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Topological phase interference induced by a magnetic field along hard anisotropy axis
in nanospin systems with different crystal symmetries
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Based on the instanton technique in the spin-coherent-state path-integral representation, the spin-parity
effects induced by the topological Wess-Zumino or Berry phase are studied theoretically in nanometer-scale
single-domain ferromagnets in the presence of an external magnetic field along the hard anisotropy axis. We
consider the magnetocrystalline anisotropy with the biaxial, trigonal, tetragonal, and hexagonal crystal sym-
metry, respectively. Both the Wentzel-Kramers-Brillo@iwKB) exponent and the preexponential factors are
evaluated in the instanton’s contribution to the ground-state tunnel splittings. The Euclidean transition ampli-
tudes between energetically degenerate easy directions are obtained with the help of the dilute instanton gas
approximation. The effective Hamiltonian approach is applied to present the final results of ground-state tunnel
splittings for each kind of crystal symmetry. The Euclidean transition amplitudes and the ground-state tunnel
splittings are found to depend on the parity of total spins of ferromagnets and oscillate with the external
magnetic field for both the integer and half-integer total spins. We show that the topological phase interference
or spin-parity effects can reflect in thermodynamic quantities of magnetic tunneling states. Possible relevance
to experiments is also discussed.

[. INTRODUCTION results for the splittings of excited levels with moderate spin.
By applying the instanton technique in the spin-coherent-
It is well known that in principle quantum mechanics is state path integral, Garg and Kifhextended the previous
applicable to both macroscopic and microscopic systemd/VKB calculation to include the preexponential factors for
Macroscopic systems are essentially classical, in the sensarious forms of the magnetocrystalline anisotropy.
that in such systems phenomena typical of quantum mechaiZaslavskit' described the spin tunneling based on the exact
ics, such as barrier penetration or Salinger’s cat, do not correspondence between the spin system and a particle mov-
occur in general. However, Caldeira and Leggett predictedhg in a potential field. And he obtained the tunneling expo-
that quantum tunneling could occur on the macroscopitent, the preexponential factors, and their temperature de-
scale, provided that the dissipative interactions with the enpendences. Barnes proposed the auxiliary particle mé&thod
vironment were small enoudt. By applying the instanton to study the model for a single large spin subject to the
technique in the imaginary-time path integral, they con-external and anisotropy field3.By introducing auxiliary
cluded that the rate of quantum tunneling was reduced by thspinless fermions, Barnes mapped the spin model to two
dissipation in generat.* Macroscopic quantum phenomena tight binding models of spinless fermions, then obtained the
can take place in the Josephson systems and the supercaunnnel spliting and discussed the spin-parity efféctBor
ducting quantum interference devic@QUID).® AFM particles with an easy-plane anisotropy, Barfes
Recently, there has been great theoretical and experimeshowed that the tunnel splitting is quasiperiodic in the mag-
tal interest in studying the nanometer-scale ferromaghétfic nitude of a field applied perpendicular to a principal anisot-
(FM) and antiferromagneticAFM) particles®> 9which ex-  ropy axis. He also found that in one dimension there are
hibit macroscopic quantum tunnelifylQT) and coherence periodic regions on the field axis for which the model is
(MQC). Theoretical study based on the instanton techniquguantum critical, while in two or three dimensions criticality
was performed by Chudnovsky and Gunfheith an expo- is reduced to points. Both the Zaslavskii method and the
nential accuracy, and Enz and Schillfndeveloped a more auxiliary particle method gave a clear picture to calculate the
sophisticated version of the instanton technique to obtain theplitting of excited levels which was not easily obtained by
ground-state tunnel splitting with the preexponential factorsusing the path integral method. Now much attention was
Van Hemmen and 8¢ formulated the WKB method and attracted to the spin tunneling in the presence of an arbi-
calculated the tunneling rates and the corresponding splitrarily directed magnetic fiefd~>*and the quantum-classical
tings of excited states. Scharf, Wreszinski, and varphase transition probleit:?® Experiments were carried out
Hemmenr proposed an approach based on a particle mappintp investigate the small magnets either via relaxation
with subsequent application of the WKB method to refine themeasurement€;?” or via measurements of the noise spec-

0163-1829/2000/621)/1458111)/$15.00 PRB 61 14 581 ©2000 The American Physical Society



