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This paper addresses polaron formation and intermolecular hopping of a carrier confined to molecules
immersed within a polar medium. Three types of polaron state are poss)bléte carrier can encompass all
equivalent sites of the occupied moleculé) The carrier can be localized at a single atomistic unit of the
molecule.(iii) If the carrier’s interactions with the medium’s ions are strong enough, the self-trapped carrier
can be localized among a subset of the molecule’s equivalent sites. High-temperature intermolecular hopping
requires the formation of a coincidence configuration in which the carrier is shared between the jump’s two
molecules. The hop’s activation energy depends orettpansionof a molecule’s carrier as it approaches a
coincidence from its minimum-energy configuration. The carrietseamolecularmotion in response to at-
oms’ motions also reduces these atoms’ vibrational frequencies thereby lowering their vibrational free energy.
This carrier-induced vibrational softening affects the temperature-independent coefficient of the Arrhenius
jump rate. Thus carrier’s intrasite motion, ignored in Holstein’s model, can significantly affect small-polaron
formation and hopping.

[. INTRODUCTION the molecular-crystal model. In particular, rather than being
confined to a point, a carrier on a real molecule generally
Discussions of small-polaron formation and hopping insloshes amongst its atoms in response to their motfons.
molecular solids are often based on Holstein’s “molecularThis effect causes the electronic energy of a localized carrier
crystal model.” The model envisions a regular array of mol- to depend nonlinearly on atomic displacements. As a result, a
ecules. An atomic deformation parameter is assigned to eadbcalized carrier generally softens the stiffness constants of
molecule. These deformation parameters are assumed to \the deformational modes to which it is coupled. This polar-
brate harmonically about their equilibrium positions. Small-ization effect grows with the size of the localized electronic
polaron formation corresponds to a carrier being confined tstate since the polarizability of an electronic state is compa-
one of the molecular sites. The energy of the confined carrierable to its volume.
is presumed to be simply proportional to the deformation This paper addresses the self-trapping and semiclassical
parameter of the occupied site. As a result, the carrier's preghigh-temperatuneinter-molecular hopping of carriers self-
ence only induces a shift of the equilibrium position of thetrapped on molecules, “molecular polarons.” Attention is
deformation parameter of the occupied site. focused on how the size and concomitant polarizability of a
The Holstein model and equivalent treatmémsmplic-  self-trapped state affects polaron formation and hopping.
itly assume the wave function of a carrier on a molecule to The body of the paper begins in Sec. Il A, where a model
be “rigid.” In particular, the model ignores shifts of the of a carrier restricted to a molecule embedded within a polar
carrier’'s wave function in response to atomic displacementanedium is presented. For simplicity, the molecule is repre-
Such polarization of the carrier’'s wave function introducessented as just providing a potential well that confines the
contributions to the carrier’'s energy that depend nonlinearlycarrier. In addition, all atoms’ vibrations are represented as a
on the deformation parametéfs3 The model also ignores collection of equivalent Einstein oscillators. Contributions to
dependencies of electronic transfer energies on the atomtbe carrier-related free energy arise from the carrier’'s con-
displacement parameters. finement, the carrier-induced displacements of the oscilla-
The Holstein model was originally proposed as a conceptors’ equilibrium positions, and the carrier-induced reduc-
tual aid to describe a type of small polaron that may betions of oscillators’ stiffness constants. The minimum of the
formed when a carrier is confined to a transition-metal ion oftotal free energy defines the polaron state. The minimum free
a transition-metal oxid&' The deformation parameter pro- energy is expressed in terms of an eigenstate of the localized
vides a simplified description of a collective optical vibration carrier.
(e.g., breathing modeof the anions adjacent to the In Sec. I B the free-energy of the polaron state is exam-
transition-metal ion. Thus the “molecule” of Holstein’s mo- ined as a function of the spatial extent of the electronic car-
lecular crystal model was initially envisioned as only a con-rier. A scaling argument is used to determine how each con-
struct to describe a carrier localized on a small cation surtribution to the polaron’s free energy depends on the
rounded by displaced ligands. characteristic length of its localized carrier. The spatial ex-
Self-trapped carriers in molecular solids are frequentlytent of the polaron’s carrier depends on parameters govern-
much larger than those envisioned in the molecular crystaing the carrier's confinement energy as well as its interac-
model. In particular, the self-trapped carrier of a moleculartions with the atoms. Depending on the values of these
solid often encompasses many atoms. As a result, propertiggrameters a molecular polaron’s carrier may eileex-
of a carrier on a real molecule differ from those assumed byend over the entire moleculéi) be confined to only a por-
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tion of the molecule, ofiii) collapse to a single atomistic qscillator at positionu with a magnitude and range that is

unit. ) . described by the electron-continuum interaction function,
Section lll addresses the intermolecular hopping of theZ(F G)

polaron between equivalent molecules. The jump rate de-
pends upon the difference be_zt\_/veen the polaron free ENETPon and to the atomic deformation parameter are defined as
and the free energy of the minimum-energy state for which- A . - . .
the carrier is shared equally between initial and final sites ofr and F.)A’ respectively. The Hamiltonian for this model is
the hop. The electronic eigenstate of the lowest-energy coirf1€N Written as

cidence state is described as a superposition of the local elec-

The momentum operators conjugate to the carrier's posi-

tronic states associated with the initial and final sites of the pr2 1 IR - -
hop. Section Il A obtains the free energy of the minimum- “om V_CJ duz(r,u)A(u) +Viy(r)
energy coincidence in terms of a local electronic wave func-
tion. 1 J[P: K , -
In Sec. Il B the free-energy difference associated with a + V_J du{ 53y T 3A%W |, 1)

