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Ground state of a two-dimensional lattice system with a long-range interparticle repulsion:
Stripe formation and effective lowering of dimension
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It has been shown that particle ordering into stripes and effective lowering of dimension reside universally
in the ground state of two-dimensional lattice systems with a long-range interparticle repulsion for any geom-
etry of the host lattice and any physically reasonad¢ropic pair potential. Examples are adatom systems and
ensembles of self-localized charge carriers in layered or two-dimensional narrow-band conductors. On the
basis of this fact a general analytical procedure has been formulated to describe fully the ground-state space
structure of the above systems and the zero-temperature dependence of their filling factor on the chemical
potential. The results obtained enable us to suggest that charge ordering into stripes revealed in copper-oxide
superconductors can be caused solely by a long-range Coulomb hole-hole repulsion.

[. INTRODUCTION host lattice. For each 1D system of the set there is its pwn
interval where this 1D LSLRIR represents the 2D one, the
The two-dimensional2D) lattice systems with a long- whole range, &p=<1, comprising all the intervals. The
range interparticle repulsiofLSLRIR) are of great interest LOD enables us to offer a rigorous analytical procedure for
as they have important physical applications. One of them i¢he 2D LSLRIR GS description, using the results of the exact
the adatom systerhavith a sufficiently strong interaction 1D LSLRIR theory’™ Due to the LOD the GS witfrratio-
between the particles and the substrate. Another field to agtal p turns out to be incommensurable onlydne direction
ply the 2D LSLRIR model is a “frozen” charge carrier
phasé (FCCB that comes to existence in 2D or layered II. HAMILTONIAN. SCRYSTALS
narrow-band conductors when electron or hole hopping is o ) )
suppressedy along-rangemutual electron repulsion. This The HamiltoniarH of the system under consideration has

occurs fort< 5u:(a/r)U, wheret is the electron/hole band- the form

width, éu is the typical change in the energy of a narrow- 1

band electron/hole as it hops between the host-lattice sites, H{n(F)}z -y v(|F— r_7|)n(F)n(F’) (1)
is the typical hopping ranger, is the mean electron/hole 2 Fr7

separation, and is the average energy per charge carrier. - - R

The FCCP differs principally from any known self-localized Wherer=m;a; +m,a, are radius vectors of the host-lattice
electron ensemble including a Wigner crystdlhe highT,  sites, m,, are integers, and, , are host-lattice primitive
cuprates, polycrystal electroceramic materfalss well as translation vector§PTV'’s); below we put the host-lattice
some art 2D conductdts® appear to be most favorable for cell area,|a; X a,|, equal to unity, so tha\ is the dimen-

2D FCCP formation. The distinctive features of the FCCPsionless volume of the system; the occupation numbers of

are rooted in properties of its ground ste®S) att<éu. In  the host-lattice sitesp(r) (microscopic variablgs are as-
this limit the GS is much the same as that of the adatonyymed to be 0 or 1; the sum is taken over the whole host

systems. lattice; v (r)=v(r)/r is an everywhere convex function with
As far as we know, neither the GS nor the thermodynam~ w(r)=u(r) yw

- . tending to zero as~ 2 or faster wherr — . Otherwise
ics of the 2D LSLRIR have been studied adequately. Heré’(r) ; . :

we offer a unified approach to the description of the GS oi”h(r) '3 arbitrary. This class af(r) covers both the FEP and
the 2D zero-bandwidth LSLRIR with aisotropic pair po- the a aton;] systems_. ¢ h . infini
tential of the interparticle repulsiom,(r) (r is the distance Due to theconvexityof v(r)>0 there exists an infinite set

between interacting particlesThe key point of our consid- of p=1/Q; (Q; are integers indexed byin an increasing
eration is azero-temperature effective lowering of dimensionqrde',) SUCh_ that for each of thgm the GS part'de configura-
(LOD) — which we have revealed to underlidespite the tion |s”a s_|mple 2D crystal with one particle per céllS
pair potential isotropy the main GS properties of the 2D Crystal”), i.e., Q;=|detmi,| are theScrystals elementary
LSLRIR for (i) any filling factor,p=N/A’ (N andA are the ~ cell areas, the integers,, («,\ =1,2) being components of
total numbers of the particles and host-lattice sites, respeche jth S-crystal PTV'’s in thea, basis.[Violating the con-
tively, N,A/—); (ii) arbitrary geometry of the host lattice dition of v(r) convexity can crucially change the GS con-
(with one site per cel] (iii) any physically reasonabkg(r) figuration. For example, in the case of the boxlikg) the
>0. We take the term LOD to mean that the GS of the 2DGS configurations are n@& crystals because of a clusteriza-
LSLRIR is a set of different effective one-dimensioriaD)  tion of the particles?] Our strategy is to derive the full de-
LSLRIR whose “particles” areperiodic stripes on the 2D  scription of the GS for any, starting with consideration of
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small vicinities ofp=1/Q; . Since specifien, are irelevant Scrystal siter” can thus be considered to be a kind of a
to this reasoning, we drop the indgat Q and other charac-  gingle (we will call it a “r, & dipole”) which interacts with
teristics of theS crystals for a while. the interstitial particles/hole$P/H's) and other dipoles. The

Owing to the discreteness of the considered system a
macroscopically small chang&N or AN, in N or A/ (we énergy of ther, ¢ dipole interaction with an IP/Hat r =0)

mean thatAN/N,AAMTA—0 while AN/NYZANTA 2o COUAIS
whenN, N— o) produces onlysolated defect&n anScrys- N (e Ol N oy
tal, the space structure of the defects, and the energies of UE(r) = (signv) o (|r =€) —o(|rD]

their formation, depending essentially on th&N or AN The energy of interaction between thg andr’, £’ dipoles
sign. Therefore, the corresponding chan&,, in the GS s

energyEy does not have an odd symmetry AN, AN,

uz (R =v(|R+E-&)+v(R])

