and
f and filtering out the singlet component, we obtain

N
Wer=—Wert 2 (~DY01,0} V", (BY

where
‘I'fell'n): Ps—0 Tr(0p|0,003® - - - ®gn_1

®QGn+1® - - - @gn|0p).

Here we used the fact that the functidn; has a momentum
p=0.

Repeating this procedure for functiolfi(ell'”) and so on,
we arrive finally at
1 N
V=5 > (_1)n{9119n}q’«(911'n)
247=2
1 P
:2lei<j2 (—1™9i,9H9k.9HIm.Gn} - .., (B
where P=(i,j,k,l, ...) is the permutation of numbers
(1,2,...N), and the summation is done over all combina-

tions of sites under the condition thatj,k<I,m<n....

In this appendix we show the equivalence of the twoExpressions fol., [Eq. (B4) and(16)] coincide with each

forms (9) and (16) of the wave functionW;. First, let us

other up to a constant factor.
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