14 582 LU, HU, ZHU, WANG, CHANG, AND GU PRB 61

trum and the ac susceptibilifj;”® which can be considered hexagonal crystal symmetries around thaxis, which have
as signals of magnetic quantum tunneling. Besides its impotthree, four, and six degenerate easy directions, respectively.
tance in understanding the transition from quantum to clasThe theoretical study based on the path-integral method con-
sical physics, the spin tunneling is crucial to the reliability of sists of two major steps. The first step is to find the classical,
small magnetic units in memory devices and the design obr least-action patkinstanton from the equation of motion,
possible quantum computets. and then to obtain the contribution of the associated instan-
One notable subject in magnetic quantum tunneling is thaton to the tunnel splittings. Garg and Kifrstudied the gen-
the topological Berry phas, or Wess-Zumino, Chern- eral formulas for evaluating the instanton’s contribution to
Simons terr¥ in the action can lead to remarkable parity the tunneling rate or the tunnel splitting. In Sec. II, we ex-
effects for some spin systems with high symmetries. It wagplain briefly the basic ideas of this evaluation, and then apply
theoretically shown that the tunnel splitting is suppressed téhis method to calculate the instanton’s contribution to the
zero for half-integer total spins in FM particles with biaxial ground-state tunnel splittings for FM particles with biaxial,
crystal symmetry in the absence of a magnetic fidfRf. trigonal, tetragonal, and hexagonal crystal symmetry at finite
Such a effect is known as the topological quenchitigow-  field in Secs. IlI-VI, respectively. The second step is to
ever, the phase interference is constructive for integer spinsfudy the effects caused by the topological Wess-Zumino
and hence the splitting is nonzett®* Similar effects were phase, and then obtain the final results of the ground-state
found in AFM particles, where only the integer excess spinssplittings. For FM particles with simple biaxial crystal sym-
can tunnel but not the half-integer orfé$? While spin-  metry, this step is easily done by summing up the contribu-
parity effects in the absence of magnetic field are sometimeions of clockwise and counterclockwise tunneling péths.
related to the Kramers degenerdcy”they typically go be- However, for FM particles with complex symmetry, this step
yond the Kramers theorem in a rather unexpected &Y. turns out to be more difficult. By using the dilute instanton-
The effects of magnetic field were studied extensively in FMgas approximation, we obtain the transition amplitudes be-
and AFM particles with biaxial crystal symmetty®>3/-41  tween degenerate states, which lead to some direct results
One recent experimental method based on the Landau-Zeneoncerning the topological phase interference effects. Fur-
model was developed by Wernsdorfer and Se$stimea-  thermore, we propose an approach of the effective Hamil-
sure the tunnel splittings in the moleculargFduster with a  tonian to obtain the low-lying tunneling level spectrum and
spin ground state d8=10. They observed a clear oscillation discuss the degeneracies of tunneling levels. The topological
of the tunnel splitting as a function of the magnetic field quenching for half-integer spins in FM particles with biaxial
along the hard axis, which is a direct evidence of the role ofrystal symmetry at zero field can be rederived by applying
the topological Berry phase in spin dynamics of these molthis approach. Our results show that the tunnel splittings de-
ecules. They also observed an oscillatory rate in the presengend significantly on the parity of total spins for each kind of
of a dc field along the easy axis that is such as to align therystal symmetries. And the structure of low-lying tunneling
ground level in one well with an excited level in the other. level spectrum for the trigonal, tetragonal, and hexagonal
Whether the instanton technique can be applied in studyingrystal symmetry is much more complex than that for the
the spin dynamics in molecule witB=10, and under what biaxial crystal symmetry. We also find that the tunnel split-
conditions the Landau-Zener model is appropriate for thdings oscillate with the field for both integer and half-integer
quantum relaxation of unstable excited states become twepins, and the oscillation behavior for integer spins are much
important questions. Recent theoretical studies include thdifferent from that for half-integer spins. Thermodynamic
quantum relaxation in magnetic molecufé4*the spin tun-  properties(such as the specific heat or the magnetic suscep-
neling in a swept magnetic fiefd, the thermally activated tibility ) of the tunneling levels are evaluated, and are found
resonant tunneling with the help of the perturbation th&bry to be strongly dependent on the parity of total spins and
and the exact diagonalizatidh, the auxiliary particle oscillate with the field. This may provide an experimental
method*?*® the discrete WKB methotf and the nonadia- test for spin-parity effects in FM particles.
batic Landau-Zener modé&l.Barned?*®showed that the in-
termediate spin, which occurs in the theory of anyons, can be  |I. BERRY PHASE IN SPIN-COHERENT-STATE
exhibited by magnets in a suitable directed magnetic field. PATH INTEGRAL
By using the auxiliary particle method, Barnes obtained the . . . . .
tunnel splitting of Fg and showed that the parity is periodic I this section, we review briefly the magnetic MQT and
for a field which is along either the easy or the hard axis or &QC based on the instanton method in the spin-coherent-
suitable combination of the twd. Prokofev and Stamp State path integral. We emphasize that the Wess-Zumino
found that the higher order term (S* +S*) makes an im- phase which is cru.mal for _the spin-parity effects arises from
portant contribution to the period of oscillation and markedlythe nonorth_ogonahty of spin coherent states, and_ the gauges
affect the tunnel splitting of Fe and the nuclear spins also are determined by the single-valuedness of spin coherent

affect the tunnel splitting? states. . . .
It is noted that previous resuffsabout the effects of the In the spin-coherent-state path-integral representation, the
magnetic field along the hard anisotropy axis on topologicafzucnd%m action for a FM particle is given by
phase interference were obtained for the simplest possible v M, [d Mo/ d
form of the magnetocrystalline anisotroftiie biaxial crystal Se(6,¢)= %j dr[i -0 _) —j _0(_) cosd
symmetry. The purpose of this paper is to extend the result Y Y
of FM particles with biaxial crystal symmetfyto that with a
more complex structure, such as trigonal, tetragonal, and +E(6),d))}, 1)
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whereMo=|M|=%yS/V, V is the volume of the particle, Which can be expressed as the following equations in the
y is the gyromagnetic ratio, arflis the total spins. The spin Spherical coordinate system:
coherent state is defined as the maximum eigenstates of

S,, |S,M=8), rotated into the direction of the unit vector i(d_g)sing_ v JE (89)

n=(sin #cose,sin #sin ¢,cos), dr Mo g’

S\ — — o iS,6a—1S,0,—1S,x d _ JE
m=|6.¢j=e eSS, @ i(—d) sinf=— —— —, (8

dT MO 96

whereS is the spin operator. The spin coherent state(Ep.

