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Numerical simulations of driven vortex systems

G. W. Crabtree, D. O. Gunter, H. G. Kaper, A. E. Koshelev, G. K. Leaf, and V. M. Vinokur
Argonne National Laboratory, Argonne, Illinois 60439

~Received 12 August 1999!

This paper reports on several large-scale numerical simulations of vortex systems that are driven through
superconducting media with defects. The simulations are based on the time-dependent Ginzburg-Landau equa-
tions. The simulations demonstrate regimes of plastic and elastic steady-state motion in the presence of a twin
boundary, show the effect of regular and irregular arrays of point defects on vortex trajectories, and show a
mechanism by which vortices move through an array of columnar defects. Also presented are the results of
some transient simulations in two and three dimensions, which show that, in the transition from the Meissner
state to the vortex state, vortices are formed by a process of deposition.
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I. INTRODUCTION

The quantitative exploration of the dynamic states o
vortex system driven through a superconducting med
poses formidable challenges, especially when there is a
nificant degree of disorder in the medium. Energy losses
inherent; hence, the definition of a free energy is ruled o
and the usual relations of thermodynamics do not apply
cases like these, numerical simulations can yield informa
that is difficult or even impossible to obtain otherwise. In th
article we report on several large-scale simulations of vor
systems that are driven through superconductor config
tions with defects. We demonstrate regimes of plastic
elastic steady-state motion in the presence of a twin bou
ary, show the effect of regular and irregular arrays of po
defects on vortex trajectories, and show a mechanism
which vortices move through an array of columnar defec
We also present the results of some transient simulation
two and three dimensions, which show that, in the transit
from the Meissner state to the vortex state, vortices
formed by a process of deposition.

The simulations are based on the time-depend
Ginzburg-Landau~TDGL! equations.1 The equations de
scribe the state of a superconducting medium in terms o
order parameter and a vector potential. There are no assu
tions about the number of vortices in the system or the vo
interaction laws. In this sense, the TDGL equations are m
reliable than the equations of molecular dynamics, espec
in cases where boundaries and nucleation processes a
volved.

The numerical integration of the TDGL equations r
quires, however, considerable computational resources.
large-scale simulations reported here were carried out on
IBM SP system at Argonne and took typically on the ord
of hundreds of hours of CPU time. But, as our simulatio
demonstrate, realistic configurations can be modeled q
successfully, and significant results can be obtained.

The Ginzburg-Landau model of superconductivity and
tails of the numerical approximation are presented in Sec
Section III is devoted to simulations of driven vortex syste
in the presence of a twin boundary~Sec. III A!, point defects
~Sec. III B!, and columnar defects~Sec. III C!. Section IV
gives the results of some transient simulations illustrating
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transition from the Meissner state to the vortex state in t
and three dimensions. The results are summarized and
cussed in Sec. V.

II. GINZBURG-LANDAU MODEL

The simulations described in this article are based on
macroscopic Ginzburg-Landau model of superconductivi1

They require the solution of two coupled partial different
equations for the complex-valuedorder parameter c
5ucueif and the real vector-valuedvector potential A,
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Here,F is the real scalar-valuedelectric potential, andJs is
the supercurrent density, which is a nonlinear function ofc
andA,

Js[Js@c,A#5
es\

2ims
~c* ¹c2c¹c* !2

es
2

msc
ucu2A
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ms
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es

c
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The quantity ucu2 represents the local density of Coop
pairs ~the superconducting charge carriers!; \ is Planck’s
constant divided by 2p; a andb are two positive constants
c is the speed of light;ms andes are the effective mass an
charge, respectively, of a Cooper pair;n is the electrical
conductivity; andD is the diffusion coefficient. As usual,i is
the imaginary unit and an asterisk denotes complex conju
tion. The electric field is E5(1/c)] tA1¹F, the magnetic
field B5¹3A.

The configurations used for the simulations model a
perconducting core imbedded in a blanket of nonsuperc
ducting material~insulator or ordinary metal!. No Cooper
pair leaves the superconductor, so
1446 ©2000 The American Physical Society
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n•Js50 ~4!

at the interface between the superconductor and the blan
wheren is the local unit normal vector. Outside the supe
conductor, the order parameter is identically zero. Bound
conditions specify the magnetic field at the outer bounda

The TDGL equations describe the gradient flow for t
Ginzburg-Landau energy, which is the sum of the kine
energy, the condensation energy, and the field energy,

E@c,A#5E F 1

2ms
US \

i
¹2

es

c
ADcU2

1S 2aucu21
b

2
ucu4D

1u¹3Au2G dx. ~5!

The integral extends over the entire configuration~supercon-
ductor plus blanket!. An equilibrium configuration corre-
sponds to a critical point ofE.

The energy functional~5! assumes that there are no d
fects in the superconductor. Material defects can be natur
present or artifically induced and can be in the form of po
planar, or columnar defects~quenched disorder!. A material
defect weakens or eliminates the well in the condensa
energy. This effect can be included in the Ginzburg-Land
model by making the parametera position dependent an
giving it a smaller value at the site of a defect.

