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Ground state of a two-dimensional lattice system with a long-range interparticle repulsion:
Stripe formation and effective lowering of dimension

A. A. Slutskin, V. V. Slavin, and H. A. Kovtun
Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov, Ukraine

~Received 21 December 1999!

It has been shown that particle ordering into stripes and effective lowering of dimension reside universally
in the ground state of two-dimensional lattice systems with a long-range interparticle repulsion for any geom-
etry of the host lattice and any physically reasonableisotropicpair potential. Examples are adatom systems and
ensembles of self-localized charge carriers in layered or two-dimensional narrow-band conductors. On the
basis of this fact a general analytical procedure has been formulated to describe fully the ground-state space
structure of the above systems and the zero-temperature dependence of their filling factor on the chemical
potential. The results obtained enable us to suggest that charge ordering into stripes revealed in copper-oxide
superconductors can be caused solely by a long-range Coulomb hole-hole repulsion.
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I. INTRODUCTION

The two-dimensional~2D! lattice systems with a long
range interparticle repulsion~LSLRIR! are of great interes
as they have important physical applications. One of them
the adatom systems1 with a sufficiently strong interaction
between the particles and the substrate. Another field to
ply the 2D LSLRIR model is a ‘‘frozen’’ charge carrie
phase2 ~FCCP! that comes to existence in 2D or layere
narrow-band conductors when electron or hole hopping
suppressedby a long-rangemutual electron repulsion. Thi
occurs fort,du5(a/ r̄ )ū, wheret is the electron/hole band
width, du is the typical change in the energy of a narro
band electron/hole as it hops between the host-lattice sitea

is the typical hopping range ,r̄ is the mean electron/hol
separation, andū is the average energy per charge carri
The FCCP differs principally from any known self-localize
electron ensemble including a Wigner crystal.2 The high-Tc
cuprates, polycrystal electroceramic materials,3 as well as
some art 2D conductors4–6 appear to be most favorable fo
2D FCCP formation. The distinctive features of the FCC
are rooted in properties of its ground state~GS! at t!du. In
this limit the GS is much the same as that of the adat
systems.

As far as we know, neither the GS nor the thermodyna
ics of the 2D LSLRIR have been studied adequately. H
we offer a unified approach to the description of the GS
the 2D zero-bandwidth LSLRIR with anisotropic pair po-
tential of the interparticle repulsion,v(r ) (r is the distance
between interacting particles!. The key point of our consid-
eration is azero-temperature effective lowering of dimensi
(LOD) — which we have revealed to underlie~despite the
pair potential isotropy! the main GS properties of the 2D
LSLRIR for ~i! any filling factor,r5N/N (N andN are the
total numbers of the particles and host-lattice sites, resp
tively, N,N→`); ~ii ! arbitrary geometry of the host lattic
~with one site per cell!; ~iii ! any physically reasonablev(r )
.0. We take the term LOD to mean that the GS of the
LSLRIR is a set of different effective one-dimensional~1D!
LSLRIR whose ‘‘particles’’ areperiodic stripes on the 2D
PRB 610163-1829/2000/61~20!/14184~10!/$15.00
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host lattice. For each 1D system of the set there is its owr
interval where this 1D LSLRIR represents the 2D one,
whole range, 0<r<1, comprising all the intervals. The
LOD enables us to offer a rigorous analytical procedure
the 2D LSLRIR GS description, using the results of the ex
1D LSLRIR theory.7–9 Due to the LOD the GS withirratio-
nal r turns out to be incommensurable only inone direction.

II. HAMILTONIAN. S CRYSTALS

The HamiltonianH of the system under consideration h
the form

H$n~rW !%5
1

2 (
rWÞr 8W

v~ urW2r 8W u!n~rW !n~rW8!, ~1!

whererW5m1aW 11m2aW 2 are radius vectors of the host-lattic
sites, m1,2 are integers, andaW 1,2 are host-lattice primitive
translation vectors~PTV’s!; below we put the host-lattice
cell area,ua13a2u, equal to unity, so thatN is the dimen-
sionless volume of the system; the occupation numbers
the host-lattice sites,n(rW) ~microscopic variables!, are as-
sumed to be 0 or 1; the sum is taken over the whole h
lattice;v(r )5 ṽ(r )/r is an everywhere convex function wit

ṽ(r ) tending to zero asr 22 or faster whenr→`. Otherwise
v(r ) is arbitrary. This class ofv(r ) covers both the FEP an
the adatom systems.

Due to theconvexityof v(r ).0 there exists an infinite se
of r51/Qj (Qj are integers indexed byj in an increasing
order! such that for each of them the GS particle configu
tion is a simple 2D crystal with one particle per cell~‘‘ S
crystal’’!, i.e., Qj5udetmkl

j u are theS-crystals elementary
cell areas, the integersmkl

j (k,l51,2) being components o

the j th S-crystal PTV’s in theaW l basis.@Violating the con-
dition of v(r ) convexity can crucially change the GS co
figuration. For example, in the case of the boxlikev(r ) the
GS configurations are notS crystals because of a clusteriz
tion of the particles.10# Our strategy is to derive the full de
scription of the GS for anyr, starting with consideration o
14 184 ©2000 The American Physical Society
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PRB 61 14 185GROUND STATE OF A TWO-DIMENSIONAL LATTICE . . .
small vicinities ofr51/Qj . Since specificmkl
j are irrelevant

to this reasoning, we drop the indexj at Q and other charac
teristics of theS crystals for a while.

Owing to the discreteness of the considered system
macroscopically small change,DN or DN, in N or N ~we
mean thatDN/N,DN/N→0 while DN/N1/2,DN/N 1/2→`
whenN,N→`) produces onlyisolated defectsin anScrys-
tal, the space structure of the defects, and the energie
their formation, depending essentially on theDN or DN
sign. Therefore, the corresponding change,DEg , in the GS
energyEg does not have an odd symmetry inDN,DN,

DEg5Eg~N6uDNu,N6uDNu!2Eg~N,N!

