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Coexistence of the critical slowing down and glassy freezing in relaxor ferroelectrics

B. E. Vugmeister and H. Rabitz
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

~Received 18 June 1999; revised manuscript received 7 February 2000!

We have developed a dynamical model for the dielectric response in relaxor ferroelectrics that explicitly
takes into account the coexistence of the critical slowing down and glassy freezing. The application of the
model to the experiment in PbMg1/3Nb2/3O3 ~PMN! allowed for the reconstruction of the nonequilibrium
spin-glass state order parameter and its comparison with the results of recent NMR experiment@R. Blinc et al.,
Phys. Rev. Lett83, 424 ~1999!#. It is shown that the degree of the local freezing is rather small even at
temperatures where the field-cooled permittivity exceeds the frequency-dependent permittivity by an order of
magnitude. This observation indicates the significant role of the critical slowing down~accompanying the glass
freezing! in the system dynamics. Also, the theory predicts an important interrelationship between the
frequency-dependent permittivity and the zero-field-cooled permittivity, which proved to be consistent with the
experiment in PMN@A. Levstik et al., Phys. Rev. B57, 11 204~1998!#.
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I. INTRODUCTION

Relaxor ferroelectrics, which are disordered perovsk
ferroelectrics like PbMg1/3Nb2/303 ~PMN! or PbSc1/2Ta1/2O3,
represent a new class of materials that have been a subje
numerous investigations~see, for example, Refs. 1–13!. Re-
laxor ferroelectrics manifest themselves in the extraordin
low-frequency dispersion of their dielectric permittivit
compared with regular ferroelectrics. The position and
height of the permittivity maximum plotted as a function
temperature depends on the frequency of the probe field
shifts to lower temperatures when the frequency decreas

The latter behavior is accompanied by the observed s
ting between the field-cooled~FC! and zero-field-cooled
~ZFC! permittivity and the existence of long-lived remane
polarization. However, as has been emphasized recently
bulk of the relaxation spectra in relaxors remains active e
far below the temperatureTf where the FC and ZFC permit
tivity split, and the nonlinear susceptibility does not diver
at Tf . All these findings indicate nonequilibrium phenome
and quasinonergodicity~‘‘freezing’’ !, rather than a true ther
modynamic dipole spin-glass transition.

On the other hand, the existence of the very high diel
tric constant indicates that these systems are close to fe
electric instability, and, therefore, one could expect the ma
festation of the critical slowing down of dynamics and
competition between the critical slowing down and the
pole spin-glass freezing. Such a dichotomy makes it a n
trivial task to extract from the experiment quantitative ch
acteristics of the freezing.

One of the important characteristics of spin-glass freez
is a value of the spin-glass order parameterq, which in re-
laxors is a time-dependent quantity. We will show that t
quantity can be extracted from the experimental results
the frequency-dependent permittivity, with the use of t
model discussed below. Also the theory predicts an imp
tant interrelationship between the frequency-dependent
mittivity and the zero-field-cooled permittivity, which
proved to be consistent with the experiment.
PRB 610163-1829/2000/61~21!/14448~6!/$15.00
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II. MODEL

It has been proposed recently12 that relaxor behavior is a
common characteristic of the collective dynamics of loc
ized giant dipole moments distributed in highly polarizab
lattices. This assumption is consistent with the observatio
relaxors of the quasisoft optical modes~remaining finite at
all temperatures!, frequency of whichv0 is of the same order
of magnitude (v0;50 cm21) as those in highly polarizable
dielectrics such as KTaO3 and SrTiO3. The necessary condi
tion of relaxor behavior is the simultaneous existence of
broad distribution of the local field and the broad distributi
of dipole relaxation frequencies. Also, experiments10,11,4 fa-
vor the hypothesis that the physical origin of localized dipo
moments is the off-center shift of the atom even at h
temperatures. In this model, the large values of the locali
dipole momentd* induced by an off-center ion are assoc
ated with the polarization cloud~cluster! formed by the si-
multaneous displacements of the other atoms adjacent
given off-center ion. The value ofd* determines the energ
Vcl of the isolated cluster in the applied electric fie
Eex ;Vcl52d* Eex . The basic physical principles governin
the formation of localized~giant! dipole moments in highly
polarizable crystals~such as doped KTaO3 or SrTiO3) have
been reviewed in Ref. 14. It has been proven, also, that
anomalous collective behavior of such crystals is caused
the modification of the dipole-dipole interactions due to t
effect of the spatial dispersion of lattice permittivity.

