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Basis-independent multiple-scattering theory for electron spectroscopies: General formalism
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UMR CNRS-Universite´ 6627, Universite´ de Rennes 1, 35042 Rennes Ce´dex, France
~Received 13 September 1999; revised manuscript received 13 December 1999!

I present here a general formalism that allows the construction of the cross section of any electron spec-
troscopy in a straightforward and transparent way. This approach does not make any assumption concerning
the choice of the basis functions used to expand the wave function of the electron. In this sense, it generalizes
existing theories. It allows us to keep the physics well in view and offers, due to the relationship between
operators and parts of a pictorial representation of the experiments, a type of a graphical interface to the
problem at hand. Moreover, it does not assume any particular shape for the potential.
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I. INTRODUCTION

Electron spectroscopy techniques are now a w
established tool for the study of surfaces. They have bec
more and more popular over the years both because the
nondestructive probes and as a result of the theoretical
computational effort that transformed them into very ac
rate and powerful methods. Historically, low-energy electr
diffraction1–3 ~LEED! was the first to establish itself as a
essential technique for surface crystallography. With the
vent of synchrotron radiation, x-ray absorption spectrosc
~XAS! developed rapidly as a new spectroscopic method
pable of giving both electronic structure orientated~x-ray
absorption near edge structure, XANES! and crystallo-
graphic orientated information either for bulk~extended
x-ray absorption fine structure, EXAFS! or surfaces~surface
EXAFS, SEXAFS!.4 Then, photoelectron diffraction5–9

~PhD! and Auger electron diffraction10 ~AED! were devel-
oped for crystallographic purposes. Finally, electron ene
loss spectroscopy~EELS!, which was originally considered
as an electronic structure tool11 capable of giving informa-
tion on collective excitations such as plasmons12 or
phonons,13 has now been shown to be able to give surfa
crystallographic parameters as well.14 Simultaneously, in-
verse methods such as bremstrahlung isochro
spectroscopy15 ~BIS! or inverse photoelectron diffraction16

were developed to study both empty states and crystallo
phy depending on the energy. All these tools, from whic
great variety of knowledge about a crystal can be obtain
commonly use, in one way or another, electrons as
source of information.

The term electron spectroscopyis used here in a very
general way: it simply means that the spectra obtained f
the experiments contain, directly or indirectly, the inform
tion that is sought as a result of the scattering proces
undergone by an electron inside a crystal. In that sense
electron need not be the particle entering the detector,
vided that the resulting signal is related somehow to the
havior of an electron.

From the point of view of crystallography, it is possible
divide electron spectroscopies into two categories accord
to the type of parameters they depend upon, and hence o
kind of information they will be able to provide. Namely
PRB 610163-1829/2000/61~20!/14167~12!/$15.00
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one can distinguish between localized and nonlocalized c
tallographic probes. I will call here localized probes tho
originating from an excitation process occuring on a parti
lar atom. This is typically the case of XAS, core PhD, a
AED or EELS. As a result, these spectroscopies will
mainly sensitive to the immediate surrounding of the at
on which the excitation has taken place. On the other ha
nonlocalized spectroscopies will essentially reflect the lo
range structure of the system under study. Actually, the te
nonlocalized can be understood in two ways. It can eit
mean that there is no excitation process or that the excita
process involves a delocalized level. The first case co
sponds to LEED, where a beam of incoming electrons
elastically scattered by the atoms of the crystal with the
sulting beam entering the detector. Valence photoelec
diffraction17 is a good example of the second case.

Traditionally, there are two ways to tackle the problem
the modelization of electron spectroscopies. One uses a c
ter approach and an expansion of the wave function of
traveling electron into spherical waves. Historically, it w
developed for localized spectroscopies such as XAS,18,19

PhD,5–9 or EELS,20 with some refinements proposed lat
that use a shell partitioning of the crystal.21,22The reason for
such a choice of basis probably lies in the fact that spher
waves are localized functions and thus thought more su
to describe the physical process. The other approach, w
can be called the slab appraoch, involves a partitioning of
crystal into planes so that the periodicity of each plane
be taken into account. Consequently, the wave function in
dent upon a plane is expanded into a set of discrete p
waves satisfying the Born–Von Ka´rmán cyclic conditions of
the corresponding plane. This is the case in LEED,1–3 where
the use of plane waves, which are inherently nonlocalized
particularly adapted to the nature of the problem. In t
sense, LEED theories can be viewed as the spectrosc
equivalent to the layer Korringa-Kohn-Rostoker~KKR!
theory.23 Mixed approaches have, however, been develo
such as cluster theories of LEED24,25 or slab theories of
PhD26,27 or EELS.28 But at all events, all the existing meth
ods rely either on spherical waves or on plane waves. Th
bases have the advantage of being both simple and flex
Yet they have an important drawback: their use is energ
cally limited due to the rate of convergence of the cor
14 167 ©2000 The American Physical Society
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sponding expansions, which varies considerably with ene
If this rate is too slow, many basis functions will be need
to achieve convergence, and hence a computational bo
neck will soon be reached. Let me give an example to ill
trate the problem. As is well known the convergence of
spherical-wave expansion is controlled by the upper va
l max of the angular momentum indexl given by the relation29

kra;Al max( l max11), wherek is the wave number of the
electron andr a the radius of the potential centered on atoma
around which the expansion is made. The number of b
functions used in the expansion corresponds to the numb
values of (l ,m), which is (l max11)2. Low-energy PhD~as
an example! can be described exactly by inverting the mu
tiple scattering matrix30 expressed in a spherical wave bas
Let me suppose now, to simplify the reasoning, that cry
symmetries are not taken into account. Obviously, the inc
sion of symmetries will reduce the size of the problem,
pecially when combined with an appropriate partitioning
the cluster, either into planes26 ~case of translational symme
try! or into shells28 ~point group symmetry!. The size of the
matrix that has to be inverted is thenNat( l max11)2

3Nat( l max11)2, whereNat is the number of atoms in th
cluster. Consequently, the storage of the matrix will incre
with the square of energy and the calculation will soon
come impossible. Indeed, for a kinetic energyEk;35 eV,
l max is of the order of 4 and the number of basis functio
necessary to expand the photoelectron wave function aro
a particular atomic center is about 25. On the other ha
when the kinetic energy reaches 1 keV, the number of b
functions becomes of the order of 400, therefore preven
the exact calculation of the cross section. This is why hi
energy photoelectron diffraction has to be described usin
series expansion, i.e., by performing analytically, instead
numerically, the inversion and truncating it to a certain ord
which is always a very time-consuming procedure. As a c
sequence, spherical waves are well suited to low ener
~because there the wave function of the electron resemb
spherical wave and hence few nonzero coefficients are le
the expansion! but not to medium or high energies.