Temperature is a parameter in the Ginzburg–Lan
model; it features only in the coefficientsa andb, and heat
loss mechanisms are not accounted for. Thermal fluctuat
can be included in a Langevin formulation, where a tim
varying random source term is added to the equation for
order parameter. If the mean strength of the source term
zero, its standard deviation is a measure of temperature

A. Dimensionless form

Let c`
2 5a/b, and letl, j, and Hc denote the London

penetration depth, the coherence length, and the therm
namic critical field, respectively,

l5S msc
2

4pc`
2 es

2D 1/2

, j5S \2

2msa
D 1/2

, Hc5~4pac`
2 !1/2.

~6!

In this study, we render the TDGL equations dimensionl
by measuring lengths in units ofl, time in units of the
relaxation timej2/D, fields in units ofHcA2, and energy
densities in units of (1/4p)Hc

2 . The nondimensional TDGL
equations are
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The constantk is the Ginzburg-Landau parameterk5l/j;
s is a dimensionless resistivity coefficients
5(4pk2D/c2)n. The interface condition~4! keeps the same
form, although the symbols now stand for the correspond
dimensionless variables. The nondimensional TDGL eq
tions are associated with the dimensionless energy functi

E@c,A#5E FUS i

k
¹2ADcU2

1S 2ucu21
1

2
ucu4D

1u¹3Au2G dx. ~10!

In the system of dimensionless variables, the lower and
per critical field areHc15(2k)21(ln k11

2) andHc25k, re-
spectively. The thermodynamic critical field isHc51/A2
50.707 . . . , and the BCSdepairing current isj BCS5

2
9 A3

50.385 . . . .2

When material defects are present, we replace the te
2ucu2 in the energy functional by2tucu2, wheret depends
on position:t(x),1 if x is in a defective region,t(x)51
otherwise. The termc in Eq. ~7! is then multiplied by the
position-dependent factort.

We consider only rectangular geometries in a stand
right-hand coordinate system:x from left to right, y from
front to back, andz from bottom to top. The magnetic field i
always oriented in thez direction.

B. Gauge choice and link variables

The ~nondimensional! TDGL equations are invariant un
der a gauge transformation

Gx :~c,A,F!°~ceikx,A1¹x,F2] tx!. ~11!

We maintain thezero-electric potential gauge, F50, at all
times using the link vectorU,

U5e2 ik*A. ~12!

This definition is componentwise,Ux5e2 ik*xAx(x8,y,z) dx8,
and so forth;Ux , Uy , andUz are thelink variablesof lattice
gauge theory.3 The TDGL equations assume the form

]c

]t
52

1

k2 (
m5x,y,z

Um*
]2

]m2
~Umc!1c2ucu2c, ~13!

s
]A

]t
52¹3¹3A1Js , ~14!

Js,m[Js,m@c,Um#5
1

k
Im F ~Umc!*

]

]m
~Umc!G , m5x,y,z.

~15!

C. Computational procedures

For the numerical solution of Eqs.~13!–~15!, we evaluate
c at the grid vertices (xi ,yj ,zk) andAx , Ay , andAz at the
midpoints (xi1

1
2 hx ,yj ,zk), (xi ,yj1

1
2 hy ,zk), and

(xi ,yj ,zk1 1
2 hz), respectively, of the edges of the comput

tional grid. The supercurrentJs and the link vector are evalu
ated at the same points asA, while the magnetic fieldB is
evaluated at the center (xi1

1
2 hx ,yj1

1
2 hy ,zk1 1

2 hz) of each
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1448 PRB 61G. W. CRABTREEet al.
grid cell. This placement of the evaluation points is dicta
by the curl operator. The approximation is second-order
curate in space. Updating in time is done with a single-s
forward Euler method.4

The TDGL code has been implemented on the IBM
system at Argonne National Laboratory. At the time of t
simulations, this system had 128 processors and 128 Mb
per processor; most simulations were done using 16 pro
sors. The transformations necessary to achieve paralle
are described elsewhere.5 The code uses the message pass
interface ~MPI! standard6 as implemented in the MPICH
software library7 to handle domain decomposition, interpr
cessor communication, and file I/O.

A simulation is normally initiated from the Meissne
state. The TDGL equations are integrated through the t
sient state, and the simulations are continued into the ste
state for as long as necessary to collect data for visualiza
and postprocessing analysis. Transport-driven systems
hibit fluctuations during the steady state, not only on
microscopic scale but also on the macroscopic scale, s
practice it is often difficult to say when exactly a steady st
has been reached. We adopt a pragmatic point of view
allow for some fluctuations of macroscopic quantities with
narrowly defined limits~for example, a variation of less tha
1% in the numnber of vortices!. We note that a very large
number of time steps is sometimes needed to reach st
state.

