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Formation and hopping motion of molecular polarons
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Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131-1156

~Received 27 December 1999!

This paper addresses polaron formation and intermolecular hopping of a carrier confined to molecules
immersed within a polar medium. Three types of polaron state are possible:~i! The carrier can encompass all
equivalent sites of the occupied molecule.~ii ! The carrier can be localized at a single atomistic unit of the
molecule.~iii ! If the carrier’s interactions with the medium’s ions are strong enough, the self-trapped carrier
can be localized among a subset of the molecule’s equivalent sites. High-temperature intermolecular hopping
requires the formation of a coincidence configuration in which the carrier is shared between the jump’s two
molecules. The hop’s activation energy depends on theexpansionof a molecule’s carrier as it approaches a
coincidence from its minimum-energy configuration. The carrier’sintramolecularmotion in response to at-
oms’ motions also reduces these atoms’ vibrational frequencies thereby lowering their vibrational free energy.
This carrier-induced vibrational softening affects the temperature-independent coefficient of the Arrhenius
jump rate. Thus carrier’s intrasite motion, ignored in Holstein’s model, can significantly affect small-polaron
formation and hopping.
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I. INTRODUCTION

Discussions of small-polaron formation and hopping
molecular solids are often based on Holstein’s ‘‘molecu
crystal model.’’1 The model envisions a regular array of mo
ecules. An atomic deformation parameter is assigned to e
molecule. These deformation parameters are assumed t
brate harmonically about their equilibrium positions. Sma
polaron formation corresponds to a carrier being confined
one of the molecular sites. The energy of the confined car
is presumed to be simply proportional to the deformat
parameter of the occupied site. As a result, the carrier’s p
ence only induces a shift of the equilibrium position of t
deformation parameter of the occupied site.

The Holstein model and equivalent treatments2–9 implic-
itly assume the wave function of a carrier on a molecule
be ‘‘rigid.’’ In particular, the model ignores shifts of th
carrier’s wave function in response to atomic displaceme
Such polarization of the carrier’s wave function introduc
contributions to the carrier’s energy that depend nonlinea
on the deformation parameters.10–13 The model also ignores
dependencies of electronic transfer energies on the ato
displacement parameters.

The Holstein model was originally proposed as a conc
tual aid to describe a type of small polaron that may
formed when a carrier is confined to a transition-metal ion
a transition-metal oxide.14 The deformation parameter pro
vides a simplified description of a collective optical vibratio
~e.g., breathing mode! of the anions adjacent to th
transition-metal ion. Thus the ‘‘molecule’’ of Holstein’s mo
lecular crystal model was initially envisioned as only a co
struct to describe a carrier localized on a small cation s
rounded by displaced ligands.

Self-trapped carriers in molecular solids are frequen
much larger than those envisioned in the molecular cry
model. In particular, the self-trapped carrier of a molecu
solid often encompasses many atoms. As a result, prope
of a carrier on a real molecule differ from those assumed
PRB 610163-1829/2000/61~21!/14543~11!/$15.00
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the molecular-crystal model. In particular, rather than be
confined to a point, a carrier on a real molecule genera
sloshes amongst its atoms in response to their motion10

This effect causes the electronic energy of a localized car
to depend nonlinearly on atomic displacements. As a resu
localized carrier generally softens the stiffness constant
the deformational modes to which it is coupled. This pol
ization effect grows with the size of the localized electron
state since the polarizability of an electronic state is com
rable to its volume.

This paper addresses the self-trapping and semiclas
~high-temperature! inter-molecular hopping of carriers sel
trapped on molecules, ‘‘molecular polarons.’’ Attention
focused on how the size and concomitant polarizability o
self-trapped state affects polaron formation and hopping.

The body of the paper begins in Sec. II A, where a mo
of a carrier restricted to a molecule embedded within a po
medium is presented. For simplicity, the molecule is rep
sented as just providing a potential well that confines
carrier. In addition, all atoms’ vibrations are represented a
collection of equivalent Einstein oscillators. Contributions
the carrier-related free energy arise from the carrier’s c
finement, the carrier-induced displacements of the osc
tors’ equilibrium positions, and the carrier-induced redu
tions of oscillators’ stiffness constants. The minimum of t
total free energy defines the polaron state. The minimum
energy is expressed in terms of an eigenstate of the local
carrier.

In Sec. II B the free-energy of the polaron state is exa
ined as a function of the spatial extent of the electronic c
rier. A scaling argument is used to determine how each c
tribution to the polaron’s free energy depends on
characteristic length of its localized carrier. The spatial e
tent of the polaron’s carrier depends on parameters gov
ing the carrier’s confinement energy as well as its inter
tions with the atoms. Depending on the values of the
parameters a molecular polaron’s carrier may either~i! ex-
tend over the entire molecule,~ii ! be confined to only a por-
14 543 ©2000 The American Physical Society
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14 544 PRB 61DAVID EMIN
tion of the molecule, or~iii ! collapse to a single atomisti
unit.

Section III addresses the intermolecular hopping of
polaron between equivalent molecules. The jump rate
pends upon the difference between the polaron free en
and the free energy of the minimum-energy state for wh
the carrier is shared equally between initial and final sites
the hop. The electronic eigenstate of the lowest-energy c
cidence state is described as a superposition of the local
tronic states associated with the initial and final sites of
hop. Section III A obtains the free energy of the minimum
energy coincidence in terms of a local electronic wave fu
tion.

In Sec. III B the free-energy difference associated with
hop is studied as a function of the polaron radius and
radius of the local electronic function of a coincidence. T
activation energy for a hop is reduced by the tendency of
radius of the coincidence electronic state to be larger t
that of the ground state. In addition, the softening of vib
tional frequencies produced by carrier’s deformability p
vides an entropic factor that affects the temperatu
independent~pre-exponential! factor of the high-temperatur
jump rate. Both of these effects are absent in prior works
presume the electronic state to be rigid. Simple examp
indicate that a carrier’s deformability significantly affects
hopping rate.