In relaxor ferroelectrics, the notion of polar clusters
more complicated than described above due to strong in
actions of closely separated off-center ions. An attempt w
made15 to develop a microscopic theory of cluster formatio
in highly polarizable materials with the account of pair inte
actions between off-center ions~dilute limit!. This approach
has been applied successfully to K12xLi xTaO3 (x,0.04).7

On the other hand, in disordered perovskite relaxors, the c
centration of off-center ions is not small and the interactio
between them are unknown. In this situation, it seems p
tical to develop a phenomenological approach of dielec
response that would take into account two main factors
tinguishing these systems from conventional ferroelectr
14 448 ©2000 The American Physical Society
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PRB 61 14 449COEXISTENCE OF THE CRITICAL SLOWING DOWN . . .
namely, the existence of a broad distribution of local fie
and a broad distribution of relaxation times characteriz
cluster reorientations.

A convenient approach to describe dynamical behavio
relaxor ferroelectrics is to start from the Bloch-type equ
tions widely explored in the theory of regular ferroelectri
possessing Debye relaxation.16 We write the Bloch equation
in the form

]^d* ~ t !&
]t

52
1

t
@^d* ~ t !&2^d* &E(t)

eq #, ~1!

where^d* (t)& is the nonequilibrium thermal average valu
of the effective dipole moment of a polar cluster charact
ized by the reorientation frequencyt21 and the effective
local field E(t).

Equation ~1! describes the relaxation of the dipole m
ment of each cluster to its quasiequilibrium value^d* &E(t)

eq ,
which depends on the value of the local fieldE(t) induced
by other clusters at any moment of time16

^d* &E
eq5

Tr d* e2d* E/kT

Tr e2d* E/kT
. ~2!

If, e.g., each dipole moment can be oriented only along
opposite directions, then̂d* &E

eq5d* tanh(d*E/kT). In Eq.~1!
the local fieldE is a time-dependent random field. It includ
the contribution from other clusters, the contribution fro
the applied fieldEex , and the contribution from the stati
random field caused by material imperfections. Note that
~1! is quite general and, although the explicit form of^d* &E

eq

and the precise definition of the polar clusters are mo
dependent, it affects only the coefficients of the theory d
cussed below.

The observable quantity in the dielectric measurement
the average cluster polarization

P~ t !5n^d* ~ t !&'nE dE f ~E!E
t0

tm
dt g~t!^d* ~ t !&, ~3!

wheren is the concentration of localized dipole moments a
the overbar denotes the configurational average, which
cludes the average overE and t. In Eq. ~3!, f (E) is the
distribution function of the local fields, andg(t) is the dis-
tribution function of relaxation times. As a first step in u
derstanding the complex behavior of relaxor materials,
neglected in Eq.~3! the possible correlation effects betwe
E andt.

We assume that the distribution function of the local fie
can be written in the form

f ~E![ f ~E,P!5 f̃ ~E2gP2Eex!. ~4!

The proposed form off (E,P) is consistent with that given by
the mean-field approximation (d is the Diracd function!

f MF~E,P!5d~E2gP2Eex!, ~5!

meaning that the local field is equal toE5gP1Eex . The
effect of the local-field fluctuations corresponds to the
placement of thed function by the functionf̃ ~4! of finite
width, which depends parametrically on the average po
s
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ization P. A self-consistent approach for evaluatingf (E,P)
in disordered ferroelectrics is discussed in Ref. 14.