Another approach to photoelectron diffraction has be
made recently,31 which uses a reflection high-energy electr
diffraction ~RHEED!-type formalism, i.e., an expansion o
the photoelectron wave function into a set of discrete pl
waves reflecting the periodicity conditions of the crystal.
the range of energies used in RHEED, which is a few ten
keV, the number of plane waves necessary to achieve
vergence is about 10. This is why plane waves are part
larly suited to RHEED, which is a direct consequence fro
the fact that at these energies, the wave function of the e
tron is close to a plane wave. Then, when the energy
decreased to x-ray photoelectron diffraction~XPD! energies,
that is, to 1 keV or so, the number of basis functions nee
increases to about 300. Note that these plane waves ar
lated to planes and not to atoms as the spherical waves
However, the expected gain in CPU time is counterbalan
here by the fact that the calculation has to be redone for e
angle point in contrast to spherical waves where the use
scattering path operator model disconnects what happen
the electron inside the crystal from its escape towards
detector.

This comparison between the two approaches means
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neither spherical waves nor plane waves are really adapte
the 1 keV range for electron spectroscopies. Therefore, th
is clearly a need for another approach, at least in this ene
range, that covers a majority of the work that can be found
the literature. Indeed, the energy dependence of the cu
governing the expansion of the usual basis functions con
erably limits the complexity of the systems studied, either
memory ~exact calculation! or by CPU time~series expan-
sion! requirements.

To overcome this problem, I propose here an alterna
approach that generalizes both the cluster and slab theo
The basic idea is to develop a theory of electron spect
copy techniques that does not make any assumption conc
ing the choice of the basis. Thus, a general formalism will
described that allows the derivation of cross sections us
only operators. Therefore, the choice of the basis is left to
computing strategy~it will be the object of a forthcoming
article! and can be tailored to the problem at hand. Note
well that no particular shape will be assumed for the pot
tial to keep the generality of the method. Spherical-wa
cluster theories will then be only a particular case of t
general framework, and so will be plane-wave slab theor
provided that the cluster, and hence the corresponding op
tors have been appropriately partitioned as a preliminary
the introduction of the plane-wave basis functions. This i
portant question of the basis-independant partitioning will
the subject of another article. The interesting point here
that other choices can be made that will simplify the calc
lations. Some, such as screened spherical waves,32 have al-
ready been shown to be very successful in electronic st
ture calculations. Note that this philosophy is not too dist
from the actual debate in the electronic structure commu
where people are seeking the best choice of a basis for th
calledO(N) methods33~i.e., methods for which the CPU tim
and the memory scale linearly with the dimensionN of the
problem!, and for which it has been demonstrated that o
localized bases are good candidates.34

In addition, this approach in terms of operators has a f
ther advantage: operators are directly connected to a phy
process~of which matrix elements are only a particular re
resentation! and hence can serve as a graphical interface
tween the physics behind the experiments and the equat
In other words, the present theory will allow us in a straig
forward manner to translate a sketch of the experiment
an operator equation and then into the cross section.
physics behind the equations becomes therefore very ea
identify and the manipulation of these equations is m
transparent.

In order to devise this framework, I will divide the phys
cal problem corresponding to a given electron spectrosc
technique into a series of building blocks. Two of the
building blocks can be considered as the basis blocks:
excitation and the propagation. The propagation blo
which is nothing but the well-known scattering pa
operator35 and has already been recognized by Gunne
et al.25 as giving a unified description of electron spectro
copy techniques. I will show here how the excitation blo
can be defined and the way to match these two build
blocks. A sub-block of the propagation block, which can
termed the closed-loop propagation block, will also be int
duced as a standard building block to describe absorp
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processes. All electron spectroscopies can then be
structed by combination of these blocks.

In Sec. II, I will recall some basic definitions of scatterin
theory. They can be found in more detail in any textbook
the subject36 but as some of them, such as the Mo” ller wave
operator, have never been used in the field of electron s
troscopies~at least to my knowledge!; this will greatly help
the understanding of the making of the building block
Then, I will show in Sec. III how the blocks can be co
structed. An example of application, core photoelectron
fraction, will be given in Sec. IV. Finally, in the Conclusio
I will draw some perspectives that will be illustrated in fort
coming articles.

II. BASIC DEFINITIONS

I will give here only the main results necessary for t
building of the present framework. A more detailed acco
will be found in standard texbooks on scattering theory36 to
which the reader is referred. From now on, I will suppose
atomic potentialsVi to be both local and real. In other word
Vi will be considered as a Hermitian operator. I will u
reduced units throughout the text, i.e., all operators are s
posed to be divided by\2/2m, wherem is the mass of the
electron involved in the process. Moreover, I will make t
further assumption that the potentials converge faster t
1/r at infinity, which is the mathematical condition37 for the
Mo” ller wave operator to exist over the entire Hilbert spa
More precisely, I will suppose that they can be trunca
somewhere, this value defining the range of these potent
But, except as otherwise stated, I will not assume any p
ticular shape for these potentials. In other words, the pre
formalism is very general and not restricted to the so ca
muffin-tin potential.

A. Case of a single potentialV

Let me consider first the case of an electron in the pr
ence of a single potentialV. Any electronic state must there
fore satisfy the Schro¨dinger equation

~Ho1V! uck&5k2 uck&. ~2.1!

If the solution of the Schro¨dinger equation in the abscence
V is calleduwk&, the statesuck& are given by the well-known
Lippmann-Schwinger equation

uck
6&5uwk&1G0

6 V uck
6&. ~2.2!

Here, G0
6 is the free-electron propagator. The6 solutions

originate from the fact that the Green operatorG0(z)[(z
2H0)21 is not defined whenz is a positive real number
Therefore,G0 has to be constructed either by approach
the real axis from above~1 solution! or from below
~2 solution!. The corresponding states are then outgo
states for the1 solution and ingoing states for the2 solu-
tion.

Equivalently, one has, in terms of the propagators,
Dyson equation

G65G0
61G0

6 V G6

5G0
61G6 V G0

6 , ~2.3!
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whereG(z)[(z2H)21. It is important to note here that th
definition ofG implies that its poles correspond to the eige
values ofH. Consequently, all the information we are loo
ing for is contained inG. Reasoning in terms ofG is there-
fore equivalent to solving the Schro¨dinger equation~2.1!.