hop is studied as a function of the polaron radius and the

radius of the local electronic function of a coincidence. Theyherem is the carrier's mass and, is the volume associ-
activation energy for a hop is reduced by the tendency of thgteq with the separation between oscillatargV, =ad).
radius of the coincidence electronic state to be larger than The eigenstates of the carrier on a molecule immersed
that of the ground state. In addition, the softening of vibra-yithin a deformable medium are described within the adia-
tional frequencies produced by carrier's deformability pro-patic approach. Within the adiabatic approximation the
vides an entropic factor that affects the temperaturégigenstate is written as the product of an electronic eigen-
independentpre-exponentialfactor of the high-temperature fynction that depends upon the carrier's position and the de-
jump rate. Both of thes_e effects are ab;gntin_prior works tha#ormation parameters¥ [F,A(J)], and an atomic eigen-
presume the electror,llc state to .t.)e r|.g|d.._S|mpIe exampleﬁmction describing the £atomic motion when the electronic
indicate that a carrier's deformability significantly affects its i . - - -
hopping rate. state is occ.upled,Qnys[_A(u)]: \Ifs[r,A(u)]n,E[A(u)]_. .
The paper concludes in Sec. IV with a discussion andl he electronic functlon is the solution of the electronic ei-

summary of its principal findings. The results apply to carri-9€nvalue equation:
ers localized in molecular orbitals associated with dopants R
and defects as well as to carriers confined to bona fide mol- p? ol e s - - -
ecules. The larger the size of the carrier’s state, the greater | 5m ™~ v/_ duz(r,u)A(u) +Vp(r) |[W,[r,A(u)]
the importance of its deformability and the relative impor-
tance of its interactions with ions through the long-range =e[A(W)]W,[r,A(U)], 2)
(Frohich electron-lattice interaction.

wheree is the eigenvalue. The associated atomic motions are

described by
1 f di
— | du
The first goal of this paper is to address the formation of V¢
a polaron by a carrier occupying a molecule immersed in a -
polar medium. This carrier interacts with the atomic dis- =En0O, [A(W)], ()
placements of both the occupied molecule and the surround- . ) ) , , )
ing medium. For clarity, the molecule, the atomic vibrationsWNereEn is the eigenvalue. The adiabatic approach is valid

and the electron-lattice interactions are modelled most simif the time required for a carrier to traverse its eigenstate is
ply. much less than the time characterizing motion of the atoms

The molecule is viewed as just providing an attractivet© Which the carrier is coupled. The adiabatic theory is typi-

. . . . . cally applied to molecules that are not too large.
potentla}l for the cgrrler\/m(r). This potential only serves to . The lowest-energy electronic state for a static polaron,
constrain the carrier to the molecule. As such, a molecule is .~ L - - )
modelled as providing a delineated region of low yet con-¥s(r), is found by minimizing(W(r)|H|W4(r)) with re-
stant electronic potential. spect to the deformation parametar(u). Deformations of
The atomic vibrations of both the molecule and the envelthe lowest-energy state are described by
oping medium are represented as being collections of

Il. FORMATION OF A MOLECULAR POLARON

P

2M

A. Free energy of a molecular polaron

+e[A(U)]]O, [A(U)]

kA2 -
t5 (u)

equivalent Einstein oscillators. Each oscillator is character- .01 I - (2

ized by the atomic effective madd stiffness parametek, As(U)EEI drZ(r,u)[Wyr)|* (4)
and vibrational frequency=\k/M. The deformation pa-

rameter of the oscillator at locatianis A(u). Vibrations of the atoms about the minimum-energy con-

The electron-lattice interaction depicts the dependence q’fguration are go\/erned by the interatomic stiffness con-
the potential energy of a carrier on deformations of the Einstants. These stiffness constants, and therefore the vibrational
stein oscillators. The potential energy of a carrier at positiorfrequencies, are affected by a carrier's presence. In particu-
r is presumed to depend linearly on the deformation of arar, the strain energy is generally given by
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—D(G)D(G’), (5) sures the sensitivity of the self-trapped carrier's state
to alteration of the deformation parameter. In other

whereD(G)=A(U) — A(0) is the deviation of the deforma- OrdS. ~carrier-induced — softening is ~ associated with
the adjustment of the carrier's wave function to the

tion parameter from its equilibrium value and the stiffness

tensor in the presence of the carrier is obtained from th&novement of surrounding atoms. This effect vanishgs
second derivative of the total energy evaluated at thd? models that approximate the self-trapped state as being

minimum-energy configuration: rigid. _ »
Standard perturbation theory has been utilized to express

the carrier-induced softening in terms of the wave functions
and eigenvalues of the self-trapped carrier at the minimum-
(6)  energy configuration®!?

1 ) _K'(G,0") The carrier-induced change of the stiffness tensor mea-
— j du f du’
V2 2

W ()2

k(0,07 =kVea(i—ia') - | drz(r,a) 220
(4,0") =KV 8(U—1") (=

|AS(G’)-

fdF\P:(F)Z(F,G)\Pn(F)fdF’\P:(F’)Z(F',J')WS(F'HC.C.
k' (U,u’)=kV.,o(u—u')— >

, ()