AEg=E4(N£|AN|,N£|AN) —E4(N,N) o L
—v(|R+&)—v(|R—¢€']),

=+ [AN[FP[AM, )

where the coefficientg .. (Q) and P..(Q) are uniquely de-
termined by the energies of defects formation and satisfy Y e - L .
inequalities 1 (Q)<u . (Q) and P_(Q)<P.(Q). Equa- perience a crystal field,u.(r), which is the field pro-
tion (2) shows that a gives crystal exists at any value of the duced at a point by the idealS crystal for»>0 and equals
chemical potentialu on the interval[u_(Q),x.(Q)]. —2u for »<0. In the dipole terms the change iy at a
Much the same, the interval d&crystal existence in the givenv, 6E4=JE4(v), takes the form

pressureP is [P_(Q),P.(Q)]. The end pointsu., P.,

whereR=r—r".
The IP/H'’s, in turn, undergo a mutual repulsion and ex-

are related by the equation OEg(v)=min(Ug+Uegyt VigptUey). (53
_ Here
p-=utP.Q, ©)
[u=u(Q) is the Scrystal energy per cdll which follows Ud:; UZ (1 gi) (Sb)
immediately from the known zero-temperature thermody- '
namic identity, is the energy of the IP/H-dipole interaction;
HN=Eg+ PN @ Uem 2 duz+ 3 Uz £ (T0>0 (59

Thus, in some vicinity ofp=1/Q the GS is bound to be a o
superstructure of the defects. Our next step is to find themis the excitation energy of as crystal atv=0, ny#0;

5ug~?|§|2/Q>0 is the energy of formation of a dipole with

Ill. ZERO-DIMENSIONAL DEFECTS the displacement vectds,
AND THEIR COALESCENCE

Adding one particle to or removing one particle from@n Viep= 2 v([ragl) (5d)
crystal results in the formation of a zero-dimensional defect, «p

“ + defecton” or “— defecton,” respectively. One can be s the energy of the mutual IP/H’s repulsion,=r,—ryp;
inclined to think thatoN should be identified exactly with subscriptsi,k=1, ... ng and @,8=1, ... |»| number the

the total number of- defectons spatially separatetiu.  antiparticles’ and IP/H’s radius vectors, respectively;
being simply the energy of defecton formation.si . How-

ever, this seemingly evident statement is actually incorrect U _2 -
due to acoalescencedf defectons of the same ‘“sign.” In o & Uor(T )
other words, if the numbew| of Scrystal particles removed ) ] .
(v<0) or added $>0) is more than 1, there existsbaund 1S the IP/H’s energy in the above crystal field. The minimum
stateof | v| + defectons whose energy is less thafe? . We s taken only with respect to the dipole variableg, r;, &,
have revealed the coalescence by computation, using a “dandr,. Hence, the dipole approach allows us to work with

(5¢)

pole” description of the GS with=+1,+2, ... ,whichwe only a few discrete variables. This facilitates considerably
have specially worked out for this purpose. It consists in thethe (classig Monte-Carlo computer simulation of the de-
following. fectons[|v|=1, SE4(+1)=¢%] and their coalescence at

At v#0 the GS is a perturbe8 crystal where, beside |y|>1.

particles placed at host-lattice sites in the interstices of the The dipole approach offers a clear view of how the defec-
Scrystal (#>0) or emptyS-crystal sites, “holes,” ¢<<0),  ton bound state arises despite the fact that the defectons of
there are generally a certain numivgrof S-crystal particles  the same sign repel each other, being widely spaced. In the
displaced. ArS-crystal site left by its particle can be consid- GS the total dipole energ¥y(v) =Uq(v) +Uq4(v), is nega-
ered as an “antiparticle” with the “charge” equal to the tive despite the fact thdtl,,>0, so that for|v|>1 the GS
particle one in magnitude but opposite in sign. The pair “aspace structure is governed by an interplay betwekhand
particle displaced by a vectgrtits antiparticle located at an V,,>0. The IP/H dipole interaction gives the maximal gain
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400 194 $R H3E SRR 4R HE 201 FIG. 2. The universality range of the ground state of 2D

LSLRIR on a square host lattice £39=<12). The symbo® marks

off the S-crystal ¥ values. The symbaD at 4=7 shows that the
GS with thisd is not anS crystal but a mixture of native stripes of
the neighboringS crystals (=6 andd=8). The integers written
out beneath thé axis are the endpoints of the intervals over which
all GS stripe structures share the same FﬁgV(“director” ). TheS
crystals with thesd) have differenti_ andd. . The coordinates of
the directors are shown in the upper row of the table. The pairs of
integers in the lower row are the coordinates of the displacement

FIG. 1. The coalescence for squdfe), Q=9] and triangular vectorsé_ . All Scrystals of the universality range share the same
[(b), Q=16] host lattices =—5). HereO denotes host-lattice Q; branch.
sites, @ denotes particlesy denotes antiparticles) denotes holes,
— denotes dipoles, and solid boxes mark off a single defecton. Th#to a periodicstripelike structure(Fig. 1). It consists of el-
dash-dotted parallelograms mark off the dipole “shells.” The dot-ementary substripes which, as will be shown below, repel
ted lines show nucleation of the elementary stripes enumerated bgach other. Therefore, it D defectf such a type that are
1,2,... . Incase(a) boundary effects dominate the mutual repul- expected to form the GS superstructure. They fall into the
sion of the unfinished- stripes; in casdb) the tendency to- class of the simplest 1D defects. Generally, such a defect is a
stripes divergence is seen. Both configurations refer to the mod@tripe of rarefaction or compression that arises when an
potentials withR~ Q" Scrystal part adjacent to a line of particles with some
dipoles that are all attracted to it, the dipoles’ antiparticlesone by a host-lattice translation vectgt Formation of
forming a parallelogram of a size r~Q2 On the other Ns (Ns—, Ng/N*?—0) stripes of lengtt_; changes\V by
hand, U,>0 is as small as possible when the shells of .
neighboring IP/H’s share some of their dipoles to reduge AN=*+ngdX&|Lg,
These requirements can all be fulfilled together only when ) ] ) - )
the IP/H's arealigned in a row the near-neighbor IP/H's Where Ls is measured in units ofd|. This produces the
being shifted relative to one another by the saBerystal ~change in the system energy,
PTV with the modulus~r (Fig. 1. In such a castEy(v)| is .
more than the magnitude of the dipole energy|of infi- AE=¢(d,£)[AM,
nitely separated defecton&j=|v|E4(*=1). The coales-
cence arises when the energy gals|Eqy(v)|—|Ey|, ex-