Introducing the transition operatorT6 by

T65V1V G6 V, ~2.4!

which obviously has the same poles asG6, the Lippmann-
Schwinger equation~2.2! can then be recast as

uck
6&5@ I 1G6 V# uwk&

5@ I 1G0
6 T6# uwk&, ~2.5!

where I is the identity of the Hilbert space associated w
the electron, and the corresponding Dyson equation as

G65G0
61G0

6 T6 G0
65@ I 1G0

6 T6# G0
6

5G0
6@ I 1T6 G0

6#. ~2.6!

The interpretation of this equation is straightforward wh
noticing thatG0

6 describes the propagation of a free electr
andT6 the effect of the potentialV upon the incoming elec-
tron.

Let me turn now to the expression~2.5! of the Lippmann-
Schwinger equation. The Mo” ller wave operatorV (6) can be
defined as the operator transforming a free stateuwk& into a
scattering stateuck

6&. In other words,

V~6 !5I 1G6 V

5I 1G0
6 T6. ~2.7!

Note in particular that althoughV (6) is not unitary, it satis-
fies

V~6 ! † V~6 !5I . ~2.8!

The dagger † indicates here the Hermitian conjugate.
Actually, a scattering state corresponds, by definition, t

wave function of an electron located outside the range of
potential. But this wave function matches smoothly~and so
does its derivative! to an inner wave function correspondin
to a continuum state of the potentialV. It is therefore pos-
sible to analytically continueV (6) within the potential, and
it is this prelongated operator that I will use from now o
uck

6& will therefore describe either the outer scattering sta
or the inner continuum states. But note that, in addition to
continuum states, there exist as well bound states that
satisfy the Schro¨dinger equation~2.1! but that will not match
to any scattering state outsideV. As a consequence, it wil
not be possible to reach them withV6.

Now, the Lippmann-Schwinger equation~2.5! can be re-
written as

uck
6&5V~6 !uwk& ~2.9!

and the Dyson equation as

G65V~6 !G0
65G0

6V~7 ! †. ~2.10!

uwk& is called an asymptotical state with respect toV.38
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14 170 PRB 61DIDIER SÉBILLEAU
Multiplying Eq. ~2.5! by V and using the definition~2.4!
of T6, one obtains

V uck
6&5T6 uwk&. ~2.11!

This is a fundamental result for the construction of the f
malism. It means thatT acts on anasymptotical statewhile V
acts on aninner statewith both actions giving the sam
result. Inserting now Eq.~2.9! into Eq. ~2.11! leads to the
equivalent expression

T65V V~6 !5V~7 ! † V. ~2.12!

Again, this equation is of great importance for our pu
pose. Indeed, excitation always takes place via a poten
Consequently, an asymptotical state with respect
V—which is basically the kind of state obtained after t
propagation of an electron within the cluster—has to be
transformed byV into an inner state so that the perturbatio
V can act upon it.

Equation~2.12! can be transformed into

V215V~6 ! T6 215T6 21 V~7 ! †. ~2.13!

This quantity will appear frequently in the present theory a
I will therefore write it as

Ṽ~6 !5V~6 ! T6 21

5T6 21 1 G0
6 ~2.14!

and call it the renormalized Mo” ller wave operator.
As V has been supposed to be a real operator,Ṽ (6) will

also be real, which means that its matrix elements in a
basis will be real. This choice ofV real is not a true limita-
tion as most of the previous results still hold for compl
potentials, as I will demonstrate it in a forthcoming artic
Indeed, the Dyson equations forG, T, andV remain valid,
and it is still possible to define1 and 2 solutions with
respect to the branch cut, although the latter will not be
the real axis anymore. The main difference now is that
relation between the1 and2 operators~and hence betwee
1 and2 states! will change according to

A~1 ! †~z!5A~2 !~z* ! ~2.15!

instead of

A~1 ! †~z!5A~2 !~z! ~2.16!

for any operatorA.

B. Case in whichV is a superposition of potentials

Let me turn now to the case of an assembly of atoms s
as a cluster. It is generally possible to write the cluster
tential as a superposition of local potentials centered on
atomic sites. This is true as long as the optical poten
which accounts for the inelastic losses and has been
glected here by making the assumption thatV is real, is
considered as local. In this case, it has been demonstra39

that the general scattering expressions do not depend o
particular shape of the potential, and in particular, that th
still hold true for a collection of generally shaped, spac
filling potentials. But care must be taken here: when th
-
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was only one potentialV, it was implicitly assumed that the
origin of space was at the center of this potential. This is
the case anymore. However, it is easy to verify that all
preceding results still hold provided that any operatorAi at-
tached to a certain atomic sitei is replaced by its origin
centered counterpart

Āi5T~Ri ! Ai T~2Ri ! ~2.17!

whereT(Ri) is the translation operator andRi the position of
site i with respect to an arbitrary origin. The unitary transl
tion operator is defined by40

T~Ri !5e2Ri•“ i ~2.18!

and verifies

T~Ri !ur &5ur1Ri&,
~2.19!

^r uT~Ri !5^r2Ri u,

and

T †~Ri !5T 21~Ri !5T~2Ri !. ~2.20!

With the previous equation, it is clear that Eq.~2.17! is the
usual unitary transform expression for operators,41 i.e.,

T@A#5T A T†, ~2.21!

the transform being here the translation ofRi . T@A# is theT
transform ofA.

Actually, Eq.~2.17! can be interpreted in two ways. As
matter of fact, the wave functionc(r ) is constructed, in
Dirac’s notation, from the scalar product of a ket partic
stateuc& and a bra space state^r u, namely,^r uc&, with ^r u
referred to the arbitrary origin. IfĀi is made to act uponuc&,
it simply means that auc& state located in the vicinity of
atom i will be translated close to the origin byT(2Ri), and
then Ai can act upon it as in the case of a single potent
and the resulting state is then transferred back near the a
i by T(Ri). Reasoning in space, i.e., from left to right, E
~2.17! means now that the origin is translated toi by T(Ri);
thenAi can act and finally, the origin is transferred back
its real location byT(2Ri). Both views are equivalent.Āi
thus defined acts on states centered at the origin whileAi acts
on states centered on atomi.

Equation~2.17! is an important piece in the building o
the formalism. In fact, it is the operator’s equivalent to t
well-known addition theorems42 used when thinking in terms
of wave functions. The connection between the two is p
sented in Appendix A.

