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Topological phase interference induced by a magnetic field along hard anisotropy axis
in nanospin systems with different crystal symmetries
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Based on the instanton technique in the spin-coherent-state path-integral representation, the spin-parity
effects induced by the topological Wess-Zumino or Berry phase are studied theoretically in nanometer-scale
single-domain ferromagnets in the presence of an external magnetic field along the hard anisotropy axis. We
consider the magnetocrystalline anisotropy with the biaxial, trigonal, tetragonal, and hexagonal crystal sym-
metry, respectively. Both the Wentzel-Kramers-Brillouin~WKB! exponent and the preexponential factors are
evaluated in the instanton’s contribution to the ground-state tunnel splittings. The Euclidean transition ampli-
tudes between energetically degenerate easy directions are obtained with the help of the dilute instanton gas
approximation. The effective Hamiltonian approach is applied to present the final results of ground-state tunnel
splittings for each kind of crystal symmetry. The Euclidean transition amplitudes and the ground-state tunnel
splittings are found to depend on the parity of total spins of ferromagnets and oscillate with the external
magnetic field for both the integer and half-integer total spins. We show that the topological phase interference
or spin-parity effects can reflect in thermodynamic quantities of magnetic tunneling states. Possible relevance
to experiments is also discussed.
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I. INTRODUCTION

It is well known that in principle quantum mechanics
applicable to both macroscopic and microscopic syste
Macroscopic systems are essentially classical, in the s
that in such systems phenomena typical of quantum mec
ics, such as barrier penetration or Schro¨dinger’s cat, do not
occur in general. However, Caldeira and Leggett predic
that quantum tunneling could occur on the macrosco
scale, provided that the dissipative interactions with the
vironment were small enough.1,2 By applying the instanton
technique in the imaginary-time path integral, they co
cluded that the rate of quantum tunneling was reduced by
dissipation in general.1–4 Macroscopic quantum phenomen
can take place in the Josephson systems and the supe
ducting quantum interference device~SQUID!.5

Recently, there has been great theoretical and experim
tal interest in studying the nanometer-scale ferromagnetic6–13

~FM! and antiferromagnetic~AFM! particles13–19 which ex-
hibit macroscopic quantum tunneling~MQT! and coherence
~MQC!. Theoretical study based on the instanton techni
was performed by Chudnovsky and Gunther6 with an expo-
nential accuracy, and Enz and Schilling7 developed a more
sophisticated version of the instanton technique to obtain
ground-state tunnel splitting with the preexponential facto
Van Hemmen and Su¨to8 formulated the WKB method and
calculated the tunneling rates and the corresponding s
tings of excited states. Scharf, Wreszinski, and v
Hemmen9 proposed an approach based on a particle map
with subsequent application of the WKB method to refine
PRB 610163-1829/2000/61~21!/14581~11!/$15.00
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results for the splittings of excited levels with moderate sp
By applying the instanton technique in the spin-cohere
state path integral, Garg and Kim10 extended the previous
WKB calculation to include the preexponential factors f
various forms of the magnetocrystalline anisotrop
Zaslavskii11 described the spin tunneling based on the ex
correspondence between the spin system and a particle m
ing in a potential field. And he obtained the tunneling exp
nent, the preexponential factors, and their temperature
pendences. Barnes proposed the auxiliary particle meth12

to study the model for a single large spin subject to
external and anisotropy fields.13 By introducing auxiliary
spinless fermions, Barnes mapped the spin model to
tight binding models of spinless fermions, then obtained
tunnel splitting and discussed the spin-parity effects.13 For
AFM particles with an easy-plane anisotropy, Barne13

showed that the tunnel splitting is quasiperiodic in the m
nitude of a field applied perpendicular to a principal anis
ropy axis. He also found that in one dimension there
periodic regions on the field axis for which the model
quantum critical, while in two or three dimensions criticali
is reduced to points. Both the Zaslavskii method and
auxiliary particle method gave a clear picture to calculate
splitting of excited levels which was not easily obtained
using the path integral method. Now much attention w
attracted to the spin tunneling in the presence of an a
trarily directed magnetic field20–23and the quantum-classica
phase transition problem.24,25 Experiments were carried ou
to investigate the small magnets either via relaxat
measurements,26,27 or via measurements of the noise spe
14 581 ©2000 The American Physical Society
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14 582 PRB 61LÜ, HU, ZHU, WANG, CHANG, AND GU
trum and the ac susceptibility,28,29 which can be considere
as signals of magnetic quantum tunneling. Besides its imp
tance in understanding the transition from quantum to c
sical physics, the spin tunneling is crucial to the reliability
small magnetic units in memory devices and the design
possible quantum computers.30

One notable subject in magnetic quantum tunneling is
the topological Berry phase,31 or Wess-Zumino, Chern
Simons term32 in the action can lead to remarkable par
effects for some spin systems with high symmetries. It w
theoretically shown that the tunnel splitting is suppressed
zero for half-integer total spins in FM particles with biaxi
crystal symmetry in the absence of a magnetic field.33,34

Such a effect is known as the topological quenching.35 How-
ever, the phase interference is constructive for integer sp
and hence the splitting is nonzero.33,34 Similar effects were
found in AFM particles, where only the integer excess sp
can tunnel but not the half-integer ones.21,22 While spin-
parity effects in the absence of magnetic field are someti
related to the Kramers degeneracy,33,34 they typically go be-
yond the Kramers theorem in a rather unexpected way.35,36

The effects of magnetic field were studied extensively in F
and AFM particles with biaxial crystal symmetry.13,35,37–41