the proportionality coeﬁiciem(a,é) being given by the ex-

il pression
ceedsV,, of the row. SinceA~|[»|v(r) (the estimate holds
for both smallp and p~1), this condition is met ifo(r) e~ e
decreases not too slowly, or, more exactly, if &(d,§)=|dx¢] nzl > ugr-nf), (7)
r
y= f_v(r)dr/r_v (r=1. (6)  wheref is anyScrystal PTV other thami; =" means sum-
r

) . ] ] mation over theS-crystal semiplane
The computer simulation carried out with the model poten-

tial v(r)ecr ~Pexp(-r/R) over a wide range of the param- r=kd+1f, —w<k<w, —w<|<O0. (8
eters,3,R, has shown that the conditiop=1 is really the
criterion of the coalescence for afy| (and anya; ,). It is The GS is realized by the stripes with=d_, £=¢&_ or

this situation that is the subject for study from here on. It isa:&, £=£, which provide the minimum of(d, &) for
of most frequent occurrence. The limiting cage 1 will be

outlined in the next section. the case of rarefactione(d,£)<0] or of compression

[g(&,§)>0], respectively. By analogy with + defectons”
IV. STRIPE FORMATION AND THE LOWERING or “ + defectons” we will call these stripes— stripes” or
OF DIMENSION “ + stripes,” respectively.
The absolute values of stripe formation energies per
A. Elementary 1D defects unit of stripe length,
It follows from the above results that with an infinite in-

crease inv| the bound state dfv| defectons is transformed gr=|e(d.,E)], 9)
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are nothing but the coefficien. [see Eq.(2)] associated is a minimum at a fixed number of stripes,Ng . Here
with the elementary 1D defects. As follows from E), the  H,,=H,,{l(m)} is the energy of the interstripe interaction;
corresponding it is the sum

,u,+=;iEU+Qsi. (10

- Hine= E ansfm —1m,=Im,)s (13b)
my>m; 2 1 2 1
Lest there be a contradiction with the fact of the defecton o . s v -
coalescence; . ande? are bound to satisfy inequalities where the summation is taken over &l stripes;Vp(l) is
- - the generalized pair potential of the stripe-stripe interaction,

namely, it is the interaction energy of twb stripes with a

di_7 _~ d
%] <e_<e,<ef. (11) coordinate differencel, between which there arem

To verify them we have computed. , based on Eq7), for ~ =0.1,... other = stripes,

Q up to 150 in parallel to the Monte Carlo coalescence stud- ®

ies. The computation has shown that the inequalities are re- VES(1) = 2 U(lf i nf:) E =IF++m,§+ .
ally the case for alb(r) under consideration, i.e., far(r) m n=0 bm ol T hme -
which meet criterion(6). (149
When Q>1 andu(r) goes exponentially to zero over . . . > >
Q v() g P y U(r) is the energy of interaction between a certaji..

. <_~ 1/2 - ayr g - 24 ; ) )
distanceR<r ~Q ™ mequahnes(ll} become §trengthened. dipole and the infinite system of dipoles with the displace-
In such a case they can be obtained by simple eStImatersﬁent vector— &, whose antiparticles fill the semiplar(®)
Since|£..|~1, and, correspondinglyd.. x £.|~Q? it fol- - P P

lows from Egs.(7) and (10) that =, ~QY?R~tu. On the with d=d., f=f.,

other hand,|e |~u~uv(r). Therefore,s_>|e%|. As for

¢4, it is comparable to the minimum of the crystal field U(r)=rz U, g (r=ra).

ucr(F) (Sec. ll). By virtue of the exponential decrease in , )

v(r) and the inequalitﬁ<r_the ratio milﬁucr(F)]/Uexceeds The symbolE;1 means summation over the semiplane just

QY?R™!>1 significantly, and hencé;a‘i|>5+ . mentioned. Here and further on in the paper all energy quan-
Inequalities(11) together with the mutual repulsion of tities associated with stripes are energies per unit of stripe

stripes of the same sign lead to the conclusion that the GS ilgngth. o

a vicinity of 1/Q is a superstructure aof stripes separated by To find the set of (m) that minimizeH;,;, and thereby,

“native” stripes of the unperturbe8 crystal. These are pairs it is helpful to notice that the dipole-dipole interaction energy

of neighboringS-crystal particle lines with PTW. , i.e., . - I .

they are shifted relative to one another by a vedtowhich Uz —g(r)=v(|r=¢h+u(r+&)—2v(r)),

is anyS-crystal PTV satisfying the equatidd. X f.|=Q,a  appearing in Eq(14b), has the structure of the second-order

* stripe that is a pair of the particle lines with a relative- finite difference. This suggests tHa(nfi) as a function of

displacement vector. + £, . Enumerating the: stripes to, N is positive since(r) is a convex function. Ih>1, this is

say, m, the equations of the particle lines bounding theeasy to see, taking into account that the conside(gd go