n#s € &s

whereg,, is the electronic energy labeled by indexand e %2 N .
is the energy of the electronic ground state. The carrier in- Fs:(ﬁ) f dr[VW(r)|?
duced change in the vibrational stiffness shifts the set of
vibrational eigenfrequencies frof;} to {Q;}. 1
The change of the free energy produced by inserting a B 2V k
charge carrier into the lowest adiabatic state is expressed as
the sum of a contribution from the entropy of mixirfy;y XJ’ dF'Z(F’,G)|‘1’s(F')|2+f dFVm(F)|‘I’s(F)|2
and a contribution from the carrier's interactios,: AF
=Fixt Fs. This entropic contribution is associated with A — o)
the number of ways carriers can be distributed among states +> [;
of nearly equivalent energiess kT. The contribution to the i 2
free energy arising from a carrier’s interactios,, is the  |n the low-temperature limiff— 0, the vibrational contribu-
sum of (i) the carrier's energyii) the strain energy associ- tion to F is just the carrier induced reduction of the zero-
ated with carrier induced shifts of atomic equilibrium posi- yoint vibrational energy. At sufficiently high temperatures,
tions, and(m)_ the change of the vibrational free energy ans-coth(iw/2xT)— 2xT/hw;, the vibrational contribution to
ing from carrier induced shifts of the vibrational frequenmes:,:s depicts the carrier induced increase of vibrational entropy.
The vibrational contribution to the free energy may be
) expressed in terms of electronic parameters. To accomplish
E— (ﬁ_> f dr > o this task, first note that the sum of the squares of the vibra-
&= rvVw(r)] : . [
2m tional eigenfrequencies is simply related to the net value of
1 the diagonal elements of the stiffness constants:

PR — Y r F U |2 1 Y U
2vckj duJ drz(r,u)|w(r)| —J duk’(u,u)
2 VC
Z Q; v — (10

This equality can be combined with that for the carrier free
system to obtain

: (8) viJ UK’ (G, 0) — K]
POR(EPHEES v )

For an harmonic lattice, the strain energy associated Wity g enough shifts of the vibrational frequencies this
carrier induced shifts of atomic equilibrium positions is half relationship becomes
e

the lowering of the electronic potential associated with thes
shifts. Combining these two effects introduces the factor 2 in 1 .
the denominator of the second contributionRg. v | dulk’(u,u)=K]
. . . . . Cc
The vibrational contribution t& s may be rewritten when E wi(Qi—w)=
e e ; ) i 2M
the carrier induced shifts in the phonon energies are suffi-
ciently small, Q;— w,)<w;: Focusing attention on optical modes and describing the op-

fdﬁdeZ(F,J)|\IfS(F)|2

coth(% w;/2«T). (9

xf dF’Z(F’,G’)|‘IfS(F’)|2+J RAGLAGIE

Sinh(%Q,/2«T)

T2 n SN a,/2T)

(12
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tical spectrum as an Einstein spectrum= o= Vk/M, the Thus the net carrier induced shift of vibrational frequencies

sum rule becomes is directly related to the sum of the carrier induced shifts of
the diagonal components of the stiffness tensor.
i ST Ty The carrier induced reduction of the diagonal components
dufk’(u,u)—K] . ;
S (Q-w)= Ve (13) of the stiffness tensor can be expressed in terms of the elec-
2 (Qi-o)=o 2K : tronic eigenstates:

2

f dr (r)Z(r,u)w(r)

k’(u,u)—k=—2§s pa— (14)
fdf[wz(F>wn<F>]fdF'[\If:(F'>wn<F'>]*Z<F,G>Z<F',J>
— 22 ) (15

n#s E€n— &s

With this relationship, the carrier induced shift of the free energy is written in terms of the electronic eigenstates:

72 N - - - - - - - - - -
Fs:(ﬁ)fdr|vq,s(r)|2_Jdr|q’s(r)|2f dr’I\I’S(r’)|2I(r—r’)+Jder(r)|\I’S(r)|2

fdF[\Ifz(F)wF)]fdF[w;*(Fwn(F')]*l(F—F')
—fiw cOth( A w/2kT) D, , (16)

n#s En— &g

where the carrier self-energy arising from the electron-latticd1ere e, ande., are the medium’s static and optical and static

interaction ig° dielectric constants, respectively, amdis the elemental
charge.
Evaluating I (r—r’) for a three-dimensional medium
o 1 o yields™®
I(r—r )Em duz(r,u)Z(r’,u). 17

.- S e (1 1
I(r—r’)zEbvcé(r—r’)+ﬁ —
The electron-lattice interaction for the carrier is gen- r=r’]

2

erally the sum of short-range and long-range componénts. 1 1\e
The short-range component describes the dependence of 2Eb(___)_ .
the electronic energy of a carrier on the positions of N € €0 3 19

the atoms responsible for its bonding. The long-range
component models the dependence of a carrier's
potential energy on displacements of the polar medium’s

— 2 . . . -
distant ions. The contributions to a carrier’s potentiaIWh»ereEb_A f2k. The first and second contributions Iter

from displacing the medium’s anions and cations are—'') arise from the short-range and long-range components
combined so that the net long-range interaction is desof electron-lattice interaction, respectively. The final contri-

cribed as that of carriers with deformable dipotéghe sum  bution is a cross term between the short-range and long-
of the carrier's contact interaction with the atoms and its'@ge components of the electron-lattice interaction. The

interaction with dipoles of the surrounding medium Cross term results from evaluating the long-range component
become®® of the electron-lattice interaction at the carrier's location.

However, the long-range interaction envisions a carrier inter-
acting with electric dipoles beyond the carrier's charge

F—1"J2

1 1 distribution’’ Thus this representation of the cross term is

o (———) Ve somewhat artificial. Furthermore, the cross term plays no

Z(r,u)=AV.8(r —u)+ —- €= €0 (18  significant role in the forthcoming considerations. For these
! 312 F—11

[r—u|? ' reasons, the cross term shall be ignored henceforth.
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Employing this model, the carrier induced change in the

free energy of the solid becomes
h? - - - -
Fs:(ﬂ)f dr|vws(r)|2_Echf dr|‘I}s(r)|4

e[l 1 o wanAwr|?
__(___Hdrfdr,l (D)
€, €p

2
g =

+ [ v

1
—fiw coth A wl2xT) D,

n#s €n— €g

[ itz e,

E,Ved(r—r')

xf dr[WE(r)w,(r)]*

e? (1 1)
+ - =~ —_—— —
2lr—r'| \ €= €

. (20
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el1 1
AFvib,LE E 6__6_0 hw COﬂ'(ﬁw/ZKT)
1 .
X erdr’
r;() En_Eof
VEOW (D[P (r )P (r)]*
><[ s(MWYLN][WPS( n(r’)] 26