56m6uDNu7P7uDNu, ~2!

where the coefficientsm6(Q) and P6(Q) are uniquely de-
termined by the energies of defects formation and sat
inequalitiesm2(Q),m1(Q) and P2(Q),P1(Q). Equa-
tion ~2! shows that a givenScrystal exists at any value of th
chemical potentialm on the interval @m2(Q),m1(Q)#.
Much the same, the interval ofS-crystal existence in the
pressureP is @P2(Q),P1(Q)#. The end points,m6 , P6 ,
are related by the equation

m65ū1P6Q, ~3!

@ ū5ū(Q) is the S-crystal energy per cell#, which follows
immediately from the known zero-temperature thermo
namic identity,

mN5Eg1PN. ~4!

Thus, in some vicinity ofr51/Q the GS is bound to be a
superstructure of the defects. Our next step is to find the

III. ZERO-DIMENSIONAL DEFECTS
AND THEIR COALESCENCE

Adding one particle to or removing one particle from anS
crystal results in the formation of a zero-dimensional defe
‘‘ 1 defecton’’ or ‘‘2 defecton,’’ respectively. One can b
inclined to think thatdN should be identified exactly with
the total number of6 defectons spatially separated,6m6

being simply the energy of6 defecton formation,«6
d . How-

ever, this seemingly evident statement is actually incorr
due to acoalescenceof defectons of the same ‘‘sign.’’ In
other words, if the numberunu of S-crystal particles removed
(n,0) or added (n.0) is more than 1, there exists abound
stateof unu6defectons whose energy is less thanunu«6

d . We
have revealed the coalescence by computation, using a
pole’’ description of the GS withn561,62, . . . ,which we
have specially worked out for this purpose. It consists in
following.

At nÞ0 the GS is a perturbedS crystal where, beside
particles placed at host-lattice sites in the interstices of
S-crystal (n.0) or emptyS-crystal sites, ‘‘holes,’’ (n,0),
there are generally a certain numbernd of S-crystal particles
displaced. AnS-crystal site left by its particle can be consi
ered as an ‘‘antiparticle’’ with the ‘‘charge’’ equal to th
particle one in magnitude but opposite in sign. The pair
particle displaced by a vectorjW1its antiparticle located at an
a
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S-crystal siterW ’’ can thus be considered to be a kind of
dipole ~we will call it a ‘‘ rW,jW dipole’’! which interacts with
the interstitial particles/holes~IP/H’s! and other dipoles. The
energy of therW,jW dipole interaction with an IP/H~at rW50)
equals

ujW~rW !5~signn!@v~ urW2jW u!2v~ urWu!#.

The energy of interaction between therW,jW andrW8,jW8 dipoles
is

ujW ,jW8~RW !5v~ uRW 1jW2jW8u!1v~ uRW u!

2v~ uRW 1jW u!2v~ uRW 2jW8u!,

whereRW 5rW2rW8.
The IP/H’s, in turn, undergo a mutual repulsion and e

perience a ‘‘crystal’’ field,ucr(rW), which is the field pro-
duced at a pointrW by the idealScrystal forn.0 and equals
22ū for n,0. In the dipole terms the change inEg at a
given n, dEg5dEg(n), takes the form

dEg~n!5min~Ud1Uex1Vrep1Ucr!. ~5a!

Here

Ud5(
a,i

ujW i
~rWa i ! ~5b!

is the energy of the IP/H-dipole interaction;

Uex5(
i

dujW i
1(

i ,k
ujW i ,jWk

~rW ik!.0 ~5c!

is the excitation energy of anS crystal at n50, ndÞ0;
dujW;ūujW u2/Q.0 is the energy of formation of a dipole wit
the displacement vectorjW ;

Vrep5 (
a,b

v~ urWabu! ~5d!

is the energy of the mutual IP/H’s repulsion;rWab[rWa2rWb ;
subscriptsi ,k51, . . . ,nd and a,b51, . . . ,unu number the
antiparticles’ and IP/H’s radius vectors, respectively;

Ucr5(
a

ucr~rWa! ~5e!

is the IP/H’s energy in the above crystal field. The minimu
is taken only with respect to the dipole variables,nd , rW i , jW i ,
and rWa . Hence, the dipole approach allows us to work w
only a few discrete variables. This facilitates considera
the ~classic! Monte-Carlo computer simulation of the6 de-
fectons @ unu51, dEg(61)5«6

d ] and their coalescence a
unu.1.

The dipole approach offers a clear view of how the def
ton bound state arises despite the fact that the defecton
the same sign repel each other, being widely spaced. In
GS the total dipole energy,Ed(n)5Uex(n)1Ud(n), is nega-
tive despite the fact thatUex.0, so that forunu.1 the GS
space structure is governed by an interplay betweenuUdu and
Vrep.0. The IP/H dipole interaction gives the maximal ga
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14 186 PRB 61A. A. SLUTSKIN, V. V. SLAVIN, AND H. A. KOVTUN
in energy wheneachIP/H is embedded in a ‘‘shell’’ of four
dipoles that are all attracted to it, the dipoles’ antipartic
forming a parallelogram of a size; r̄;Q1/2. On the other
hand, Uex.0 is as small as possible when the shells
neighboring IP/H’s share some of their dipoles to reducend .
These requirements can all be fulfilled together only wh
the IP/H’s arealigned in a row, the near-neighbor IP/H’s
being shifted relative to one another by the sameS-crystal
PTV with the modulus; r̄ ~Fig. 1!. In such a caseuEd(n)u is
more than the magnitude of the dipole energy ofunu infi-
nitely separated defectons,Ed

`5unuEd(61). The coales-
cence arises when the energy gain,D5uEd(n)u2uEd

`u, ex-

ceedsVrep of the row. SinceD;unuv( r̄ ) ~the estimate holds
for both smallr and r;1), this condition is met ifṽ(r )
decreases not too slowly, or, more exactly, if

g5E
r̄

`

v~r !dr/ r̄v~ r̄ !&1. ~6!

The computer simulation carried out with the model pote
tial v(r )}r 2bexp(2r/R) over a wide range of the param
eters,b,R, has shown that the conditiong&1 is really the
criterion of the coalescence for anyunu ~and anyaW 1,2). It is
this situation that is the subject for study from here on. It
of most frequent occurrence. The limiting caseg@1 will be
outlined in the next section.