(14b)

mth = stripe can be written in the form to zero no slower than™2. Moreover, our computation has
R R R ) shown thatU(m?t) is a positive and monotonically decreas-
r%)(k):kdi+l(m)fi+m§i , (129 ing function ofn for any n=1 providedv (r) meets condi-
tion (6). For this reason potentialé (1) are all positive and
r@k)=rOk)+f. +&., (12 ~ Meet the convexity condition
wherek=0,+1,+2, ... theparametei (m) is the number Vil +1) =2Vt + Vil - 1)>0.

of all particle lines parallel taﬂi between thenth and zero  Consequently(i) the = stripes do repel each other, afit

* stripes. The integei(m) can be considered as the “coor- due to the convexity oWSY!) integersl(m) are arranged
dinate” of themth = stripe. The set of the integetém)  similar to the coordinates of particles of a 1D LSLRIR with
describes the GS space structure of the 2D LSLRIR fully ag convex pair potential. Based on the line of argument of the
the system consisting of stripes and native stripes is in- 1D theory’~ one can conclude that they obey the universal
variant with respect to translation k. . Therein lies the algorithm

LOD.
I(m)=[m/c.], (153
B. The ground-state stripe superstructure where[ - - -] is the integral part of a number, and
The GS set of the coordinatégn) is chosen such that the o NI
change in the system energy which is due to stripe formation C=|9—Ql/r+ =N /N (15b)
in an Scrystal, is the concentration of the: stripes;d = 1/p; the integer

Es=*Nge.+Hiy, (133 o.o=|d. x| (150
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equals the difference between the stripe and the native- the interval(18). For thesed Eqs.(15) determines a mixture
stripe areas per unit of stripe lengiN’; is the total number of — stripes and native stripes of ti® crystal (9> 9,) or
of the = stripes and the native ones; the signor + in Eq.  that of + stripes and native stripes of tH& crystal (&
(158 means that the expression describes a region of rarefas<J;), the stripes being characterized by a new triple of
tion, 9>Q, or compression<Q, respectively.(In this  vectorsd,, f,, & ord,, f., &, the analogs ofi_, f_, &_
connection it shoulq be npted that thestripes are 2D ana- d., f., & respectively. The concentration of new
logues of the 1D dimers introduced by Hubbézd. stripes.c, ¢, is related tod by the expression

Of frequent occurrence is the situation thfat can be
chosen to be parallel t§. , i.e.,f.=(Q/o.)E. . (Particu-
larly, this takes place necessarilydf. =1, and hencegl. c =|"9— By ol

andéi are both host-lattice PTV’sIn such a case both Egs. e Orc

(12a and(12b) have the form

Oy c™ |ar,c><§r,c|-

r(k)=kd.+sé. (k=0,+1,+2,...), (16)  Inpassingd through the pointsy, . the GS space structure
i o ) S changes continuously since, . goes to zero whend
wheres is a certain integer. This allows us to simplify the _, .
description of the GS, considering directly lineb) as the Extending the algorithni15) in the manner shown above
partlt,:,les_ of a 1D lattice system, the particle “coordi- over all possibled, we obtain the branch of thenetastable
nates” beings. As follows from Eqs(15), such particles are  zero-temperature states connected in continuity with the

arranged by the algorithm startingS crystal. Enumerating th8 crystals by the index
— (Sec. 1) again, we will classify these thermodynamic
Sm=[sm], (17 branches by the elementary-cell are@s of the startingS

crystals and will name ther@®; branches. As follows from
the definition, the energy of @;-branch state as a function
of 9, E;(9), is continuous. We have revealed that as a rule,
) a givenQ; branch is shared by sever8lcrystals. On the
C. Stable and metastable thermodynamic branches other hand, there are inevitably intersections of different en-
and first-order transitions ergy branchesEj(#). What this means is thazero-

At c.=1 (9=QFo.) the algorithm(15) determines temperature first-order transitions (of a type of polymor-
the crystal with one partice per cell buit on TV and  B0SE0 20 10 e e e Matorder tran-
;2 . i u i i ints. irst- -
f.+ &, . Further, we call it thes" crystal(rarefiedS crystal, b

c_=1) or theS® crystal (compressed crystal,c, —1). If sitions take place irrespective of the geometry of the host

. i . ; lattice. (Examples are in Sec. V.
this structure is stablé.e., theS ¢ crystal is anothe8 crys- ( b Y

; Summarizing the above reasoning, one can state that there
tal) or metastable, the algorithm can be extended over thgre only two possibilities: thej¢-1)th or (j—1)th means
whole domain of* stripe concentrations,9c.<1, i.e., i

thed int | the S crystal whose numbers ist+1 or j—1, respectively;
over thev interva otherwise, there is a point of the first-order transition on the
9.=Q-0,<9=9,=Q+o_. (1g  interval[Q;,Qj.1] Or[Qj-1,Qjl. _

_ o _ Along with theQ; branches there can exist the thermody-
This follows from two intimately related plain statements namic branches which, beingetastabléen vicinities of the
that have been .fuIIy conflrm_ed by our computatién:the  points 9=Q;, becomestable far from Q;. Each state of
above mechanism underlying the coalescence of zergsuch a “pseuod®;-branch” is a mixture of native stripes
dimensional defects and the 1D defect formation holds folf the jth S crystal and its elementary stripes of rarefaction
any space structure determined by the algoritti®), i.e., or compression with PTV’s other thaﬁ:, the energies of

irrespective of theci value; (ii)_th_e 1D. defects resulting stripe formation, the stripe arrangement, and the energy of
from macroscopically small variations i have the same the state being determined by the expressi@sand (13—

PTV.d. , forall c. . . . . (15) if one replaced. , £. with the corresponding vectors.