obeys the eigenvalue equationS|n)=S|n). The spin co- where 6 and ¢ denote the classical path. The instanton’s
herent state can be expanded in term§SpM ) by applying  contribution to the tunneling raté or the tunnel splittingh

Wigner's formula® and the result 8 (not including the Wess-Zumino phass given by°
S S 1/2
Ry—ei S \/ (2S)! I (or A)=Awp(2—°') e S, ©)
M=Ls V(S+M)!I(S—M)! T
g\ SHM S-M wherew, is the oscillation frequency in the well, arig, is
x g~ M "’(COSZ) Sinﬁ |S,M). (3)  the classical action. The factér originates from the quan-

tum fluctuations about the classical path, which can be evalu-
ated by expanding the Euclidean action to second order in

One has the freedom to definearbitrarily. This is a gauge the small fluctuation

freedom, which can be eliminated by fixing x has to be
fixed by the requirement that the spin coherent state be single

valued upong— ¢+27n, wheren is an integeP® There- lll. MQC FOR BIAXIAL CRYSTAL SYMMETRY
fore, x takes the values In this section, we study the topological phase interfer-
ence or spin-parity effects in single-domain FM nanopar-
X= m+l é 4) ticles with biaxial crystal symmetry. In a magnetic field
nsS along the hard anisotropy axi the Hamiltonian of this

for arbitrary integersn andn. Form=—-2nS, y=— ¢, and system can be written as

this is the case of north-pole gauge which we will adopt

&2 &2 &
thought this paper. Fan=0, y= ¢, and this is the case of H=kiS; TkpS, = yHS,, (10
south-pqle gauge. And t_he results obtained in either of thgynere k,>k,>0 are proportional to the anisotropy coeffi-
gauges is physically equivalent. cients. Then the total ener@( 6, ¢) of such a FM particle is

It is noted that the first two terms in E@l) define the
topological Berry or Wess-Zumino, Chern-Simons term E(6,¢)=K, cof6+ K, sirtdsirfé—MH cosd+Ey,

which arises from the nonorthogonality of spin coherent (11
states, i :
whereK, andK, are the transverse and longitudinal anisot-
o 0 0 0’ _ 2s ropy coefficients, and is a constant which makds( 9, ¢)
(n’|n)= cosy- co§+sin3 sinie'(‘/’*‘/’ )| . (5)  zero at the initial orientation. Here we assume that the trans-

verse anisotropy coefficient is much larger than the longitu-
For infinitesimally separated angles, the overlap becomes dinal one, i.e.K,>K;>0, which satisfies the experimental
situation on highly anisotropic materials. The same model
SN _ was first studied in Ref. 35. However, the main purpose of
(n'[n)=1+iSo¢(coso-1), © Ref. 35 was to study the phase interference effects caused by
for the north-pole parametrizatiop= — ¢, where §¢= ¢’ the Wess-Zumino term. The expression of tunnel splitting
— ¢. The Wess-Zumino term has a simple topological inter-was not clearly shown in Ref. 35. Here we will evaluate both
pretation. For a closed path, this term equalS times the  the WKB exponent and the preexponential factors in the
area swept out on the unit sphere between the path and tiggound-state tunnel splitting at finite magnetic field by apply-
north pole. The first term in Eq1) is a total imaginary-time  ing the instanton technique, which may be helpful for experi-
derivative, which has no effect on the classical equations ofental checks. It is noted that the experinféoh Fg is not
motion, but it is crucial for the spin parity effects>* covered in this situation. In particular, whether the instanton
In the semiclassical limit, the dominant contribution to themethod can be applied in a spin system wih 10 needs
transition amplitude comes from finite action solutiin-  further investigation. However, the theoretical stulis
stanton of the classical equation of motion. The motion of based on the instanton method showed that the tunneling

the magnetization vect¥l is determined by the imaginary- Probability is exponentially small for large spifss-10°~10°

time version of classical Landau-Lifshitz equation, at zero field, unles&>K,>0. Therefore, the results pre-
sented here is useful for the highly anisotropic materials.
dM dE(M) After adding a constant, we rewrite EG.1) as
= NX———, ) S
dr dM E(6,¢)=K,(cos6—cosby)?+K, sirtasirte, (12
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where cogy=MgH/2K;=H/H.. H.=2K;/M, is the coer- crystal symmetry in a magnetic field along the hard anisot-

cive field at which the initial state becomes classically un-ropy axis. After simple algebra, the propagators fridr to

stable. Under the assumption thakBl<H., the energy the other degenerate states are found to be

minima of this system are #= 6, and¢=0, 7. We denote

1) as the state ab=6,, ¢=0, and|2) as the state a# B wy

|=>00, ¢=r, other energy minima|rgpeat the two states  (1le”"T[1)= N7 € 072 cosH2A AT cog Sm(1

with period 2. For the case of high transverse anisotropy,

the magnetization vector is forced to lie in the= 6, plane, —cosf) 1},

so the fluctuations of about 6, are small. Introducing’
0o+ a(|a|<1), the total energy of Eq12) reduces to (2le"T1)— /ﬂ e~ T2 sin{ 24 AT cog Sm( 1