Both two- and three-dimensional configurations are us
Two-dimensional configurations are cross sections of th
dimensional configurations that are infinite and homo
neous in the direction of the field~i.e., thez direction!. We
assume periodicity in they direction. We have A
5(Ax ,Ay ,0), Js5(Js,x ,Js,y ,0), and B5(0,0,B), with B
5]xAy2]yAx . The boundary conditions specify the ma
netic fieldB5BL at the left surface,B5BR at the right sur-
face; BL5BR if the field is uniform. A nonzero differentia
BL2BR generates a bulk transport current in they direction.
The periodicity condition implies that we model a segme
of a current path, rather than a current loop, so we avoid e
effects. A transport current in they direction acting on a
vortex ~magnetic flux tube! oriented in thez direction results
in a Lorentz force in thex direction,F5(F,0,0). In three-
dimensional simulations we have the option of imposing
transport current in thex or y direction.

In a two-dimensional system, each vortex is a straight l
parallel to thez axis. Its position in the (x,y) plane is found
by integrating the supercurrentJs once around the circum
ference of a computational mesh cell: a measurable valu
the integral indicates the presence of a vortex in the inte
of the cell. ~The presence of more than one vortex is e
cluded if the computational grid is sufficiently fine. In ou
simulations, a computational mesh cell measures two co
ence lengths along each side.! Having found the position of
each vortex, we generally use a Delauney triangulation
analyze the structure of the vortex lattice. Each vortex in
bulk with fewer or more than six neighbors identifies a d
fect in the lattice.

Finding vortices in three dimensions is not trivial. In pri
ciple, one can find the point of intersection of a vortex w
each transverse plane and connect these points in the lo
tudinal direction to generate the vortex lines. In practice, i
d
c-
p

es
s-
m
g

n-
dy
n
x-

e
in
e
nd

dy

d.
e-
-

t
ge

a

e

of
r

-

r-

to
e
-

gi-
s

difficult to design a procedure that consistently makes
correct connections, especially when the vortices are m
ing. For this reason, we rely mostly on visualization tec
niques, drawing isosurfaces ofucu andB5u¹3Au.

Much relevant information about the properties of a s
perconductor is obtained by measuring the voltage respo
to a driving current. The voltage difference between tw
leads is proportional to the average velocity of the vortic
crossing the line joining the leads. In the simulations,
compute the voltage difference between two points by in
grating the electric field along the line joining the two poin

III. DRIVEN VORTEX SYSTEMS

In this section we present the results of several simu
tions of vortex motion in the presence of a twin bounda
~Sec. III A!, point defects in two dimensions~Sec. III B!, and
columnar defects in three dimensions~Sec. III C!.

A. Twin boundary effects

Twin boundaries in YBCO provide a prototypical ex
ample of strong anisotropic pinning by an extended defe8

While initial magneto-optical experiments9 showed that twin
boundaries are planes of reduced pinning, allowing flux
penetrate more deeply into the superconductor than in
surrounding untwinned regions of the crystal, later studie10

found twin boudaries to be barriers to flux penetration. T
apparent conflict was resolved by further magneto-opt
experiments,11 which revealed that the nature of the tw
boundary pinning depends on the direction of the Lore
force driving the vortex motion. Barrier action occurs wh
the Lorentz force is perpendicular to the twin bounda
while deep penetration occurs when the Lorentz force is p
allel to the twin boundary.

The purpose of the first set of simulations is to explore
interplay between pinning and driving forces in more deta
We find that, at weak driving currents, a twin bounda
dominates both the local structure and the motion of vortic
The twin boundary is an impenetrable barrier to vortex m
tion, and in the bulk the vortex system shows plastic moti
As the current increases, the vortices in the twin bound
are no longer stationary, there is motion in the twin boun
ary, and vortices may cross the twin boundary at weak sp
At strong currents, the driven vortex system behaves like
elastic medium, and most trajectories suffer only a slig
perturbation at the twin boundary.

The configuration used for these simulations is that o
superconductor~GL parameterk54) that is infinite and ho-
mogeneous in the direction of the field (z), periodic iny, and
bounded inx. The (x,y) cross section measures 32l348l.
The superconductor is embedded in an insulating layer~air!,
which is 1

4 l thick. A driving current in they direction is
generated in the bulk by a field differential between the l
and right boundary,

BL50.81K, BR50.82K, ~16!

K is variable~units ofHcA2). The twin boundary is modeled
as a ‘‘trench’’ running from left to right at a 45° angle, tw
correlation lengths wide, where the condensation energ
reduced randomly to a mean value of 56% of the bulk va
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and normally distributed with a standard deviation of 25
Outside the twin boundary, the bulk of the sample is free
defects.

Figure 1 shows the vortex trajectories at increasin
stronger driving currents. We discuss each case in detai

Weak Current@Fig. 1~a!#. The twin boundary dominate
both the local structure and the motion of vortices. The v
tices in the twin boundary are stationary, being pinn
against motion by the random potential; the twin boundar
an impenetrable barrier to vortex motion; vortex motion
the bulk is plastic motion, and the direction of motion of t
vortices is primarily along the close-packed directions of
lattice.