=]

and the excitation energies are presumed to scaleRfs 1/
The final contribution to the carrier induced change of the
free energyv,(R) comes from the potential that binds the
carrier on the molecule. After a change of variable, the av-
erage molecular potential experienced by a carrier whose
spatial extent is expanded by the fack®rcan be written as

vm<R>Edevm<FR>|\Ps<F>|2. (27

This contribution vanishes in the limit that the spatial extent
of the electronic state greatly exceeds the range of the mo-

The free energy of the static polaron is thus expressed iffcular potential, a length comparable to the molecule’s ra-

terms of the carrier's electronic eigenstatés(r) and
¥ ,(r), and eigenvalues, and e, .

B. Size of a molecular polaron

The ground-state electronic wave functidrg(?) is de-

fined as corresponding to the state of lowest energy. Alterin
the spatial extent of the wave function by the dimensionles
scaling parameteR therefore necessarily raises the energy

Thus the minimum of the energy as a functiorRas defined

as occurring aR=1. Examining the possible minima of the
energy as a function of the scaling parameter is an effic
cious way of elucidating features of competing free—energ)}'
minimal® The free-energy scaling functional obtained by
changing the spatial extent of the electronic wave functio

by the dimensionless fact& while retaining the wave func-
tion’s normalization is

T Vs (VL +AFp9
fs =§_§_TW_AFV|b,LR_Um(R)1
(21
where
ﬁZ
- g N2
T_(Zm”drwqfs(rn , (22)
vszEvaJ dr|wy(r)|?, (23
/1 1 S ST T ()2
VLE—(———Herer ( )llj( )| ’
2\e. € [r—r’|
(24)

de|W:<F>wn<F>|2

(29

AF iy s=Eph o coth(i /2 T)V, D,

n#s €n— Eg

a-.

dius. That is,v,(R)—0 as R—. Alternatively, v,(R)
saturates at constant value when the electronic state is fully
confined within the molecule. Details of this saturation effect
depend upon specifics of both the electronic wave function
and the molecular potential. However, this saturation effect
can be simply modeled by replacing,(R) by the constant

m(0) when the scaling parameter is less than that for which
%e radius of the electronic state equals the molecule’s radius,

<R oleculer That is, a carrier confined to a molecule ex-
‘periences the constant potentigl(0).

The continuum theory breaks down, and the contributions
from the electron-lattice interactions saturate, when the car-
ier's spatial extent falls below that of an elemental atomistic
unit (atom or bondl Thusfy(R), as described by Eq21), is

pPnly meaningful when the scaling parameter exceeds the

value corresponding to the electronic state’s radius equaling
the radius of the elemental atomistic uri= R,iom-
Incorporating these two size restrictions, the free-energy
function for a carrier confined to a deformable molecule em-
bedded within a medium of displaceable atoms becomes

f(R= -~ g AFulR (29
whereR410m=R=Rpolecule: TheR-independent term,,(0)

has been dropped since this constant is irrelevant to forth-
coming arguments. Thus the effect of the carrier’s confine-
ment to a molecule is represented solely by the restriction:
RngoIecuIe-

It is now useful to comment on the magnitudes of the
various contributions td((R). Consider the case when the
electronic state is confined to a single atomistic uRt,
=R,tom- Then, the first two contributions th(Rsi0m are
typically of the order of an electron volt. The third contribu-
tion, V| /Ratom, 1S also of the order of an electron volt if the
medium is ionic,ey> €., . Even if the medium has very little
polar characterey=e€,, the residual contribution of the
long-range electron-lattice interactiov; /R,om, Will usu-
ally be sufficient to overwhelmF,;, s (=10 2 eV). There-
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04 i i tive asR is increased, it fosters expansion of the electronic
o3l I state. To compute this shift, the derivative f R) with

: respect taR is first set equal to zero. The resulting equation
0.2 I is then linearized with respect to the shift of the position of
o1k R Rmolecule l the minimum, defined as and toAF ;, | Ry, . To first order

[

|

in AF b Rmin, the shift of the position of the minimum is

S(®
S
1

/

01 | = AFyipL
| | r=-2
02 I I dfs(R)
I | 2
03 '« Fatom : JR R
B T B S S S S
2
R 3 AF i . Riyin
. T Vs Vi
FIG. 1. The free energy of a molecular polarégR), is plotted 3X2 5 —4X3 . 2
as a function of the carrier’s spatial extedRtfor three sets of pa- Rmin Rmin Rmin
rameters. The carrier is constrained to be no smaller than an atom
and no larger than the occupied molecu®;io<R<Rmolecule- AFvib’Lernin
The minimum of the uppermost curve resideRatccu1e thereby = ﬁ' (30
L S

indicating that it is energetically favorable for the carrier to encom-
pass the entire molecule. The minimum of the middle curve resides Riin Rﬁﬂn
at R, thereby indicating that it is energetically favorable for the . .

carrier to encompass a finite number of the molecule’s atomic sites. h_ere the formula_l after the second equality exploits the re-
The minimum of the lowest curve residesRy;,, thereby indicat- ation that determine&pn:

ing that it is energetically favorable for the carrier to collapse on to
a single atomistic unit of the molecule.

T Vs v
2 3 R.
Rimin Rmin Rin

fore AFyips will henceforth be ignored. The fourth term’s The divergence of occurs wherVs becomes large enough

contribution is typically=10“ eV whenR=R;;,m. HOW-  for the existence of a minimum ned&,,, to be tenuous

ever, the fourth term becomes significant for large std®es, (T?=3VgV,). Then a modest change of the free-energy can

>Ratom- have a major effect on the minimum’s position or very exis-
In the absence of the fourth term, the minimum of thetence. Away from this divergence

function f4(R) is at

—0. (31)

AF,,
r=—_Lp3 (32)
T+ \/T _SVSVL VL
Rmin:V—L' (29 The shift of the minimum with these parameters increases

strongly with the size of the molecular state sinceR>, .