E(a, ) =K, SiPOga®+ K, sitdysith. (13 h

Substituting Eq(13) into the classical equations of motion, —c0s6o) ]} (18)
we obtain the instanton solution At zero field 0o= 12, (2|e MT|1) ((6= /2,
K 1 =m|e "T|§=n/2,=0)) vanishes for half-integer spins, in
a=—i /_2—' accordance with the Kramers theorem. However, a magnetic
K1coshwo7) field along the hard axis can lead to a nonzero propagator

between the Kramers doublet even if the total spin is a half-
1 (14) integer. This is, however, not the only effect the topological
coshwgT)’ phase interference results in. In fact, we shall present the
, L = — — strikingly different tunnel splittings for integer and half-
corresponding to the switching & from 6=0o, #=0at i teqer spins with the help of the effective Hamiltonian
T=—o to 60=60,, é=7 at 7=, where w, approacﬁ;_5
=2(VI%S)sin 6,WK,K,. In deriving Egs.(13) and (14), we In Ref. 4, Leggettet al. showed that for a two-level sys-
have used the approximation that|<|6,|. It is easy to tem isolated from its environment, its motion in the two-
show that this approximation is valid for the weak magneticdimensional Hilbert space can be completely described by a
field. For the strong magnetic field, i.¢d—H., 6=+ 2e, simple HamiltonianH = —(1/2)AAqgoy+ (1/2)eo,, where
wheree=1—H/H.<1. From Eq.(14), |a|~K,/K;~0.1  o; are Pauli matrices, and the basis is chosen so that the
for typical values of parameters for single-domain FM nano-eigenstate ofr, with eigenvalue+1 (—1) corresponds to
particles K;~10" erg/cn? and K,~10° erg/cn?). There- the system being localized in the rigtieft) well. & is the
fore, |a|<| 6| is valid for almost the whole region of the difference in the ground-state energies of the states localized
magnetic field BsH=<0.9H.. in the two wells in the absence of tunneling. For degenerate
The corresponding classical action can be evaluated bground statesg=0. The quantity (1/2}A, is the matrix
integrating Eq.(1) with the above classical trajectories, and element for tunneling between the wells. Now the effective

sin$=

the result is Hamiltonian approach in magnetic MQC is a development of
the tunneling Hamiltonian of Leggett al.* where the phase
K factors generated by the topological Wess-Zumino term are
Sei=2 K_l Ssinfo. (15 properly incorporated. By applying the similar method in

Ref. 56, one can show that the effective Hamiltonian ap-
proach is equivalent to the dilute instanton-gas
approximatiorr However, this approach has the advantage
3/ of being very simple and direct, which permits one to discuss
A= il/z(VKl)(K_z) (sinBp)325 V25, (16) the degeneracies of Iow—lying tunneling levels in detalil.

T 1 We introduce an effective Hamiltonian as

By applying the instanton techniqd®we obtain the instan-
ton’s contribution to the ground-state tunnel splitting as

Here we have not included the additional phase factors gen- Ho=—#AM (19)
erated by the topological Wess-Zumino term, but will rein- eff '
state them in the final expressions of the tunnel splittings. whereM is a linear operator defined by
With the help of the dilute instanton-gas approximafidn,

the transition amplitude between degenerate states is given M|j)=plj+1)+q|j—1). (20
b

Y Equation(20) can be viewed as a process wher¢lygoes

_ . . m-—n=j—j’(mod2) forward to|j+ 1) with weightp and backward t¢j — 1) with
(j'le "Tj)= — g @0l > weightq. For this case the matrix form ol is

m,n

X(ﬁATe’iﬁ)m(ﬁATei‘s)”

(21
m!n!

LY p+q
, (17) [M]=(j'[M[j)= p+q 0 |
where|j) and|j’) denote the two degenerate states, and wherep=q* =exg —iSm(1—cosfy)]. A simple diagonaliza-
=Sm(1—-coséy) is the phase factor generated by the topo-tion of Hgs shows that the eigenvalues ar&=
logical Wess-Zumino term for FM particles with biaxial *+2#A cogSm(1—cos#,)]. Therefore, the splitting of ground
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state isiA;=4%A|co§Sm(1—-cosbp)]|. When H=0, 6,
=m/2, and the tunnel splitting is AA;(H=0)
= 4% Ay|cosGm)|, where

4 K2 3/4 - - B
hAO:W—m(VKl)(K—l) S Ve SaH=01" (22
with
SC|(H=0)=2\/§S. (23

The topological quenching for half-integer spinsHat=0 is
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for half-integer spins. It is clearly shown that the specific
heat and the magnetic susceptibility for integer spins are
much different from those for half-integer spins, providing a
possible experimental method to test the topological phase
interference effects.

IV. MQC FOR TRIGONAL CRYSTAL SYMMETRY

In this section, we consider a FM system with trigonal
crystal symmetry, i.e., which has three consecutive energy
minima in a period. The magnetic field is appliedznpar-
allel to the hard anisotropy axis. Now the total energy is

rederived by use of the effective Hamiltonian approach, E(6,¢)=K;cos'6—K,sin’6 cog3¢)—MgH coso+Ey,
which agrees well with the Kramers theorem. Compared

with Egs. (15), (16) and Egs.(22), (23), it is easy to show

that the tunnel splitting increases with the external magnetic
field because the field decreases the barrier between the tw

degenerate states. The expressiohdf shows that the tun-
nel splitting oscillates with the field for both integer and
half-integer spins, and therefofed; is suppressed to zero
whenever

H/H.=(S—n+1/2)/S, (24)

wheren is an integer.