One recent experimental method based on the Landau-Z
model was developed by Wernsdorfer and Sessoli42 to mea-
sure the tunnel splittings in the molecular Fe8 cluster with a
spin ground state ofS510. They observed a clear oscillatio
of the tunnel splitting as a function of the magnetic fie
along the hard axis, which is a direct evidence of the role
the topological Berry phase in spin dynamics of these m
ecules. They also observed an oscillatory rate in the pres
of a dc field along the easy axis that is such as to align
ground level in one well with an excited level in the othe
Whether the instanton technique can be applied in study
the spin dynamics in molecule withS510, and under wha
conditions the Landau-Zener model is appropriate for
quantum relaxation of unstable excited states become
important questions. Recent theoretical studies include
quantum relaxation in magnetic molecules,43,44 the spin tun-
neling in a swept magnetic field,45 the thermally activated
resonant tunneling with the help of the perturbation theor46

and the exact diagonalization,47 the auxiliary particle
method,12,13 the discrete WKB method,48 and the nonadia-
batic Landau-Zener model.49 Barnes12,13 showed that the in-
termediate spin, which occurs in the theory of anyons, can
exhibited by magnets in a suitable directed magnetic fie
By using the auxiliary particle method, Barnes obtained
tunnel splitting of Fe8 and showed that the parity is period
for a field which is along either the easy or the hard axis o
suitable combination of the two.13 Prokof’ev and Stamp
found that the higher order termc (S1

4 1S2
4 ) makes an im-

portant contribution to the period of oscillation and marked
affect the tunnel splitting of Fe8, and the nuclear spins als
affect the tunnel splitting.50

It is noted that previous results35 about the effects of the
magnetic field along the hard anisotropy axis on topolog
phase interference were obtained for the simplest poss
form of the magnetocrystalline anisotropy~the biaxial crystal
symmetry!. The purpose of this paper is to extend the res
of FM particles with biaxial crystal symmetry35 to that with a
more complex structure, such as trigonal, tetragonal,
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hexagonal crystal symmetries around theẑ axis, which have
three, four, and six degenerate easy directions, respectiv
The theoretical study based on the path-integral method c
sists of two major steps. The first step is to find the classi
or least-action path~instanton! from the equation of motion,
and then to obtain the contribution of the associated ins
ton to the tunnel splittings. Garg and Kim10 studied the gen-
eral formulas for evaluating the instanton’s contribution
the tunneling rate or the tunnel splitting. In Sec. II, we e
plain briefly the basic ideas of this evaluation, and then ap
this method to calculate the instanton’s contribution to
ground-state tunnel splittings for FM particles with biaxia
trigonal, tetragonal, and hexagonal crystal symmetry at fin
field in Secs. III–VI, respectively. The second step is
study the effects caused by the topological Wess-Zum
phase, and then obtain the final results of the ground-s
splittings. For FM particles with simple biaxial crystal sym
metry, this step is easily done by summing up the contri
tions of clockwise and counterclockwise tunneling paths35

However, for FM particles with complex symmetry, this st
turns out to be more difficult. By using the dilute instanto
gas approximation, we obtain the transition amplitudes
tween degenerate states, which lead to some direct re
concerning the topological phase interference effects. F
thermore, we propose an approach of the effective Ham
tonian to obtain the low-lying tunneling level spectrum a
discuss the degeneracies of tunneling levels. The topolog
quenching for half-integer spins in FM particles with biaxi
crystal symmetry at zero field can be rederived by apply
this approach. Our results show that the tunnel splittings
pend significantly on the parity of total spins for each kind
crystal symmetries. And the structure of low-lying tunnelin
level spectrum for the trigonal, tetragonal, and hexago
crystal symmetry is much more complex than that for t
biaxial crystal symmetry. We also find that the tunnel sp
tings oscillate with the field for both integer and half-integ
spins, and the oscillation behavior for integer spins are m
different from that for half-integer spins. Thermodynam
properties~such as the specific heat or the magnetic susc
tibility ! of the tunneling levels are evaluated, and are fou
to be strongly dependent on the parity of total spins a
oscillate with the field. This may provide an experimen
test for spin-parity effects in FM particles.

II. BERRY PHASE IN SPIN-COHERENT-STATE
PATH INTEGRAL

In this section, we review briefly the magnetic MQT an
MQC based on the instanton method in the spin-coher
state path integral. We emphasize that the Wess-Zum
phase which is crucial for the spin-parity effects arises fr
the nonorthogonality of spin coherent states, and the gau
are determined by the single-valuedness of spin cohe
states.

In the spin-coherent-state path-integral representation,
Euclidean action for a FM particle is given by

SE~u,f!5
V

\E dtF i
M0

g S df

dt D2 i
M0

g S df

dt D cosu

1E~u,f!G , ~1!
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whereM05uMW u5\gS/V, V is the volume of the particle
g is the gyromagnetic ratio, andS is the total spins. The spin
coherent state is defined as the maximum eigenstate
Ŝz , uS,M5S&, rotated into the direction of the unit vecto
nW 5(sinu cosf,sinu sinf,cosu),

unW &[uu,f&[e2 iŜzfe2 iŜyue2 iŜzxuS,S&, ~2!

whereSW is the spin operator. The spin coherent state Eq.~2!

obeys the eigenvalue equationnW •SW unW &5SunW &. The spin co-
herent state can be expanded in terms ofuS,M & by applying
Wigner’s formula,51 and the result is52

unW &5e2 iSx (
M52S

S A ~2S!!

~S1M !! ~S2M !!

3e2 iM fS cos
u

2D S1MS sin
u

2D S2M

uS,M &. ~3!