The existence of this minimum requires th@ be small  Furthermore, the position of the minimum (R} increases
enough for the argument of the square root to be positiveWith rising temperature through the explicit temperature de-
T2>3VgV, . Then (T/V,)<Ryn<2(T/V,). In addition,\, ~ Pendence ofAFy, shown in Eq.(26).

must be large enough to ensure that this minimum resides 10 firstorder inAF,;,  , the carrier induced change of the
within the acceptable rang&, <R gecie ThUS the exis- free energy at this molecular small polaron minimum is

tence of this minimum requires that the short-range interac- f«(R)
tion be sufficiently small and the long-range interaction be fs(Rmint )= fs(Rmin) + R |
sufficiently large. Otherwise the minimum &f(R) occurs at Rmin
eitherR,iom OF Rinolecule T Vg Vi AF. R
The plots off¢(R) versusR depicted in Fig. 1 illustrate “R2. R:. Ry  VibLTmin
i thi H min min
that the absolute minimum ofy(R) within the domain vV Vv
Ratom=R=RmoleculciS €ither at one of the boundaries of the —— L L 'S AF. R (33)
. . . .y 2R 3 vib,L™min »
permitted domainR4iom OF Rimoleculer OF @tRpyin- The mini min  2R%i,

mum atR;,, corresponds to the carrier being localized at a
atom on the molecule to form an “atomic small polaron.”

The minimum atR,,;, represents the carrier extending over a ; .
Several conclusions can be drawn from the final expres-

depica he. carier being delocalized over the awive molSioN for the fiee energy of a moleclat polaron, £33,
P 9 ith increasing sizeR,,, the contribution to the free en-

ecule. The latter two instances describe a “molecular smal rgy arising from the long-range interactionV, /2R, , in-

polaron” since the carrier occupies a multiatomic state congeagingly dominates that from the short-range interaction,
fined to a single molecule. V2R

) . in- In addition, the lowering of the free energy arising
min
The fourth term inf(R) denotes the net reduction of the g0 carrier induced reduction of the frequencies of ionic

vibrational free-energy arising from carrier induced soften-inrations grows in importance with the carrier's radius,
ing. Since this term;- AF ;| R, becomes increasingly nega- g

"Where it is first noted thaf ;/(R)/dR|g_ =0. Equation(31)
is then used to obtain the final equality of £§3).

min -
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These features differ from those of the small polaronvolved in the hop. This configuration is termed a “coinci-
formed by the collapse of the carrier to an atomic size. Indence configuration¥

particular, the free energy of an atomic small polaron is If the electronic transfer energy that links the two mol-
ecules is sufficiently large, a carrier’s intermolecular motion
T Vs A is fast enough to always adjust to the atomic motion. Then
fs(Ratom =—5—— 35—~ R.. 34 the hopping is termed “adiabatic'"The jump rate for such
Riiom Ratom atom ; ! o .
adiabatic hopping is the rate at which atoms assume a con-

The condition that this be at least a relative minimum is thafiguration corresponding to a hop. The rate for a jump from
df(R)/IR>0 at R=R,,mn. This existence condition im- an initial sitei to a final sitef has the forrft®

poses an upper bound on the free energy of this minimum: N IN=

fo(Ratom) <2Vs/R3 o i~ T/R2,,,. Thus the formation of a R .= ,,(_C) exr{ — _) (35)
stable atomic small polarorig(R,i0m) <0, requires a suffi- Ns kT

ciently large short-range component of the electron latticdHere v represents a suitable average of atomic vibrational
interaction: &/¢/R3,,=>T/RZ,,m. Furthermore, the ratio of frequencies andF is the difference between the free energy
the contributions to the free energy from the short-range andssociated with coincidences and that associated with a static
long-range components of the electron-latticég{R2,, )/  carrier. Attention is generally restricted to the lowest-energy
(VL /Raom), is at its maximum for an atomic small polaron. coincidence and polaron configurations. Thé&r; depicts

Finally, as noted previously, above Eg9), the contribution ~ the difference between the free energy representing atomic
to the atomic small polaron’s free energy from carrier in-Vibrations about the lowest-energy coincidence configuration

duced softening is neglectable. and the free energy for vibrations about a static polaron’s
minimum-energy configuratiomAF=F_.—F;. The ratio of
IIl. ADIABATIC SMALL POLARON HOPPING the number of ways of forming equivalent coincidences to

the number of ways of forming equivalent static polarons is
A. Free energy of the minimum-energy coincidence state denoted a®\./N,. Simple models of adiabatic hopping give
The vibratory motion of a solid’s atoms provides a chargeNe/Ns=1° _ .
carrier with opportunities to hop between molecules. When In analogy with the static polaron’s free energy, the free
that atomic motion is classical, an intermolecular jump carnergy for the lowest-energy coincidence between two
only occur as atoms pass through a configuration for whictgquivalent moleculescentered at the origin and a site cen-
the carrier is shared equally between the two molecules intered ats) is

h? - - .o - - - - - - - - -
Fﬁ(ﬁ)]drlvxc(f)|2—fdf|xc(f)|2f 0|f’|)(c(f’)|2|(lf—f’)+f<3|If[Vrn(r)+Vm(r—S)]l)(c(r)|2

(36)

r( ,Lw) de[x:<F>xc,n<F>]f dr'[x& (F) Xxen(r)I*1(r=r")
—hwo cot .
2kT)n%o

€c,n™ €c0

Here x.(r) and e.o are the electronic wave function and ~ The coincidence free energy is expressed in terms of the
electronic energy of the lowest-energy coincidence state. udocal functions by inserting Eq37) into Eq. (36). If, for
ing analogous notatior)gcyn(re) and e, , are the wave func- simplicity, all overlaps between local functions and poten-

tion and electronic energy of a carrier in ti¢h excited Uals from different molecules are ignored:
electronic state of the coincidence configuration, respec- 52 ) )
tively. FC=<%) f dr|VWw(r)|?