) It |sgeV|dent that the&s-crystal native stripes with the PTV Thus, the GS energy dependencedicomprises the stable

d_ord, are alsot stripes of theS" crystal or— stripes of  portions of bothQ; branches and pseuod®- branches.

the S° crystal, respectively. Vice versa, &crystal - stripe To complete the description of the GS it should be also

or + stripe is geometricaILy the Same as @A or S*-crystal  noted that the GS space structure with an arbitgaiy con-

native stripe with the PT\d_ ord. . In view of this fact it  verted in that with the filling factor + p on mutual replace-

does not matter whether one describes the GS space structument of the particles by the empty host-lattice sites and vice

on the interval18) in terms of the+ stripes of theScrystal  versa. Correspondingly, E¢(1—p) =Eg4(p) +(1—2p)Eo,

or in terms of its native stripes. In the latter cd¢e) ap-  whereE, is the energy of the system at= 1. Therefore, it is

pearing in Eqs(15) should be considered to be the “coordi- sufficient to consider the rang&=2 only.

nate” of themth native stripe, and.. should be replaced by At 9=2 the GS configuration can be envisioned as two

the native-stripe concentration; k. . geometrically equivalent sublattices wifki/2 sites, one of
Due to (metgstability of the $¢ crystals the algorithm which is completely occupied by the particles and the other

(15 holds also overd ranges adjacent to both endpoints of is empty, i.e., it is theS crystal with one empty host-lattice

wheres,, is the coordinate of thenth line, s= dlo. is the
mean line separation measured in unitg &f|.
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site per cell. Thex defectons of such a8 crystal, irrespec-  the row of IP/H's(Sec. Il at sufficiently big|v|. Conse-
tive of the host-lattice geometry andr) form, are simply ql_JentIy, the defecton coalescence fa_uls for &wrystal, and
IP/H’s, which do not coalesce as they do not have dipoldt iS separated- defectons that constitute the GS superstruc-
surroundings. Despite this fact the IP/H'’s are arranged in 4ure in vicinities of =Q; . However, the LOD and stripe
stripelike superstructure for deviation 6ffrom 9=2 which ~ formation take place in the casg>1, too. This becomes
is as small as is wished. This superstructure is fully describe@lear if one takes into account that thedefectons ensemble
in terms of the above theory if one considers the sublatticét|?—Q;j|<1 can be considered as 2D LSLRIR, whose par-
just mentioned as the host lattice and the IP/H’s as the paticles are the defectons on tiecrystal that plays the role of
ticles, the filling factor being equal td —2p|. This special ~the host lattice. For such a system criterid is fulfilled
thermodynamic branch represents the GS overiaterval ~ Since the mean defecton separation is latgeis ~[9

[ pp,1— pp], whose left end poinpy, is more than 1/3. This is —Qj|*1’2), and the energy of a defecton-defecton interaction
in accordance with the fact that the least inveserystal ~ decreases at big distances by the same law(es

filling factor for which the defecton coalescence occurs in-

evitably is found to be jusQ;=3. V. DEVIL STAIRCASE
D. A computation procedure to find the 2D LSLRIR For a rational concentration of* stripes, c.
ground state =M/L (M,L are coprime integerdyi <L), the GS stripe

attern determined by algorith(d5) is a 1D crystal with a

The above analysis shows that the GS of the 2D I-SLR”{eII of lengthL and withM =+ stripes(“particles”) per cell.

is fully det%rmined if the following quantities are know(m) Correspondingly, for each triple of the basic vectors
the PTV’'sm’ of the S crystals,(ii) the PTV’s,d!, , and the d. f. E. associated with a giveS crystal (we omit the

displacement vectorst, , of the Q;-branch = stripes to-  indexj in this section the GS configuration witlke . = M/L
gether with their pseud@;-branch analogs; an@ii) the set is a 2D crystal [,M crystal, for shoit whose elementary
of first-order phase-transition points that are the only G&ell can be built on vectors
space-structure characteristics changing on infinitesimal
variations inv(r). d. and ﬁL’M:LFt_FMEi (20)
To cover bothQ; branches and pseud®; branches by
computation it is appropriate to introduce the totality of theand containsL particles, thed value of theL,M crystal
various stripe superstructures that are mixtures of the stripdseing equal t@Q= o..M/L. Similar to theS crystal case, the
of two types,d, f; stripes andd,f, stripes, and to obey the €lementary defects arising in ahyM crystal on an infini-
algorithm (15) wherec. is replaced by their concentration, te§|mal decrease or |_ncreasqf)!rarestr|pesof rarefaqtlon R
¢ orc, (cy+c,=1). Thed,f, ,stripes have the same PTV, stripes or compression C stripes wh|ch are (_)fdlfferent
- i - 5 . ) structure. For this reason the energiesRo€C-stripe forma-
d, b_ut dlfferent veqtorsfl or f, of relgtwe dlsplacemgpt of tion, e el  are different in magnitude, and hence each
pf';\rtlcle lines forming tp em. A‘?Cord'”g to th_e def|n|t|_o_n, a L,M crystal fepresents the GS over some fipiter P inter-
?;\é(tagr superstructure dal,f, , stripes has the inverse filling 5 N [P[_,M, ¢l _the end pointsu y,
PLw anduf v, PPy being determined by| \, andef y,
¥=c,0M +¢,Q?), (19) respectively. In other words, the GS dependenae.obn u,
o P, much the same as for 1D LSLRIR?is inevitably a devil
where integeQ™?=|dxf, 4 is the area of the parallelo- staircase whose steps occur at mitional c. , the stripe
gram built on the vectors,f; ,. Computing the energy of patterns of the.,M crystals forming a fractal structure.