The last feature especially explains the guided motion
occurs in Fig. 1~a!: The twin boundary defines the clos
packed directions, this orientational order persists over l
range ~up to the dimension of the simulated sample!, and
vortex motion is restricted to the close-packed directions.
a result, the twin boundary determines the velocity direct
of vortices even at distant points.

A characteristic feature of Fig. 1~a! is the occurrence o
velocity discontinuities—most obviously at the twin boun
ary, where the velocity suddenly jumps from zero to appro
mately its highest value in one lattice spacing. This is qu
different from the hydrodynamic motion of liquids, whe
the velocity profile grows monotonically from zero at th
boundary, reaching its highest value deep in the liquid. A
ditional discontinuities occur far from any local structur
feature. Four rows above the twin boundary, the veloc
abruptly jumps from a high value to nearly zero, and th
are discontinuous velocity changes two rows and seven r
below the boundary. Farther below the twin boundary, afte
region of little or no motion, two adjacent rows of vortice
suddenly flow at substantial velocity parallel to the tw
boundary. The discontinuities associated with these two r
have no apparent communication with the twin boundary
with the guided motion adjacent to the boundary. They illu
trate the collective nature of the plastic response of the v
tices to the particular driving and pinning forces in the sim
lation.

The plastic motion in Fig. 1~a! displays discontinuities in
the direction as well as the magnitude of the vortex veloc
Near the left edge of the sample, just below the twin bou
ary, there are several rows of vortices moving to the low
right with substantial speed. These vortices border on
other group moving to the upper right with approximate
equal speed. The discontinuity in direction is dramatic:
velocity change occurs in one vortex spacing with no tran

FIG. 1. Vortex trajectories in the presence of a twin bounda
.
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tion region. This velocity direction discontinuity may be u
derstood in terms of the principle of motion restricted
close-packed directions. The lattice accommodates the
boundary by orienting one of its close-packed directio
along the boundary, as described above. Since the
boundary is a barrier to vortex flow, the other two clos
packed directions are effectively blocked as paths for m
tion. If any motion is to occur, it must be along the clos
packed direction parallel to the twin boundary. However, j
below the left end of the twin boundary, the barrier effect
absent, and all close-packed directions are available for
tex motion. The vortices choose to move to the lower rig
because it is the close-packed direction oriented neares
the direction of the Lorentz force.

Despite the velocity discontinuities, there is a great d
of correlation in the vortex motion in Fig. 1~a!. The four
rows of vortices above the twin boundary move with a
proximately equal average velocity, as do the two rows j
below the boundary and the fifth to seventh rows belo
These correlations of neighboring velocities are easy to
derstand qualitatively as an effect of the shear modulus. E
tic energy is minimized if neighboring vortices move at t
same velocity, so that the shear bonds are not stretche
spite of this mechanism, the velocity correlations are re
tively short range, extending less far than the orientatio
correlation of the lattice.

Intermediate current@Fig. 1~b!#. The driving force has
become comparable with the twin boundary pinning forc
and the twin boundary no longer dominates the motion
vortices. The vortices in the twin boundary are no long
stationary; there are crossing trajectories in the twin bou
ary; vortex motion in the bulk is beginning to resemble ela
tic motion; and the direction of motion of the vortices
determined primarily by the Lorentz force.

In fact, a new kind of guidance occurs, where vortic
move parallel to the boundary but internal to it.12 This inter-
nal guidance is most easily seen at the lower left of the tw
boundary, but it also occurs elsewhere along the bound
over shorter distances in regions where the random pinn
wells are relatively deep compared with the bulk but s
comparable in depth to neighboring wells. The driving for
is sufficient to overcome the relatively low local barriers b
tween wells, but insufficient to overcome the larger barri
blocking access to the bulk.

The high correlation among vortex trajectories near
twin boundary, which was apparent at the weaker curren
missing. The fact that some vortex trajectories cross the t
boundary indicates that different vortices do not necessa
follow the same path when encountering the same pinn
configuration at different times. Their motion depends n
only on the pinning configuration, but also on the local vo
tex configuration at the time of the encounter.

The twin boundary, which has lost its structure, no long
appears as an extended object to the vortices. Rather, it
line of random pinning wells, some of which are stron
enough to trap vortices. Without local structure, there are
well-defined close-packed directions and no structural f
tures to guide the motion of vortices. The randomness a
ciated with the relative sizes of the pinning and Loren
forces at this current destroys the coherence of the boun
and is ultimately responsible for the disorder that charac

.
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1450 PRB 61G. W. CRABTREEet al.
izes the plastic motion in Fig. 1~b!. Where there is no ran
dom element, as in the bulk of the sample, the motion
highly ordered.