The electronic wave function of the coincident state be-
tween two sites can be expressed in terms of their local func- 17 . . . . oL
tions. In particular, the electronic wave function of a carrier - Ef drI‘IfC(r)|2J dr'| W (r)2[1(r—r")
shared between equivalent sites centered at the origin and at

S takes the f I .. R
s faxes the form +I(s+r—r’)]+fder(r)|\IfC(r)|2

(r)_llfar*)wc(r*—é) - L tr( ﬁw) 1
Xe J2(1+0) 2" M 20T ) & ecn—eco

Here O(s) is the overlap between the two normalized local Xf dF[\P’C*(r*)\IfC,n(F)]f dr'[WE(NW,a(n]

functions of the coincidence stata.(r) and ¥(r—s), o o
each of which is taken to be real. X[(r=r")+I(s+r—r")], (38
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whereW* (r) andW . ,(r) are the local electronic functions ~ When the separation between the centroids of the hops’
associated with thath excited coincidence state. To obtain W0 local functions greatly exceed their radii,

Eq. (38), equivalent contributions to the free energy from the 2 (1 1

two molecules are combined. In addition, a change of vari- I(S+r—r")—=l(s)= _(__ _)’ (39)
able has been used to rewrite contributions to the free energy 2ls|\ €= €0

that link the two sites. In these instances, the origin of aNyhere, as above E20), the cross term between Iong and
electronic integration is shifted bythereby mtroducmg as short-range components of the interaction functin-r’),
dependence into the associated interaction functi¢ssr  has again been dropped. Replaclfg+—r") by 14(S) in
—r). Eq. (39) yields

h? . I B . R R .. .. .
Fc:<2_)fdr|vq’c(r)|2_§f dr|\I’c(r)|2f dr’|‘Ifc(r’)|2I(r—r’)—Elc(s)Jrfder(r)|\Ifc(r)|2

m

| Qs e [ s W
——ﬁwcoth(ﬁwlz,cT)Z

n=0 €cn” €c0

: (40)

where use has been made tMBJ(F) is normalized and that c s Voo (1 1 cvibL
W*(r) and the¥ ,(r) are orthogonal to one another. fe(R)=—— -5~ T<§+ §) ——5 R (4D

The formal expression fdf., Eq. (40), differs from that
for Fg, Eqg. (16), in two aspects. First, the coefficients of whereR,;om=<R.=< Rmmecu,eandlc(s) is written as
electron-lattice-interaction contributions kq are half those
of corresponding contributions ;. Second,F. contains |C(§): LL’ (42)
the s-dependent contribution=1,(s)/2. These two effects
will be seen to produce the free energy different€, as-  WhereSis the intermolecular separation expressed in units of
sociated with a hop. the characteristic length &f. | . The constants of the scaling
analysis of coincidence states are formally analogous to
those of the scaling analysis of the static polaron albeit with

. . . the local electronic functions beinB(r) rather than¥ 4(r):
The coincidence-state free-energy is expressed in terms oI? 181 (1)

the coincidence’s local functions in Eq40). A scaling h? - - 12

analysis of Eq(40) is now employed to investigate how the T =( ) f dr|VW(r)]

coincidence free energy depends on the spatial extent of the

coincidence’s local functions. The free-energy difference as- - =12

sociated with a hopAF, is then written in terms of the Ves= Ebvcf dr|Wwe(r)[*, (44)

spatial extents of a static polaron and of the local states of the

minimum-energy coincidence. . |\I} (r)| P, (r’ )2
The scaling analysis of the coincidence state proceeds in V¢, = —(—— —) f f

direct analogy with the scaling analysis of a static polaron.

The scaling functional for the coincidence states is and

e2/1 1
2\le, €

B. A hop’s free energy difference AF

(43

. (45
r=r']

L [TEM W (DI W n(r)]*
fdrj RNGLNG) RGP

Afc,vib,LE
r=r'|

#iw coth A w/2xT) E (46)

As in the analysis of the static polaron, there are threeentire moleculeRqjeculer The third possible solution has
possibilities for the lowest value df. The most-localized each of the two local electronic functions having a spatial
possible solution has each of the two local electronic funcextent of intermediate sizZB. .,. The value ofR that mini-
tions of the coincidence confined to a single atRgy,,- The  mizesf (R) is defined aRR..
least-localized possible solution has each of the two local The free-energy difference that characterizes the hop of a
electronic functions of the coincidence extending over thepolaron between molecular unitd F=F_.—Fg, depends
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upon the sizes of the local electronic state at equilibrium and STATIC COINCIDENCE
at the coincidence:
apo|Te Ves Ve[l 1) Afount —
RZ 2R® 2 (R, S 2 ®\—’ '
ToYVs Vb R (47)
T2 oz B AlvbLRs|-
RZ R® Rs
Equating the corresponding energy parameters that result "
when the static polaron’s electronic state and the coinci- —_—

dence’s local electronic function both collapse to the atom-

istic limit yields T.=T, V.s=Vs, V{=V_, and Af¢ yip

=Af,p. . With these relations the free energy characterizing ‘
an adiabatic semiclassical polaron hop becomes

FIG. 2. The six processes by which a static polaron can hop to
1 1 1 another site are schematically illustrated. The static polaron’s

LLR. 2R. 2S5 charge carrier can eithé€r) collapse to a single atomistic uniij)
occupy a finite subset of the molecule’s atomic sitegjibrextend

over the entire molecule. In making a hop the carrier passes through
) (48) a coincidence configuration in which it is shared between initial and

final sites. The spatial extent of the carrier in the coincidence state

is never smaller than that of the static polaron.