the superstructure as a functioninflependentariables d, Tche Ierr\gths of the deg/il-stairrcase intervald,u
f1,, and 9, on the basis of expressions Hd), Egs. (15) :_'“Lvl'\"_'“L:'V.' andAPy v =P[ v =P v, are related by the
(c.—cq0rc,), Eq. (19), and finding its minimum with re- SIMPIe equation

spect tod, _ﬂ,z, ata fixed?, one obtains both the GS space App y=9AP, (21)

structure, including thé crystals €, ,=0 or 1) and the GS ‘ ’

energyEqy(9). which is an evident consequence of the identi#y. As has
Generally,d has the fornd=ka, wherea is a PTV of the  been shown in the Appendix, they can be expressed in terms

host latticek=1,2, . . .. Forfixed Q- andd, there are only of v(r) explicitly. In the Appendix we have also described

the structure of R,C stripes. The net result fou_ \, is as

k differentd, f, , stripes. Another simplification is that it is in follows:

fact sufficient to bound the moduli af components by val-
ues < 92, while the area differencdQ")—Q®)|, can be Lo
chosen to be<3. As a result, the computation does not take A w=— 2, n[VSy(nL+1)
a lot of time even for bigd. Here we have considered the Tx n=1

<100.
range 3= #=<100 —2VSS, (nL)+VSS,(nL—1)]. 22)
E. The casey>1 The positivity of the second-order finite difference in square

In the limit y>1 the mutual repulsion of IP/H’s domi- brackets is provided by the convexity @f(I) mentioned in

nates their attraction to the dipole surroundings, disruptingsec. IV B.
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Expression22) can be transformed, in view of E¢l4), R4
to a form which is more convenient for calculations, 5 23
Ly & . ar
Appw=— 2, n[V(NFy+E.) 3|
O+ n=1 L
R R . 2 A
—2V(nF ) +V(nFLy—£)] (23 [ 23
where [ Q .
12 14 15 18 20
- ” - - 9
V(r)= kd. + .
(r) k;m v([kd:+r)) FIG. 3. The ground-state phase diagram far(r)

. . . . =r~lexp(-r/R) on the 9,R plane (1= 9=<21). The symbol®

is th§ energy of interaction between aépartlcle located at @nd O mean the same as in Fig. 2; the symisolmarks off the
siter and the particle line with the PTY.. going through integerd for which the GS is ars crystal only ifRis not too small.
the siter =0. The thin vertical lined=14 and the thin segments of the linés

Expression(23) is still further simplified in the above- =15,16,18 separate the regions with different directors and/or dif-

mentioned specialbut Widesprea):icasefi||,§i ., which ad- ferenté. of the sameQ; branch. The lines of the first-order phase

; VI ; « : »  transitions are drawn boldly. The thin and bold lines together
mits description in terms of lined6) as the 1D “patrticles, break up the wholeR, § region shown in the figure into sub-

* regions with their own directors andl. . The coordinates of the
A,LLZEE n[V'(Ln—1)—2V"(£n)+V"'(£Ln+1)]. directors are boldfaced, those &f are in italic. Each director
n=1 is also bound to be a PTV of one or anoth&r crystal,
(24 namely, (2-3)=PTVy_12; (4,1)=PTVy_14,PTVy_15; (3,—3)
=PTVy_15,PTVy_1s; (4,2)=PTVy_1,PTVy_1g; (1,5)

Here V''(s)=V/(sé.) is the pair potential of the line-line
( ) ( g_) p p :PTVﬂ:lg; (4,73):PTV19:20.

interaction 6 is a difference of “coordinates” of interacting

lines), L=(Q/o+)LFM is the length of the lines’ pattern When bothp+0 andq+0, Q; branches of differen,q

period measured in units ¢f..|. Expressior(24) can also be  ¢vtals are distinct. They do not have mutual intersections,
obtained immediately from the 1D LSLRIR theBiby sub- bt all intersect the main branch, the intersections occurring
stitution V'(s) for the 1D pair potential. at rather small concentrations of theg-crystal = stripes. In

Expre55|or_1$22_)1—(24) hold for all M<L, M#0L. They  her words, the intervals qf, g-crystals stability p0 and
show that ratios. ~"A (M/L) with differentL,M but com- .. 9) " and correspondingly, of main-branch metastability,
parable|F | have the same order of magnitude. Particu-turn out to be narrow.

larly, it follows herefrom that irrespective of thiel value The above classification of the triangular-host-lattge
de\2/|l-sta|rzcase step widthsAu(M/L) go to zero as crystals andQ; branches isuniversalin the sense that it
Ld%vr/dr?|,—_ whenL—co, holds for any considered(r).
VI. EXAMPLES B. Square host lattice
Here we demonstrate the above general results with 2D This case is more complicated than the previous one since
LSLRIR on triangular and square host lattices. despite the fourfold symmetry the basic GS vector character-
istics cannot be classified by a simple and general rule. For
A. Triangular host lattice ¥=<12 the universality in the above sense takes place, i.e.,

the vector characteristics do not dependwdn). The GS
structure over the universality region is shown in Fig. 2. For
9>12 the universality fails. This is illustrated in Fig. 3

All triangular lattices that can be built on a triangular host
lattice are necessarilg crystals. This follows from the fact

that theabsoluteenergy minimum of a system whose par-, pare the dependence of the GS vectors on the ragius
ticles are free to move is realized just byrmngula[ Iattlcﬁe. the screened Coulomb potentiakr)=exp(—r/R), is pre-
SuchS crystals are p,q crystals” with PTV's pa;+0da;  sented for 1Z9<18. With an increase i the phase dia-
andpa,+qaz (p,q are arbitrary integersilyzy3 isatripleof gram on theR,d plane becomes more and more compli-
triangular-host-lattice PTV’s which are equal in the moduluscated. This suggests that in the limit>1 there exists an
and form an angle of 120° with each othe€Correspond- averaging procedure to reduce the description of the GS.
ingly, their 9=p?+g?— pg. Using the procedure discussed This problem is beyond the scope of this paper.