Far from the twin boundary, where pinning is absent
new order appears in the vortex motion. Figure 1~b! shows a
remarkable uniformity in the vortex trajectories. The vortic
all move in nearly the same direction with the same spe
Further, the direction of motion is nearly the Lorentz for
direction, not the twin boundary direction. The motion
Fig. 1~b! is the beginning of elastic motion, where all vort
ces move with the same average velocity. The effect of
twin boundary on the vortex velocities is greatly reduce
There is only local influence in the vicinity of the twi
boundary, and it upsets the elastic order imposed by the
entz force, rather than defining the orientational order t
controls the Lorentz force. At this driving current, we clea
see a competition between the Lorentz force and the pinn
forces. Neither is dominant, and the unstructured veloci
of the vortices near the twin boundary reflect the incoher
nature of their response.

Strong current@Fig. 1~c!#. The Lorentz force clearly over
whelms the twin boundary pinning forces, and the motion
elastic everywhere. Most trajectories suffer only a slight p
turbation at the twin boundary.

B. Point defects

The TDGL equations enable a close look at vortex mot
through arrays of point defects. The numerical simulation
this section show the actual effect of two regular def
arrangements—one with rectangular symmetry, the o
with triangular symmetry—on the number of vortices, t
vortex trajectories, and the magnetic field in a superc
ductor.

The simulations lead to a number of observations. T
triangular defect arrangement accommodates more vor
~at steady state! than the rectangular defect arrangement a
is slightly more effective at vortex pinning, at least at we
driving currents. Vortices travel along well-establish
tracks, which are formed early in the transient phase.
average vortex spacing increases in the direction of vo
motion and enforces the formation of fault lines in the latt
structure of the moving vortices. When the driving force
weak, the magnetic field is determined primarily by the v
tices that are pinned on the defects, and vortex motion in
transverse direction has a smoothing effect on the magn
field.

The basic configuration used for these simulations is
dimensional: a superconductor measuring 33l348l, peri-

odic iny, embedded in a thin insulating blanket (1
4 l). A bulk

transport current is generated in they direction by a field
differential between the left and right surface,

BL52H, BR50. ~17!

H is thus the average applied field, which is variable.
A total of 160 point defects are arranged regularly in t

interior in 16 rows and 10 columns. The columns arel
apart, so a defect-free zone of 3l is left adjacent to the left
and right surface. A defect covers one computational m
cell ~which is one-half coherence length on each side!, so the
density of the defects is 0.16%. All defects have the sa
s
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strength; the condensation energy at each defect is 56%
the bulk value. In the arrangement with rectangular symm
try, the defects are placed in a regular square pattern; in
arrangement with triangular symmetry, every other colu
is shifted vertically over a distance 1.5l.

We note that it takes considerable time to reach the ste
state, especially when the defects are arranged in a triang
pattern and when the bulk transport current is weak.

Figure 2 illustrates the observation that the triangular
fect arrangement accommodates more vortices than the
angular defect arrangement. The number of vortices in
system at steady state~including the 160 vortices that ar
pinned on the defects at all times! ranges from approximately
413 atH50.9375 to 745 atH51.375 and is generally highe
for the triangular arrangement. The one exception, at
weakest current, indicates that the steady state was prob
never reached in this case. The difference is small but m
surable ~approximately 5%!, and becomes smaller as th
driving force increases. At the strongest current conside
here, the difference has disappeared altogether.

Figures 3 and 4 support the observation that the triang
defect array may be more effective at vortex pinning, at le
at weak driving currents. Figure 3 shows theI-V curves de-
duced from the simulations (I 52H). The rectangular defec

FIG. 2. Number of vortices at steady state as a function of
applied field.

FIG. 3. Current (I 52H) vs voltage.
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PRB 61 1451NUMERICAL SIMULATIONS OF DRIVEN VORTEX SYSTEMS
arrangement yields a higher voltage at low currents an
lower voltage at high currents; the crossover occurs aro
H51.3, a little below the strongest driving force used
these simulations. Figure 4 shows the residence time
measure of the average time spent by a vortex in the sys
as it moves across the sample~not counting vortices that ar
pinned!. The triangular defect arrangement forces the vo
ces to spend more time in the system, certainly at weak
rents. The difference becomes less pronounced as the dr
force increases, and beyond some point the arrays ap
equally effective.

The vortex trajectories are shown in Fig. 5~rectangular
defect arrangement! and Fig. 6 ~triangular defect arrange
ment!. Both cases show that the vortices tend to travel alo
well-established tracks—a phenomenon shown most gra
cally by Haradaet al.13 The track patterns are establish
during the transient phase and maintained in a very st
manner during the steady state.

FIG. 4. Vortex residence time at steady state as a function of
applied field.

FIG. 5. Vortex trajectories through a rectangular array of po
defects; top row, from left to right:H50.9375, 1.0625, 1.1875
bottom row, from left to right:H51.250, 1.3125, 1.375.
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Rectangular defect arrangement~Fig. 5!. When the driv-
ing current is weakest, the tracks are straight and run midw
between the defects. Deviations from this pattern occur n
the left surface; for example, some vortices are being trap
at an interstitial site, while others that had been trapped
lier at an interstitial site manage to escape and travel do
the nearest available straight-line track. The vortex patter
highly regular; a triangulation of the moving vortex lattic
shows that it is virtually free of defects.