! +
R 2R?

T11+AfRR
R_ﬁR_ﬁ vibL| Rs™ 5~

The final contribution taAF is the change of the vibra-
tional free energy associated with a hop. However, (B6) Here the minimal size of the electronic state ensures that the
is derived using the coincidence approach. This semiclassic&Pntribution toAF from the deformation energy associated
treatment is only valid at sufficiently high temperatures forwith the short-range component of the electron-lattice inter-
atoms’ vibrational motion to be treated classicallyT  action, Vg/2R3,,, has its greatest relative significance. By
>fiw/2. In this high-temperature regimef,;,, , defined in ~ contrast, the temperature-independent reduction of the jump
Eq. (26, is proportional to temperature since rate from vibrational softening, ekpAfyip| Raton{2«T], is
fw cothfiw/2kT)—2«T, when Zw/2kT—0. Hence the minimalin this situation.
contribution to the jump rate, E¢35), from this contribution The forms of the first two contributions to the activation
to AF, exfd —Afyi, (Rs— R./2)/xT], is independent of tem- energy for small polaron hopping have been obtained previ-
perature at the high temperatures at which this semiclassic@usly. In particular, the contribution to the hopping activa-
approach is valid. Furthermore, this temperature-independetion energy from the short-range component of the electron-
factor augments the jump rate wh& >2R, and reduces lattice interaction was found to be inversely proportional to
the jump rate wheiR,< 2R. the electronic state’s volunté.

There are many possible hopping scenarios. In particular, Furthermore, it has previously been argued that the con-
there are three possible states of a static polaron, charactdfibution to the hopping activation energy from the long-
ized by the radiiRaiom: Rmin, aNd Rpolecule IN addition, — range component of the electron-lattice interaction depends
there are three possible coincidence states, characterized 8§ the separation between the states involved in the hop in
local functions with radii 0fRaiom, Remin» @Md Rmojecule  th€ Manner described by E@i9 18

AF:VS

However, the radius of the coincidence st&g, will tend to For a hop between molecular stat&= R.=Rmolecule’
exceed that of a static polaroRg, since the coefficient of

the contribution to the coincidence free-energy from the _ Vs ﬂ( 1 _})
electron-lattice interaction is half that of the corresponding moleculemolecule SRS o uie Rmolecule S
contribution to the free energy of a static polaron. Thus there

are six hopping scenarios for whidR.=Rs. These jump AfyipL Rmolecule

processes are depicted schematically in Fig. 2. + 2 ' (50)

For three of the six possible situations the spatial extents ) ) ) )
of the static carrier and the local function of the coincidencdncreasing the size of the electronic state so that it encom-
are limited by geometric constraints. In these cases Both Passes the entire molecule minimizes the contribution of the

andR are restricted to two valueRs;om OF Riolecule short-range component of the electron-lattice interaction.
The prototypical small polaron hop envisions a hop with However, the reduction of the contr|b_ut|0_n from _the long-

Re=R.=Ruom: * range component of the electron-lattice interaction as the
S C atom+

electronic state expands,1/Rjeculer IS Much less severe
than that from the short-range component of the electron-

AF aromat m:L+ ﬂ( ! _1) M lattice interaction,<1/R3 ... Thus the relative signifi-
aomaem 2R3 . 2 \Raom S 2 cance of the long-range component of the electron-lattice

(49 interaction increases with the size of the electronic state. Fi-
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nally, it is noted that expanding the electronic state to en- IV. SUMMARY AND DISCUSSION

velop the entire molecule maximizes the reduction of the L
Polaron phenomena are based on a charge carrier’s inter-

jump rate from vibrational softening. . . . .
A molecule’s electronic wave function tends to expand as‘acuons with the atoms that surround it. Nonetheless, studies

a coincidence is achieved. This tendency has been thwarté&] Small polaron formation and hopping motion frequently
by geometrical constrains in the two jump process that hav@PProximate the carrier's wave function as “rigid,” unaf-
been considered so far. However, a molecule’s carrier is pef€cted by atomic motion.The dependence of the carrier's
mitted to expand in the four remaining hopping scenario£n€rgy on atoms’ positions then arises solely through the
depicted in Fig. 2. The dilation of a carrier during a coinci- €xpectation value of the carrier's potential energy with re-
dence can significantly affectF. spect to the rigid wave functions. In particular, a linear
Consider the expansion of the carrier of an atomic smalklectron-lattice interactiofa linear dependence of the carri-

polaron to encompass the entire molecule at the coincidencer’s potential on atomic positiohgields a linear dependence
Rs=Raiom @and R.=Rn0eculer The free-energy difference, of the carrier’'s energy on atoms’ locations. A nonlinear de-

Eq. (48), for such a hop becomes pendence of the carrier’s energy on atomic displacements
results from proceeding beyond the rigid wave function ap-
1 1 proximation.
AFatommotecule= Vs RE  2RS The breakdown of the rigid wave-function approximation
atom molecul