in Sec. IV D, we have found that all @,crystals belong to

the sameQ; branch(the main branch which covers the VIl. CONCLUSION

range 4<9<w. Their S crystals areS crystals, too. They ) ) . .

occur atd=q(q+1) (2=q<w) and have PTV'gja,, (q ' The'above conS|derat|9n showg that the partllcle orQerlpg
- ) into stripes and the effective lowering of dimension reside in

+1)ay (k,A=1,2,3; k#X). The stripe structureld) have o >p | g RIR universally. It is a combination of this-

the same PTV,qa,, for all & of the interval [q(q  cretenessof particle positions with the long-range mutual

—1),q(q+1)], their £, being+a, (k#\). particle repulsion and theonvexityof v(r) that is, in es-
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sence, the reason of the phenomenon. Extension of the abosgstems. Particularly, due to charge arrangement into stripes
theory to disordered 2D LSLRIR leads to the conclusion thathe conductance of the granular film as a whole is expected
the coalescence of zero-dimensional defects and stripe foto be highly sensitive with respect to a voltalpeally ap-
mation caused by it take place in this case as well provideglied.

the disorder does not break a short-range order in the host We will discuss the issues mentioned(@—(c) in future
lattice, the impurities or the host-lattice inhomogeneitiesPapers, the immediate problem to study being the 2D LSL-

only fracturing and pinning the stripes. RIR low-temperature thermodynamics.
There are several fields of current interest wherein the 2D
LSLRIR ground-state theory can find use. ACKNOWLEDGMENTS

(@ One field is research of charge stripes in high-
temperature cuprate superconductors, which came to atteps
tion after being revealed with neutron scatterthgn the '
papet! this fact was interpreted in terms of the phase sepa-
ration into an insulating region with an antiferromagnetic
order and a metallic region with holéSIn our view, this is DEVIL-STAIRCASE INTERVALS AND THE STRIPELIKE

not the only way of how the charge stripes can occur: as DEFECTS OF THE L.M CRYSTALS

follows from our present results, in 2D or layered narrow- |t js somewhat more convenient to deal wit®, ,, than
band conductora long-range Coulomb interelectron or in- with Ay, . To derive the expression faxP, y, it is ap-

terhole repulsiorleads to stripe formatiohy itselfif it gives  propriate to consider what happens with a giteM crystal
rise to the FCCP mentioned in the Introduction. Since the,g N* changes by a macroscopically small numbéi:
criterion of FCCP existence given there is easily fulfilled m(|5N§—*|/NiH0|5Ni|Hoo) at a fixed N~ , i.e., |ONZ| >
the cupratesghole velocities in cuprates are less by an order_, . 5 S oS ' Sy

; ) R stripes are removed from or added to théM crystal with
of magnitude than Fermi velocities in the usual mefask- adding or removing the same number of native stripes, re-

ing ir_lto account the alternative, pure Coulo_mb, mechanisng ectively. In such a case the system volume changes by
of stripe formation appears to be necessary in analyses of thﬁp

! . LT + 6Ng o (per unit of stripe lengthwithout a change in the
experiments concerning the chardkole) ordering into number of the particles, and hence, the corresponding change
stripest® The hole stripe superstructure of the Coulomb ori- P ' ' P 9 9

gin can manifest itself in the neutron experiments, affectindn the ground-state energi.gq, has the form
the antiferromagnetic spin order in cuprates. In this context ity
is noteworthy that direct studies of the JGuO, lattice car-

ried out by the nuclear channeligrevealed a periodic [Ai—t&N; PSo. (ONI==0N,, rarefaction

We gratefully acknowledge discussions with M. Pepper,
Shekhter, B. Shklovskii, and P. Wiegmann.

APPENDIX A: THE LENGTHS OF THE

g

stripelike superstructure of the oxygen atoms in Cu-O planes = . a . S _
even at light doping. AL=%6NgPLo. (6Ng=706Ns, compression

(b) The effective lowering of dimension in a 2D FCCP is (A1)

suggested to account for the interesting effect reported bynere sN_>0, so thatA® >0, A", <0. Here and further on
Peppef, which has not been explained to present. It lies in,, o drop the indexl. M. The index+ at PS" and other
the fact that the resistivity of a conducting sheet that aris_es i@]uantities relating to’the,M crystal is introduced to distin-
a system metal A-type GaAs —p-type GaAs at a certain g, jish peqween thé.,M crystals containing+ stripes and
combination of system parameters oscillates in the chargg <o \with— stripes.

carrier density with a great amplitude, the oscillations As will be shown below, a change iNZ by SNZ

minima occurring arational p which are resolved in some _ o .
simple series. There are strong reasons to suggest that the~ ON; or by SNg = = &N, produces in thé.,M crystal,C

effect can be explained in a natural way in FCCP termsStr!peS' orR stripes, respectively, the number ©fR stripes
taking into account a thermodynamic competition betweerpelng equal to
the = defectons and the thermally fractured stripes. SN=LSN. . (A2)

Recently we have shown that a FCCP can exist in poly- S
crystalline nonlinear electroceramic materiéde-called po- Therefore,
sistors and varistofs We expect that it is the above-
mentioned interplay between FCCP defects of two AL =L 6Nl
topologically different types that underlies known, but as yeta
incomprehensible, conduction properties of nonlinear elec-
troceramics.