As the average field~and, hence, also the driving curren!
increases, more vortices need to be accommodated, and
tiple tracks develop between adjacent defects near the
surface, where the vortices enter. The straight-track pat
observed at weak current still exists but is pushed furt
into the interior. In the left zone, vortices are squeezed
tween vertically adjacent defects along two tracks in an
ternating pattern, their passage being facilitated by a sl
up-and-down motion of the vortices that are pinned at
interstitial sites. Gradually, as the vortices are driven to
right and accelerate, the tracks straighten out and merg
form the straight-line track pattern observed at the weak
current. Since the number of vortices flowing across
sample per unit time is constant, the increase in vortex
locity is accompanied by a corresponding decrease in vo
density. In fact, the density seems to change rather abru
where the tracks merge. This rather abrupt change in
vortex density is associated with a fault line in the structu
of the vortex lattice: Fault lines provide a mechanism
accommodate strains resulting from an increase in the in
vortex spacing.14

The up-and-down motion of the vortices that are pinned
the interstitial sites~mentioned in the preceding paragrap!
can be observed directly. But there is also indirect eviden
Figure 7 shows the temporal evolution of the voltage dr
between two leads placed, respectively, at 2.5l from the left
surface, at the center of the sample, and at 2.5l from the
right surface (H51.375). During an initial transient, which
starts successively at the left-most, center, and right-m

e

t

FIG. 6. Vortex trajectories through a triangular array of po
defects; top row, from left to right:H50.9375, 1.0625, 1.1875
bottom row, from left to right:H51.250, 1.3125, 1.375.
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position, the voltage rises to some nonzero average va
Once the steady state is reached, each voltage keeps os
ing, and the oscillations are clearly modulated. The osci
tions mark the passage of individual vortices across the
joining the leads. They are stronger near the surfaces,
their average frequency is determined by the vortex velo
and density. The modulations are manifestations of the
and-down motion of the vortices that are pinned at the in
stitial sites; as they move, they exert an accelerating or
celerating influence on the velocity of each passing vorte

Triangular defect arrangement~Fig. 6!. Especially at the
weakest current, many vortices are again pinned at inters
sites in the bulk. They force approaching vortices into
northeastern or southeastern direction and create the
loops in the hexagonal track pattern. A triangulation of t
positions of the moving vortices shows a lattice struct
with a fair number of defects, but no discernible patterns

As the average field increases and more vortices nee
be accommodated, the hexagonal pattern near the left su
is replaced by a quadrilateral~diamond! pattern. The hexago
nal pattern still persists, but further into the interior. T
transition occurs in one or at most two column widths. T
transition zone separates a high-density region on the
from a low-density region on the right. Again, a decrease
density is accompanied by a corresponding increase in
locity, so the flux remains constant. As more vortices m
be accommodated, vertical motion of the vortices becom
more difficult near the left surface. The diamonds open
and the tracks become more clearly separated.

Figure 8 shows the magnetic fieldB, across the supercon
ductor for various values ofH. The thick curves correspon
to the rectangular defect arrangement, the thin curves to
triangular defect arrangement. When the driving force
weak ~bottom curves!, the magnetic field is determined pr
marily by the vortices that are pinned on the defects, and
maxima coincide with thex positions of the defects. Th
maxima are less pronounced when the defects are arra
in a triangular pattern than when they are arranged in a r
angular pattern. The smoothing is a result of vortex mot
in the transverse~y! direction; in the rectangular arrangeme
such motion is virtually absent, while it is relatively signifi
cant in the triangular arrangement~see Figs. 5 and 6!. As the

FIG. 7. Temporal evolution of the voltage drop along a verti
line at 2.5l from the left surface~top!, in the center of the sample
~middle!, and at 2.5l from the right surface~bottom!. The width of
the superconductor is 33l. (H51.375.!
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driving force increases~middle curves!, motion in they di-
rection becomes more significant, both with the rectangu
and the triangular defect arrangement. The field still sho
some oscillatory behavior, but the oscillations are less p
nounced. The field appears to be slightly stronger in the
angular case. At the strongest driving force~top curves!, the
difference between the two arrangements has virtually dis
peared. The field is determined by the moving vortices, a
in both cases there is enough motion in they direction that
the field profile is almost flat between adjacent defect c
umns.

Several of the findings outlined above have been c
firmed in other simulations. For example, we observe ch
nel motion in a large superconductor (120l348l) with ran-
domly placed point defects. While some vortices are pinn
on the defects, others move through meandering tracks p
ing between the point defects. The channels form during
transient phase and remain remarkably stable. Their sha
irregular because of the random placement of the defe
After introducing thermal noise, we still observe chann
motion, but the phenomenon is considerably obscured by
fluctuations in the vortex trajectories. Also, the motio
evolves on a different time scale and is more akin to cre
motion.