IV. STRIPE FORMATION AND THE LOWERING
OF DIMENSION

A. Elementary 1D defects

It follows from the above results that with an infinite in
crease inunu the bound state ofunu defectons is transforme

FIG. 1. The coalescence for square@~a!, Q59] and triangular
@~b!, Q516] host lattices (n525). Here s denotes host-lattice
sites,d denotes particles,( denotes antiparticles,̂ denotes holes,
→ denotes dipoles, and solid boxes mark off a single defecton.
dash-dotted parallelograms mark off the dipole ‘‘shells.’’ The d
ted lines show nucleation of the elementary stripes enumerate
1,2, . . . . Incase~a! boundary effects dominate the mutual repu
sion of the unfinished2 stripes; in case~b! the tendency to2
stripes divergence is seen. Both configurations refer to the m
potentials withR;Q1/2.
s

f

n

-

s

into a periodicstripelikestructure~Fig. 1!. It consists of el-
ementary substripes which, as will be shown below, re
each other. Therefore, it is1D defectsof such a type that are
expected to form the GS superstructure. They fall into
class of the simplest 1D defects. Generally, such a defect
stripe of rarefaction or compression that arises when
S-crystal part adjacent to a line of particles with som
S-crystal PTV,dW , is shifted as a whole relative to the oth
one by a host-lattice translation vectorjW . Formation of
ns (ns→`, ns /N1/2→0) stripes of lengthLs changesN by

DN56nsudW 3jW uLs ,

where Ls is measured in units ofudW u. This produces the
change in the system energy,

DE5«~dW ,jW !uDNu,

the proportionality coefficient«(dW ,jW ) being given by the ex-
pression

«~dW ,jW !5udW 3jW u21(
n51

`

( 8
rW

ujW~rW2n fW !, ~7!

where fW is anyS-crystal PTV other thandW ; ( rW
8 means sum-

mation over theS-crystal semiplane

rW5kdW 1 l fW , 2`,k,`, 2`, l<0. ~8!

The GS is realized by the stripes withdW 5dW 2 , jW5jW 2 or
dW 5dW 1 , jW5jW 1 which provide the minimum of«(dW ,jW ) for
the case of rarefaction@«(dW ,jW ),0# or of compression

@«(dW ,jW ).0#, respectively. By analogy with ‘‘2 defectons’’
or ‘‘ 1 defectons’’ we will call these stripes ‘‘2 stripes’’ or
‘‘ 1 stripes,’’ respectively.

The absolute values of6 stripe formation energies pe
unit of stripe length,

«65u«~dW 6 ,jW 6!u, ~9!

e
-
by

el

FIG. 2. The universality range of the ground state of 2
LSLRIR on a square host lattice (3<q<12). The symbold marks
off the S-crystalq values. The symbols at q57 shows that the
GS with thisq is not anScrystal but a mixture of native stripes o
the neighboringS crystals (q56 andq58). The integers written
out beneath theq axis are the endpoints of the intervals over whi

all GS stripe structures share the same PTVdW 6 ~‘‘director’’ !. TheS

crystals with theseq have differentdW 2 anddW 1 . The coordinates of
the directors are shown in the upper row of the table. The pair
integers in the lower row are the coordinates of the displacem

vectorsjW 2 . All S crystals of the universality range share the sa
Qj branch.
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are nothing but the coefficientsP6 @see Eq.~2!# associated
with the elementary 1D defects. As follows from Eq.~3!, the
corresponding

m65 «̃6[ū1Q«6 . ~10!

Lest there be a contradiction with the fact of the defec
coalescence,«̃6 and«6

d are bound to satisfy inequalities

u«2
d u, «̃2, «̃1,«1

d . ~11!

To verify them we have computed«6 , based on Eq.~7!, for
Q up to 150 in parallel to the Monte Carlo coalescence st
ies. The computation has shown that the inequalities are
ally the case for allv(r ) under consideration, i.e., forv(r )
which meet criterion~6!.

When Q@1 and v(r ) goes exponentially to zero ove
distancesR! r̄;Q1/2, inequalities~11! become strengthened
In such a case they can be obtained by simple estima
SinceujW 6u;1, and, correspondingly,udW 63jW 6u;Q1/2, it fol-
lows from Eqs.~7! and ~10! that «̃6;Q1/2R21ū. On the
other hand,u«2

d u;ū;v( r̄ ). Therefore, «̃2@u«2
d u. As for

«1
d , it is comparable to the minimum of the crystal fie

ucr(rW) ~Sec. III!. By virtue of the exponential decrease

v(r ) and the inequalityR! r̄ the ratio min@ucr(rW)#/ū exceeds
Q1/2R21@1 significantly, and hence,u«1

d u@ «̃1 .
Inequalities~11! together with the mutual repulsion of6

stripes of the same sign lead to the conclusion that the G
a vicinity of 1/Q is a superstructure of6 stripes separated b
‘‘native’’ stripes of the unperturbedScrystal. These are pair
of neighboringS-crystal particle lines with PTVdW 6 , i.e.,
they are shifted relative to one another by a vectorfW6 which
is anyS-crystal PTV satisfying the equationudW 63 fW6u5Q, a
6 stripe that is a pair of the particle lines with a relativ
displacement vectorfW61jW 6 . Enumerating the6 stripes to,
say, m, the equations of the particle lines bounding t
mth 6 stripe can be written in the form

rWm
(1)~k!5kdW 61 l ~m! fW61mjW 6 , ~12a!

rWm
(2)~k!5rWm

(1)~k!1 fW61jW 6 , ~12b!

wherek50,61,62, . . . ; theparameterl (m) is the number
of all particle lines parallel todW 6 between themth and zero
6 stripes. The integerl (m) can be considered as the ‘‘coo
dinate’’ of the mth 6 stripe. The set of the integersl (m)
describes the GS space structure of the 2D LSLRIR fully
the system consisting of6 stripes and native stripes is in
variant with respect to translation bydW 6 . Therein lies the
LOD.

B. The ground-state stripe superstructure

The GS set of the coordinatesl (m) is chosen such that th
change in the system energy which is due to stripe forma
in an S crystal,

Es56Ns
6«61H int , ~13a!
n

-
e-

s.

in

s

n

is a minimum at a fixed number of6 stripes,Ns
6 . Here

H int5H int$ l (m)% is the energy of the interstripe interactio
it is the sum

H int5 (
m2.m1

Vm22m121
ss ~ l m2

2 l m1
!, ~13b!

where the summation is taken over all6 stripes;Vm
ss( l ) is

the generalized pair potential of the stripe-stripe interacti
namely, it is the interaction energy of two6 stripes with a
coordinate difference l, between which there arem
50,1, . . . other6 stripes,

Vm
ss~ l !5 (

n50

`

U~FW l ,m1n fW6!, FW l ,m5 l fW61mjW 6 ;

~14a!

