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Order-disorder transition in hcp binary alloys: Next-nearest-neighbor interactions
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The order-disorder transition in hcp binary alloys is investigated by Monte Carlo simulations and the
renormalization-group methods. The inclusion of the interactions beyond the nearest neighbors induces quali-
tative changes of the phase boundaries. Especially, the contribution from second-neighbor interactions explains
the shift along the concentration axis of the congruent point of order-disorder transition observed/a the
phase boundaries in the Ti-Al binary system.

The phase structure of the Ising model equivalent to bi- In the Monte Carlo simulations, we have mainly used a
nary alloy systems has been studied by both numerical ankicp lattice of 24 24X 32= 18432 sites with periodic bound-
analytic methods such as Monte Carlo simulatibii;luster  ary conditions. A smaller system (¥2.2x 16) and a larger
variation methods(CVM),°~*° and renormalization-group system (4&48x64) have been also used to check the
calculations:®~*° However, most of these studies have fo-finite-size effect in some cases, and it proved not to change
cused on cubic structures such as fcc and bcc lattices, andtlae results so much. The calculations have been performed
little has been investigated on hcp lattié8s2® Especially, on the grand canonical ensemble in which the independent
the experimentally observed order-disorder phase boundariegriables are chemical potential differenge= u,— ug and
in hcp Ti-Al alloys shovt” a considerable shift to the higher the temperaturel. The phase boundaries has been deter-
Al concentration from the stoichiometry, which can never bemined by the following procedur&®?*By thermal equilibra-
understood within the framework of nearest-neighbor paition of the system with various parameter sets (), we
interactions™® In this work we investigate the effect of the first obtain the phase diagram on tpeT plane, next we
interactions beyond the nearest neighbors on the ordeexamine the relation betweem and the compositionx in
disorder transition in hcp binary alloys by using Monte Carloeach phase, then we can calculate the phase diagram on the
simulations and the renormalization-group methods. x-T plane.

We first define thath neighbors in hcp lattices as illus- Figure 2 shows the calculated phase diagramger 1.0
trated in Fig. 1. Among the nearest neighbors we distinguistand &,=£;=0.0. It corresponds to the hcp or fcc lattices
the neighbors within a basal plane from the neighbors bewith isotropic nearest-neighbor interactions and well coin-
tween adjacent planes in order to take the tetragonality intgides with those found in the literaturé&?* Here we have
account. Here we suppose the bindry_,B, system inter- defined the reduced temperature normalized by the average
acting with the pairwise energi€s, ; between theéth neigh-  coupling (W,+ W,)/2, which corresponds to the formation
bor pair of elementsA and B. If we define the interaction energy of DQq phase. We note that the composition of the
parameteMV, as congruent point of Dgy/A3 transition already deviates a

little to the higher concentration from the stoichiometric

i 1 i value 0.25 even in the isotropic case.
_el _ Tel i
Wi=Eas 2 (EaatEge). (1) Figure 3 shows the effect of tetragonality. That is, it
o ] shows the phase boundaries with the variationgofrom
the total Hamiltonian of the system can be written by 0.9 to 1.1 under keeping,= £,=0.0. In order to concentrate
on the order-disorder phase boundaries aroun@.25, only
H ZEi WiN g+ s aNa+ usNg 2) DO0,o/A3 phase boundaries are depicted. The effect of varia-

tion of anisotropy ratio on the shape of the phase boundaries

. ) ) is rather weak and the composition of the congruent point
whereN, is the number ofth neighborAB pairs,N, and

Ng are the numbers of each element, anidand ug are the
effective chemical potentials of the pure elements. If we in-
troduce the parameteg;=W,;/W,, the system can be
uniquely determined bWW,, &;, &, andé&s. Especially, the
deviation of¢; from unity corresponds to the anisotropy of
the axial ratioc/a.

Since we are mainly interested in ROordered structure
observed as ther, phase in the Ti-Al binary system, we
shall confine ourselves in the system with antiferromagnetic
nearest-neighbor interactions and ferromagnetic next-
nearest-neighbor interactions in this study. That corresponds
to the parameter regioW,<<0, £;~1, and¢,,£3<0, where FIG. 1. Perspective views) and top view(b) of the hcp lattice.
D0,y (AzB) and B19 AB) ordered phases and A3 disor- Theith neighbors to the central atofshadedl are denoted by the
dered phase are dominant phases at high temperatures. encircled numbet.