The phenomenological parameterg introduced above
characterizes the strength of cluster-cluster interactions. N
that in impurity-induced relaxors such as K12xLi xTaO3,
where the interaction between localized dipole moments
mediated by soft optical phonons,g54p/e l ~Ref. 14! (e l is
the background permittivity describing the dielectric r
sponse of the highly polarizable lattice!. It is apparent that in
disordered complex perovskites, such as PMN, PST, etc.
physical picture of cluster-cluster interaction is much mo
complicated. Therefore, below we will considerg as a phe-
nomenological fitting parameter. Note also, to avoid con
sion, thatg is not a parameter of the Lorentz local-fie
corrections, sinceE is a field that experiences an effectiv
dipole momentd* rather than true microscopic dipole mo
mentd.

It is known that the existence of the broad distribution
relaxation times leads to non-exponential behavior in the
larization relaxation. In order to reproduce this effect with
the proposed formalism, we first rewrite Eq.~1! in the inte-
gral form

^d* ~ t !&5^d* ~0!&e2t/t1
1

tE0

t

dt8e2t8/t^d* &E(t2t8)
eq , ~6!

and then take the average with respect tot, andE. Thus, we
obtain @note that (1/t)e2t/t52(d/dt)e2t/t#

P~ t !5P~0!q~ t !2E
0

t

dt8
dq~ t8!

dt8
Peq~ t2t8!, ~7!

where

Peq~ t !5nE dE^d* &Ef „E,P~ t !… . ~8!

At Eex50, Eq. ~8! determines the values of spontaneo
polarizationPs ~Ref. 14!

Ps5nE dE^d* &Ef ~E,Ps!. ~9!

The variableq(t) in Eq. ~7! is equal to

q~ t !5E
t0

tm
dt g̃~t!e2t/t'E

t

tm
dt g̃~t!, ~10!

where the right-hand side expression of Eq.~10! is valid for
smooth functionsg̃(t). The variableq(t) describes the frac-
tion of clusters effectively frozen at timet and therefore has
the meaning of the spin-glass order parameter on a fi
time scale. Note that, as we assumed above,q(t)→0 at t
→`.

Equations~7! and ~8! can be applied for the analysis o
different experimental situations related to linear and non
ear polarization responses on the applied field. In this pa
we will concentrate on the analysis of linear dielectric p
mittivities, assuming that the values ofEex are sufficiently
small such that the linear response theory is valid. This
sumption is consistent with the body of experiments on l
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14 450 PRB 61B. E. VUGMEISTER AND H. RABITZ
ear dielectric permittivity in relaxors. We will consider th
temperaturesT.Tc , where Tc is the temperature of the
ferroelectric phase transition.

Expanding the right-hand side of Eq.~7! in the power
series with respect toEex and P and considering the firs
nonvanishing terms we obtain

P~ t !5P~0!q~ t !2k~T!E
0

t

dt8
dq~ t8!

dt8
@gP~ t2t8!

1Eex~ t2t8!#, ~11!

where the functionk(T) is given by

k~T!52nE dE^d* &E
eq] f ~E,P!

]E U
P50.

~12!

III. FREQUENCY-DEPENDENT PERMITTIVITY

We assume that att50 the system is in thermal equilib
rium, meaning that atT.Tc ,P(0)[Ps50. The steady-state
frequency-dependent permittivity can be easily obtain
from Eq. ~11! usingEex(t)5Eex

(1)eivt and the definition

e~v,T!54p
]P~v!

]Eex
(1)

1e l . ~13!

Using the Laplace transform in Eq.~11! we obtain

e~v,T!5
4pk~T!Q~v,T!

12gk~T!Q~v,T!
1e l , ~14!

where

Q~v,T!5E
0

`

dt e2 ivt
dq

dt
. ~15!