U(r ) is the energy of interaction between a certainrW,jW 6

dipole and the infinite system of dipoles with the displac
ment vector2jW 6 whose antiparticles fill the semiplane~8!

with dW 5dW 6 , fW5 fW6 ,

U~rW !5(
rW6

8ujW6 ,2jW6
~rW2rW6!. ~14b!

The symbol( rW6
8 means summation over the semiplane ju

mentioned. Here and further on in the paper all energy qu
tities associated with stripes are energies per unit of st
length.

To find the set ofl (m) that minimizeH int , and thereby«̄,
it is helpful to notice that the dipole-dipole interaction ener

ujW ,2jW~rW !5v~ urW2jW u!1v~ urW1jW u!22v~ urWu!,

appearing in Eq.~14b!, has the structure of the second-ord
finite difference. This suggests thatU(n fW6) as a function of
n is positive sincev(r ) is a convex function. Ifn@1, this is
easy to see, taking into account that the consideredv(r ) go
to zero no slower thanr 22. Moreover, our computation ha
shown thatU(n fW6) is a positive and monotonically decrea
ing function ofn for any n>1 providedv(r ) meets condi-
tion ~6!. For this reason potentialsVm

ss( l ) are all positive and
meet the convexity condition

Vm
ss~ l 11!22Vm

ss~ l !1Vm
ss~ l 21!.0.

Consequently,~i! the 6 stripes do repel each other, and~ii !
due to the convexity ofVm

ss( l ) integersl (m) are arranged
similar to the coordinates of particles of a 1D LSLRIR wi
a convex pair potential. Based on the line of argument of
1D theory,7–9 one can conclude that they obey the univer
algorithm

l ~m!5@m/c6#, ~15a!

where@•••# is the integral part of a number, and

c65uq2Qu/s65Ns
6/N s

6 ~15b!

is the concentration of the6 stripes;q51/r; the integer

s65udW 63jW 6u ~15c!
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equals the difference between the6 stripe and the native
stripe areas per unit of stripe length;N s

6 is the total number
of the6 stripes and the native ones; the sign2 or 1 in Eq.
~15a! means that the expression describes a region of rare
tion, q.Q, or compression,q,Q, respectively.~In this
connection it should be noted that the6 stripes are 2D ana
logues of the 1D dimers introduced by Hubbard.7!

Of frequent occurrence is the situation thatfW6 can be
chosen to be parallel tojW 6 , i.e., fW65(Q/s6)jW 6 . ~Particu-
larly, this takes place necessarily ifs651, and hence,dW 6

andjW 6 are both host-lattice PTV’s.! In such a case both Eqs
~12a! and ~12b! have the form

rW~k!5kdW 61sjW 6 ~k50,61,62, . . . !, ~16!

wheres is a certain integer. This allows us to simplify th
description of the GS, considering directly lines~16! as the
‘‘particles’’ of a 1D lattice system, the particle ‘‘coordi
nates’’ beings. As follows from Eqs.~15!, such particles are
arranged by the algorithm

sm5@ s̄m#, ~17!

wheresm is the coordinate of themth line, s̄5q/s6 is the
mean line separation measured in units ofujW 6u.

C. Stable and metastable thermodynamic branches
and first-order transitions

At c651 (q5Q7s6) the algorithm ~15! determines
the crystal with one particle per cell built on PTV’sdW 6 and
fW61jW 6 . Further, we call it theSr crystal~rarefiedScrystal,
c251) or theSc crystal ~compressedS crystal,c151). If
this structure is stable~i.e., theSr ,c crystal is anotherScrys-
tal! or metastable, the algorithm can be extended over
whole domain of6 stripe concentrations, 0<c6<1, i.e.,
over theq interval

qc5Q2s1<q<q r5Q1s2 . ~18!

This follows from two intimately related plain statemen
that have been fully confirmed by our computation:~i! the
above mechanism underlying the coalescence of z
dimensional defects and the 1D defect formation holds
any space structure determined by the algorithm~15!, i.e.,
irrespective of thec6 value; ~ii ! the 1D defects resulting
from macroscopically small variations inq have the same
PTV, dW 6 , for all c6 .

It is evident that theS-crystal native stripes with the PTV
dW 2 or dW 1 are also1 stripes of theSr crystal or2 stripes of
theSc crystal, respectively. Vice versa, anS-crystal2 stripe
or 1 stripe is geometrically the same as anSr- or Sc-crystal
native stripe with the PTVdW 2 or dW 1 . In view of this fact it
does not matter whether one describes the GS space stru
on the interval~18! in terms of the6 stripes of theScrystal
or in terms of its native stripes. In the latter casel (m) ap-
pearing in Eqs.~15! should be considered to be the ‘‘coord
nate’’ of themth native stripe, andc6 should be replaced by
the native-stripe concentration, 12c6 .

Due to ~meta!stability of the Sr ,c crystals the algorithm
~15! holds also overq ranges adjacent to both endpoints
c-

e

o-
r

ure

the interval~18!. For theseq Eqs.~15! determines a mixture
of 2 stripes and native stripes of theSr crystal (q.q r) or
that of 1 stripes and native stripes of theSc crystal (q
,qc), the stripes being characterized by a new triple
vectors,dW r , fW r , jW r or dW c , fWc , jW c , the analogs ofdW 2 , fW2 , jW 2

or dW 1 , fW1 , jW 1 respectively. The concentration of new6
stripes,cr ,c , is related toq by the expression

cr ,c5
uq2q r ,cu

s r ,c
, s r ,c5udW r ,c3jW r ,cu.

In passingq through the pointsq r ,c the GS space structur
changes continuously sincecr ,c goes to zero whenq
→q r ,c .