With this in mind, we can adapt the results of the previo
subsection to the case of a collection of potentials. Keep
the definition~2.4! of T6 and definition~2.7! of V (6), we
can partition these operators accordingly toV. As a direct
consequence of the notion~2.17! of origin-centered atomic
based operators, it is possible to write

T̄65(
i

T̄i
~6 ! ,

~2.22!
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V̄~6 !5(
i

v̄ i
~6 ! .

Let me point out here thatT̄i is not the atomic transition
operator associated with sitei, nor is v̄ i the Mo” ller wave
operator corresponding to sitei. These atomic operators wi
be noted here asT̄i andV̄ i , respectively.

From Eq.~2.12!, we see thatT̄i is related toV̄i by

T̄i
~6 !5V̄i V̄~6 !5V̄~7 ! † V̄i , ~2.23!

whereV̄ (6) is the total Mo” ller wave operator. Moreover, i
satisfies the relation

T̄i
~2 ! †5T̄i

~1 ! . ~2.24!

It is convenient at this stage to introduce a further partitio
ing of the T operator, which defines the scattering pa
operator,35 by

T̄i
~6 !5(

j
t̄ j i ~6 !5(

j
t̄ i j ~6 !. ~2.25!

Clearly, the origin centered scattering path operator can
expressed as43

t̄ j i ~6 !5T~Rj ! t j i ~6 ! T~2Ri !. ~2.26!

From the definition~2.4! of T, one can deduce that

t̄ j i ~6 !5V̄i d i j 1V̄j G6 V̄i ~2.27!

and from Eq.~2.23! that

t̄ j i ~6 !5V̄j v̄ i
~6 !5v̄ j

~7 ! † V̄i . ~2.28!

Note in particular that Eq.~2.27! implies that

t̄ i j ~2 ! †5 t̄ j i ~1 !. ~2.29!

We can establish now the well-known expression of
scattering path operator as a function of the atomicT opera-
tors. If we define the atomic propagators by

Gi
65G0

61G0
6 T̄i

~6 ! G0
6 , ~2.30!

it can be shown44 in the case of two potentials that

G65G1
61G1

6 V̄2 G65G1
61G6 V̄2 G1

6 . ~2.31!

Equivalent expressions are obtained by exchanging the r
of the two potentials. The generalization to a collection
potentials is straightforward by settingV̄15V̄i and V̄2

5( j Þ i V̄ j and leads to

G65Gi
61(

j Þ i
Gi

6 V̄j G6 ~2.32!

and its mirror counterpart. Making use of Eq.~2.10!, multi-
plying by G0

6 21 on the right-hand side and noticing from
Eqs.~2.23! and ~2.10! that V̄jG

65T̄j
(6)G0

6 , gives

V̄~6 !5V̄ i
~6 !1(

j Þ i
V̄ i

~6 ! G0
6 T̄j

~6 ! . ~2.33!
-

e

e

es
f

From this expression, we can deduce

v̄ i
~6 !5V̄ j

~6 ! d i j 1(
kÞ j

V̄ j
~6 ! G0

6 t̄ki ~6 !. ~2.34!

Now, if we multiply this equation byV̄j on the left-hand
side, and use Eq.~2.28!, we obtain the expression for th
scattering path operator as a function of the atomic transi
operators

t̄ j i ~6 !5T̄j
~6 ! d i j 1(

kÞ j
T̄ j

~6 ! G0
~6 ! t̄ki ~6 !. ~2.35!

The mirror equation

t̄ j i ~6 !5T̄j
~6 ! d i j 1(

kÞ i
t̄ jk ~6 ! G0

~6 ! T̄i
~6 ! ~2.36!

can be worked out in a similar way.
Iteration of any of the above equations shows thatt̄ j i

represents the set of all the terms in the Born developm
starting with T̄i ( i is then called the entrance point! and
ending withT̄j ( j is the exit point!. Therefore, it is the sum
of all the scattering paths connectingi to j and containing the
scattering by the two extremity potentials. As a consequen
t̄ j i describes completely the propagation of an electron
tweeni andj. It will then serve as one of the building block
Note as well thatt̄ j i can be considered as a photograph
the geometry of the cluster. With this in mind, the definitio
~2.25! and Eq.~2.23! have now a simple interpretation:T̄i

(6)

represents all the scattering paths starting or ending at atoi.
Here, the1 sign indicates that the paths are followed pr
gressively, while the2 sign means that the propagation
made ‘‘backward in time.’’T̄i was originally introduced by
Velicky̆, Kirkpatrick, and Ehrenreich.45

Let me now come back to the expression~2.27! of t̄ j i in

terms ofVi andVj . We can multiply it byṼ̄ j
(2) † on the left

and Ṽ̄ i
(1) on the right, or equivalently, byṼ̄ j

(1) on the left

and Ṽ̄ i
(2) † on the right. Recalling, according to Eq.~2.13!,

that these quantities are nothing but the inverse of the po
tial operator, one obtains straightforwardly

G152 Ṽ̄ j
~1 ! d i j 1 Ṽ̄ j

~2 ! † t̄ j i ~1 ! Ṽ̄ i
~1 !

52 Ṽ̄ j
~1 ! d i j 1 Ṽ̄ j

~1 ! t̄ j i ~1 ! Ṽ̄ i
~2 ! † . ~2.37!

This important result is the operator’s equivalent to th
originally derived for the Green function by Beeby46 and
generalized by Faulkner and Stocks.47 The recovery of the
latter expression is given in appendix A. With the definitio
~2.14! of the renormalized atomic Mo” ller wave operator

Ṽ̄ i
(6) , the first of these equations corresponds exactly to

result derived by Vvendensky.48 However, no physical inter-
pretation of this result has been given in the literature,
least to my knowledge. The introduction of the renormaliz
atomic Mo” ller wave operators provides here an elegant w
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to interpret it. Let us consider the second equation~2.37! and
suppose thati is different from j. Developing the renormal
ized Mo” ller wave operators, it can be rewritten as

G15~ I 1G0
1T̄j

1! T̄j
1 21 t̄ j i ~1 ! T̄i

1 21 ~ I 1T̄i
1G0

1!.
~2.38!