The paper concludes in Sec. IV with a discussion a
summary of its principal findings. The results apply to car
ers localized in molecular orbitals associated with dopa
and defects as well as to carriers confined to bona fide m
ecules. The larger the size of the carrier’s state, the gre
the importance of its deformability and the relative impo
tance of its interactions with ions through the long-ran
~Frohich! electron-lattice interaction.

II. FORMATION OF A MOLECULAR POLARON

A. Free energy of a molecular polaron

The first goal of this paper is to address the formation
a polaron by a carrier occupying a molecule immersed i
polar medium. This carrier interacts with the atomic d
placements of both the occupied molecule and the surrou
ing medium. For clarity, the molecule, the atomic vibratio
and the electron-lattice interactions are modelled most s
ply.

The molecule is viewed as just providing an attract
potential for the carrier,Vm(rW). This potential only serves to
constrain the carrier to the molecule. As such, a molecul
modelled as providing a delineated region of low yet co
stant electronic potential.

The atomic vibrations of both the molecule and the env
oping medium are represented as being collections
equivalent Einstein oscillators. Each oscillator is charac
ized by the atomic effective massM stiffness parameterk,
and vibrational frequencyv5Ak/M . The deformation pa-
rameter of the oscillator at locationuW is D(uW ).

The electron-lattice interaction depicts the dependenc
the potential energy of a carrier on deformations of the E
stein oscillators. The potential energy of a carrier at posit
rW is presumed to depend linearly on the deformation of
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oscillator at positionuW with a magnitude and range that
described by the electron-continuum interaction functio
Z(rW,uW ).

The momentum operators conjugate to the carrier’s p
tion and to the atomic deformation parameter are defined
p̂r and P̂D , respectively. The Hamiltonian for this model
then written as

H5
p̂r

2

2m
2

1

Vc
E duW Z~rW,uW !D~uW !1Vm~rW !

1
1

Vc
E duW S P̂D

2

2M
1

k

2
D2~uW ! D , ~1!

wherem is the carrier’s mass andVc is the volume associ-
ated with the separation between oscillators,a (Vc[a3).

The eigenstates of the carrier on a molecule immer
within a deformable medium are described within the ad
batic approach. Within the adiabatic approximation t
eigenstate is written as the product of an electronic eig
function that depends upon the carrier’s position and the
formation parameters,C«@rW,D(uW )#, and an atomic eigen
function describing the atomic motion when the electro
state is occupied,Qn,«@D(uW )#: C«@r ,D(uW )#Qn,«@D(uW )#.
The electronic function is the solution of the electronic
genvalue equation:

F p̂r
2

2m
2

1

Vc
E duW Z~rW,uW !D~uW !1Vm~rW !GC«@rW,D~uW !#

5«@D~uW !#C«@rW,D~uW !#, ~2!

where« is the eigenvalue. The associated atomic motions
described by

F 1

Vc
E duW S P̂D

2

2M
1

k

2
D2~uW ! D 1«@D~uW !#GQn,«@D~uW !#

5EnQn,«@D~uW !#, ~3!

whereEn is the eigenvalue. The adiabatic approach is va
if the time required for a carrier to traverse its eigenstate
much less than the time characterizing motion of the ato
to which the carrier is coupled. The adiabatic theory is ty
cally applied to molecules that are not too large.

The lowest-energy electronic state for a static polar
Cs(rW), is found by minimizing^Cs(rW)uHuCs(rW)& with re-
spect to the deformation parameter,D(uW ). Deformations of
the lowest-energy state are described by

Ds~uW ![
1

kE drWZ~rW,uW !uCs~rW !u2. ~4!

Vibrations of the atoms about the minimum-energy co
figuration are governed by the interatomic stiffness co
stants. These stiffness constants, and therefore the vibrat
frequencies, are affected by a carrier’s presence. In part
lar, the strain energy is generally given by
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1

Vc
2E duW E du8W

k8~uW ,uW 8!

2
D~uW !D~uW 8!, ~5!

whereD(uW )[D(uW )2Ds(uW ) is the deviation of the deforma
tion parameter from its equilibrium value and the stiffne
tensor in the presence of the carrier is obtained from
second derivative of the total energy evaluated at
minimum-energy configuration:

k8~uW ,uW 8!5kVcd~uW 2uW 8!2E drWZ~rW,uW !
]uCs~rW !u2

]D~uW 8!
uDs(u

W 8) .

~6!
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The carrier-induced change of the stiffness tensor m
sures the sensitivity of the self-trapped carrier’s st
to alteration of the deformation parameter. In oth
words, carrier-induced softening is associated w
the adjustment of the carrier’s wave function to t
movement of surrounding atoms. This effect vanish
in models that approximate the self-trapped state as b
rigid.

Standard perturbation theory has been utilized to exp
the carrier-induced softening in terms of the wave functio
and eigenvalues of the self-trapped carrier at the minimu
energy configuration:11,12
k8~uW ,uW 8!5kVcd~uW 2uW 8!2(
nÞs

E drWCs* ~rW !Z~rW,uW !Cn~rW !E drW8Cn* ~rW8!Z~rW8,uW 8!Cs~rW8!1c.c.

en2«s
, ~7!
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where«n is the electronic energy labeled by indexn and«s

is the energy of the electronic ground state. The carrier
duced change in the vibrational stiffness shifts the set
vibrational eigenfrequencies from$v i% to $V i%.

The change of the free energy produced by insertin
charge carrier into the lowest adiabatic state is expresse
the sum of a contribution from the entropy of mixing,Fmix ,
and a contribution from the carrier’s interactions,Fs : DF
[Fmix1Fs . This entropic contribution is associated wi
the number of ways carriers can be distributed among st
of nearly equivalent energies,&kT. The contribution to the
free energy arising from a carrier’s interactions,Fs , is the
sum of ~i! the carrier’s energy,~ii ! the strain energy assoc
ated with carrier induced shifts of atomic equilibrium po
tions, and~iii ! the change of the vibrational free energy ar
ing from carrier induced shifts of the vibrational frequencie

Fs5S \2

2mD E drWu¹Cs~rW !u2

2
1

2Vck
E duW E drWZ~rW,uW !uCs~rW !u2

3E drW8Z~rW8,uW 8!uCs~rW8!u21E drWVm~rW !uCs~rW !u2

1kT(
i

lnFsinh~\V i /2kT!

sinh~\v i /2kT! G . ~8!