Extending the algorithm~15! in the manner shown abov
over all possibleq, we obtain the branch of the~meta!stable
zero-temperature states connected in continuity with
startingS crystal. Enumerating theS crystals by the indexj
~Sec. II! again, we will classify these thermodynam
branches by the elementary-cell areasQj of the startingS
crystals and will name themQj branches. As follows from
the definition, the energy of aQj -branch state as a functio
of q, Ej (q), is continuous. We have revealed that as a ru
a given Qj branch is shared by severalS crystals. On the
other hand, there are inevitably intersections of different
ergy branchesEj (q). What this means is thatzero-
temperature first-order transitions (of a type of polymo
phism) from one well developed stripe superstructure
anotheroccur at the intersection points. The first-order tra
sitions take place irrespective of the geometry of the h
lattice. ~Examples are in Sec. VI.!

Summarizing the above reasoning, one can state that t
are only two possibilities: the (j 11)th or (j 21)th means
the S crystal whose numbers isj 11 or j 21, respectively;
otherwise, there is a point of the first-order transition on
interval @Qj ,Qj 11# or @Qj 21 ,Qj #.

Along with theQj branches there can exist the thermod
namic branches which, beingmetastablein vicinities of the
points q5Qj , becomestable far from Qj . Each state of
such a ‘‘pseuodo-Qj -branch’’ is a mixture of native stripes
of the j th S crystal and its elementary stripes of rarefacti
or compression with PTV’s other thandW 6

j , the energies of
stripe formation, the stripe arrangement, and the energy
the state being determined by the expressions~9! and ~13!–
~15! if one replacesdW 6 , jW 6 with the corresponding vectors
Thus, the GS energy dependence onq comprises the stable
portions of bothQj branches and pseuodo-Qj branches.

To complete the description of the GS it should be a
noted that the GS space structure with an arbitraryr is con-
verted in that with the filling factor 12r on mutual replace-
ment of the particles by the empty host-lattice sites and v
versa. Correspondingly,Eg(12r)5Eg(r)1(122r)E0,
whereE0 is the energy of the system atr51. Therefore, it is
sufficient to consider the rangeq>2 only.

At q52 the GS configuration can be envisioned as t
geometrically equivalent sublattices withN/2 sites, one of
which is completely occupied by the particles and the ot
is empty, i.e., it is theS crystal with one empty host-lattice
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site per cell. The6 defectons of such anS crystal, irrespec-
tive of the host-lattice geometry andv(r ) form, are simply
IP/H’s, which do not coalesce as they do not have dip
surroundings. Despite this fact the IP/H’s are arranged
stripelike superstructure for deviation ofq from q52 which
is as small as is wished. This superstructure is fully descri
in terms of the above theory if one considers the sublat
just mentioned as the host lattice and the IP/H’s as the
ticles, the filling factor being equal tou122ru. This special
thermodynamic branch represents the GS over ar interval
@rb,12rb#, whose left end pointrb is more than 1/3. This is
in accordance with the fact that the least inverseS-crystal
filling factor for which the defecton coalescence occurs
evitably is found to be justQj53.

D. A computation procedure to find the 2D LSLRIR
ground state

The above analysis shows that the GS of the 2D LSLR
is fully determined if the following quantities are known:~i!
the PTV’smW j of the S crystals,~ii ! the PTV’s,dW 6

j , and the

displacement vectors,jW 6
j , of the Qj -branch 6 stripes to-

gether with their pseudo-Qj -branch analogs; and~iii ! the set
of first-order phase-transition points that are the only
space-structure characteristics changing on infinitesi
variations inv(r ).

To cover bothQj branches and pseudo-Qj branches by
computation it is appropriate to introduce the totality of t
various stripe superstructures that are mixtures of the str
of two types,dW , fW1 stripes anddW , fW2 stripes, and to obey the
algorithm ~15! wherec6 is replaced by their concentration
c1 or c2 (c11c251). ThedW , fW1,2 stripes have the same PTV
dW , but different vectors,fW1 or fW2, of relative displacement o
particle lines forming them. According to the definition,
given superstructure ofdW , fW1,2 stripes has the inverse filling
factor

q5c1Q(1),1c2Q(2), ~19!

where integerQ(1,2)5udW 3 fW1,2u is the area of the parallelo
gram built on the vectorsdW , fW1,2. Computing the energy o
the superstructure as a function ofindependentvariables,dW ,
fW1,2, and q, on the basis of expressions Eq.~1!, Eqs. ~15!
(c6→c1or c2), Eq. ~19!, and finding its minimum with re-
spect todW , fW1,2, at a fixedq, one obtains both the GS spac
structure, including theS crystals (c1,250 or 1! and the GS
energyEg(q).

Generally,dW has the formdW 5kaW , whereaW is a PTV of the
host lattice,k51,2, . . . . Forfixed Q(1,2) anddW , there are only
k differentdW , fW1,2 stripes. Another simplification is that it is in
fact sufficient to bound the moduli ofdW components by val-
ues &q1/2, while the area difference,uQ(1)2Q(2)u, can be
chosen to be<3. As a result, the computation does not ta
a lot of time even for bigq. Here we have considered th
range 3<q<100.

E. The casegš1

In the limit g@1 the mutual repulsion of IP/H’s domi
nates their attraction to the dipole surroundings, disrupt
e
a

d
e
r-

-

S
al

es

g

the row of IP/H’s ~Sec. III! at sufficiently big unu. Conse-
quently, the defecton coalescence fails for anyScrystal, and
it is separated6 defectons that constitute the GS superstr
ture in vicinities ofq5Qj . However, the LOD and stripe
formation take place in the caseg@1, too. This becomes
clear if one takes into account that the6 defectons ensemble
at uq2Qj u!1 can be considered as 2D LSLRIR, whose p
ticles are the defectons on theScrystal that plays the role o
the host lattice. For such a system criterion~6! is fulfilled
since the mean defecton separation is large~it is ;uq
2Qj u21/2), and the energy of a defecton-defecton interact
decreases at big distances by the same law asv(r ).