(c) Interesting artificial systems to realize a conducting
2D LSLRIR are planar arrays of nanometer-size metal gran-  as is seen from the relatiofA2) and expressiori13a),
ules linked by organic molecule wires as tunnel junctidfs. &% is the sum
Such a 2D conductor differs from the FCCP in that there can

o.PS=Le%, —-o0.PL=L&. (A3)

be several electrons per granule. There are strong reasons to =g, /L+€ >0,
suggest that the above theory holds in this case, too, with a - -
slight modification. Stripe formation caused by a mutual re- el =—e./L+e.<0 (A4)

pulsion of electrons of different granules is anticipated to
result in rather unconventional conduction in the granulawheree’:¢ is the change iH;,; per R,C stripe.
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From Egs.(A3) and (A4) we obtain Here
o AP =L(el+€L). (A5) gkl(ﬁﬂzéﬁﬂwlv

Thus, the calculation oA P.. reduces to finding%". To ~
do this we have to consider the perturbation of thé/ Sk, (M) = o, + S,
crystal stripe arrangement produced by the replacemNent
—Ng +6NS . Let it be, for definiteness, the,M-crystal
with — stripes. As the— stripe concentration changes by
SN /N , the algorithm(15) (with an accuracy of additions
~1/N?) takes the form

(A9)

and so on. The quantityn; is the m value for which
{mL/M}=1-i/M (i=1,...M); &,, is the Kronecker

Over the range &k<k, the chain of expressions Eq.
(AB6)—Eqg. (A9) is equivalent to the equation
I(m)=[mMUM-m/M]=1O(m)+(m), (A6)

wherelo(m)=[mL/M] describes the- stripe arrangement
inal,M crystal,

I(m)=[mL/M + 8(m—k,M)/M], (A10)

where 6(x) is the step function

my=[{L/Mm}—m/M], . 1, x=0

<0.
{...} is the fractional part of the number bracketett 0, x<0

=MN, /LéN; ; in the macroscopical limit under consider- At the point m;=k;M +Fn1 the function {mL/M}+1/M
ation [M|—< together withNg . As is evident from Eq. equals zero, and hence, for=m; we havel(m)=1,(m;)
(A6), it is the term{(m) that is responsible for the difference +1+1,(m—m,), i.e., the mutual arrangement ef stripes
between the.,M crystal and that perturbed by the adding or with m>m, remains unperturbed, coinciding with that for

removing of — stripes. 0=m<k;M. Therefore, we have the following.
First let6Ns , and hence\, be negativécompression of (i) The stripe pattern consisting @h, stripes with the
thel,M crysta). Representingn=0,1, ... Ny in the form  ;nherd; M, ... k;M +m, and the nativéScrystal stripes

separating them is defectof the L,M crystal of a discrete
soliton type, the— stripe positions in the defect being deter-
(k=0,1,... enumerates the elementary cells of themined by the algorithm

L,M-crystal stripe patternm=0,1,... M—1 enumerates

the — stripes in a ce)land taking into account thamL/M} o=
is a periodic function ofm with the periodM, we can write lo(my)+1, m=my.
{(m) as

m=kM+m
Io(m), k1M$m$ml_l

(i) For each jump of;(m) there is a perturbation of the
Z(m)= i (m)=[{mL/M}+m/| M|+ ¢y], (A7) L,M crystal which is aL,M-crystal defect geometrically
identical to that just described. It is clear that it is nothing but
where a C stripe
be=kM/| M| (iii) The total number o€ stripes produced by a decrease
' in Ng by |8Ng | is really given by the expressidi2).
As seen from this expressiorf,(m) as a function ofk To find €© one can make use of the obvious fact that the
changes for the first time as the phasg slowly increasing replacement ofo(m) with [ML/M + ¢] (¢ is an arbitrary
with an increase ik, becomes more than the greatest of theconstant does not change the distances betweeistripes,
{mL/M} values, namely, Nl —1)/M. The second change resulting only in a cyclic permutation of stripes within

happens agb, becomes more than tI{EwL/M} value next to each elementary cell of thie,M-crystal stripe pattern. Par-
(M—1)/M, i.e., M—2)/M, and so on. As the set of the ticularly, for ¢=1/M the cyclic permutation results from the

{r~nL/M} values consists of O.M M-1)/M, a shift of only one — stripe per cell, its inner numbem being
change indy by 1 results inM changes of (M), i.e. Z,(M) equal tom,, and its coordinate increasing by 1. Relating this

experiences altogetherdNg+ O(1) jumps ask runs from 0 fact to Eq.(AlO), it is easy to c_onclude that the formatio.n of
to its greatest valueNg /M. These occur at the points cinlf C stripe located, to say, m_the elementary Ce”.V\Mh
=Kk, increasegby one only the distances between stripes
k=k;=K+0O(1), k=k,=2K+0O(1), ... with numbersm=(k;+n)M+m; (n=0,1,...) andthose
with numbersm=(k;—n" )M+my(n'=1,2,...). Inview

(K=[M/M*]) which are macroscopically far apart. Taking of Eq. (13b) this gives fore® the expression:

into account thatm/| M| is negligible as compared with

{mL/M}, we obtain from Eq(A7) ”
o e eS=n21 n[VSS,(nL+1)— VS, (nL)]. (A1)
ng ’ < 1 N

The above argument can be applied for finding

OG=do(m),  kisk<kiyy (i=12,...). (A8 € (8N >0), too. To this end it is convenient to reverse
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the sign ofm in Eg. (A6), replacing—m/ M with |m|/M L =

(M>0). By this means one can easily establish the space AP_=— > n[VS5,(nL+1)

structure ofR stripe. It is such that th® and C stripes adja- - n=1

cent to one another constitute an elementary cell of the +Ve(nL—1)—2Vey(nL)]. (A13)

L,M-crystal stripe pattern in which one stripe (with the

inner numberﬁn) is shifted by 1. Taking this into account

and repeating the above calculations, we find This is equivalent to E(22) due to Eq.(21).

The expression foAP, (theL,M crystal with+ stripes
* is derived just as it has been done foP _ . The only thing
€ =2 n[VS(nL—1)—VSy,(nL)]. (A12)  that one has to bear in mind in this case is that the right-hand
=t side of Eq.(A11) relates toe', , while € is determined by
From Egs.(A5), (A11), and(A12) we obtain finally the right-hand side of EqA12).
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