For an harmonic lattice, the strain energy associated w
carrier induced shifts of atomic equilibrium positions is h
the lowering of the electronic potential associated with th
shifts. Combining these two effects introduces the factor 2
the denominator of the second contribution toFs .

The vibrational contribution toFs may be rewritten when
the carrier induced shifts in the phonon energies are s
ciently small, (V i2v i)!v i :
-
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Fs5S \2

2mD E drWu¹Cs~rW !u2

2
1

2Vck
E duW E drWZ~rW,uW !uCs~rW !u2

3E drW8Z~rW8,uW !uCs~rW8!u21E drWVm~rW !uCs~rW !u2

1(
i

F\~V i2v i !

2 Gcoth~\v i /2kT!. ~9!

In the low-temperature limit,T→0, the vibrational contribu-
tion to Fs is just the carrier induced reduction of the zer
point vibrational energy. At sufficiently high temperature
coth(\vi/2kT)→ 2kT/\v i , the vibrational contribution to
Fs depicts the carrier induced increase of vibrational entro

The vibrational contribution to the free energy may
expressed in terms of electronic parameters. To accomp
this task, first note that the sum of the squares of the vib
tional eigenfrequencies is simply related to the net value
the diagonal elements of the stiffness constants:

(
i

V i
25

1

Vc
E duW k8~uW ,uW !

M
. ~10!

This equality can be combined with that for the carrier fr
system to obtain

(
i

~V i
22v i

2!5

1

Vc
E duW @k8~uW ,uW !2k#

M
. ~11!

For small enough shifts of the vibrational frequencies t
relationship becomes

(
i

v i~V i2v i !5

1

Vc
E duW @k8~uW ,uW !2k#

2M
. ~12!

Focusing attention on optical modes and describing the
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tical spectrum as an Einstein spectrum,v i5v5Ak/M , the
sum rule becomes

(
i

~V i2v!5v

1

Vc
E duW @k8~uW ,uW !2k#

2k
. ~13!
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Thus the net carrier induced shift of vibrational frequenc
is directly related to the sum of the carrier induced shifts
the diagonal components of the stiffness tensor.

The carrier induced reduction of the diagonal compone
of the stiffness tensor can be expressed in terms of the e
tronic eigenstates:
k8~uW ,uW !2k522(
nÞs

U E drWCs* ~rW !Z~rW,uW !Cn~rW !U2

«n2«s
~14!

522(
nÞs

E drW@Cs* ~rW !Cn~rW !#E drW8@Cs* ~rW8!Cn~rW8!#* Z~rW,uW !Z~rW8,uW !

«n2«s
. ~15!

With this relationship, the carrier induced shift of the free energy is written in terms of the electronic eigenstates:

Fs5S \2

2mD E drWu¹Cs~rW !u22E drWuCs~rW !u2E drW8uCs~rW8!u2I ~rW2rW8!1E drWVm~rW !uCs~rW !u2

2\v coth~\v/2kT!(
nÞs

E drW@Cs* ~rW !Cn~rW !#E drW@Cs* ~rW8!Cn~rW8!#* I ~rW2rW8!

«n2«s
, ~16!
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where the carrier self-energy arising from the electron-lat
interaction is15

I ~rW2rW8![
1

2Vck
E duW Z~rW,uW !Z~rW8,uW !. ~17!

The electron-lattice interaction for the carrier is ge
erally the sum of short-range and long-range componen16

The short-range component describes the dependenc
the electronic energy of a carrier on the positions
the atoms responsible for its bonding. The long-ran
component models the dependence of a carri
potential energy on displacements of the polar mediu
distant ions. The contributions to a carrier’s potent
from displacing the medium’s anions and cations
combined so that the net long-range interaction is d
cribed as that of carriers with deformable dipoles.17 The sum
of the carrier’s contact interaction with the atoms and
interaction with dipoles of the surrounding mediu
becomes15

Z~rW,uW !5AVcd~rW2uW !1
e

p3/2

AkS 1

e`
2

1

e0
DVc

urW2uW u2
. ~18!
e

-
.
of

f
e
’s
’s
l
e
s-

s

Heree0 ande` are the medium’s static and optical and sta
dielectric constants, respectively, ande is the elemental
charge.

Evaluating I (rW2rW8) for a three-dimensional medium
yields15

I ~rW2rW8!5EbVcd~rW2rW8!1
e2

2urW2rW8u
S 1

e`
2

1

e0
D

1

A2EbS 1

e`
2

1

e0
D e2

p3
Vc

urW2rW8u2
, ~19!

whereEb[A2/2k. The first and second contributions toI (rW

2rW8) arise from the short-range and long-range compone
of electron-lattice interaction, respectively. The final cont
bution is a cross term between the short-range and lo
range components of the electron-lattice interaction. T
cross term results from evaluating the long-range compon
of the electron-lattice interaction at the carrier’s locatio
However, the long-range interaction envisions a carrier in
acting with electric dipoles beyond the carrier’s char
distribution.17 Thus this representation of the cross term
somewhat artificial. Furthermore, the cross term plays
significant role in the forthcoming considerations. For the
reasons, the cross term shall be ignored henceforth.
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Employing this model, the carrier induced change in
free energy of the solid becomes

Fs5S \2

2mD E drWu¹Cs~rW !u22EbVcE drWuCs~rW !u4

2
e2

2 S 1

e`
2

1

e0
D E drWE drW8

uCs~rW !u2uCs~rW8!u2

urW2rW8u

1E drWVm~rW !uCs~rW !u2

2\v coth~\v/2kT!(
nÞs

1

en2es
E drW@Cs* ~rW !Cn~rW !#

3E drW8@Cs* ~rW8!Cn~rW8!#* FEbVcd~rW2rW8!

1
e2

2urW2rW8u
S 1

e`
2

1

e0
D G . ~20!