One has the freedom to definex arbitrarily. This is a gauge
freedom, which can be eliminated by fixingx. x has to be
fixed by the requirement that the spin coherent state be si
valued uponf→f12pn, wheren is an integer.53 There-
fore, x takes the values

x5S m

nS
11Df, ~4!

for arbitrary integersm andn. For m522nS, x52f, and
this is the case of north-pole gauge which we will ado
thought this paper. Form50, x5f, and this is the case o
south-pole gauge. And the results obtained in either of
gauges is physically equivalent.

It is noted that the first two terms in Eq.~1! define the
topological Berry or Wess-Zumino, Chern-Simons te
which arises from the nonorthogonality of spin cohere
states,

^nW 8unW &5S cos
u8

2
cos

u

2
1sin

u8

2
sin

u

2
ei (f2f8)D 2S

. ~5!

For infinitesimally separated angles, the overlap become

^nW 8unW &511 iSdf~cosu21!, ~6!

for the north-pole parametrizationx52f, wheredf5f8
2f. The Wess-Zumino term has a simple topological int
pretation. For a closed path, this term equals2 iS times the
area swept out on the unit sphere between the path and
north pole. The first term in Eq.~1! is a total imaginary-time
derivative, which has no effect on the classical equations
motion, but it is crucial for the spin parity effects.33,34

In the semiclassical limit, the dominant contribution to t
transition amplitude comes from finite action solution~in-
stanton! of the classical equation of motion. The motion
the magnetization vectorMW is determined by the imaginary
time version of classical Landau-Lifshitz equation,

i
dMW

dt
52gMW 3

dE~MW !

dMW
, ~7!
of

le

t

e

t

-

the

of

which can be expressed as the following equations in
spherical coordinate system:

i S dū

dt
D sinū5

g

M0

]E

]f̄
, ~8a!

i S df̄

dt
D sinū52

g

M0

]E

]ū
, ~8b!

where ū and f̄ denote the classical path. The instanton
contribution to the tunneling rateG or the tunnel splittingD
~not including the Wess-Zumino phase! is given by10

G ~or D!5AvpS Scl

2p D 1/2

e2Scl, ~9!

wherevp is the oscillation frequency in the well, andScl is
the classical action. The factorA originates from the quan
tum fluctuations about the classical path, which can be ev
ated by expanding the Euclidean action to second orde
the small fluctuations.10

III. MQC FOR BIAXIAL CRYSTAL SYMMETRY

In this section, we study the topological phase interf
ence or spin-parity effects in single-domain FM nanop
ticles with biaxial crystal symmetry. In a magnetic fie
along the hard anisotropy axisẑ, the Hamiltonian of this
system can be written as

H5k1Ŝz
21k2Ŝy

22gHŜz , ~10!

wherek1@k2.0 are proportional to the anisotropy coeffi
cients. Then the total energyE(u,f) of such a FM particle is

E~u,f!5K1 cos2u1K2 sin2u sin2f2M0H cosu1E0 ,
~11!

whereK1 andK2 are the transverse and longitudinal anis
ropy coefficients, andE0 is a constant which makesE(u,f)
zero at the initial orientation. Here we assume that the tra
verse anisotropy coefficient is much larger than the long
dinal one, i.e.,K1@K2.0, which satisfies the experimenta
situation on highly anisotropic materials. The same mo
was first studied in Ref. 35. However, the main purpose
Ref. 35 was to study the phase interference effects cause
the Wess-Zumino term. The expression of tunnel splitt
was not clearly shown in Ref. 35. Here we will evaluate bo
the WKB exponent and the preexponential factors in
ground-state tunnel splitting at finite magnetic field by app
ing the instanton technique, which may be helpful for expe
mental checks. It is noted that the experiment42 on Fe8 is not
covered in this situation. In particular, whether the instan
method can be applied in a spin system withS510 needs
further investigation. However, the theoretical studies6,37

based on the instanton method showed that the tunne
probability is exponentially small for large spinsS;102–103

at zero field, unlessK1@K2.0. Therefore, the results pre
sented here is useful for the highly anisotropic materials.

After adding a constant, we rewrite Eq.~11! as

E~u,f!5K1~cosu2cosu0!21K2 sin2u sin2f, ~12!
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where cosu05M0H/2K15H/Hc . Hc52K1 /M0 is the coer-
cive field at which the initial state becomes classically u
stable. Under the assumption that 0<H,Hc , the energy
minima of this system are atu5u0 andf50, p. We denote
u1& as the state atu5u0 , f50, and u2& as the state atu
5u0 , f5p, other energy minima repeat the two stat
with period 2p. For the case of high transverse anisotro
the magnetization vector is forced to lie in theu5u0 plane,
so the fluctuations ofu about u0 are small. Introducingu
5u01a(uau!1), the total energy of Eq.~12! reduces to

E~a,f!5K1 sin2u0a21K2 sin2u0 sin2f. ~13!

Substituting Eq.~13! into the classical equations of motion
we obtain the instanton solution

ā52 iAK2

K1

1

cosh~v0t!
,

sinf̄5
1

cosh~v0t!
, ~14!

corresponding to the switching ofMW from ū5u0 , f̄50 at
t52` to ū5u0 , f̄5p at t5`, where v0

52(V/\S)sinu0AK1K2. In deriving Eqs.~13! and ~14!, we
have used the approximation thatuau!uu0u. It is easy to
show that this approximation is valid for the weak magne
field. For the strong magnetic field, i.e.,H→Hc , u05A2e,
wheree512H/Hc!1. From Eq.~14!, uau'AK2 /K1'0.1
for typical values of parameters for single-domain FM nan
particles (K1'107 erg/cm3 and K2'105 erg/cm3). There-
fore, uau!uu0u is valid for almost the whole region of th
magnetic field 0<H<0.9Hc .