Now, if we suppose, as is sketched in Fig. 1, an elect
incoming on a cluster represented by its asymptotic s

with respect to the cluster potential,Ṽ̄ i
(2) † will transform

this state into an asymptotical state with respect to poten
V̄i prior to the scattering by atomi. It can be viewed as a
localization of the state of the incoming electron right befo

i. This is a direct consequence of the definition ofṼ̄ i
(2) †

which, as can be seen from Eq.~2.38!, starts by propagating
the state of the outer electron towards atomi before renor-
malizing it so that the matching condition is satisfied. Th
t̄ j i will propagate it toj including the scattering by this latte
atom, that is, transform it into an asymptotical state w

respect toV̄j after scattering byj. Finally, Ṽ̄ j
(1) will trans-

form it back into an asymptotic state outside the cluster,
delocalize it from atomj. Again, this is a consequence of th

construction ofṼ̄ j
(1) , which renormalizes the state first an

then propagates it elsewhere. Therefore, the atomic re

malized Mo” ller wave operatorṼ̄ i acts as a localization, o
delocalization, operator connecting an outer state to an
ymptotical state with respect to the potentialV̄i .

It is important to note at this stage that although bo
expressions in Eq.~2.37! are mathematically equivalent~the
two renormalized Mo” ller wave operators are equal and
practice will lead to the same wave functions!, only the last
one has a simple physical explanation.G1 is known to con-
tain all the electronic structure information of the crystal
its imaginary part is proportional to the density of states49

Equation~2.37! shows as well that the crystallographic i
formation, contained int̄ ji , can also be easily extracted fro
it.

III. THE BUILDING BLOCK MODEL

In the forthcoming discussion, I will consider only th
case where a core atom is involved in an excitation proc
It simplifies the reasoning and still keeps the generality
the method, as all the necessary ingredients can be foun
this example. More precisely, I will suppose, for the tim

FIG. 1. Geometrical interpretation of the development of
propagatorG1 in terms of the scattering path operatort̄ j i .
n
te

al

n

.,
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s

s.
f
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being, that an electron undergoing an excitation on an a
labeled 0 will then travel inside the crystal towards anoth
part that may be the vacuum.

As I developed the idea in the introductory section,
least two building blocks are necessary to construct an
erator’s theory of electron spectroscopy: one for the exc
tion of an electron and one for its propagation within a c
lection of scatterers. The last one is obviously related to
scattering path operator. After the excitation, the subsequ
propagation can be described by

T̄05(
j

t̄ j 0, ~3.1!

following the interpretation of this operator given previous
I recall that the left-hand side index in the scattering p
operator has been chosen to be the exit point, while the ri
hand side index is the entrance point. Now, becauseT̄0 con-
sists of a Born expansion of atomic transition operators
will act on states that are asymptotic with respect to atom
Let me callV̄0

ex the perturbation responsible for the excit
tion. Its effect is to promote an electron originally into
bound stateuw̄0

b& of atom 0 to a continuum stateuc̄0
ex& of the

same atom. Note that the latter has to be a continuum sta
propagation is considered afterwards~or prior to the excita-
tion!. uc̄0

ex& matches the corresponding scattering state o
side the potentialV̄0 of atom 0. T̄0 cannot act directly upon
it as uc̄0

ex& is not an asymptotical state with respect toV̄0.
According to the interpretation of the Mo” ller wave operator,
V̄0

† uc̄0
ex& is such an asymptotical state, but it already conta

the effect ofV̄0 as doesT̄0. Therefore, the matching of th
two blocks is not directly possible. However, a simple phy
cal argument indicates thatV̄0

† andT̄0T̄0
21 can match to form

the product operator. Indeed, there is always the possibi
in quantum scattering theory, that the incoming electron d
not ‘‘feel’’ the perturbing potential, in contrast to classic
theory. This can be seen easily in the Lippmann-Schwin
equation~2.2!. In the Mo” ller wave operator, it is accounte
for by the presence of the identity operatorI. This property
must survive the matching of the operators.T̄0 can be writ-
ten, following Eq.~2.35!, as

T̄05 t̄001(
j Þ0

t̄ j 0

5 T̄01(
j Þ0

~ I 1T̄0 G0
1! t̄ j 05T̄01(

j Þ0
V̄0

~2 ! † t̄ j 0,

~3.2!

and it is clear thatT̄0T̄0
21 will satisfy this property.

This can be demonstrated more formally. Let us consi
now an electron initially in a stateuw̄ in& incident upon a
cluster. In the abscence of the excitation, this electron w
be, after scattering by atom 0, in the stateT̄0 uw̄ in&. If we
turn on the perturbationV̄0

ex , the electron will undergo a
transition on atom 0 and, following the argument given b
fore, should be, after the whole process, in the state
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~V̄01V̄0
ex! V̄0 T̄0

21 T̄0 uw̄ in&, ~3.3!

as the potential the electron ‘‘feels’’ on atom 0 isV̄0

1V̄0
ex . In practice,V̄0 is omitted because it cannot induc

the transition. Here, however, we want to check the valid
of Eq. ~3.3!, and hence we must makeV̄0

ex tend continuously

towards zero and see if we recoverT̄0 uw̄ in&. In this case, the
transition will also tend to zero, and therefore,V̄0 must be
kept in Eq.~3.3!. As, according to Eq.~2.12!

V̄0 V̄05T̄0 , ~3.4!

we see immediately that

lim
V̄0

ex → 0

~V̄01V̄0
ex! V̄0 T̄0

21 T̄0 uw̄ in&5T̄0 uw̄ in&, ~3.5!

which demonstrates the validity of Eq.~3.3!. The matching
condition is illustrated in Fig. 2.

Now we have the two matching bricks together and
must choose where to draw the frontier between the
V̄0

ex V̄0 andT̄0 are obviously blocks, but a decision has to
made about the renormalization operatorT̄0

21 that can
equally well be attached to any of the two blocks. To
consistent with the existing literature, I will include it in th
excitation block. Therefore, the two building blocks becom

V̄0
ex Ṽ̄0 andT̄0 with Ṽ̄0 being the renormalized Mo” ller wave

operator. In the case of certain electron spectroscopies
as XAS or EELS, the sub-blockt̄00 of T̄0 will also be
needed. It describes closed-loop propagation from and
atom 0.

IV. EXAMPLE: CORE PHOTOELECTRON DIFFRACTION

As an example to illustrate the use of this formalism,
me take the case of core photoelectron diffraction. A m
thorough derivation of the cross sections of the most pop
electron spectroscopies, including those involving two el
trons and delocalized levels, will be given elsewhere.50

In a PhD experiment, a beam of monochromatic light
cident upon a sample excites core electrons that can es
this sample and reach a detector positioned along a g
direction. By carefully choosing the energy of the electro
entering the detector, it is possible to select only those or
nating from a certain core level on a particular chemi
species. This physical process is illustrated in Fig. 3 wh
the optical excitation operator responsible for the promot

FIG. 2. Pictorial representation of the matching of the two bui
ing blocks.
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of the core electron has been labeledŌ00. It is obviously
related to the interaction Hamiltonian (e/m) A•p ~the Cou-
lomb gauge is used here!, whereA is the vector potential of
the electromagnetic field andp the momentum of the elec
tron. In reduced units, the excitation potential becomes

V̄0
ex5

2e

\2
T~R0! A•p T~2R0!5

2e

\2
~A•p!0 . ~4.1!