The free energy of the static polaron is thus expresse
terms of the carrier’s electronic eigenstatesCs(rW) and
Cn(rW), and eigenvalueses anden .

B. Size of a molecular polaron

The ground-state electronic wave functionCs(rW) is de-
fined as corresponding to the state of lowest energy. Alte
the spatial extent of the wave function by the dimensionl
scaling parameterR therefore necessarily raises the ener
Thus the minimum of the energy as a function ofR is defined
as occurring atR51. Examining the possible minima of th
energy as a function of the scaling parameter is an effi
cious way of elucidating features of competing free-ene
minima.16 The free-energy scaling functional obtained
changing the spatial extent of the electronic wave funct
by the dimensionless factorR while retaining the wave func
tion’s normalization is

f s~R![
T

R2
2

VS

R3
2

~VL1DFvib,S!

R
2DFvib,LR2vm~R!,

~21!

where

T[S \2

2mD E drWu¹Cs~rW !u2, ~22!

VS[EbVcE drWuCs~rW !u4, ~23!

VL[
e2

2 S 1

e`
2

1

e0
D E drWE dr8W

uCs~rW !u2uCs~r 8W !u2

urW2r 8W u
,

~24!

DFvib,S[Eb\v coth~\v/2kT!Vc(
nÞs

E drWuCs* ~rW !Cn~rW !u2

en2es
,

~25!
e

in

g
s
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a-
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n

DFvib,L[Fe2

2 S 1

e`
2

1

e0
D G\v coth~\v/2kT!

3 (
nÞ0

1

En2E0
E drWE drW8

3
@Cs* ~rW !Cn~rW !#@Cs* ~rW8!Cn~rW8!#*

urW2rW8u
~26!

and the excitation energies are presumed to scale as 1/R2.
The final contribution to the carrier induced change of t

free energyvm(R) comes from the potential that binds th
carrier on the molecule. After a change of variable, the
erage molecular potential experienced by a carrier wh
spatial extent is expanded by the factorR can be written as

vm~R![E drWVm~rWR!uCs~rW !u2. ~27!

This contribution vanishes in the limit that the spatial exte
of the electronic state greatly exceeds the range of the
lecular potential, a length comparable to the molecule’s
dius. That is,vm(R)→0 as R→`. Alternatively, vm(R)
saturates at constant value when the electronic state is
confined within the molecule. Details of this saturation effe
depend upon specifics of both the electronic wave funct
and the molecular potential. However, this saturation eff
can be simply modeled by replacingvm(R) by the constant
vm(0) when the scaling parameter is less than that for wh
the radius of the electronic state equals the molecule’s rad
R<Rmolecule. That is, a carrier confined to a molecule e
periences the constant potentialvm(0).

The continuum theory breaks down, and the contributio
from the electron-lattice interactions saturate, when the c
rier’s spatial extent falls below that of an elemental atomis
unit ~atom or bond!. Thus f s(R), as described by Eq.~21!, is
only meaningful when the scaling parameter exceeds
value corresponding to the electronic state’s radius equa
the radius of the elemental atomistic unit,R>Ratom.

Incorporating these two size restrictions, the free-ene
function for a carrier confined to a deformable molecule e
bedded within a medium of displaceable atoms becomes

f s~R!5
T

R2
2

VS

R3
2

~VL1DFvib,S!

R
2DFvib,LR, ~28!

whereRatom<R<Rmolecule. TheR-independent termvm(0)
has been dropped since this constant is irrelevant to fo
coming arguments. Thus the effect of the carrier’s confi
ment to a molecule is represented solely by the restrict
R<Rmolecule.

It is now useful to comment on the magnitudes of t
various contributions tof s(R). Consider the case when th
electronic state is confined to a single atomistic unit,R
5Ratom. Then, the first two contributions tof s(Ratom) are
typically of the order of an electron volt. The third contribu
tion, VL /Ratom, is also of the order of an electron volt if th
medium is ionic,e0@e` . Even if the medium has very little
polar character,e0*e` , the residual contribution of the
long-range electron-lattice interaction,VL /Ratom, will usu-
ally be sufficient to overwhelmDFvib,S ('1022 eV!. There-
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fore DFvib,S will henceforth be ignored. The fourth term’
contribution is typically&1022 eV whenR5Ratom. How-
ever, the fourth term becomes significant for large statesR
@Ratom.

In the absence of the fourth term, the minimum of t
function f s(R) is at

Rmin5
T1AT223VSVL

VL
. ~29!

The existence of this minimum requires thatVS be small
enough for the argument of the square root to be posit
T2.3VSVL . Then (T/VL),Rmin,2(T/VL). In addition,VL
must be large enough to ensure that this minimum res
within the acceptable range,Rmin<Rmolecule. Thus the exis-
tence of this minimum requires that the short-range inter
tion be sufficiently small and the long-range interaction
sufficiently large. Otherwise the minimum off s(R) occurs at
eitherRatom or Rmolecule.

The plots of f s(R) versusR depicted in Fig. 1 illustrate
that the absolute minimum off s(R) within the domain
Ratom<R<Rmoleculeis either at one of the boundaries of th
permitted domain,Ratom or Rmolecule, or atRmin . The mini-
mum atRatom corresponds to the carrier being localized at
atom on the molecule to form an ‘‘atomic small polaron
The minimum atRmin represents the carrier extending ove
number of the molecule’s atoms. The minimum atRmolecule
depicts the carrier being delocalized over the entire m
ecule. The latter two instances describe a ‘‘molecular sm
polaron’’ since the carrier occupies a multiatomic state c
fined to a single molecule.