The corresponding classical action can be evaluated
integrating Eq.~1! with the above classical trajectories, an
the result is

Scl52AK2

K1
Ssinu0 . ~15!

By applying the instanton technique,10 we obtain the instan-
ton’s contribution to the ground-state tunnel splitting as

\D5
4

p1/2
~VK1!S K2

K1
D 3/4

~sinu0!3/2S21/2e2Scl. ~16!

Here we have not included the additional phase factors g
erated by the topological Wess-Zumino term, but will re
state them in the final expressions of the tunnel splittings

With the help of the dilute instanton-gas approximation54

the transition amplitude between degenerate states is g
by

^ j 8ue2HTu j &5Av0

p\
e2v0T/2 (

m,n

m2n5 j 2 j 8(mod2)

3
~\DTe2 id!m~\DTeid!n

m!n!
, ~17!

where u j & and u j 8& denote the two degenerate states, and
5Sp(12cosu0) is the phase factor generated by the top
logical Wess-Zumino term for FM particles with biaxia
-

s
,

c

-

y

n-
-

en

-

crystal symmetry in a magnetic field along the hard anis
ropy axis. After simple algebra, the propagators fromu1& to
the other degenerate states are found to be

^1ue2HTu1&5Av0

p\
e2v0T/2 cosh$2\DT cos@Sp~1

2cosu0!#%,

^2ue2HTu1&5Av0

p\
e2v0T/2 sinh$2\DT cos@Sp~1

2cosu0!#%. ~18!

At zero field, u05p/2, ^2ue2HTu1& (^u5p/2,f
5pue2HTuu5p/2,f50&) vanishes for half-integer spins, i
accordance with the Kramers theorem. However, a magn
field along the hard axis can lead to a nonzero propag
between the Kramers doublet even if the total spin is a h
integer. This is, however, not the only effect the topologic
phase interference results in. In fact, we shall present
strikingly different tunnel splittings for integer and hal
integer spins with the help of the effective Hamiltonia
approach.55

In Ref. 4, Leggettet al. showed that for a two-level sys
tem isolated from its environment, its motion in the tw
dimensional Hilbert space can be completely described b
simple HamiltonianH52(1/2)\D0sx1(1/2)«sz , where
s i are Pauli matrices, and the basis is chosen so that
eigenstate ofsz with eigenvalue11 (21) corresponds to
the system being localized in the right~left! well. « is the
difference in the ground-state energies of the states local
in the two wells in the absence of tunneling. For degener
ground states,«50. The quantity (1/2)\D0 is the matrix
element for tunneling between the wells. Now the effect
Hamiltonian approach in magnetic MQC is a developmen
the tunneling Hamiltonian of Leggettet al.,4 where the phase
factors generated by the topological Wess-Zumino term
properly incorporated. By applying the similar method
Ref. 56, one can show that the effective Hamiltonian a
proach is equivalent to the dilute instanton-g
approximation.54 However, this approach has the advanta
of being very simple and direct, which permits one to discu
the degeneracies of low-lying tunneling levels in detail.

We introduce an effective Hamiltonian as

Heff52\DM , ~19!

whereM is a linear operator defined by

M u j &5pu j 11&1qu j 21&. ~20!

Equation~20! can be viewed as a process wherebyu j & goes
forward tou j 11& with weightp and backward tou j 21& with
weight q. For this case the matrix form ofM is

@M #5^ j 8uM u j &5F0 p1q

p1q 0 G , ~21!

wherep5q* 5exp@2iSp(12cosu0)#. A simple diagonaliza-
tion of Heff shows that the eigenvalues areE5
62\D cos@Sp(12cosu0)#. Therefore, the splitting of ground
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state is \D154\Ducos@Sp(12cosu0)#u. When H50, u0
5p/2, and the tunnel splitting is \D1(H50)
54\D0ucos(Sp)u, where

\D05
4

p1/2
~VK1!S K2

K1
D 3/4

S21/2e2Scl(H50), ~22!

with

Scl~H50!52AK2

K1
S. ~23!

The topological quenching for half-integer spins atH50 is
rederived by use of the effective Hamiltonian approa
which agrees well with the Kramers theorem. Compa
with Eqs. ~15!, ~16! and Eqs.~22!, ~23!, it is easy to show
that the tunnel splitting increases with the external magn
field because the field decreases the barrier between the
degenerate states. The expression of\D1 shows that the tun-
nel splitting oscillates with the field for both integer an
half-integer spins, and therefore\D1 is suppressed to zer
whenever

H/Hc5~S2n11/2!/S, ~24!

wheren is an integer.
At the end of this section, we discuss the possible

evance to the experimental test for spin-parity effects
single-domain FM nanoparticles. Since we have already
tained the low-lying tunneling level spectrum, the partiti
function is

Z5Tr e2bH52 cosh~E0b!, ~25!

where E052\D cos@Sp(12cosu0)#, \D is shown in Eqs.
~15! and ~16!, and b51/kBT with kB the Boltzmann con-
stant. The specific heatc52T(]2F/]T2), where F5
2kBT ln Z. Then we obtain the specific heat for FM particl
with biaxial crystal symmetry in a magnetic field along t
hard anisotropy axis as

c5
E0

2

kBT2

1

cosh2~E0b!
. ~26!