V. DEVIL STAIRCASE

For a rational concentration of6 stripes, c6

5M /L (M ,L are coprime integers,M,L), the GS stripe
pattern determined by algorithm~15! is a 1D crystal with a
cell of lengthL and withM 6 stripes~‘‘particles’’ ! per cell.
Correspondingly, for each triple of the basic vecto
dW 6 , fW6 ,jW 6 associated with a givenS crystal ~we omit the
index j in this section! the GS configuration withc65M /L
is a 2D crystal (L,M crystal, for short! whose elementary
cell can be built on vectors

dW 6 and FW L,M5L fW61MjW 6 ~20!

and containsL particles, theq value of theL,M crystal
being equal toQ7s6M /L. Similar to theScrystal case, the
elementary defects arising in anyL,M crystal on an infini-
tesimal decrease or increase inr arestripesof rarefaction (R
stripes! or compression (C stripes! which are ofdifferent
structure. For this reason the energies ofR,C-stripe forma-
tion, «L,M

r ,«L,M
c are different in magnitude, and hence ea

L,M crystal represents the GS over some finitem or P inter-
val, @mL,M

r ,mL,M
c # or @PL,M

r ,PL,M
c #, the end pointsmL,M

r ,
PL,M

r andmL,M
c , PL,M

c being determined by«L,M
r and«L,M

c ,
respectively. In other words, the GS dependence ofc6 on m,
P, much the same as for 1D LSLRIR,7–9 is inevitably a devil
staircase whose steps occur at allrational c6 , the stripe
patterns of theL,M crystals forming a fractal structure.

The lengths of the devil-staircase intervals,DmL,M

5mL,M
c 2mL,M

r andDPL,M5PL,M
c 2PL,M

r , are related by the
simple equation

DmL,M5qDPL,M , ~21!

which is an evident consequence of the identity~4!. As has
been shown in the Appendix, they can be expressed in te
of v(r ) explicitly. In the Appendix we have also describe
the structure of R,C stripes. The net result forDmL,M is as
follows:

DmL,M5
Lq

s6
(
n51

`

n@VnM
ss ~nL11!

22VnM
ss ~nL!1VnM

ss ~nL21!#. ~22!

The positivity of the second-order finite difference in squa
brackets is provided by the convexity ofVm

ss( l ) mentioned in
Sec. IV B.
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Expression~22! can be transformed, in view of Eq.~14!,
to a form which is more convenient for calculations,

DmL,M5
Lq

s6
(
n51

`

n@V~nFW L,M1jW 6!

22V~nFW L,M !1V~nFW L,M2jW 6!#, ~23!

where

V~rW !5 (
k52`

`

v~ ukdW 61rWu!

is the energy of interaction between a particle located a
site rW and the particle line with the PTVdW 6 going through
the siterW50.

Expression~23! is still further simplified in the above
mentioned special~but widespread! casefW6ijW 6 , which ad-
mits description in terms of lines~16! as the 1D ‘‘particles,’’

Dm5L(
n51

`

n@Vll ~Ln21!22Vll ~Ln!1Vll ~Ln11!#.

~24!

Here Vll (s)5V(sjW 6) is the pair potential of the line-line
interaction (s is a difference of ‘‘coordinates’’ of interacting
lines!, L5(Q/s6)L7M is the length of the lines’ pattern
period measured in units ofujW 6u. Expression~24! can also be
obtained immediately from the 1D LSLRIR theory8,9 by sub-
stitution Vll (s) for the 1D pair potential.

Expressions~22!–~24! hold for all M,L, MÞ0,L. They
show that ratiosL21Dm(M /L) with differentL,M but com-
parableuFW L,Mu have the same order of magnitude. Partic
larly, it follows herefrom that irrespective of theM value
devil-staircase step widthsDm(M /L) go to zero as
Ld2vr /dr2ur 5L whenL→`.

VI. EXAMPLES

Here we demonstrate the above general results with
LSLRIR on triangular and square host lattices.

A. Triangular host lattice

All triangular lattices that can be built on a triangular ho
lattice are necessarilyS crystals. This follows from the fac
that theabsoluteenergy minimum of a system whose pa
ticles are free to move is realized just by atriangular lattice.
Such S crystals are ‘‘p,q crystals’’ with PTV’s paW 11qaW 2

andpaW 21qaW 3 (p,q are arbitrary integers,aW 1,2,3 is a triple of
triangular-host-lattice PTV’s which are equal in the modu
and form an angle of 120° with each other!. Correspond-
ingly, their q5p21q22pq. Using the procedure discusse
in Sec. IV D, we have found that all 0,q crystals belong to
the sameQj branch ~the main branch!, which covers the
range 4<q,`. Their S8 crystals areS crystals, too. They
occur atq5q(q11) (2<q,`) and have PTV’sqaW k , (q
11)aW l (k,l51,2,3; kÞl). The stripe structures~15! have
the same PTV,qaW k , for all q of the interval @q(q
21),q(q11)#, their jW 6 being6aW l (kÞl).
a

-

D

t

s

When bothpÞ0 andqÞ0, Qj branches of differentp,q
crystals are distinct. They do not have mutual intersectio
but all intersect the main branch, the intersections occurr
at rather small concentrations of thep,q-crystal6 stripes. In
other words, the intervals ofp,q-crystals stability (pÞ0 and
qÞ0), and correspondingly, of main-branch metastabili
turn out to be narrow.

The above classification of the triangular-host-latticeS
crystals andQj branches isuniversal in the sense that it
holds for any consideredv(r ).

B. Square host lattice

This case is more complicated than the previous one s
despite the fourfold symmetry the basic GS vector charac
istics cannot be classified by a simple and general rule.
q<12 the universality in the above sense takes place,
the vector characteristics do not depend onv(r ). The GS
structure over the universality region is shown in Fig. 2. F
q.12 the universality fails. This is illustrated in Fig.
where the dependence of the GS vectors on the radius,R, of
the screened Coulomb potential,v(r )5exp(2r/R)/r, is pre-
sented for 12<q<18. With an increase inq the phase dia-
gram on theR,q plane becomes more and more comp
cated. This suggests that in the limitq@1 there exists an
averaging procedure to reduce the description of the
This problem is beyond the scope of this paper.