The fourth term inf s(R) denotes the net reduction of th
vibrational free-energy arising from carrier induced softe
ing. Since this term,2DFvib,LR, becomes increasingly nega

FIG. 1. The free energy of a molecular polaron,f s(R), is plotted
as a function of the carrier’s spatial extentR for three sets of pa-
rameters. The carrier is constrained to be no smaller than an a
and no larger than the occupied molecule:Ratom,R,Rmolecule.
The minimum of the uppermost curve resides atRmolecule thereby
indicating that it is energetically favorable for the carrier to enco
pass the entire molecule. The minimum of the middle curve res
at Rmin thereby indicating that it is energetically favorable for t
carrier to encompass a finite number of the molecule’s atomic s
The minimum of the lowest curve resides atRatom thereby indicat-
ing that it is energetically favorable for the carrier to collapse on
a single atomistic unit of the molecule.
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es
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tive asR is increased, it fosters expansion of the electro
state. To compute this shift, the derivative off s(R) with
respect toR is first set equal to zero. The resulting equati
is then linearized with respect to the shift of the position
the minimum, defined asr, and toDFvib,LRmin . To first order
in DFvib,LRmin , the shift of the position of the minimum is

r 5
DFvib,L

] f s
2~R!

]R2 U
Rmin

5
DFvib,LRmin

2

332
T

Rmin
2

2433
VS

Rmin
3

22
VL

Rmin

5
DFvib,LRmin

2

VL

Rmin
23

VS

Rmin
3

, ~30!

where the formula after the second equality exploits the
lation that determinesRmin :

2
T

Rmin
2

23
VS

Rmin
3

2
VL

Rmin
50. ~31!

The divergence ofr occurs whenVS becomes large enoug
for the existence of a minimum nearRmin to be tenuous
(T2.3VSVL). Then a modest change of the free-energy c
have a major effect on the minimum’s position or very ex
tence. Away from this divergence

r .
DFvib,L

VL
Rmin

3 . ~32!

The shift of the minimum with these parameters increa
strongly with the size of the molecular state sincer}Rmin

3 .
Furthermore, the position of the minimum off s(R) increases
with rising temperature through the explicit temperature
pendence ofDFvib,L shown in Eq.~26!.

To first order inDFvib,L , the carrier induced change of th
free energy at this molecular small polaron minimum is

f s~Rmin1r !> f s~Rmin!1
] f s~R!

]R U
Rmin

r

>
T

Rmin
2

2
VS

Rmin
3

2
VL

Rmin
2DFvib,LRmin

52
VL

2Rmin
1

VS

2Rmin
3

2DFvib,LRmin , ~33!

where it is first noted that] f s /(R)/]RuRmin
50. Equation~31!

is then used to obtain the final equality of Eq.~33!.
Several conclusions can be drawn from the final expr

sion for the free energy of a molecular polaron, Eq.~33!.
With increasing size,Rmin , the contribution to the free en
ergy arising from the long-range interaction,2VL/2Rmin , in-
creasingly dominates that from the short-range interact
VS/2Rmin

3 . In addition, the lowering of the free energy arisin
from carrier induced reduction of the frequencies of ion
vibrations grows in importance with the carrier’s radiu
Rmin .
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These features differ from those of the small polar
formed by the collapse of the carrier to an atomic size.
particular, the free energy of an atomic small polaron is

f s~Ratom!>
T

Ratom
2

2
VS

Ratom
3

2
VL

Ratom
. ~34!

The condition that this be at least a relative minimum is t
] f s(R)/]R.0 at R5Ratom. This existence condition im
poses an upper bound on the free energy of this minim
f s(Ratom),2VS /Ratom

3 2T/Ratom
2 . Thus the formation of a

stable atomic small polaron,f s(Ratom),0, requires a suffi-
ciently large short-range component of the electron lat
interaction: 2VS /Ratom

3 .T/Ratom
2 . Furthermore, the ratio o

the contributions to the free energy from the short-range
long-range components of the electron-lattice, (VS /Ratom

3 )/
(VL /Ratom), is at its maximum for an atomic small polaro
Finally, as noted previously, above Eq.~29!, the contribution
to the atomic small polaron’s free energy from carrier
duced softening is neglectable.

III. ADIABATIC SMALL POLARON HOPPING

A. Free energy of the minimum-energy coincidence state

The vibratory motion of a solid’s atoms provides a char
carrier with opportunities to hop between molecules. Wh
that atomic motion is classical, an intermolecular jump c
only occur as atoms pass through a configuration for wh
the carrier is shared equally between the two molecules
d
U

e

e
n
ie
d

a

n

t

:

e

d

-

e
n
n
h
n-

volved in the hop. This configuration is termed a ‘‘coinc
dence configuration.’’1

If the electronic transfer energy that links the two mo
ecules is sufficiently large, a carrier’s intermolecular moti
is fast enough to always adjust to the atomic motion. Th
the hopping is termed ‘‘adiabatic.’’1 The jump rate for such
adiabatic hopping is the rate at which atoms assume a
figuration corresponding to a hop. The rate for a jump fro
an initial sitei to a final sitef has the form4,8

Ri→ f5nS Nc

Ns
DexpS 2

DF

kT D . ~35!

Here n represents a suitable average of atomic vibratio
frequencies andDF is the difference between the free ener
associated with coincidences and that associated with a s
carrier. Attention is generally restricted to the lowest-ene
coincidence and polaron configurations. Then,DF depicts
the difference between the free energy representing ato
vibrations about the lowest-energy coincidence configura
and the free energy for vibrations about a static polaro
minimum-energy configuration:DF[Fc2Fs . The ratio of
the number of ways of forming equivalent coincidences
the number of ways of forming equivalent static polarons
denoted asNc /Ns . Simple models of adiabatic hopping giv
Nc /Ns51.4,8

In analogy with the static polaron’s free energy, the fr
energy for the lowest-energy coincidence between t
equivalent molecules~centered at the origin and a site ce
tered atsW) is
Fc5S \2

2mD E drWu¹xc~rW !u22E drWuxc~rW !u2E drW8uxc~rW8!u2I ~rW2rW8!1E drW@Vm~rW !1Vm~rW2sW !#uxc~rW !u2

2\v cothS \v

2kTD (
nÞ0

E drW@xc* ~rW !xc,n~rW !#E drW8@xc* ~rW8!xc,n~rW8!#* I ~rW2rW8!

ec,n2ec,0
. ~36!
the

n-
Here xc(rW) and ec,0 are the electronic wave function an
electronic energy of the lowest-energy coincidence state.
ing analogous notation,xc,n(rW) andec,n are the wave func-
tion and electronic energy of a carrier in thenth excited
electronic state of the coincidence configuration, resp
tively.