C. Columnar defects

In this section we present the results of some thr
dimensional simulations. Simulations of this type are e
tremely time consuming, and systematic parameter stu
are still prohibitively expensive. We focus on vortex motio
through columnar defects. Columnar defects, which are
troduced in a superconducting crystal by irradiation w
heavy ions, increase the critical current, extend the irrev
ible region, and impede vortex creep motion.15 Splaying the
columnar defects with respect to the magnetic field has b
proposed as a mechanism to further enhance the trans
properties.16 Our simulations show that, under certain cond
tions, splaying can have the opposite effect, as it facilitate
kinking-induced transfer of a vortex from one defect to a
other.

l

FIG. 8. Magnetic field across the sample~averaged overy).
From bottom to top:H50.9375, 1.0625, 1.1875, 1.250, 1.312
1.375. Vertical lines mark the positions of the defects.
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PRB 61 1453NUMERICAL SIMULATIONS OF DRIVEN VORTEX SYSTEMS
The configuration used for these simulations consists
superconductor measuring 14l36l312l, periodic in y,
embedded in an insulating blanket~thickness1

2 l). A bulk
transport current in they direction generates a driving forc
in the x direction.

Splayed columnar defects are introduced as follows. F
the bottom plane surface of the superconductor is see
randomly with point defects of variable strength~density
1%!. Next, the point defects are extended upward into
interior of the superconductor to generate vertical colum
defects parallel to the applied field. The columns are sub
quently tilted~splayed! at an angle of610° with respect to
the applied field, either in the (x,z) plane or in the (y,z)
plane. The positive and negative tilting directions are cho
randomly from a uniform distribution, in such a way th
approximately one-half of all columns is tilted one way a
approximately one-half the other. This type of configurati
is referred to as ‘‘splayed.’’ By splaying the columns in th
(x,z) plane, we simulate ‘‘in-fan’’ vortex motion~i.e., mo-
tion in the tilt plane!; by splaying the columns in the (y,z)
plane, we simulate ‘‘across-fan’’ vortex motion~i.e., motion
transverse to the tilt plane!. In the latter configuration, the
vortices see the defects as V-shaped obstacles. Figure 9
a typical snapshot of ‘‘in-fan’’ motion. The lighter object
are the defects: they are stiff and stationary; the darker
jects are the vortices: they are flexible and move.~The de-
fects are really straight; the pinched structure is due to
error in the visualization code.! The strength of the magneti
field is chosen so the number of vortices is approximat
equal to the number of defects~‘‘matching field’’!.

The observation that splaying the columnar defects a
ally enhances vortex motion is supported by the volta
curves of Fig. 10. The four curves show the temporal evo
tion of the voltage in four cases:~a! in-fan vortex motion
through splayed columnar defects,~b! across-fan vortex mo
tion through splayed columnar defects,~c! columnar defects
parallel to the field, same defect seeding as for~a!, and ~d!
columnar defects parallel to the field, same defect seedin
for ~b!. The voltages vary somewhat with time—an indic
tion that we have not reached steady state yet—but eve

FIG. 9. Vortex motion through splayed columnar defects.
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ally both splayed configurations yield a higher voltage th
either of the parallel configurations. A higher voltage rep
sents greater vortex velocities.

The observation may seem counterintuitive at first, b
can be explained by the mechanism of kinking-induced v
tex transfer. Given the strength of the defects, the vorti
prefer to be pinned to a defect. If the columns are paralle
the field, the vortices are pinned over their entire length, a
it takes considerable energy to drive them off a defect. If
columns are splayed, a small kink in the vortex is sufficie
to initiate a transfer to the next available defect.

The sequence of snapshots of Fig. 11 captures
kinking-induced transfer of a vortex from one defect to a
other. The defects are the thin straw-like objects, the vorti
the darker flexible tubes. A vortex that is originally pinne
on a defect develops a loop in the interior of the sample;
loop peels off and is pulled to the next defect. The lo
extends in both directions in a travelling-wave-like scenar
and gradually the entire vortex transfers to the next availa
defect.

IV. TRANSITION TO THE VORTEX STATE

How vortices are formed as a superconductor enters
vortex state from the Meissner state is a topic of considera

FIG. 10. Vortex motion through columnar defects. Voltage
time.

FIG. 11. Kinking induced motion of vortices through splaye
columnar defects.
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1454 PRB 61G. W. CRABTREEet al.
debate and uncertainty. The time scales are too short
experimental observations, although some exploding-coil
periments have been reported recently in the literatur17

Typically, in these experiments the field is ramped up
several hundred T in a few ms. The TDGL equations offe
unique tool to explore the transition to the vortex state, a
in this section we summarize the results of several numer
simulations based on the TDGL equations.

Simulations in two- and three-dimensional systems s
port a scenario where vortices are formed in the bulk of
sample through a process of ‘‘deposition.’’ As the ambie
field ramps up, it rushes into the superconductor. The fr
becomes unstable, its curvature increases, and vortices
spawned. The process is illustrated in Figs. 12 and 13.
time scale on which the evolution represented in these
ures proceeds is difficult to estimate because the time
been nondimensionalized by means of the unknown di
sion coefficient. Our best guess is that the entire deposi
scenario evolves in a matter of microseconds.