For the smooth functiong(t), the real part ofQ(v,T) can be
simplified as17

Q8~v,T!5E
t0

tm
dt

g~t!

11v2t2'E
t0

1/v

dt g~t!

512q~v21,T!. ~16!

The relation~16! between the functionsq(t) andQ8(v) will
be employed below to obtained information on the degree
local freezing in relaxors from the frequency-dependent
electric constant using the fact that usuallyQ9,Q8.

At v50, Eq. ~14! defines the static or field-cooled pe
mittivity

eFC5
4pk~T!

12gk~T!
1e l . ~17!

On the other hand, atvtm@1 the functionQ(v,T)→0 and
thereforee(v)→e l . Thus, in our modele l can be regarded
as a high-frequency permittivitye` ~with respect to the di-
electric measurements at frequenciesv!v0). Combining
Eqs.~14! and ~17! we obtain
d

f
i-

Q~v!5
e~v!2e0

eFC2e0

11
g

4p
~eFC2e l !

11
g

4p
@e~v!2e l #

. ~18!

Note that in a number of recent publications o
relaxors18,19,13the analysis of the relaxation spectrumQ(v)
was based on a different relation betweenQ(v) and the
permittivity, namely,

Q~v!5
e~v!2e l

eFC2e l
, ~19!

where we substitutede l for e` . Equation~19! was intro-
duced earlier in spin glasses, assuming that the relaxa
time t in Eq. ~16! is a characteristic of independent clust
relaxators. However, this equation has a different mean
when applied to relaxor ferroelectrics. Indeed, Eq.~19! can
be obtained from Eq.~1! if we first perform the average ove
the distribution of the local random fields at a constant va
of t and then perform the average overt. With such a two-
step averaging, we arrive at Eqs.~19! and ~16! with t re-
placed byt* 5te/e l . Note thatt* is a relaxation time of the
long-wavelength collective polar mode undergoing the cr
cal slowing down of dynamics, rather than the relaxati
time of the individual dipoles or clusters. Thus, the applic
bility of Eqs. ~19! and ~16! to a system with long-range o
mesoscopic polar order implies that the crystal can be
vided into macroregions within which the relaxation time
all dipole moments has the same magnitude, and the ave
over t means the average of the dielectric response for
ferent macroregions. On the other hand, Eq.~18! is consis-
tent with the formation of the short-range clusters in the
sence of correlations between the relaxation times
different clusters.

IV. ZERO-FIELD-COOLED SUSCEPTIBILITY
AND REMANENT POLARIZATION

The values ofeZFC(t) can be obtained by solving Eq.~11!
with P(0)50 andEex5const. We consider here a particul
case when one can approximately neglect the memory eff
in Eq. ~2! by replacingP(t2t8)'P(t) ~which implies a fast
decay ofdq/dt). Thus, we obtain

eZFC~ t !5
4pk@12q~ t !#

12gk@12q~ t !#
1e l . ~20!

One can see thateZFC(t) is identical toe(v) given by Eq.
~14!, if one substitutesv by 1/t in Eq. ~16!.

Equation ~11! can be used also for the analysis of t
polarization decay atT.Tc @assuming that the initial non
equilibrium polarizationP(0) is small enough, such that th
linear equation~11! is valid#. In order to obtain the remanen
polarizationPr(t), we solve Eq.~11! in the same manner a
above, but withEex50 andP(0)Þ0. We obtain

P~ t !

P~0!
5

q~ t !

12gk@12q~ t !#
5

eFC2eZFC

eFC2e l
. ~21!

The denominator in Eq.~21! reproduces the effect of th
critical slowing down of dynamics, which is imposed on th
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effect of glass freezing characterized by the slow decay
functionq(t). For example, whengk→1 ~i.e., the system is
in the vicinity of the second-order phase-transition tempe
ture!, it follows from Eq. ~21! that Pr(t)5const, indepen-
dently of the value ofq(t).