At the end of this section, we discuss the possible rel-

evance to the experimental test for spin-parity effects i

n

=K,(cosh—cosby)?— K, sin*d cog3¢)+Ey,
(29

WonereK1 andK, are magnetic anisotropic constants satisfy-
ing K{>K,>0. cosfp=H/H., and H.=2K;/M,. As K;
>K,>0, the magnetization vector is forced to lie in the
=6, plane, and therefore the fluctuations ®fboutd, are
small. Introducingf= 6y+ a(|a|<1), the total energy of
Eq. (29) reduces to

E(a,$)=K, sirfya’+ 2K, sirt b, sirf(3¢/2). (30)

The ground state corresponds to the magnetization vector

single-domain FM nanoparticles. Since we have already obR0INting in one of the three degenerate easy directions:

tained the low-lying tunneling level spectrum, the partition

function is

Z=Tre PH=2 coshEyB), (25)

where Eq=2%A co§Sm(1—cosf)], A is shown in Egs.
(15 and (16), and 8=1/kgT with kg the Boltzmann con-
stant. The specific heat=—T(d°F/dT?), where F=

—kgT InZ. Then we obtain the specific heat for FM particles
with biaxial crystal symmetry in a magnetic field along the

hard anisotropy axis as

5 ! (26)
c= :
kg T2 cosH(EqB)
WhenH=0,
4h2A3 1
c(H=0)= (27)

kgT2 cosH(2hAoB)

for integer spins, whilec(H=0)=0 for half-integer spins.
The magnetic susceptibilityy= —9°F/9H?, and at zero
magnetic field we obtain that

2kgT )
x(H=0)=———(Sm)*(hAoB)tani( 2 Aop),
i (283
for integer spins, while
4kgT
x(H=0)= (Sm)*(hAoB)?, (28b)

2
Cc

=6y, and¢=0, 27/3, 47/3. If we denote the three states
as|1), |2), and|3), other energy minima repeat the three
states with period 2.

The classical equations of motion with E@O0) has the
instanton solution

K,
i H 1/2
i 2_K1( sinéy)

o3

wherew, =32 (V/#S) VK K (sin 6p)¥2 Equation(31) cor-
responds to the transition & from |1) to |2). In deriving
Egs. (30) and (31), we have used the approximation that
|a|<|6y|. It is easy to show that this approximation is valid
for the weak magnetic field. For the strong magnetic field,
i.e., H—H¢, 6,=12¢, wheree=1—H/H,<1. From Eq.

cosiw,7)’

1

- cosiw;7)’ (31)

(3), |a|~K,/K,e*~0.01 for typical values of param-
eters for FM particles K;~10" erg/cnt and K,

~10° erg/cnt). Therefore,|a|<|6y| is valid for almost the
whole region of the magnetic fieldsOH<0.9H .. The as-
sociated classical action is

Koo o 312
\/K—18(sm 00)~'%,

and the instanton’s contribution to the tunnel splitting is

25/2

Su=3- 32

29/4X 31/2(\/K )
2 1

K2 3/4
hA (K—) (sin@y)¥4s™ V25,
1

(33
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At zero field, the splittingi A=A A(H=0) agrees well with
the result in Ref. 56.

For FM particles with trigonal crystal symmetry, the Eu-
clidean transition amplitude between degenerate states
given by

\/QTl m-n=j—j’(mod 3)
A= HTi = [ 2L~ w72
(i'le”"Tj)= e 2

(AATe "™ A#ATE )"
x min!

(39

wherelj) and|j’) are any two of the three degenerate states,

and 6= (2/3)Sw(1— cosé) is the phase factor generated by
the geometric Wess-Zumino term. After some algebra, w
obtain the propagators froid) to other states as

1l o
(1le HT|1)= 3V W—%e*“’lT’Z[exp(ZhAT cosé)

+2 exg —AAT cosd)cosh \/§hAT sind)],

1

(2le HT|1)= 3\ / %e*‘”lT’z{exp(ZﬁAT cosé)
—exp(—AAT cosé)[ cosi J3#AT sin &)
+i/3 sinH\/3%AT sinés) 1},

1
(3le"HT]1)= 3\ / %e“"lT’z{exp(ZﬁAT c0sd)

—exp(—hAT cosd)[cosi /34 AT sind)
—i/3 sink(\3%AT sin) 1} (35)
For this case, the effective Hamiltonian is found to be
0 g p
Heff:_ﬁA p 0 q y
qa p O

wherep=q* =exd —i(2/3)Sw(1—coséy)]. A simple diago-
nalization ofH .+ shows that the eigenvalues are

(36)

2
E,=—2#A 005{§S7r(1— C0S6y)

(37a

(37b

1
E,=2hA 005{57[25(1— c0sfy) +1]

E;=24A cos{%w[zsm—cosao)—l]]. (370

At zero field, 6,=m/2, and the eigenvalues afe\, and
—2hA, for integer spins, the former being doubly degener-
ate. However, the eigenvalues are, and —# A for half-
integer spins, the latter being doubly degenerate.