WhenH50,

c~H50!5
4\2D0

2

kBT2

1

cosh2~2\D0b!
, ~27!

for integer spins, whilec(H50)50 for half-integer spins.
The magnetic susceptibilityx52]2F/]H2, and at zero
magnetic field we obtain that

x~H50!52
2kBT

Hc
2 ~Sp!2~\D0b!tanh~2\D0b!,

~28a!

for integer spins, while

x~H50!5
4kBT

Hc
2 ~Sp!2~\D0b!2, ~28b!
,
d

ic
wo

l-
n
b-

for half-integer spins. It is clearly shown that the speci
heat and the magnetic susceptibility for integer spins
much different from those for half-integer spins, providing
possible experimental method to test the topological ph
interference effects.

IV. MQC FOR TRIGONAL CRYSTAL SYMMETRY

In this section, we consider a FM system with trigon
crystal symmetry, i.e., which has three consecutive ene
minima in a period. The magnetic field is applied inẑ, par-
allel to the hard anisotropy axis. Now the total energy is

E~u,f!5K1 cos2u2K2 sin3u cos~3f!2M0H cosu1E08 ,

5K1~cosu2cosu0!22K2 sin3u cos~3f!1E0 ,
~29!

whereK1 andK2 are magnetic anisotropic constants satis
ing K1@K2.0. cosu05H/Hc , and Hc52K1 /M0. As K1
@K2.0, the magnetization vector is forced to lie in theu
5u0 plane, and therefore the fluctuations ofu aboutu0 are
small. Introducingu5u01a(uau!1), the total energy of
Eq. ~29! reduces to

E~a,f!5K1 sin2u0a212K2 sin3u0 sin2~3f/2!. ~30!

The ground state corresponds to the magnetization ve
pointing in one of the three degenerate easy directionsu
5u0, andf50, 2p/3, 4p/3. If we denote the three state
as u1&, u2&, and u3&, other energy minima repeat the thre
states with period 2p.

The classical equations of motion with Eq.~30! has the
instanton solution

ā52 iA2
K2

K1
~sinu0!1/2

1

cosh~v1t!
,

sinS 3

2
f̄ D5

1

cosh~v1t!
, ~31!

wherev153A2(V/\S)AK1K2(sinu0)
3/2. Equation~31! cor-

responds to the transition ofMW from u1& to u2&. In deriving
Eqs. ~30! and ~31!, we have used the approximation th
uau!uu0u. It is easy to show that this approximation is val
for the weak magnetic field. For the strong magnetic fie
i.e., H→Hc , u05A2e, wheree512H/Hc!1. From Eq.
~31!, uau'AK2 /K1e1/4'0.01 for typical values of param
eters for FM particles (K1'107 erg/cm3 and K2
'105 erg/cm3). Therefore,uau!uu0u is valid for almost the
whole region of the magnetic field 0<H<0.99Hc . The as-
sociated classical action is

Scl5
25/2

3
AK2

K1
S~sinu0!3/2, ~32!

and the instanton’s contribution to the tunnel splitting is

\D5
29/4331/2

p1/2
~VK1!S K2

K1
D 3/4

~sinu0!9/4S21/2e2Scl.

~33!
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At zero field, the splitting\D05\D(H50) agrees well with
the result in Ref. 56.

For FM particles with trigonal crystal symmetry, the E
clidean transition amplitude between degenerate state
given by

^ j 8ue2HTu j &5Av1

p\
e2v1T/2 (

m,n

m2n5 j 2 j 8(mod 3)

3
~\DTe2 id!m~\DTeid!n

m!n!
, ~34!

whereu j & andu j 8& are any two of the three degenerate stat
andd5(2/3)Sp(12cosu0) is the phase factor generated b
the geometric Wess-Zumino term. After some algebra,
obtain the propagators fromu1& to other states as

^1ue2HTu1&5
1

3
Av1

p\
e2v1T/2@exp~2\DT cosd!

12 exp~2\DT cosd!cosh~A3\DT sind!#,

^2ue2HTu1&5
1

3
Av1

p\
e2v1T/2$exp~2\DT cosd!

2exp~2\DT cosd!@cosh~A3\DT sind!

1 iA3 sinh~A3\DT sind!#%,

^3ue2HTu1&5
1

3
Av1

p\
e2v1T/2$exp~2\DT cosd!

2exp~2\DT cosd!@cosh~A3\DT sind!

2 iA3 sinh~A3\DT sind!#%. ~35!

For this case, the effective Hamiltonian is found to be

Heff52\DF 0 q p

p 0 q

q p 0
G , ~36!

wherep5q* 5exp@2i(2/3)Sp(12cosu0)#. A simple diago-
nalization ofHeff shows that the eigenvalues are

E1522\D cosF2

3
Sp~12cosu0!G , ~37a!

E252\D cosH 1

3
p@2S~12cosu0!11#J , ~37b!

E352\D cosH 1

3
p@2S~12cosu0!21#J . ~37c!

At zero field, u05p/2, and the eigenvalues are\D0 and
22\D0 for integer spins, the former being doubly degen
ate. However, the eigenvalues are 2\D0 and2\D0 for half-
integer spins, the latter being doubly degenerate.

For FM particles with trigonal crystal symmetry in a ma
netic field along the hard anisotropy axis, the partition fun
tion of low-lying tunneling levels is
is

s,

e

-

-

Z5Tr e2bH5e2E1b1e2E2b1e2E3b. ~38!

The specific heat at finite magnetic field is found to be

c52
1

kBT2

1

Z2
~E1e2E1b1E2e2E2b1E3e2E3b!2

1
1

kBT2

1

Z
~E1

2e2E1b1E2
2e2E2b1E3

2e2E3b!. ~39!