V. COMPARISON WITH THE EXPERIMENT IN PMN

A. Nonequilibrium spin-glass order parameter

The nonequilibrium spin-glass order parameterq(t,T) is
a very important quantity determining the dielectric respo
of relaxors. The dielectric permittivity can be formulated
terms of the parameterq(t,T) in a way consistent with the
description of magnetic susceptibility in magnetic allo
where spin-glass and ferromagnetic order coexist. It is c
venient to rewrite Eq.~14! in the identical form with the use
of Eq. ~16!,

e~v,T!5
4pk~12q!

12gk~12q!
1e l . ~22!

The first term in Eq.~22! is very similar to the well-known
solution for the susceptibility given by the infinite rang
Sherrington-Kirkpatrick model~mean-field theory!

x5
C~12q!

T2u~12q!
. ~23!

Equation~23! has been widely used for the description of t
experiments on ZFC susceptibility, as well as frequen
dependent susceptibility in magnetic alloys20 and relaxors,21

by treating the parametersC andu as purely phenomenologi
cal fitting parameters. In fact, our approach justifies and g
eralizes Eq.~23! in the case of a nonequilibrium spin-gla
state. The deviation of the parameterk(T) from u/T indi-
cates the deviation from the mean-field picture.

Equations~14! and ~16! allow for reconstructing the val
ues of the functionsq(t,T) from experiments on the
frequency-dependent permittivity. We applied them to
recent data on PMN by Levstiket al.,13 who obtained the
values of the frequency-dependent permittivity, as well
field-cooled and zero-field-cooled permittivity. We usede l
'100, corresponding to the values ofe at v51012 Hz13,
andg51022, provided the good accuracy in reproducing t
frequency-dependent permittivity in the temperature ra
T5200–350 K~see Sec. V B!.

The results of the reconstruction are presented in Fig
where the temperature dependences ofq(T) are shown for
three distinct values of time corresponding to the frequen
of the applied field 20 Hz, 1 kHz, and 100 kHz used in t
experiment. One can see that the values ofq(T) are rather
small even atT5200 K, where the values ofe(v) are al-
most 10 times less than the values ofeFC . The explanation
of this important effect lies in the extremely high dielectr
constant of PMN leading togk'0.98 atT5200 K. Thus,
the system is extremely close to ferroelectric instabili
which results in the significant effect of the critical slowin
down, accompanying the glass freezing, upon the system
namics.

In Fig. 1, the reconstructed values ofq are compared with
the data obtained from the recent experiments by B
et al.22 on the observation of inhomogeneous broadening
g
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NMR lines of Nb ions. The appearance of inhomogeneo
broadening signals the slowing down of the dynamics on
scale of inhomogeneous linewidth~equal to 10–50 kHz!. A
reasonable correspondence between curve 1 and the d22

~with the account of comparable time scales in both exp
ments! allows us to suggest the following scenario for t
NMR broadening mechanism in PMN. As known, e.g., fro
the analysis of nuclear spin-lattice relaxation of Li and N
ions in KTaO3:Li,Nb,14 the appearance of polarization o
the mesoscopic length scale in highly polarizable crys
results in a significant modulation of the electric-field gra
ent, which leads to the modulation of nuclear-resonance
quency. Since in disordered PMN crystals, all atoms lac
center of symmetry, one can assume that the nuclear
quency shift for each Nb atom will be proportional to th
corresponding value of the local fieldE. As a result, the
width d of the inhomogeneous line will be proportional
the fraction of polar clusters@given by the nonequilibrium
spin-glass parameterq(T)#, whose dynamics is effectively
frozen on the time scale of 1/d. The above broadening
mechanism gives also a natural explanation of the Gaus
line shape observed in Ref. 22, since the distribution funct
f (E) of the local field is close to Gaussian in highly pola
izable crystals,14 and the shape of the inhomogeneous NM
line coincides with the shape off (E) for atoms lacking cen-
ter of symmetry.