grows with the carriers’ polarizabilit:'* The polarizability
1 1 1 of an electronic statd®, rises rapidly with its radiusP,
Ratom  2Rmolecule 25 ~Ri/ag, whereR, is the radius of the electronic state and
ag is the Bohr radius. Thus breakdown of the rigid-
1 1 wavefunction is expected to be much more significant for
-T R2  R? carriers localized on large moleculeR~1 nm) than for
atom  Tmolecul carries confined to cationsR(=<0.1 nm).
Herein the theory of the formation and semiclassical hop-
(51 ping motion of small-polarons has been extended beyond the
rigid wave-function approximation so as to apply to small-
The short-range and long-range deformational contributionpolarons with relatively large electronic states. In particular,
to AF grow with the expansion of the coincidence state.this work models a carrier confined to large molecules em-
However, this effect is countered by the reduction of thebedded within an ionic medium. The carrier interacts with an
carrier's confinement energy, the contribution proportional tooccupied molecule’s atoms via a short-range electron-lattice
T. Furthermore, the contribution tOF 4¢ommolecute from vi-  interaction(akin to the deformation potential of a covalent
brational softening becomes negative wWheéR,qecue  S€Miconductor The carrier also interacts with the solid’s
>2Ra0m- IN this circumstance, vibrational softening en- ions via the long-rangé-rohlich) electron-lattice interaction.
hances the magnitude of the high-temperature jump rate. As in prior works, carrier induced displacements of at-
An important circumstance occurs for hopping betweenoms’ equilibrium positions reduce the system’s potential en-
molecules immersed in a strong dipolar medium. The freeergy. This relaxation energy falls with the size of the carri-
energies of both the static polaron and of the coincidencer’s state. The short-range component of the electron-lattice
state may then be dominated by the long-range component ofteraction produces a relaxation energy that is inversely pro-
the electron-lattice interaction. In this cas®=R,;, portional to thevolumeof the carrier's state. By contrast, the
=2TIV, and R.=R, mn=4T/V_. With these relations the long-range component of the electron-lattice interaction
free-energy difference associated with a semiclassical hoplrives an atomic relaxation whose energy only falls inversely

+V,

Rmolecule

+ Afvib,L( Ratom_ T

Eq. (48), becomes as the carrier'sadius Thus long-range relaxation increases
in importance relative to short-range relaxation as the carri-
Vi [34 1 er's radius increases. As a result, relaxation-related proper-
LR o R_mm_ g/ (52 fies of molecular polarons tend to be especially sensitive to

the ionicity of the medium about them.

where, for simplicity,Vs=0. Beyond the rigid wave-function approximation, the elec-

Equation(52) differs from the Austin-Mott formula for tronic state of the carrier adjusts to the motions of the mate-
the activation energy of an equivalent situation, small poial's atoms. This intramolecular charge flow reduces the
laron hopping in an ionic mediuff. In particular, the stiffness constants of the atomic vibrations that are coupled
Austin-Mott formula replaces the factor of 3/4 in the nu- to the carrier. This effect reduces the vibrational frequencies
merator of the first contribution within the curved brackets ofand vibrational free energy. Carrier induced vibrational soft-
Eq. (52) with 3/2. This discrepancy arises because Austinening thereby contributes to the polaronic binding of a car-
and Mott neglect the lowering of the hopping activation en-rier. By inducing a reduction of vibrational frequencies, a
ergy produced by the reduction of the carrier’'s confinementarrier also increases vibrational entropy. The carrier induced
energy: — T(1/R2—1/R2)= —3T/4R2, =—3V,/8R,. This  change of vibrational entropy contributes to the Seebeck
lowering of a carrier's confinement energy at a coincidenceoefficient'® the entropy transported with a charge carrier
significantly affects the activation energy for a hop. The hop-divided by the carrier's charge. As such, the Seebeck coeffi-
ping activation energy is less than half the Austin-Mottcient can provide a measure of carrier induced vibrational
value. softening.
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Carrier induced vibrational softening affects atomic vibra-types of polaron, can form. Since a carrier expands as it
tions of the embedding medium as well as those of occupiedpproaches a coincidence, there are six distinct types of in-
molecules. The reduction of the vibrational free energy thatermolecular hop. A significant contribution to a hop’s acti-
is driven by the short-range electron-lattice interactiomis vation energy can come from the electronic kinetic energy
versely proportionato the carrier’s radius. By contrast, the gssociated with the change of the carrier’s size.
reduction of the vibrational free energy that is driven by the  Furthermore, a hop is generally accompanied by a change
long-range(ionic) electron-lattice interaction igroportional  of vibrational entropy[e.g., Af i,  (Rs—R/2)/T in Eq.
to the carrier’s radius. Therefore the contribution of vibra-(48)]. The entropy contribution, like the hopping activation
tional softening to polaron binding is greatest for latgeil-  energy, is of second order in the electron-lattice coupling
tiatomig) carriers within ionic media. strength. As such, the entropy contribution is proportional to

Minimization of the system’s energy with respect to thethe hopping activation energy. The Meyer-Neldel “compen-
carrier's radius yields three distinct types of minima. Thesation” effect, AF =E,— EA(T/T,), results wherR,>2Rq
carrier can spread out over all equivalent sites of the molip Eq. (48).2°
ecule. Alternatively, the carrier can be localized at a single A|l told, the ability of a carrier to move about an occupied
atomistic unit of the molecule. Fina”y, if the interaction with molecule in response to atomic motions can Signiﬁcanﬂy af-
the medium’s ions is sufficiently strong, the carrier can befect the formation and hopping of even a simple molecular
localized among a subset of the molecule’s equivalent atomgyolaron. These effects will be embellished for multicompo-
Thus there are three distinct types of self-trapped state for gent molecules with intricate shapes. The theory also applies

carrier on a molecule. _ to carriers that occupy multiatomic defect centers in semi-
Intermolecular hopping has also been considered. Attenconductors.

tion is focused at high enough temperatures for atoms’ vibra-
tory motion to be treated as classical. Then, intermolecular
hopping requires the formation of a coincidence configura-
tion in which the carrier is shared between the two molecules
involved in the jump. The hopping activation energy is the This work was supported by the United States Department
minimum energy required to form a coincidence. Three type®f Energy, Office of Basic Energy Sciences, Division of Ma-
of minimum-energy coincidence, analogous to the threderials Science Contract No. DE-AC04-94AL85000.
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