The electronic wave function of the coincident state b
tween two sites can be expressed in terms of their local fu
tions. In particular, the electronic wave function of a carr
shared between equivalent sites centered at the origin an
sW takes the form

xc~r !5
Cc~rW !1Cc~rW2sW !

A2~11O!
. ~37!

HereO(sW) is the overlap between the two normalized loc
functions of the coincidence state,Cc(rW) and Cc(rW2sW),
each of which is taken to be real.
s-

c-

-
c-
r
at

l

The coincidence free energy is expressed in terms of
local functions by inserting Eq.~37! into Eq. ~36!. If, for
simplicity, all overlaps between local functions and pote
tials from different molecules are ignored:

Fc5S \2

2mD E drWu¹Cc~rW !u2

2
1

2E drWuCc~rW !u2E drW8uCc~rW8!u2@ I ~rW2rW8!

1I ~sW1rW2rW8!#1E drWVm~rW !uCc~rW !u2

2
1

2
\v cothS \v

2kTD (
nÞ0

1

ec,n2ec,0

3E drW@Cc* ~rW !Cc,n~rW !#E drW8@Cc* ~rW !Cc,n~rW !#

3@ I ~rW2rW8!1I ~sW1rW2rW8!#, ~38!
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whereCc* (rW) andCc,n(rW) are the local electronic function
associated with thenth excited coincidence state. To obta
Eq. ~38!, equivalent contributions to the free energy from t
two molecules are combined. In addition, a change of v
able has been used to rewrite contributions to the free en
that link the two sites. In these instances, the origin of
electronic integration is shifted bysW thereby introducing ansW

dependence into the associated interaction functionsI (sW1rW

2rW8).
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When the separation between the centroids of the ho
two local functions greatly exceed their radii,

I ~sW1rW2rW8!→I c~sW ![
e2

2usWu
S 1

e`
2

1

e0
D , ~39!

where, as above Eq.~20!, the cross term between long- an
short-range components of the interaction functionI (rW2rW8),
has again been dropped. ReplacingI (sW1rW2rW8) by I c(sW) in
Eq. ~39! yields
Fc5S \2

2mD E drWu¹Cc~rW !u22
1

2E drWuCc~rW !u2E drW8uCc~rW8!u2I ~rW2rW8!2
1

2
I c~sW !1E drWVm~rW !uCc~rW !u2

2
1

2
\v coth~\v/2kT! (

nÞ0

E drW@Cc* ~rW !Cc,n~rW !#E drW8@Cc* ~rW !Cc,n~rW !#I ~rW2rW8!

ec,n2ec,0
, ~40!
of
g

to
ith
where use has been made thatCc(rW) is normalized and tha
Cc* (rW) and theCc,n(rW) are orthogonal to one another.

The formal expression forFc , Eq. ~40!, differs from that
for Fs , Eq. ~16!, in two aspects. First, the coefficients
electron-lattice-interaction contributions toFc are half those
of corresponding contributions toFs . Second,Fc contains
the sW-dependent contribution:2I c(sW)/2. These two effects
will be seen to produce the free energy difference,DF, as-
sociated with a hop.

B. A hop’s free energy difference,DF

The coincidence-state free-energy is expressed in term
the coincidence’s local functions in Eq.~40!. A scaling
analysis of Eq.~40! is now employed to investigate how th
coincidence free energy depends on the spatial extent o
coincidence’s local functions. The free-energy difference
sociated with a hop,DF, is then written in terms of the
spatial extents of a static polaron and of the local states of
minimum-energy coincidence.

The scaling analysis of the coincidence state proceed
direct analogy with the scaling analysis of a static polar
The scaling functional for the coincidence states is
of

he
s-

e

in
.

f c~R!5
Tc

R2
2

Vc,S

2R3
2

Vc,L

2 S 1

R
1

1

SD2
D f c,vib,L

2
R, ~41!

whereRatom<Rc<Rmoleculeand I c(sW) is written as

I c~sW !5
Vc,L

S
, ~42!

whereS is the intermolecular separation expressed in units
the characteristic length ofVc,L . The constants of the scalin
analysis of coincidence states are formally analogous
those of the scaling analysis of the static polaron albeit w
the local electronic functions beingCc(rW) rather thanCs(rW):

Tc[S \2

2mD E drWu¹Cc~rW !u2, ~43!

Vc,S[EbVcE drWuCc~rW !u4, ~44!

Vc,L[
e2

2 S 1

e`
2

1

e0
D E drWE drW8

uCc~rW !u2uCc~rW8!u2

urW2rW8u
, ~45!

and
D f c,vib,L[Fe2

2 S 1

e`
2

1

e0
D G\v coth~\v/2kT! (

nÞ0

1

En
c2E0

E drWE drW8
@Cc* ~rW !Cc,n~rW !#@Cc* ~rW8!Cc,n~rW8!#*

urW2rW8u
. ~46!
s
tial

of a
As in the analysis of the static polaron, there are th
possibilities for the lowest value ofF. The most-localized
possible solution has each of the two local electronic fu
tions of the coincidence confined to a single atomRatom.The
least-localized possible solution has each of the two lo
electronic functions of the coincidence extending over
e

-

al
e

entire moleculeRmolecule. The third possible solution ha
each of the two local electronic functions having a spa
extent of intermediate sizeRc,min . The value ofR that mini-
mizes f c(R) is defined asRc .

The free-energy difference that characterizes the hop
polaron between molecular units,DF[Fc2Fs , depends
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upon the sizes of the local electronic state at equilibrium
at the coincidence:

DF5F Tc

Rc
2

2
Vc,S

2Rc
3

2
Vc,L

2 S 1

Rc
1

1

SD2
D f c,vib,L

2
RcG

2F T

Rs
2

2
VS

Rs
3

2
VL

Rs
2D f vib,LRsG . ~47!