As the process here is the time reversal of the proc
used to establish Eq.~3.3!, the optical excitation operator is

Ō005
2e

\2
A Ṽ̄0

~2 ! † ~ ê•p!0 . ~4.2!

A is the modulus of the potential vector andê its unit vector.
With the initial stateu i & and the continuum state being eige
states of the same Hamiltonian, one can use the well-kno
result51

ê•p5 imvq ê•r , ~4.3!

wherevq is the angular frequency of the incident photon,
transformŌ00 into

Ō005 i
2me

\2
A vq V! 0

~2 ! † ~ ê•r !0 . ~4.4!

Then, using the two building blocks previously defined, t
wave function of the electron reaching the analyzer loca
at R from the origin can be written as

^Ruc&5^RuG0
1 T̄0

~2 ! † Ō00T~R0! u i &. ~4.5!

If u i & is the initial state of the excited electron, with respect
atom 0, thenT(R0) u i & is the corresponding state referred
the origin of the coordinates withR0 being the position of
atom 0. G0

1 describes the propagation of the electron fro
the last scatterer encountered to the analyzer, andT̄0

(2) †

[T̄0
(1) the propagation of this electron from atom 0 to t

last scatterer within the cluster.
As R is large compared to interatomic distances, one

write

-

FIG. 3. Schematic of a photoelectron diffraction experime
Each part has been associated with its corresponding operator
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^RuG0
152Ap

2

eikR

R
^ku, ~4.6!

with the definitionk5kR̂. This result is obtained by deve
oping the Green function̂RuG0

1ur & to the first order inr /R
whatever the value ofr.

The cross section is defined by

ds

dV
5R2

dfsc

df in
, ~4.7!

where df in and dfsc are, respectively, the incoming an
scattered flux. The incoming flux of photons can be shown
be52

df in5
Nqc

~2p!3
. ~4.8!

Here,Nq is the number of photons of energy\vq contained
in the incoming beam andc the speed of the light. With a
normalization to ad ‘‘function,’’ the modulus of the poten-
tial vector is53

A5
1

~2p!3/2S Nq\

2e0vq
D 1/2

, ~4.9!

wheree0 is the dielectric constant of the vacuum.
The scattered flux through a unit surface positioned aR

is given by

dfsc~R!5
\

m
ImFc* ~R!

]c~r !

]r U
r 5R

G , ~4.10!

where Im indicates the imaginary part. In case of a spher
waveU(R̂) eikR/R, the scattered flux becomes

dfsc5
\k

m

uU~R̂!u2

R
. ~4.11!

Combining these results with expression~4.5! of the wave
function gives the photoelectron diffraction cross section
dependent of the basis,

ds

dk̂
58p2 a k

mvq

\ (
0

(
ml i

z^ku T̄0
~2 ! † V! 0

~2 !† ~ ê•r !0

3T~R0! u i & z2 ~4.12!

or, equivalently

ds

dk̂
58p2 a k

mvq

\ (
0

(
ml i

U(
j

^ku T~Rj !

3t j 0 Ṽ0
~2 !† ~ ê•r ! u i &U2

, ~4.13!

a5e2/4pe0\c is the fine-structure constant and the summ
tions are over the different absorbers 0 andml i

, the angular

momentum index of the core initial stateu i &[uni ,l i ,ml i
&.

The final result has been multiplied by 2 to take the spin i
o

al

-

-

o

account. These expressions further simplify if the cluste
translationally invariant as shown in Appendix B.

Extension of Eq.~4.12! to one of the spin-orbit compo
nentsuni , j i ,mj i

&, if they can be resolved, is trivial and give

ds

dk̂
54p2 a k

mvq

\ (
0

(
mj i

,msk

z^ 1
2 ,msk

u

^ ^ku T̄0 ^

~2 ! † V! 0 ^

~2 !† ~ ê•R!0 ^ T~R0! uni , j i ,mj i
& z2.

~4.14!

The summation over the spin of the outgoing electron com
from the fact that the detector has been assumed not t
able to differentiate spin orientations, in which case,

ds

dk̂
5

ds

dk̂
~1 !1

ds

dk̂
~2 !. ~4.15!

The index^ indicates that the operator acts in the produ
space. If the spin dependance of the potential is neglec
the product operatorsĀi ^ reduce to

Āi ^ 5Āi ^ I S , ~4.16!

whereI S is the identity in the spin space.
Equations~4.12! and ~4.14! are valid whatever the shap

of the atomic potentials, as the only assumption that w
made about them is that their superposition coincides w
the crystal potential. It is interesting to see now how t
usual spherical wave cluster result30 can be recovered from
the general result~4.12!.

Obviously, the way to introduce the basis into the pre
ous expressions is through the closure relation of the sele
basis. Therefore, it is preferable to work with the orthon
mal basis so that this closure relation equals the identity
the Hilbert space of the electron, that is to say in the cas
spherical waves

E (
L

ukL& ^kLu dk5I , ~4.17!

where L stands for the two angular momentum indic
( l ,m). Consequently, I will define free spherical waves b

^r ukL&5kA2

p
i l j l~kr ! YL~ r̂ !. ~4.18!

Here j l(kr) is the spherical Bessel function of orderl. The
spherical waves in the literature are, most of the time,
normalized. In general, they are chosen so that the ma
elements of the transition operatorT reduce to the simple
form t l5(sindl) eidl, whered l is the l th phase shift of the
potentialV taken, in this case, to be spherically symmetr
Here, the matrix elements ofT are, for a spherically symmet
ric potential,

^k2L2uT1uk1L1&52
2k

p
~sind l 1

! eid l 1 dL1L2
d~k22k1!

3d~k12k!, ~4.19!
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wherek is the wave number associated withT1. The Diracd
‘‘functions’’ in this expression ensure the conservation
energy throughout the whole scattering process. The us
normalized plane waves, i.e.,

^r uK &5
1

~2p!3/2
eiK•r ~4.20!

imposes the following relation under the change of the ba

^K ukL&5
1

k
YL~K̂ ! d~k2K !. ~4.21!