VII. CONCLUSION

The above consideration shows that the particle orde
into stripes and the effective lowering of dimension reside
the 2D LSLRIR universally. It is a combination of thedis-
cretenessof particle positions with the long-range mutu
particle repulsion and theconvexityof v(r ) that is, in es-

FIG. 3. The ground-state phase diagram forv(r )
5r 21 exp(2r/R) on theq,R plane (12<q<21). The symbolsd
and s mean the same as in Fig. 2; the symbol^ marks off the
integerq for which the GS is anScrystal only ifR is not too small.
The thin vertical lineq514 and the thin segments of the linesq
515,16,18 separate the regions with different directors and/or

ferentjW 6 of the sameQj branch. The lines of the first-order phas
transitions are drawn boldly. The thin and bold lines togeth
break up the wholeR,q region shown in the figure into sub

regions with their own directors andjW 6 . The coordinates of the

directors are boldfaced, those ofjW 6 are in italic. Each director
is also bound to be a PTV of one or anotherS crystal,
namely, (2,23)5PTVq512; (4,1)5PTVq514,PTVq515; (3,23)
5PTVq515,PTVq518; (4,2)5PTVq516,PTVq518; (1,5)
5PTVq518; (4,23)5PTVq520.
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sence, the reason of the phenomenon. Extension of the a
theory to disordered 2D LSLRIR leads to the conclusion t
the coalescence of zero-dimensional defects and stripe
mation caused by it take place in this case as well provi
the disorder does not break a short-range order in the
lattice, the impurities or the host-lattice inhomogeneit
only fracturing and pinning the stripes.

There are several fields of current interest wherein the
LSLRIR ground-state theory can find use.

~a! One field is research of charge stripes in hig
temperature cuprate superconductors, which came to a
tion after being revealed with neutron scattering.11 In the
paper11 this fact was interpreted in terms of the phase se
ration into an insulating region with an antiferromagne
order and a metallic region with holes.12 In our view, this is
not the only way of how the charge stripes can occur:
follows from our present results, in 2D or layered narro
band conductorsa long-range Coulomb interelectron or in
terhole repulsionleads to stripe formationby itselfif it gives
rise to the FCCP mentioned in the Introduction. Since
criterion of FCCP existence given there is easily fulfilled
the cuprates~hole velocities in cuprates are less by an ord
of magnitude than Fermi velocities in the usual metals!, tak-
ing into account the alternative, pure Coulomb, mechan
of stripe formation appears to be necessary in analyses o
experiments concerning the charge~hole! ordering into
stripes.13 The hole stripe superstructure of the Coulomb o
gin can manifest itself in the neutron experiments, affect
the antiferromagnetic spin order in cuprates. In this conte
is noteworthy that direct studies of the La2CuO4 lattice car-
ried out by the nuclear channeling14 revealed a periodic
stripelike superstructure of the oxygen atoms in Cu-O pla
even at light doping.

~b! The effective lowering of dimension in a 2D FCCP
suggested to account for the interesting effect reported
Pepper,4 which has not been explained to present. It lies
the fact that the resistivity of a conducting sheet that arise
a system metal –n-type GaAs –p-type GaAs at a certain
combination of system parameters oscillates in the cha
carrier density with a great amplitude, the oscillatio
minima occurring atrational r which are resolved in som
simple series. There are strong reasons to suggest tha
effect can be explained in a natural way in FCCP term
taking into account a thermodynamic competition betwe
the 6 defectons and the thermally fractured6 stripes.

Recently we have shown that a FCCP can exist in po
crystalline nonlinear electroceramic materials~so-called po-
sistors and varistors3!. We expect that it is the above
mentioned interplay between FCCP defects of t
topologically different types that underlies known, but as
incomprehensible, conduction properties of nonlinear e
troceramics.

~c! Interesting artificial systems to realize a conducti
2D LSLRIR are planar arrays of nanometer-size metal gr
ules linked by organic molecule wires as tunnel junctions5,6

Such a 2D conductor differs from the FCCP in that there
be several electrons per granule. There are strong reaso
suggest that the above theory holds in this case, too, wi
slight modification. Stripe formation caused by a mutual
pulsion of electrons of different granules is anticipated
result in rather unconventional conduction in the granu
ve
t
r-
d
st

s

D

-
n-

-

s
-

e

r

m
he

-
g
it

s

y

in

e

the
,
n

-

t
c-

-

n
to
a

-

r

systems. Particularly, due to charge arrangement into str
the conductance of the granular film as a whole is expec
to be highly sensitive with respect to a voltagelocally ap-
plied.

We will discuss the issues mentioned in~a!–~c! in future
papers, the immediate problem to study being the 2D LS
RIR low-temperature thermodynamics.
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APPENDIX A: THE LENGTHS OF THE
DEVIL-STAIRCASE INTERVALS AND THE STRIPELIKE

DEFECTS OF THE L ,M CRYSTALS

It is somewhat more convenient to deal withDPL,M than
with DmL,M . To derive the expression forDPL,M it is ap-
propriate to consider what happens with a givenL,M crystal
as Ns

6 changes by a macroscopically small number,dNs
6

(udNs
6u/Ns

6→0,udNs
6u→`), at a fixedN s

6 , i.e., udNs
6u 6

stripes are removed from or added to theL,M crystal with
adding or removing the same number of native stripes,
spectively. In such a case the system volume changes
7dNs

6s6 ~per unit of stripe length! without a change in the
number of the particles, and hence, the corresponding cha
in the ground-state energy,DEg , has the form

DEg

5H D6
c 56dNs

6P6
c s6 ~dNs

656dNs , rarefaction!

D6
r 56dNs

6P6
r s6 ~dNs

657dNs , compression!,
~A1!

wheredNs.0, so thatD6
c .0, D6

r ,0. Here and further on
we drop the indexL,M . The index6 at Pc,r and other
quantities relating to theL,M crystal is introduced to distin-
guish between theL,M crystals containing1 stripes and
those with2 stripes.

As will be shown below, a change inNs
6 by dNs

6

56dNs or by dNs
657dNs produces in theL,M crystal,C

stripes, orR stripes, respectively, the number ofC,R stripes
being equal to

dN5LdNs . ~A2!

Therefore,

D6
c,r5LdNs«6

c,r

and

s6P6
c 5L«6

c , 2s6P6
r 5L«6

r . ~A3!

As is seen from the relation~A2! and expression~13a!,
«6

c,r is the sum

«6
c 5«6 /L1e6

c .0,

«6
r 52«6 /L1e6

r ,0, ~A4!

wheree6
r ,c is the change inH int per R,C stripe.
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From Eqs.~A3! and ~A4! we obtain

s6DP65L~e6
c 1e6

r !. ~A5!