Equating the corresponding energy parameters that re
when the static polaron’s electronic state and the coin
dence’s local electronic function both collapse to the ato
istic limit yields Tc5T, Vc,S5VS , VL

c5VL , and D f c,vib,L

5D f vib,L . With these relations the free energy characteriz
an adiabatic semiclassical polaron hop becomes

DF5VSS 1

Rs
3

2
1

2Rc
3D 1VLS 1

Rs
2

1

2Rc
2

1

2SD
2TS 1

Rs
2

2
1

Rc
2D 1D f vib,LS Rs2

Rc

2 D . ~48!

The final contribution toDF is the change of the vibra
tional free energy associated with a hop. However, Eq.~48!
is derived using the coincidence approach. This semiclass
treatment is only valid at sufficiently high temperatures
atoms’ vibrational motion to be treated classically,kT
.\v/2. In this high-temperature regimeD f vib,L , defined in
Eq. ~26!, is proportional to temperature sinc
\v coth(\v/2kT)→2kT, when \v/2kT→0. Hence the
contribution to the jump rate, Eq.~35!, from this contribution
to DF, exp@2Dfvib,L(Rs2Rc/2)/kT#, is independent of tem
perature at the high temperatures at which this semiclas
approach is valid. Furthermore, this temperature-indepen
factor augments the jump rate whenRc.2Rs and reduces
the jump rate whenRc,2Rs .

There are many possible hopping scenarios. In particu
there are three possible states of a static polaron, chara
ized by the radiiRatom, Rmin , and Rmolecule. In addition,
there are three possible coincidence states, characterize
local functions with radii ofRatom, Rc,min , and Rmolecule.
However, the radius of the coincidence state,Rc , will tend to
exceed that of a static polaron,Rs , since the coefficient of
the contribution to the coincidence free-energy from
electron-lattice interaction is half that of the correspond
contribution to the free energy of a static polaron. Thus th
are six hopping scenarios for whichRc>Rs . These jump
processes are depicted schematically in Fig. 2.

For three of the six possible situations the spatial exte
of the static carrier and the local function of the coinciden
are limited by geometric constraints. In these cases bothRc
andRs are restricted to two values,Ratom or Rmolecule.

The prototypical small polaron hop envisions a hop w
Rs5Rc5Ratom:1

DFatom,atom5
VS

2Ratom
3

1
VL

2 S 1

Ratom
2

1

SD1
D f vib,LRatom

2
.

~49!
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Here the minimal size of the electronic state ensures that
contribution toDF from the deformation energy associate
with the short-range component of the electron-lattice int
action,VS/2Ratom

3 , has its greatest relative significance. B
contrast, the temperature-independent reduction of the ju
rate from vibrational softening, exp@2Dfvib,LRatom/2kT#, is
minimal in this situation.

The forms of the first two contributions to the activatio
energy for small polaron hopping have been obtained pr
ously. In particular, the contribution to the hopping activ
tion energy from the short-range component of the electr
lattice interaction was found to be inversely proportional
the electronic state’s volume.5,6

Furthermore, it has previously been argued that the c
tribution to the hopping activation energy from the lon
range component of the electron-lattice interaction depe
on the separation between the states involved in the ho
the manner described by Eq.~49!.18

For a hop between molecular states,Rs5Rc5Rmolecule:

DFmolecule,molecule5
VS

2Rmolecule
3

1
VL

2 S 1

Rmolecule
2

1

SD
1

D f vib,L Rmolecule

2
. ~50!

Increasing the size of the electronic state so that it enc
passes the entire molecule minimizes the contribution of
short-range component of the electron-lattice interacti
However, the reduction of the contribution from the lon
range component of the electron-lattice interaction as
electronic state expands,}1/Rmolecule, is much less severe
than that from the short-range component of the electr
lattice interaction,}1/Rmolecule

3 . Thus the relative signifi-
cance of the long-range component of the electron-lat
interaction increases with the size of the electronic state.

FIG. 2. The six processes by which a static polaron can ho
another site are schematically illustrated. The static polaro
charge carrier can either~i! collapse to a single atomistic unit,~ii !
occupy a finite subset of the molecule’s atomic sites, or~iii ! extend
over the entire molecule. In making a hop the carrier passes thro
a coincidence configuration in which it is shared between initial a
final sites. The spatial extent of the carrier in the coincidence s
is never smaller than that of the static polaron.
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14 552 PRB 61DAVID EMIN
nally, it is noted that expanding the electronic state to
velop the entire molecule maximizes the reduction of
jump rate from vibrational softening.

A molecule’s electronic wave function tends to expand
a coincidence is achieved. This tendency has been thwa
by geometrical constrains in the two jump process that h
been considered so far. However, a molecule’s carrier is
mitted to expand in the four remaining hopping scenar
depicted in Fig. 2. The dilation of a carrier during a coin
dence can significantly affectDF.

Consider the expansion of the carrier of an atomic sm
polaron to encompass the entire molecule at the coincide
Rs5Ratom and Rc5Rmolecule. The free-energy difference
Eq. ~48!, for such a hop becomes

DFatom,molecule5VSS 1

Ratom
3

2
1

2Rmolecule
3 D

1VLS 1

Ratom
2

1

2Rmolecule
2

1

2SD
2TS 1

Ratom
2

2
1

Rmolecule
2 D

1D f vib,LS Ratom2
Rmolecule

2 D . ~51!

The short-range and long-range deformational contributi
to DF grow with the expansion of the coincidence sta
However, this effect is countered by the reduction of t
carrier’s confinement energy, the contribution proportiona
T. Furthermore, the contribution toDFatom,molecule from vi-
brational softening becomes negative whenRmolecule
.2Ratom. In this circumstance, vibrational softening e
hances the magnitude of the high-temperature jump rate

An important circumstance occurs for hopping betwe
molecules immersed in a strong dipolar medium. The f
energies of both the static polaron and of the coincide
state may then be dominated by the long-range compone
the electron-lattice interaction. In this case,Rs5Rmin
52T/VL and Rc5Rc,min54T/VL . With these relations the
free-energy difference associated with a semiclassical h
Eq. ~48!, becomes

DFLR5
VL

2 S 3/4

Rmin
2

1

SD , ~52!