Introducing Eqs.~2.25! in Eq. ~4.12! and expressing the
origin-centered atomic operators in terms of their atom
centered counterparts according to Eq.~2.17! immediately
leads to

ds

dk̂
58p2 a k

mvq

\ (
0

(
mi

U(
j

e2 ik•Rj

3^ku t j 0 Ṽ0
~2 !† ê•r u i &U2

. ~4.22!

The insertion of the closure relation of the basis$uk0L0&% and
$ukjL j&% centered, respectively, on atom 0 and atomj allows
the direct recovery of the usual equation30

ds

dk̂
58p2 a

mvq

\k (
0

(
ml i

U(
L0

ML0Li

00

3(
j ,L j

tL jL0

j 0 YL j
~ k̂! e2 ik•RjU2

, ~4.23!

with the matrix elements

ML0Li

00 5^k0L0uṼ0
~2 !† ê•r u i &. ~4.24!

This is the starting point of all spherical-wave cluster the
ries that can be found in the literature. Note that with t
normalization~4.18!, ^r uṼ0

(2)uk0L0& is the continuum state
that matches smoothly to

2Ap

2
t l 0

21 i l 0 @ j l 0
~kr !1 i t l 0

hl 0
~1!~kr !# YL0

~ r̂ ! d~k02k!

52Ap

2
R̃L

~6 !~r ! d~k02k!

across the limit of the bounding sphere of the potential. N
as well that due to the use of normalized free-electron w
functions,tL jL0

j 0 differs by a factor22k/p from the expres-

sion found in the literature. Taking these two differences i
account will change the coefficient before the modulus in
cross section into 8pa \vq k (2m/\2). The term (2m/\2)
here comes from the fact that reduced units have been
to establish the cross section. When multiplied by thed func-
tion that is omitted here and that accounts for thek2 conser-
vation, it will eventually gived(\vq2Ek2Ei) with Ei be-
ing the binding energy of the core electron promoted to
scattering state with kinetic energyEk .
f
of
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-
e
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V. CONCLUSION

I have presented in this paper a very general framewor
build the multiple scattering theory of electron spectrosco
This formalism does not make any assumption concern
the choice of the basis used to expand the wave functio
the electron. As such, it is a generalization of existing th
ries. Indeed, both spherical-wave cluster theories and pla
wave slab approaches are particular cases of it. Howeve
the latter case, a partitioning of the scattering path oper
~as it is done in the layer KKR theory23! has to be carried ou
prior to the use of the plane-wave basis. Work on the diff
ent modes of partitioning is currently in progress.

The first advantage of the present formalism lies in
fact that any basis of the Hilbert space can be used—it is
limited to the standard basis. Therefore, the choice of
basis can be made to minimize the computational effort
particular, a new basis remains to be found in the mediu
energy range~around 1 keV!. This will be the subject of a
forthcoming study.

Its second advantage is that, when dealing with opera
that have a well-defined physical meaning, the equations
come more transparent. As a consequence, this forma
can serve as a graphical interface between experiments
calculations, as each part of a sketch of the experime
process can be associated with a well-identified build
block composed of one or two operators. Hence, the der
tion of the cross section of a given electron spectrosc
reduces to the combining of these building blocks accord
to the sketch of the experiment. This has been illustrated
the case of core photoelectron diffraction. The bas
independent theory of the other major electron spectrosc
techniques will be the subject of a forthcoming paper.
nally, the last advantage of this general framework is to
place the fastidious addition theorems by the more frien
translation operator.

ACKNOWLEDGMENT

I would like to thank C. R. Natoli for stimulating discus
sions and for a critical reading of the manuscript.

APPENDIX A: THE RECOVERY OF THE ADDITION
THEOREMS AND OF THE FAULKNER-STOCKS RESULT

In this appendix, I want to show how well-known resul
such as the addition theorems for spherical waves,42 or the
Faulkner-Stocks formula,47 can be naturally deduced from
the translation operator’s approach. Let me point out fi
that the translation operator for any translation vectorRi

commutes with the propagatorG0
1 , i.e.,

@G0
1 ,T~Ri !#50. ~A1!

This important property will prove most useful here. I w
use throughout this appendix normalized spherical wave
defined by Eq.~4.18!. Before proceeding further, we need
find the scattered wave functions^r uG0

1(k)uk1L1&. Recalling
that, by definition ofG0

1(k),

G0
1~k! uK &5 lim

e→01

uK &

k22K21 i e
, ~A2!
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the insertion of the closure relation of the plane-wave ba
into the definition of the scattered wave function imme
ately leads to

^r uG0
1~k!uk1L1&5A2

p
i l 1 YL1

~ r̂ ! lim
e→01

3E
0

1` K j l 1
~Kr ! d~k12K !

k22K21 i e
dK.

~A3!

Owing to the d function, the integral, hereafter name
I (e), can be extended to2`. If we decompose the spherica
Bessel function according to

j l 1
~z!5

1

2
@hl 1

~1!~z!1hl 1
~1! * ~z!#. ~A4!

I (e) is transformed into

I ~e!5
1

2
@a~e!1b~e!# ~A5!

with

a~e!5E
2`

1` K hl 1
~1!~Kr ! d~k12K !

k22K21 i e
dK,

~A6!

b~e!5E
2`

1` K hl 1
~1! * ~Kr ! d~k12K !

k22K21 i e
dK5a* ~2e!.

These two integrals can be calculated by using a class
contour integration as shown in Fig. 4 combined with t
residue theorem.54 Here, a~e! is computed with the single
arrowed contour and polesK1 andK2, while the calculation
of b~e! makes use of the double arrowed contour withK3
andK4. This calculation eventually leads to

FIG. 4. Integration contour for the calculation ofa(e) and
b(e). K1 andK2 correspond toa(e) with the upper single arrowed
contour whileK3 and K4 with the lower double arrowed contou
correspond tob(e).
is
-

al

a~01!52 ip hl 1
~1!~kr ! d~k12k!,

~A7!

b~01!52 ip hl 1
~1! * ~2kr ! d~k11k!,

k1 and k being positive real numbers,b(01) is zero and
hence

^r uG0
1~k!uk1L1&52 iAp

2
i l 1 hl 1

~1!~kr ! YL1
~ r̂ ! d~k12k!.

~A8!