Thus, the calculation ofDP6 reduces to findinge6
c,r . To

do this we have to consider the perturbation of theL,M
crystal stripe arrangement produced by the replacementNs

6

→Ns
61dNs

6 . Let it be, for definiteness, theL,M -crystal
with 2 stripes. As the2 stripe concentration changes b
dNs

2/N s
2 , the algorithm~15! ~with an accuracy of additions

;1/Ns
2) takes the form

l ~m!5@mL/M2m/M#5 l (0)~m!1z~m!, ~A6!

where l 0(m)5@mL/M # describes the2 stripe arrangemen
in a L,M crystal,

z~m!5@$L/Mm%2m/M#,

$ . . . % is the fractional part of the number bracketed;M
5MNs

2/LdNs
2 ; in the macroscopical limit under conside

ation uMu→` together withNs
2 . As is evident from Eq.

~A6!, it is the termz(m) that is responsible for the differenc
between theL,M crystal and that perturbed by the adding
removing of2 stripes.

First letdNs
2 , and henceM, be negative~compression of

the L,M crystal!. Representingm50,1, . . . ,Ns
2 in the form

m5kM1m̃

(k50,1, . . . enumerates the elementary cells of t
L,M -crystal stripe pattern,m̃50,1, . . . ,M21 enumerates
the2 stripes in a cell! and taking into account that$mL/M %
is a periodic function ofm with the periodM, we can write
z(m) as

z~m!5zk~m̃!5@$m̃L/M %1m̃/uMu1fk#, ~A7!

where

fk5kM/uMu.

As seen from this expression,zk(m̃) as a function ofk
changes for the first time as the phasefk , slowly increasing
with an increase ink, becomes more than the greatest of t

$m̃L/M % values, namely, (M21)/M . The second chang
happens asfk becomes more than the$m̃L/M % value next to
(M21)/M , i.e., (M22)/M , and so on. As the set of th

$m̃L/M % values consists of 0,1/M , . . . ,(M21)/M , a
change infk by 1 results inM changes ofzk(m̃), i.e. zk(m̃)
experiences altogetherLdNs1O(1) jumps ask runs from 0
to its greatest value,Ns

2/M . These occur at the points

k5k15K1O~1!, k5k252K1O~1!, . . .

(K5@M/M2#) which are macroscopically far apart. Takin
into account thatm̃/uMu is negligible as compared with

$m̃L/M %, we obtain from Eq.~A7!

zk[0, k,k1 ,

zk[zki
~m̃!, ki<k,ki 11 ~ i 51,2, . . .!. ~A8!
e

Here

zk1
~m̃!5dm̃m̃1

,

zk2
~m̃!5dm̃m̃1

1dm̃m̃2
, ~A9!

and so on. The quantitym̃i is the m̃ value for which

$m̃L/M %512 i /M ( i 51, . . . ,M ); dab is the Kronecker
delta.

Over the range 0<k,k2 the chain of expressions Eq
~A6!–Eq. ~A9! is equivalent to the equation

l ~m!5@mL/M1u~m2k1M !/M #, ~A10!

whereu(x) is the step function

u~x!5H 1, x>0

0, x,0.

At the point m15k1M1m̃1 the function $mL/M %11/M
equals zero, and hence, form>m1 we havel (m)5 l 0(m1)
111 l 0(m2m1), i.e., the mutual arrangement of2 stripes
with m.m1 remains unperturbed, coinciding with that fo
0<m,k1M . Therefore, we have the following.

~i! The stripe pattern consisting ofm̃1 stripes with the
numbersk1M , . . . ,k1M1m̃1 and the nativeS-crystal stripes
separating them is adefectof the L,M crystal of a discrete
soliton type, the2 stripe positions in the defect being dete
mined by the algorithm

l m5H l 0~m!, k1M<m<m121

l 0~m1!11, m5m1 .

~ii ! For each jump ofzk(m̃) there is a perturbation of the
L,M crystal which is aL,M -crystal defect geometrically
identical to that just described. It is clear that it is nothing b
a C stripe.

~iii ! The total number ofC stripes produced by a decrea
in Ns

2 by udNs
2u is really given by the expression~A2!.

To find e2
c one can make use of the obvious fact that t

replacement ofl 0(m) with @mL/M1w# (w is an arbitrary
constant! does not change the distances between2 stripes,
resulting only in a cyclic permutation of2 stripes within
each elementary cell of theL,M -crystal stripe pattern. Par
ticularly, for w51/M the cyclic permutation results from th
shift of only one2 stripe per cell, its inner number,m̃ being
equal tom̃1, and its coordinate increasing by 1. Relating th
fact to Eq.~A10!, it is easy to conclude that the formation o
one C stripe located, to say, in the elementary cell withk
5k1 increases~by one! only the distances between2 stripes
with numbersm5(k11n)M1m̃1 (n50,1, . . . ) andthose
with numbersm5(k12n8)M1m̃1(n851,2, . . . ). In view
of Eq. ~13b! this gives fore2

c the expression:

e2
c 5 (

n51

`

n@VnM
ss ~nL11!2VnM

ss ~nL!#. ~A11!

The above argument can be applied for findi
e2

r (dNs
2.0), too. To this end it is convenient to revers
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the sign ofm in Eq. ~A6!, replacing2m/M with umu/M
(M.0). By this means one can easily establish the sp
structure ofR stripe. It is such that theR andC stripes adja-
cent to one another constitute an elementary cell of
L,M -crystal stripe pattern in which one2 stripe ~with the
inner numberm̃1) is shifted by 1. Taking this into accoun
and repeating the above calculations, we find

e2
r 5 (

n51

`

n@VnM
ss ~nL21!2VnM

ss ~nL!#. ~A12!

From Eqs.~A5!, ~A11!, and~A12! we obtain finally
e

ce

e

DP25
L

s2
(
n51

`

n@VnM
ss ~nL11!

1VnM
ss ~nL21!22VnM

ss ~nL!#. ~A13!

This is equivalent to Eq.~22! due to Eq.~21!.
The expression forDP1 ~theL,M crystal with1 stripes!

is derived just as it has been done forDP2 . The only thing
that one has to bear in mind in this case is that the right-h
side of Eq.~A11! relates toe1

r , while e1
c is determined by

the right-hand side of Eq.~A12!.
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