where, for simplicity,VS50.
Equation ~52! differs from the Austin-Mott formula for

the activation energy of an equivalent situation, small p
laron hopping in an ionic medium.19 In particular, the
Austin-Mott formula replaces the factor of 3/4 in the n
merator of the first contribution within the curved brackets
Eq. ~52! with 3/2. This discrepancy arises because Aus
and Mott neglect the lowering of the hopping activation e
ergy produced by the reduction of the carrier’s confinem
energy: 2T(1/Rs

221/Rc
2)523T/4Rmin

2 523VL/8Rmin . This
lowering of a carrier’s confinement energy at a coinciden
significantly affects the activation energy for a hop. The ho
ping activation energy is less than half the Austin-M
value.
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IV. SUMMARY AND DISCUSSION

Polaron phenomena are based on a charge carrier’s i
actions with the atoms that surround it. Nonetheless, stu
of small polaron formation and hopping motion frequen
approximate the carrier’s wave function as ‘‘rigid,’’ una
fected by atomic motion.1 The dependence of the carrier
energy on atoms’ positions then arises solely through
expectation value of the carrier’s potential energy with
spect to the rigid wave functions. In particular, a line
electron-lattice interaction~a linear dependence of the carr
er’s potential on atomic positions! yields a linear dependenc
of the carrier’s energy on atoms’ locations. A nonlinear d
pendence of the carrier’s energy on atomic displaceme
results from proceeding beyond the rigid wave function a
proximation.

The breakdown of the rigid wave-function approximatio
grows with the carriers’ polarizability.11,12 The polarizability
of an electronic statePe rises rapidly with its radius:Pe

'Re
4/aB , whereRe is the radius of the electronic state an

aB is the Bohr radius. Thus breakdown of the rigi
wavefunction is expected to be much more significant
carriers localized on large molecules (Re;1 nm! than for
carries confined to cations (Re&0.1 nm).

Herein the theory of the formation and semiclassical h
ping motion of small-polarons has been extended beyond
rigid wave-function approximation so as to apply to sma
polarons with relatively large electronic states. In particul
this work models a carrier confined to large molecules e
bedded within an ionic medium. The carrier interacts with
occupied molecule’s atoms via a short-range electron-lat
interaction~akin to the deformation potential of a covale
semiconductor!. The carrier also interacts with the solid
ions via the long-range~Frohlich! electron-lattice interaction

As in prior works, carrier induced displacements of a
oms’ equilibrium positions reduce the system’s potential
ergy. This relaxation energy falls with the size of the car
er’s state. The short-range component of the electron-lat
interaction produces a relaxation energy that is inversely p
portional to thevolumeof the carrier’s state. By contrast, th
long-range component of the electron-lattice interact
drives an atomic relaxation whose energy only falls invers
as the carrier’sradius. Thus long-range relaxation increas
in importance relative to short-range relaxation as the ca
er’s radius increases. As a result, relaxation-related pro
ties of molecular polarons tend to be especially sensitive
the ionicity of the medium about them.

Beyond the rigid wave-function approximation, the ele
tronic state of the carrier adjusts to the motions of the ma
rial’s atoms. This intramolecular charge flow reduces
stiffness constants of the atomic vibrations that are coup
to the carrier. This effect reduces the vibrational frequenc
and vibrational free energy. Carrier induced vibrational so
ening thereby contributes to the polaronic binding of a c
rier. By inducing a reduction of vibrational frequencies,
carrier also increases vibrational entropy. The carrier indu
change of vibrational entropy contributes to the Seeb
coefficient,13 the entropy transported with a charge carr
divided by the carrier’s charge. As such, the Seebeck co
cient can provide a measure of carrier induced vibratio
softening.
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Carrier induced vibrational softening affects atomic vib
tions of the embedding medium as well as those of occup
molecules. The reduction of the vibrational free energy t
is driven by the short-range electron-lattice interaction isin-
versely proportionalto the carrier’s radius. By contrast, th
reduction of the vibrational free energy that is driven by t
long-range~ionic! electron-lattice interaction isproportional
to the carrier’s radius. Therefore the contribution of vibr
tional softening to polaron binding is greatest for large~mul-
tiatomic! carriers within ionic media.

Minimization of the system’s energy with respect to t
carrier’s radius yields three distinct types of minima. T
carrier can spread out over all equivalent sites of the m
ecule. Alternatively, the carrier can be localized at a sin
atomistic unit of the molecule. Finally, if the interaction wi
the medium’s ions is sufficiently strong, the carrier can
localized among a subset of the molecule’s equivalent ato
Thus there are three distinct types of self-trapped state f
carrier on a molecule.

Intermolecular hopping has also been considered. At
tion is focused at high enough temperatures for atoms’ vib
tory motion to be treated as classical. Then, intermolec
hopping requires the formation of a coincidence configu
tion in which the carrier is shared between the two molecu
involved in the jump. The hopping activation energy is t
minimum energy required to form a coincidence. Three ty
of minimum-energy coincidence, analogous to the th
-
d
t

-

l-
e

e
s.
a

n-
-
r
-
s

s
e

types of polaron, can form. Since a carrier expands a
approaches a coincidence, there are six distinct types o
termolecular hop. A significant contribution to a hop’s ac
vation energy can come from the electronic kinetic ene
associated with the change of the carrier’s size.

Furthermore, a hop is generally accompanied by a cha
of vibrational entropy @e.g., D f v ib,L(Rs2Rc/2)/T in Eq.
~48!#. The entropy contribution, like the hopping activatio
energy, is of second order in the electron-lattice coupl
strength. As such, the entropy contribution is proportiona
the hopping activation energy. The Meyer-Neldel ‘‘compe
sation’’ effect,DF5EA2EA(T/T0), results whenRc.2Rs
in Eq. ~48!.20

All told, the ability of a carrier to move about an occupie
molecule in response to atomic motions can significantly
fect the formation and hopping of even a simple molecu
polaron. These effects will be embellished for multicomp
nent molecules with intricate shapes. The theory also app
to carriers that occupy multiatomic defect centers in se
conductors.
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