At zero magnetic field, Eq.~39! reduces to

c~H50!5
18\2D0

2

kBT2

e\D0b

~e2\D0b12e2\D0b!2
, ~40a!

for integer spins, while

c~H50!5
18\2D0

2

kBT2

e2\D0b

~e22\D0b12e\D0b!2
, ~40b!

for half-integer spins. The magnetic susceptibility at ze
magnetic field is

x~H50!'
8kBT

3Hc
2

~\D0b!2

Z0
S2p2e2\D0b

1
8kBT

9Hc
2

~\D0b!

Z0
S2p2~e2\D0b2e2\D0b!,

~41a!

for integer spins, while

x~H50!'
8kBT

3Hc
2

~\D0b!2

Z0
S2p2e\D0b

1
8kBT

9Hc
2

~\D0b!

Z0
S2p2~e22\D0b2e\D0b!,

~41b!

for half-integer spins, whereZ052e2\D0b1e2\D0b for inte-
ger spins, andZ052e\D0b1e22\D0b for half-integer spins.

V. MQC FOR TETRAGONAL CRYSTAL SYMMETRY

In this section, we will study the spin-parity effects
single-domain FM nanoparticles with tetragonal crystal sy
metry in a magnetic field along the hard anisotropy ax
which has four consecutive minima in a period. Now t
total energy is

E~u,f!5K1 cos2u1K2 sin4u2K28 sin4u cos~4f!

2M0H cosu1E08

5K1~cosu2cosu0!2

1K2 sin4u2K28sin4u cos~4f!1E0 , ~42!

where K1 , K2, and K28 are magnetic anisotropic constan
which satisfy thatK1@K2 ,K28.0. In the case of very strong

K1 , MW is forced to lie in theu5u0 plane, and thus the
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fluctuations of u about u0 are small. Introducingu5u0
1a(uau!1), Eq. ~42! reduces to

E~a,f!5K1 sin2u0a212K28 sin4u0 sin2~2f!. ~43!

The easy directions are at u5u0, and f
50, p/2, p, 3p/2. We denote the four states asu1&, u2&,
u3&, andu4&, other energy minima repeat the four states w
period 2p.

Substituting Eq.~43! into the classical equations of mo
tion, we obtain the instanton solution mapping fromu1& to
u2& as

ā52 iA2
K28

K1
sinu0

1

cosh~v2t!
,

sin~2f̄ !5
1

cosh~v2t!
, ~44!

where v2525/2(V/\S)AK1K28sin2u0. Correspondingly, the
classical action is

Scl521/2AK28

K1
Ssin2u0 . ~45!

Based on the formulas in Ref. 10, we obtain the instanto
contribution to the ground-state tunnel splitting as

\D5
213/4

p1/2
~VK1!S K28

K1
D 3/4

sin3u0S21/2e2Scl. ~46!

By use of the dilute instanton-gas approximation, we o
tain the Euclidean transition amplitude for FM particles w
tetragonal crystal symmetry at finite magnetic field as

^ j 8ue2HTu j &5Av2

p\
e2v2T/2 (

m,n

m2n5 j 2 j 8(mod 4)

3
~\DTe2 id!m~\DTeid!n

m!n!
, ~47!

whered5(1/2)Sp(12cosu0). The propagators fromu1& to
the other states are

^1ue2HTu1&5
1

2
Av2

p\
e2v2T/2@cosh~2\DT cosd!

1cosh~2\DT sind!#, ~48a!

^2ue2HTu1&5
1

2
Av2

p\
e2v2T/2@sinh~2\DT cosd!

2 i sinh~2\DT sind!#, ~48b!

^3ue2HTu1&5
1

2
Av2

p\
e2v2T/2@cosh~2\DT cosd!

2cosh~2\DT sind!#, ~48c!
’s

-

^4ue2HTu1&5
1

2
Av2

p\
e2v2T/2@sinh~2\DT cosd!

1 i sinh~2\DT sind!#. ~48d!

At zero magnetic field,u05p/2, it is shown that if the total
spin is a half-integer, the propagators behave like those
two-level system, indicating the degeneracy of the tunnel
levels. Moreover,̂ 3ue2HTu1& ~i.e., ^u5p/2,f5pue2HTuu
5p/2,f50&) is suppressed to zero for half-integer spins
zero field. This effect is in good agreement with the Kram
theorem, which demands a state with its time-reversed co
terpart should be degenerate for half-integer spins if the s
tem has time-reversal invariance.

For the present case, the effective Hamiltonian can
written as

Heff52\DF 0 q 0 p

p 0 q 0

0 p 0 q

q 0 p 0

G , ~49!

wherep5q* 5exp@2i(1/2)Sp(12cosu0)#. Then the eigen-
values of this system are

E1,3562\D cosF1

2
Sp~12cosu0!G ,

E2,4562\D sinF1

2
Sp~12cosu0!G . ~50!

WhenH50, u5p/2, it is easy to show that ifS is a half-
integer, the energies are6A2\D0 with double degenerate
where

\D05
213/4

p1/2
~VK1!S K28

K1
D 3/4

S21/2e2Scl(H50), ~51!

and

Scl~H50!521/2AK28

K1
S. ~52!

But if S is an integer, the energies are6\D0 and 0, the latter
being doubly degenerate.

Now the partition function of low-lying tunneling levels i
given by

Z52@cosh~E1b!1cosh~E2b!#, ~53!

where E1 and E2 are shown in Eq.~50! by taking ‘‘1’’
values. The specific heat at finite magnetic field is

c5
4

kBT2

1

Z2
$~E1

21E2
2!@11cosh~E1b!cosh~E2b!#

22E1E2 sinh~E1b!sinh~E2b!%. ~54!