B. Interrelationship between ZFC and frequency-dependent
permittivity

Another practical aspect of the proposed model, wh
helps to clarify the experimental situation in PMN, is th
interrelationship between the frequency-dependent permi
ity and zero-field-cooled permittivity obtained in Sec. IV.
order to employ this interrelation, note first that in PMN,
the temperatures near the temperature of the permitti
maximum, the characteristic relaxation time satisfies
Vogel-Fulcher~VF! law.3,13 It allows us to replacet in Eq.
~10! by

t5t0eU/(T2T0) ~24!

FIG. 1. Reconstructed values of the nonequilibrium spin-gl
order parameter in PMN as a function of temperature correspon
to the following frequencies of the applied field: 100 kHz~1!, 1 kHz
~2!, and 20 Hz~3!. Squares reproduce the data obtained in Ref.
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14 452 PRB 61B. E. VUGMEISTER AND H. RABITZ
and introduces the temperature-independent distribu
function g̃(U) of potential barriers.20,17 We obtain (t.t0)

q~ t !512E
0

(T2T0)ln(t/t0)

dU g̃~U !. ~25!

Thus, q is a function of (T2T0)ln(t/t0) that leads to the
validity of the scaling relationq(t,T)5q(t1 ,T1) with

T15~T2T0!

lnS t

t0
D

lnS t1

t0
D 1T0 . ~26!

Using Eqs.~26!, ~14!, and~16!, one can reconstruct the va
ues of q(t,T) and Q8(v,T) and, therefore, the values o
e(v) by employing the experimental data one(v1) at a
given frequencyv1.

The reconstructed values ofe(v) at v520 Hz are pre-
sented in Fig. 2~solid line!, where the data atv151 kHz
have been taken as a reference. The parameters of the fi
T0'223 K and t0'4310211 sec, which are almost th
same as obtained in Ref. 13,T0'224 K and t0'4.3
310211 sec. One can see that at high temperaturesT

FIG. 2. Experimental~squares! and reconstructed~solid lines!
values of the dielectric permittivity in PMN. Experimental valu
are reproduced from Ref. 13.
ys

a

tt

. B

e

n

are

.245 K) the reconstruction reproduces the experimen
data with good accuracy. The deviation between the rec
structed and experimental data for lower temperatures is
to violation of the VF law in PMN already discussed in Re
3 and 13. The self-consistency of the model has been te
also by reconstructing the values of the zero-field-cooled p
mittivity using Eq. ~20! and the same reference data
above. In order to find the timet entering Eq.~20!, we use
the fact that in the experiment13 the dielectric constant wa
measured by slowly heating the crystal from 80 K at the r
0.5 K/min. It gives, e.g., the estimatet5330 min at T
5245 K. The result of the reconstruction is shown in Fig
by the solid line. As one can see from Fig. 2, the position a
the height of the maximum ofeZFC are reproduced with very
good accuracy. The deviation between the reconstructed
ues and experimental data is due to violation of the VF l
taking place at low temperatures. Indeed, the temperatur
the maximum ofeZFC corresponds toT'245 K, which, as
discussed above, is the boundary value for the validity of
VF law. If the VF law would be valid for all temperature
then botheZFC ande(v) would approach the valuee0 at T
5T0. One can see that this tendency is reproduced by
interpolation of the solid curves in Fig. 2 to lower temper
tures, thus clarifying the origin of the observed low
temperature deviations between the reconstructed and ex
mental values foreZFC .

VI. CONCLUSION

The high dielectric constant of relaxor ferroelectrics s
nals that these materials are close to ferroelectric instabi
which manifests itself in the critical slowing down of dynam
ics. In disordered relaxor materials, the critical slowing do
is accompanied by glasslike freezing or cluster dynam
which could be characterized by the nonequilibrium sp
glass order parameter. We have developed a dynam
model of the dielectric response in relaxors that explici
takes into account the coexistence of critical and cluster
namics and allows for separating them from the experime
observation.
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