Vortex deposition in two dimensions.Figure 12 gives a
series of snapshots ofucu taken during the transient phas
dark gray corresponds to a value close to 1~Meissner state!,
light gray to a value close to 0~normal state!, and vortices
are set off against a black background. The configura
measures 32l348l and is periodic iny. A twin boundary
~planar defect, two coherence lengths wide! extends from left

FIG. 12. Vortex deposition in two dimensions.

FIG. 13. Vortex deposition in three dimensions.
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to right, perpendicular to the lateral surfaces. The system
originally in the Meissner state; att50, the field is raised,
BL50.82, BR50.78. ~The very small bulk transport curren
helps to drive the vortex system to steady state.!

At the start of the computation, the system is almost
tirely in the Meissner state~dark gray!; the order parameter is
slightly depressed near the left and right surface and the
nar defect. Raising the applied magnetic field results alm
immediately in a suppression of the order parameter i
fairly large region near the lateral surfaces.~The slight asym-
metry is a result of the transport current.! As the fronts of the
suppressed regions approach each other, they became
stable, especially near the planar defect. The instabilities
velop into vortices, and the fronts assume complicated s
tial structures. The formation of vortices continues, with
concomitant rapid reduction of the free energy. At the sa
time, the fronts of the suppressed regions retreat toward
boundaries, but the order parameter remains suppresse
the region of the defect. The planar defect facilitates
formation of vortices, and soon the vortex region extends
the way across the sample. Eventually, the entire super
ductor is in the vortex state; the highest vortex density
found in the twin boundary. The total number of vortices
the system is approximately 2700.

Once the vortex state has been reached, the remaind
the transient is spent on a rearrangement of the vortex c
figuration, with a gradual decrease of the free energy. In
absence of any driving forces, this rearrangement proce
very slowly. A detailed investigation of the structure of th
vortex lattice reveals that the system evolves toward a m
perfect lattice. The orientation of the lattice and the locat
and nature of the remaining lattice defects depend on
relative importance of the pinning forces due to the surfa
and the planar defect.14

Vortex deposition in three dimensions.Figure 13 gives a
series of snapshots of two isosurfaces of the magnetic fi
during the transient phase of a transition from the Meiss
state to the vortex state in a three-dimensional system.
configuration consists of a homogeneous superconduc
strip ~periodic iny, measuring 8l32l in the (x,z) plane, no
defects! imbedded in a normal metal. The comput
tional domain, including the metal blanket, measu
14l32.5l312l, with periodicity in they direction. A uni-
form magnetic field~in the z direction! with BL5BR52.8 is
applied att50. We follow the evolution of the system to th
vortex state by monitoring the magnetic field.

The figure shows how the magnetic field first penetra
the superconducting strip and then retreats as flux tubes
spawned in the interior of the strip. The scenario of vort
deposition is similar to the one observed above in two
mensions. Because there are no defects in the system
final arrangement of the flux tubes is perfectly symmetric

When thermal fluctuations are included, the scenario
basically the same but proceeds in a much more irreg
fashion. Isosurfaces seem to float and coalesce in the s
and flux tubes form more or less by condensation of fluct
tions. Figure 14 shows a typical vortex configuration.

V. SUMMARY AND DISCUSSION

In this article we have presented the results of seve
large-scale numerical simulations of vortex motion in sup
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PRB 61 1455NUMERICAL SIMULATIONS OF DRIVEN VORTEX SYSTEMS
conducting media. The simulations are based on the TD
equations of superconductivity and give the best results
rently obtainable on a macroscopic scale withouta priori
assumptions about the number of vortices or the nature o
interactive forces among the vortices.

The simulations shed considerable light on collective v
tex motion in the presence of quenched disorder, show
guided motion in the presence of a twin boundary, chan
motion in the presence of point defects, and kinking-induc
motion through columnar defects. The simulations show t
vortex motion in the presence of a twin boundary may

FIG. 14. Vortex configuration in the presence of thermal flu
tuations.
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plastic or elastic, depending on the relative strength of
pinning and driving forces. From the details of trajectories
is possible to make qualitative judgments as to the rela
merits of certain defect arrangements. In particular, the sim
lations show that a triangular arrangement of point defe
may be better at pinning vortices than a rectangular arran
ment and that splaying columnar defects with respect to
magnetic field has the effect of actually enhancing the av
age vortex velocity. The simulations also provide insight
the process of vortex formation, showing that the proc
evolves via a scenario of vortex deposition in the bulk.

Simulations based on the TDGL equations are extrem
time consuming and require significant computing resourc
They are therefore more useful for qualitative than for qu
titative studies. For example, they can give informati
about the dynamic phases of a driven vortex system, but
about the exact location of the transition lines. Systema
parameter studies are still prohibitively expensive.
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