At zero magnetic field, Eq.~54! reduces to

c~H50!5
2

kBT2

~\D0!2

cosh~A2\D0b!
, ~55a!
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14 588 PRB 61LÜ, HU, ZHU, WANG, CHANG, AND GU
for half-integer spins, while

c~H50!5
4

kBT2

~\D0!2

@11cosh~2\D0b!#2
, ~55b!

for integer spins. The magnetic susceptibility at zero m
netic field is found to be

x'
kBT

Hc
2

~\D0b!2

@11cosh~2\D0b!#
S2p2

2
kBT

2Hc
2

~\D0b!

@11cosh~2\D0b!#
sinh~2\D0b!S2p2,

~56a!

for integer spins, while

x'
kBT

2Hc
2 ~\D0b!2S2p2

2
kBT

2A2Hc
2 ~\D0b!tanh~A2\D0b!S2p2, ~56b!

for half-integer spins. The tunneling level spectrum, the s
cific heat and the magnetic susceptibility for integer spins
much different from those for half-integer spins.

VI. MQC FOR HEXAGONAL CRYSTAL SYMMETRY

In this section, we will study the tunneling behaviors
FM particles with hexagonal crystal symmetry, which has
degenerate easy directions in a period. In the presence
magnetic field along the hard anisotropy axisẑ, the total
energy is

E~u,f!5K1 cos2u1K2 sin4u1K3 sin6u

2K38 sin6u cos~6f!2M0H cosu1E08

5K1~cosu2cosu0!21K2 sin4u1K3 sin6u

2K38 sin6u cos~6f!1E0 , ~57!

where K1 , K2 , K3, and K38 are magnetic anisotropic con
stants satisfyingK1@K2 ,K3 ,K38.0. The magnetization vec
tor is forced to lie in theu5u0 plane, so the fluctuations o
u about u0 are small. Introducingu5u01a(uau!1), Eq.
~57! reduces to

E~a,f!5K1 sin2u0a212K38 sin6u0 sin2~3f!. ~58!

The easy directions are at u5u0, and f
50, p/3, 2p/3, p, 4p/3, 5p/3. We denote the six
states asu1&, u2&, u3&, u4&, u5&, and u6&, other energy
minima repeat the six states with period 2p. The classical
equations of motion with Eq.~58! has the instanton solutio

ā52 iA2
K38

K1
sin2u0

1

cosh~v3t!
,

sin~3f̄ !5
1

cosh~v3t!
, ~59!
-

-
e

x
f a

where v353323/2(V/\S)AK1K38 sin3u0. The associated
classical action is

Scl5
23/2

3
AK38

K1
Ssin3u0 . ~60!

According to the formulas in Ref. 10, we obtain the insta
ton’s contribution to the tunnel splitting for FM particle
with hexagonal crystal symmetry at finite field as

\D5
31/23211/4

p1/2
~VK1!S K38

K1
D 3/4

~sinu0!9/2S21/2e2Scl.

~61!

The splitting at zero field\D05\D(H50) is consistent
with the result in Ref. 56.

The transition amplitude between degenerate state
given by

^ j 8ue2HTu j &5Av3

p\
e2v3T/2 (

m,n

m2n5 j 2 j 8(mod 6)

3
~\DTe2 id!m~\DTeid!n

m!n!
, ~62!

whered5(1/3)Sp(12cosu0). After some complicated cal
culations, the propagators fromu1& to the other states ar
found to be

^1ue2HTu1&5
1

3
Av3

p\
e2v3T/2@cosh~2\DT cosd!

12 cosh~\DT cosd!cosh~A3\DT sind!#,

~63a!

^2ue2HTu1&5
1

3
Av3

p\
e2v3T/2@sinh~2\DT cosd!

1sinh~\DT cosd!cosh~A3\DT sind!

2 iA3 cosh~\DT cosd!sinh~A3\DT sind!#,

~63b!

^3ue2HTu1&5
1

3
Av3

p\
e2v3T/2@cosh~2\DT cosd!

2cosh~\DT cosd!cosh~A3\DT sind!

2 iA3 sinh~\DT cosd!sinh~A3\DT sind!#,

~63c!

^4ue2HTu1&5
1

3
Av3

p\
e2v3T/2@sinh~2\DT cosd!

22 sinh~\DT cosd!coshA3\DT sind#,

~63d!
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^5ue2HTu1&5
1

3
Av3

p\
e2v3T/2@cosh~2\DT cosd!

2cosh~\DT cosd!cosh~A3\DT sind!

1 iA3 sinh~\DT cosd!sinh~A3\DT sind!#,

~63e!

^6ue2HTu1&5
1

3
Av3

p\
e2v3T/2@sinh~2\DT cosd!

1sinh~\DT cosd!cosh~A3\DT sind!

1 iA3 cosh~\DT cosd!sinh~A3\DT sind!#.

~63f!

When H50, u05p/2, ^4ue2HTu1& ~i.e., ^u5p/2,f
5pue2HTuu5p/2,f50&) is suppressed to zero for hal
integer spins due to the destructive interference of We
Zumino phase between the topologically distinct tunnel
paths, which is in good agreement with the Kramers th
rem. However, the field applied along the hard axis can l
to a nonzero transition amplitude even if the total spin i
half-integer.