For FM particles with trigonal crystal symmetry in a mag-
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Z=Tre Pl=e Brifte Eahte Esh (38)
The specific heat at finite magnetic field is found to be
is

1 1

7 pa(Ere BB Sy Ege 52
B

1

+
kgT? Z

(E2e 1P+ E2e F2P+EZe Bef). (39

At zero magnetic field, Eq39) reduces to

18h2A3 ghoh

c(H=0)= KgT2 (e¥80P1 pg HihoB)2’

(403

e
for integer spins, while

18h2A2
kBT2 (e—2hA0ﬁ+ ZehAOB)Z’

e_ﬁAO,B

c(H=0)= (40b)

for half-integer spins. The magnetic susceptibility at zero
magnetic field is

_ 8kgT (1AoB)?

x(H=0) Y 7 SPare Aok
0
Cc
zk::— (ﬁéoﬁ) SPr?(e2hhoB— g hoB)
0
C
(413
for integer spins, while
8kgT (hAoB)?
x(H=0)~—7 (B20B) Z"B S rtehaos
0
Cc
zk::— (ﬁioﬂ) (e b0 ghdoB)
0
C
(41b

for half-integer spins, wherg,=2e™ #2404+ e2"20f for inte-
ger spins, and@,=2e"20f+ e~ 21408 for half-integer spins.
V. MQC FOR TETRAGONAL CRYSTAL SYMMETRY

In this section, we will study the spin-parity effects in
single-domain FM nanopatrticles with tetragonal crystal sym-
metry in a magnetic field along the hard anisotropy axis,
which has four consecutive minima in a period. Now the
total energy is

E(0,$) =K, cog+K,sinto—K} sin'6 cog4¢)
—MH cosé+E,
=K, (cosf— cosby)?

+K,sift9—Kisintgcog4p)+E,, (42

whereKq, K,, andK; are magnetic anisotropic constants

netic field along the hard anisotropy axis, the partition func-Which satisfy thak,>K,,K3>0. In the case of very strong

tion of low-lying tunneling levels is

Ki, M is forced to lie in thed= 0y plane, and thus the
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fluctuations of # about 6, are small. Introducingf= 6,
+ a(|a|<1), Eq.(42) reduces to
E(a,¢) =K, sirffoa®+ 2K, sint 6, sirf(2¢4). (43

The easy directions are até=6, and
=0, @/2, =, 3w/2. We denote the four states [d9, |2),

|3), and|4), other energy minima repeat the four states wit

period 2.

Substituting Eq.(493) into the classical equations of mo-

tion, we obtain the instanton solution mapping froi) to
[2) as

K} 1

2K_1 sin ﬁom,

a=—Ii

sin(2¢)= (44)

cosiw,7)’

where w,=2%(VI#S) K KJsir?g,. Correspondingly, the
classical action is

K/
S, =212+ /K—szinzeo. (45)

Based on the formulas in Ref. 10, we obtain the instanton’s

contribution to the ground-state tunnel splitting as

3/4
Sirg,S™ Y2~ S,

213/4 /

hiA= ﬁ(VK1)<K—j (46)
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1
(4le HT1)= 5V % e “2"sinn( 24 AT cosd)

+isinh(22AT sing)]. (480

At zero magnetic fieldgy= /2, it is shown that if the total

spin is a half-integer, the propagators behave like those of

ptwo-level system, indicating the degeneracy of the tunneling

levels. Moreover(3|e "T|1) (i.e., (§=m/2,p=m|e "T|0
=m/2,¢p=0)) is suppressed to zero for half-integer spins at
zero field. This effect is in good agreement with the Kramers
theorem, which demands a state with its time-reversed coun-
terpart should be degenerate for half-integer spins if the sys-
tem has time-reversal invariance.

For the present case, the effective Hamiltonian can be
written as

0 g 0wp
p 0qo0

He=—hA| | 0 0 ql (49)
q 0 p o0

wherep=qg* =exd —i(1/2)Sw(1—cosfy)]. Then the eigen-
values of this system are

1
Eis=*2AA co{z Sm(1—coséby)

. (50)

1
E,s==*2hA sir{ESw(l— C0Ss6y)

WhenH=0, 6=x/2, it is easy to show that i is a half-
integer, the energies are \2%A, with double degenerate,

By use of the dilute instanton-gas approximation, we ob-where

tain the Euclidean transition amplitude for FM particles with

tetragonal crystal symmetry at finite magnetic field as

\/aTz m-n=j—j’(mod 4)
A= HTi\ [ 22— w,T/2
(i'le "Mj)= /e 2

(AATe "™ A#ATE )"
X min!

: (47)

where 5= (1/2)Sw(1—cos6,). The propagators frorfl) to
the other states are

1l o
(1]e HT|1)= 5\ / W—; e~ “2"2[ cosi2h AT coss)

+cosi2h AT sind)], (483
1 wo
“HT A\ — — x| 22 A= woTI2r i
(2le |1>—2\/Trﬁe 2V sinh(2A AT cosd)
—isinh(2AAT sinéd)], (48b)

1l o
(3le"HT|1)= 5\ / W—:L e~ “2"2[ cosh{2A AT coss)

—cosh2h AT siné)], (480

213/4

1\ 3/4
2 _ _ —

hAg=——= (VK| ==| S Y% SaH=0) 51

0 77_1/2( l)(Kl) ( )

K/
Su(H=0)=224/-"%s,
K1

But if Sis an integer, the energies atgi A and 0, the latter
being doubly degenerate.