‘®
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FIG. 2. Calculated phase diagram fr=1.0 andé,= ¢;=0.0.
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FIG. 7. Top view of the periodic assignment of interpenetrating
FIG. 4. Changes of th®0,9/A3 phase boundaries with the cells. The circles denote>38 sites of the hcp lattice, which are

grouped into 8 cells shown by the solid lines.
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25 renormalization-group method. If we define a spin variable
o, on lattice sitep as+ 1 for atomA and—1 for atomB, the
Hamiltonian(2) can be written in the following form up to
20 L constant terms:
1 )7
H(Wi,a')Z—E > Wia'poq-l-EE o, (4
g 15} ith neighbor P
s
é In the real-space renormalization-group metfdd* we
2 divide the original hcp lattice into sublattices or cells and
§ 10 - assign a cell-spir’ to each cell. Then the effective Hamil-
-§ tonianH' (W, ,¢’) after the renormalization transformation
A is calculated fromH(W; o) by
051
—BH' (W ,0")=In> P(0,0")exp(~ BH(W;,0)),
0.0 ' : - - (5)
0.1 02 03 0.4 ) _ )
Concentration where 8=1/KT and P(a,0") is the cell-spin weight factor

) determined by the following way. We first divide the hcp

FIG. 8. DOy/A3 phase boundaries calculated by the |aiice into eight sublattices and define a cell containing three
renormalization-group method with the variationségffrom 0.0 to sites in each as illustrated in Fig. 7. Then we assign the
-05 un_d_er§1_=1.0 and§3.=0.0. The Iocati_on of the stoichiometric cell-spin by using the Niemeijer-van Leeuwen majority
composition is marked with the dashed line. rule 2® This assignment makes the ordered phases { Bod
. . . . ..B19) in question to be transformed into themselves under the
remains around the stoichiometric value, which agrees W'tr}enormalization transformation. Thus we have the
the earlier study of CVM calculatiorf§. '

Figure 4 shows the effect of incorporating the SeC0nd_renormallzatlon—group equations in the following form:

neighbor interactions. The phase boundaries are drastically
changing with decreasing the value &f from 0.0 to —0.5.

In addition to broadening of the boundary shape, the compo- ) . ,
sitional shift of the congruent point from the stoichiometry to ~ One way to study the phase structure is to investigate the

higher values is observed, which is precisely the same fedloW of renormalization-group equation§), and the other
ture found in thex/ @, phase boundaries in the experimental W&y is to evaluate the free energy d|rlectly by using the
Ti-Al binary phase diagrarfi. If we define the compositional Nauenberg-Niehnuis recursion relatigi?" Details of the
shift 8 of the congruent point from the stoichiometric value, calculations will be reported elsewhere and the results ob-

the effect of second-neighbor interactions can be estimate@ned from the renormalization-group flow are shown in Fig.
as 8. We can also detect the compositional shift of the congru-

ent point of order-disorder transition and estimate the
6=-0.12£,+0.01. (3 amount of shift as

Wi’ :Wi’(Wo,Wl,Wz). (6)

Figure 5 shows the effect of the variations of the third- .
neighbor interactions fron{;=0.0 to —0.2 on the phase 0=~0.06+0.01. 0
boundaries. Besides the trivial shift along the temperature
axis, the changes of the shape of the boundaries are rathgcr)

smallin this case. renormalization-group analyses, suggest that the second-
Although the general contribution from interactions . . group ySes, sugg .
neighbor interactions should play an important role in de-

within the third neighbors is the mixture of the above three cribing the phase eauilibria in heo binary allov svstems. The
types of contributions, we can conclude that the essentidl. 9 P 4 P y aftioy sy :

contribution to the compositional shift of the congruent pointSltuatlon should be the same in fcc latticds. ™ It is

19 _ . . _
of D0,4/A3 order-disorder transition is that from the second-knqwrF that _three body interactions also make a non
trivial contribution to the shape of phase boundaries and

neighbor interactions, which has been often neglected in th ence the manv-body interactions should be included in the
preceding calculations. We have also shown the caIcuIateﬁ y yi . :

hase boundaries fitted to the observeda, phase uture study. Howeyer, if we take the interactions beyond the
b 2 nearest neighbors into account, we can explain the observed

boundarie¥’ in the Ti-Al binary system in Fig. 6. The pa- : o T
rameters are chosen to reproduce the observed congruﬁn&% E?nrgr;tg;cs?é%m\?vti%ir?fg{[\‘;‘vf)_ggziepg?&gda”es in the

transition temperature. It suggests that the order of secon
neighbor interactions amounts to 40% or more of that of The authors are grateful to Professor J. M. Sanchez for his
first-neighbor interactions, which is the same order as preenlightening suggestions on this subject. The numerical cal-
dicted by the first-principles studié%?® culations were performed on IBM SP-2 and NEC SX-4/20

To ensure the above conclusion, we have also investitNumerical Materials Simulatprat National Research Insti-
gated the effect of second-neighbor interactions by using thaute for Metals.

In conclusion, although there is a quantitative difference,
th calculations, Monte Carlo simulations and the
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