Now the effective Hamiltonian can be written as

Heff52\D3
0 q 0 0 0 p

p 0 q 0 0 0

0 p 0 q 0 0

0 0 p 0 q 0

0 0 0 p 0 q

q 0 0 0 p 0

4 , ~64!
r

s-
g
-
d

a

wherep5q* 5exp@2i(1/3)Sp(12cosu0)#. Then the eigen-
values of the system are

E1,4562\D cosF1

3
Sp~12cosu0!G ,

E2,5562\D cosH 1

3
p@S~12cosu0!11#J ,

E3,6562\D cosH 1

3
p@S~12cosu0!21#J . ~65!

At zero magnetic field,u05p/2, the energies areA3\D0 , 0,
and2A3\D0 for half-integer spins, all the three levels bein
doubly degenerate. While the energies are62\D0 and
6\D0 for integer spins, the latter two levels being doub
degenerate.

For this case, the partition function of low-lying tunnelin
levels is given by

Z52@cosh~E1b!1cosh~E2b!1cosh~E3b!#, ~66!

whereE1 , E2, andE3 are shown in Eq.~65! by taking ‘‘1’’
values. The specific heat at finite field is

c5
4

kBT2

1

Z2
$E1

21E2
21E3

21~E1
21E2

2!cosh~E1b!cosh~E2b!

1~E1
21E3

2!cosh~E1b!cosh~E3b!1~E2
21E3

2!

3cosh~E2b!cosh~E3b!22E1E2 sinh~E1b!sinh~E2b!

22E1E3 sinh~E1b!sinh~E3b!

22E2E3 sinh~E2b!sinh~E3b!%. ~67!

At zero magnetic field, Eq.~67! reduces to
c~H50!5
2\2D0

2

kBT2

@415 cosh~2\D0b!cosh~\D0b!24 sinh~2\D0b!sinh~\D0b!#

@cosh~2\D0b!12 cosh~\D0b!#2
, ~68a!
pe-
are
s,
rity
for integer spins, while

c~H50!5
6\2D0

2

kBT2

21cosh~A3\D0b!

@112 cosh~A3\D0b!#2
, ~68b!

for half-integer spins. The magnetic susceptibility at ze
field is found to be

x~H50!5
2kBT

3Hc
2

~\D0b!2

@2 cosh~\D0b!1cosh~2\D0b!#2

3S2p2 cosh~\D0b!2
2kBT

9Hc
2

3
~\D0b!

@2 cosh~\D0b!1cosh~2\D0b!#

3S2p2@sinh~\D0b!1sinh~2\D0b!#, ~69a!
o

for integer spins, while

x~H50!5
2kBT

9Hc
2

~\D0b!2

@112 cosh~A3\D0b!#2

3 S2p2@21cosh~A3\D0b!#

2
2A3kBT

9Hc
2

~\D0b!

@112 cosh~A3\D0b!#2

3 S2p2sinh~A3\D0b!, ~69b!

for half-integer spins. It has been clearly shown that the s
cific heat and the magnetic susceptibility for integer spins
significantly different from those for half-integer spin
which provides a possible experimental test for spin-pa
effects in FM particles.
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VII. DISCUSSIONS AND CONCLUSIONS

In summary, we have investigated the spin-parity effe
in resonant coherently quantum tunneling of the magnet
tion vector in single-domain FM nanoparticles with biaxia
trigonal, tetragonal, and hexagonal crystal symmetries i
magnetic field along the hard anisotropy axis. Both the W
exponent and the preexponential factors are evaluated in
instanton’s contribution to the ground-state tunnel splittin
based on the instanton technique in the spin-coherent-
path integral. The Euclidean transition amplitudes betw
degenerate states are evaluated by use of the dilute insta
gas approximation, which gives some direct results for
topological phase interference effects. The low-lying tunn
ing level spectrum is clearly shown by applying the effect
Hamiltonian approach.

One important conclusion is that for all four kinds of cry
tal symmetries, the ground-state tunnel splittings for ha
integer spins are significantly different from those for integ
spins, resulting from the Berry phase interference betw
topologically distinct tunneling paths. For FM particles wi
simple biaxial crystal symmetry at zero magnetic field, t
topological quenching for half-integer spins is rederived
use of the effective Hamiltonian approach. However, a m
netic field along the hard axis can lead to a finite tun
splitting even if the total spin is a half-integer. The low-lyin
tunneling level spectrum for the trigonal, tetragonal, or h
agonal crystal symmetry is found to be much more comp
than that for the biaxial crystal symmetry, and the tun
splittings atH50 can be nonzero even if the total spin is
half-integer. The transition amplitude from states alongx̂ to
2 x̂ vanishes for half-integer spins in FM particles with b
o

.

ts
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l,
a
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en
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-

axial, tetragonal, or hexagonal crystal symmetry atH50,
which is entirely equivalent to the Kramers theorem. Anoth
important observation is that the tunnel splittings oscilla
with the magnetic field for both integer and half-integer sp
for each kind of crystal symmetry. Note that these sp
parity effects are of topological origin, and therefore are
dependent of the magnitude of total spins. The heat capa
and the magnetic susceptibility of low-lying tunneling stat
are evaluated and are found to depend significantly on
parity of total spins, providing a possible experimen
method to examine the theoretical results on topolog
phase interference effects. Our results presented here sh
be useful for a quantitative understanding on the spin-pa
effects in single-domain FM nanoparticles with differe
crystal symmetries.

The theoretical calculations performed in this paper c
be extended to single-domain AFM nanoparticles, where
relevant quantity is the excess spin due to the small nonc
pensation of two sublattices. Work along this line is still
progress. We hope that the results presented here will sti
late more experiments whose aim is observing the topolo
cal phase interference or spin-parity effects in nanome
scale single-domain ferromagnets.
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