Now the partition function of low-lying tunneling levels is
given by

and

(52

Z=2[cosHE;B)+coshE,B)], (53

where E; and E, are shown in Eq(50) by taking “+”
values. The specific heat at finite magnetic field is

4 1 PR
c= —— ?{(Eﬁ E3)[1+ cosiE,B)coshE,B)]

kgT?
At zero magnetic field, Eq:54) reduces to
hAg)?
C(H=0)= (30 (558

kg T2 cosh{\2:AoB)
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for half-integer spins, while where w;=3x2%%(V/#S)\K,K}sin’d, The associated
classical action is
(1Ao)?
c(H=0)= , (55b)
kgT? [1+cosh2kAyB8)]12 232 K1
. . . . = Ssm360. (60)
for integer spins. The magnetic susceptibility at zero mag- 3 K
netic field is found to be
According to the formulas in Ref. 10, we obtain the instan-
kgT (hAoB)? - ton’s contribution to the tunnel splitting for FM particles
X~ H_ﬁ [1+cos2%AB)] St with hexagonal crystal symmetry at finite field as
kgT (iAopB) . > 9 Yax oty 3\ 92— 1/24-S
_ T [1+coshZﬁAo,B)]°lm(2ﬁA°’8)S 7, hA= w—(VKl) (sinfy)”s "%
(568 (61
for integer spins, while The splitting at zero fieldiAg=%2A(H=0) is consistent
with the result in Ref. 56.
kgT 92 2 The transition amplitude between degenerate states is
X~ 2—H§(ﬁAoB) St given by
k \/_ - w m—n=j—j’(mod 6)
——(hAB)tani(\2hAyB)S 7*, (56b) e HTiN — 4 [ 23 a—wgT/2
" 2yarz MAoP oB (i'le M=~ e mE
for half-integer spins. The tunneling level spectrum, the spe- (hATe 10)M(; AT o)

cific heat and the magnetic susceptibility for integer spins are . (62

much different from those for half-integer spins. min!

where §=(1/3)Sm(1— cos#). After some complicated cal-

culations, the propagators frofd) to the other states are
In this section, we will study the tunneling behaviors of found to be

FM particles with hexagonal crystal symmetry, which has six

VI. MQC FOR HEXAGONAL CRYSTAL SYMMETRY

degenerate easy directions in a period. In the presence of a - [wg -
magnet!c field along the hard anisotropy axisthe total (1fe” |1>_ oh e “3"*[cosi2h AT cosd)
energy is

+2 coshiAAT cosd)cosh \3AAT sin )],
E(0,¢)=K, cog0+K,sin0+K;sin®g

(633
—KJsin®g cog6¢)—MgH cosf+E
= Kl(cose— 00800)2+ Ky sintfo+ K3 sinfe <2|e—HT| 1> _ %1 [% e‘“‘3T/2[sinr(2ﬁAT cosd)
—Kj3sin’6 cog6¢)+Ey, (57)

) L . +sinh(AAT cosd)cosh{\34 AT sind)
whereK;, K,, K3, andK3 are magnetic anisotropic con-

stants satisfyind,>K,,K3,K3>0. The magnetization vec- —i+y3 coshliz AT cosd)sinh J3#AT sin )1,
tor is forced to lie in thed= 6, plane, so the fluctuations of

6 about 6§, are small. Introducingd= 6y+ a(|a|<1), Eq. (630
(57) reduces to
- 6 o 3 HT1) = 24/“2 e 05T cosh 2/ AT coss
E(a,¢) =Ky sirPoa®+ 2K, s, si?(3¢).  (58) (3l [1)=5\ e “* " cosh cosd)
The easy directions are até=6, and ¢ — cosHAAT coss)cosh V3AAT sin s
=0, 7w/3, 2w/3, w, 4mwl3, 57/3. We denote the six A Jcoshy3 )
states ag|1), |2), [3), |4), |5), and |6), other energy —i\/3 sinf(#AT cosd)sinh(\3AAT sind)],
minima repeat the six states with periodr2The classical 63
equations of motion with Eq58) has the instanton solution (630
_ [ Kb 1 1 Jows
=i O g - “HT[1y = Z 4 [ 28 A wsTi2p i
i 2Kl Slnzeocosr(w3r)’ (4]e”"T|1) sVo7 ¢ [sinh(2AAT cosd)
o — 2 sinh(#AT cosd)coshy34AT sin 8],
Sin(3¢) = coshwan)’ (59 (630
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1l o
(5le"HT|1)= 3\ / 77—2 e~ “s" cosh{2A AT coss)

—CoslAAT cosé)cosh \/§hAT sind)
+i/3 sin#AT cosd)sinh(\3AAT sind)],
(639

l o
(6le MT1)= 3 /77_2 e 3T sinh 24 AT cosd)

+sinh(AAT coss)cosh 34 AT sind)

+i/3 cosliAAT coss)sinh( 34 AT sind)].
(63f)
(0=mI2,

When H=0, 6,=u/2, (4le "T|1) (e,
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wherep=qg* =exd —i(1/3)Sw(1—cosfy)]. Then the eigen-
values of the system are

1
Ej4=*2hA cos{g Sm(1—cosby)

1
E,s=*2hA co% 3 [ S(1—cosby) +1]

Eze=*£2RA co%%rr[S{l—coseo) - 1]]. (65

At zero magnetic fieldd,= /2, the energies arg3hAg, 0,
and— /3% A, for half-integer spins, all the three levels being
doubly degenerate. While the energies ar@#A, and
*hA, for integer spins, the latter two levels being doubly
degenerate.