We need now to consider the separable representatio
the Green function. As found in any textbook,36 it is written
as

^r 8uG0
1~k!ur &52 ik (

L
j l~kr,! hl

~1!~kr.! YL~ r̂ 8! YL* ~ r̂ !,

~A9!

wherer , (r .) designates the smaller~larger! of r andr 8. It
is necessary for convergence thatr , is the argument of the
spherical Bessel function. With Eqs.~4.18! and ~A8!, its
demonstration becomes trivial by inserting the closure re
tion of the spherical-wave basis in̂r uG0

1(k)ur 8&. The only
knowledge we need from the standard proof is where to
sert this closure relation. Clearly, we can accept as a gen
rule that when dealing with free-electron propagators a
space vectors, the closure relation must be inserted betw
G0

1 and the smaller of the space vectors.
Now, starting from a scattered wave centered on atomi,

we can write, ifr i5r2R0i (R0i is the vector connecting 0 to
j ) is a position referred to this atom,

^r i uG0
1~k!uLi&5^r j1r i2r j uG0

1~k!uLi&

5^r j1Ri j uG0
1~k!uLi&

5^r j uT~2Ri j ! G0
1~k!uLi&

5^r j uG0
1~k! T~2Ri j !uLi&, ~A10!

with Ri j 5r i2r j5R0 j2R0i and using the fact thatG0
1 com-

mutes with the translation operator. According to the abo
mentioned general rule, we deduce

^r i uG0
1~k!uLi&5(

L j

^r j uL j& ^L j uT~2Ri j ! G0
1~k!uLi&

if Ri j .r j

5(
L j

^r j uG0
1~k!uL j& ^L j uT~2Ri j !uLi&

if Ri j ,r j . ~A11!

Here, I have suppressed the integral in the closure rela
because it disappears with thed contained either in
^r j uG0

1(k)ukjL j& or in ^kjL j uT(2Ri j )G0
1(k)ukiLi&.

The matrix elements of the translation operator and of
propagator can be easily calculated and their value is
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TL jLi

j i 5^L j uT~2Ri j !uLi&

54p (
L

i l j l~kRi j ! YL~R̂i j ! G~L jLuLi !, ~A12!

GL jLi

j i 5^L j uT~2Ri j !G0
1uLi&

52
2ip2

k (
L

i l hl
~1!~kRi j ! YL~R̂i j ! G~L jLuLi !,

whereG(L jLuLi) is a Gaunt coefficient.55 The replacemen
of these matrix elements by their value in Eq.~A11! leads to
the addition theorems derived by Danos and Maximon.42

In addition, this formalism greatly simplifies the develo
ment of the Green function around two centers which i
central issue in multiple scattering theory. Indeed, if we
fine againr i5r2R0i whereR0i is the position of sitei with
respect to the origin 0,

^r uG0
1~k!ur 8&5^r i1R0i uG0

1~k!ur j81R0 j&

5^r i uT~2R0i ! G0
1~k!ur j81R0 j&

5^r i uG0
1~k!ur j81Ri j &

5(
Li

^r i uLi& ^Li uG0
1~k!ur j81Ri j &

if r i,ur j81Ri j u

5(
Li

^r i uLi& ^Li uT~2Ri j ! G0
1~k!ur j8&

5 (
Li ,L j

^r i uLi& GLiL j

i j ^L j ur j8&

if r j8,Ri j , ~A13!

which corresponds to the classical result.56 Similarly, the
Faulkner-Stocks expansion of the Green function can be
tablished easily. Indeed, we have, for example, in the c
wherer and r 8 are inside cellsi and j respectively,

^r 8uG1~k!ur &5^r 8u@2 Ṽ̄ i
~1 ! d i j 1 Ṽ̄ j

~1 ! t̄ j i ~1 ! Ṽ̄ i
~2 ! †#ur &

52^r i8uṼ i
~1 !ur i&d i j

1^r j8uṼ j
~1 ! t j i ~1 ! Ṽ i

~2 ! †ur i&. ~A14!

Here, it can be shown that, to be consistent with the c
verging expansion~A9! of the free-electron Green function
the closure relation has to be inserted betweenṼ and the
larger of r i and r i8 in the first term in the right-hand side o
Eq. ~A14!. This eventually leads to the Faulkner-Stocks e
pansion

^r 8uG1~k!ur &5k (
Li

R̃Li

i ~1 !~r i ,! JLi
* ~r i .! d i j

1
p

2 (
Li ,L j

R̃Li

i ~1 !~r i ! tLiL j

i j R̃L j

j ~2 ! * ~r j !

~A15!
a
-

s-
se

-

-

with the convention

^r uṼ i
~6 !uL&52Ap

2
R̃L

i ~6 !~r !52Ap

2
t l
i 21 R L

i ~6 !~r !,

~A16!

with R L
(1)(r ) matching toJL(r )1 i t lHL

1(r ) and JL(r ) to
JL(r ) outside the bounding sphere. Here,FL(r )
5 i l f l(kr)YL( r̂ ) wheref l is any of the spherical Bessel func
tions.

APPENDIX B: CASE OF A TRANSLATIONALLY
INVARIANT CLUSTER

Let me suppose thatRn2R0 is a translation that leave
the crystal unchanged. Here,n designates another absorb
situated atRn from the origin. Clearly, for any atomj and its
T(Rn2R0)-transformedi, the scattering path operator mu
satisfy

t i n5t j 0 ~B1!

and hence

Tn5T0 . ~B2!

As a consequence,

T~Ri ! t i n5T~Ri ! t j 0

5T~Ri2Rj ! T~Rj ! t j 0

5T~Rn2R0! T~Rj ! t j 0. ~B3!

The cross section corresponding to absorbern can be rewrit-
ten as

S ds

dk̂
D

n

58p2 a k
mvq

\ (
ml i

Ue2 ik•~Rn2R0!

3(
j

^ku T~Rj !t
j 0 Ṽ0

~2 !† ~•r ! u i &U2

5S ds

dk̂
D

0

, ~B4!

where use has been made of the relation

^kuT~a!5e2 ik•a ^ku. ~B5!

Accordingly, the total cross section becomes

ds

dk̂
58p2 a k

mvq

\ (
p

(
0p

D0p (ml i

U(
j

^ku T~Rj !

3t j 0p Ṽ0p

~2 !† ~ ê•r ! u i &U2

. ~B6!

While in Eq. ~4.13! the summation was overall the absorb-
ing atoms in the cluster, here it reduces to the inequiva
absorbers 0p of plane p. This considerably diminishes th
amount of calculations that have to be done.D0p

is the den-

sity of absorbers of type 0p in the planep.
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