For this case, the partition function of low-lying tunneling

=n|e "T|o=m/2,p=0)) is suppressed to zero for half- |ayels is given by
integer spins due to the destructive interference of Wess-

Zumino phase between the topologically distinct tunneling

Z=2[cosiHE,B)+cosHE,B)+cosiEzB)], (66

paths, which is in good agreement with the Kramers theOWhereEl E,, andE are shown in Eq(65) by taking “+”
rem. However, the field applied along the hard axis can leag ;) es. T1he épecific heat at finite field is
to a nonzero transition amplitude even if the total spin is a

half-integer.
Now the effective Hamiltonian can be written as

4 1 2 2 2 2 2
c= @ ?{ElﬂL E5+E5+(E7+Ej5)cosiE,B)cosHE,B)

09 000p +(E2+E2)cosH E, B)coshEsB) + (E2+E2)
p 0 g 00O . .
0 po0go 0 X cosiE,B)cosHE;B) —2E.E, sinh(E;B)Sinh(E,B)
Het==74815 o 5 0 q ol 64) — 2E,E; sinh(E, B)sinh(E;B)
0 0 0p 0 q —2E,E3sinh(E,B)sinh(EzB)}. (67)
g 0 0 0 p O] At zero magnetic field, Eq:67) reduces to
|
(H=0) ZﬁZAS [4+5 costi2hAgB)cosiAAgB) —4 sin(2AAB)sin(AAB) ] (683
C = = 1
kgT? [cosi2AAyB) + 2 costiiAyB)]?
|
for integer spins, while for integer spins, while
6h2A2 2+ cosh{\/3%hAy8)
c(H=0)=——" of _, (68D 2kgT (hAo8)2
keT? [1+2 costi37A,8)] x(H=0)="—"2
9H2 [1+2 costi\3%AB)]?
for half-integer spins. The magnetic susceptibility at zero
field is found to be X S22+ cosh\/3%AoB)]
ooy 2T (hAoB)?  2\3keT (7iAoB)
AR 3H2 [2 cosliziAB) +cosh2:iAB)]? 9HZ  [1+2 cosli\/3%A0B)1?
2ksT X SPm?sinh(\3hAoB), (69b)
X S27r? coshihAgB) — on?
¢ for half-integer spins. It has been clearly shown that the spe-
(hAB) cific heat and the magnetic susceptibility for integer spins are

X [2 coslifieB) + cosh2hiAgB)]

X Srsinh(hAyB)+sinn2hA08)], (693

significantly different from those for half-integer spins,
which provides a possible experimental test for spin-parity
effects in FM particles.
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VII. DISCUSSIONS AND CONCLUSIONS axial, tetragonal, or hexagonal crystal symmetryHat O,
which is entirely equivalent to the Kramers theorem. Another

In summary, we have investigated the spin-parity effects o o )
y 9 pin-parity important observation is that the tunnel splittings oscillate

in resonant coherently quantum tunneling of the magnetiza-". - . : .
tion vector in single-domain FM nanoparticles with biaxial, With the magnetic field for both integer and half-integer spins
trigonal, tetragonal, and hexagonal crystal symmetries in 407 €ach kind of crystal symmetry. Note that these spin-
magnetic field along the hard anisotropy axis. Both the WkgParity effects are of topological origin, and therefore are in-
exponent and the preexponential factors are evaluated in ﬂq'gpendent of th? magmtude_ .Of total SpIns. The he_at capacity
instanton’s contribution to the ground-state tunnel splittings"de the magnetic susceptibility of Iow-Iylng_ tunnellng states
based on the instanton technique in the spin-coherent-stal e evaluated and. are fouqd_to depend §|gn|f|cantly on the
path integral. The Euclidean transition amplitudes betweeRa/y of total SpIns, providing a possible experlmen_tal
degenerate states are evaluated by use of the dilute instant gthoc_l to examine the theorefical results on topological
gas approximation, which gives some direct results for th ase interference effegts. Our results .presented hgre shc_)uld
topological phase interference effects. The low-lying tunnel- e usefgl fOF a quantitative understandlpg on the spin-parity
ing level spectrum is clearly shown by applying the effectiveeffeCtS in smglg—domaln FM nanoparticles with different
Hamiltonian approach. crystal symme_trles. . . .

One important conclusion is that for all four kinds of crys- The theoretlca_d calculatlo_ns performed |n_th|s paper can
tal symmetries, the ground-state tunnel splittings for half-be extended tq smgle—domam AF.M hanoparticles, where the
integer spins are significantly different from those for integer©/€vant quantity is the excess spin due to the small noncom-
spins, resulting from the Berry phase interference betweeR€Nsation of two sublattices. Work along this line is .Stl||.ln
topologically distinct tunneling paths. For FM particles with Progress. We hope that the results presented here will stimu-
simple biaxial crystal symmetry at zero magnetic field, thelate more experiments Whose_ am 1s observmg the topologi-
topological quenching for half-integer spins is rederived byCal phase mterfergnce or spin-parity effects in nanometer-
use of the effective Hamiltonian approach. However, a magSc@/€ single-domain ferromagnets.
netic field along the hard axis can lead to a finite tunnel
splitting even if the total spin is a half-integer. The low-lying
tunneling level spectrum for the trigonal, tetragonal, or hex-
agonal crystal symmetry is found to be much more complex
than that for the biaxial crystal symmetry, and the tunnelfe

splittings atH=0 can be nonzero even if the total SE)in is aIating discussions. R.L. and J.-L. Zhu would like to thank Dr.
half-integer. The transition amplitude from states alan® . Wernsdorfer and Dr. R. Sessoli for providing their paper
—X vanishes for half-integer spins in FM particles with bi- (Ref. 42.
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