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| present here a general formalism that allows the construction of the cross section of any electron spec-
troscopy in a straightforward and transparent way. This approach does not make any assumption concerning
the choice of the basis functions used to expand the wave function of the electron. In this sense, it generalizes
existing theories. It allows us to keep the physics well in view and offers, due to the relationship between
operators and parts of a pictorial representation of the experiments, a type of a graphical interface to the
problem at hand. Moreover, it does not assume any particular shape for the potential.

[. INTRODUCTION one can distinguish between localized and nonlocalized crys-
tallographic probes. | will call here localized probes those
Electron spectroscopy techniques are now a welloriginating from an excitation process occuring on a particu-
established tool for the study of surfaces. They have becomlar atom. This is typically the case of XAS, core PhD, and
more and more popular over the years both because they afED or EELS. As a result, these spectroscopies will be
nondestructive probes and as a result of the theoretical andainly sensitive to the immediate surrounding of the atom
computational effort that transformed them into very accu-on which the excitation has taken place. On the other hand,
rate and powerful methods. Historically, low-energy electronnonlocalized spectroscopies will essentially reflect the long-
diffraction'=3 (LEED) was the first to establish itself as an range structure of the system under study. Actually, the term
essential technique for surface crystallography. With the adnonlocalized can be understood in two ways. It can either
vent of synchrotron radiation, x-ray absorption spectroscopynean that there is no excitation process or that the excitation
(XAS) developed rapidly as a new spectroscopic method caprocess involves a delocalized level. The first case corre-
pable of giving both electronic structure orientatedray  sponds to LEED, where a beam of incoming electrons is
absorption near edge structure, XANE&nd crystallo- elastically scattered by the atoms of the crystal with the re-
graphic orientated information either for bulfextended sulting beam entering the detector. Valence photoelectron
x-ray absorption fine structure, EXAF8r surfaceqsurface diffraction’ is a good example of the second case.
EXAFS, SEXAFS* Then, photoelectron diffractidn® Traditionally, there are two ways to tackle the problem of
(PhD) and Auger electron diffractidfi (AED) were devel- the modelization of electron spectroscopies. One uses a clus-
oped for crystallographic purposes. Finally, electron energyer approach and an expansion of the wave function of the
loss spectroscop{EELS), which was originally considered traveling electron into spherical waves. Historically, it was
as an electronic structure tdblcapable of giving informa- developed for localized spectroscopies such as X&S8,
tion on collective excitations such as plasmSnor  PhD®™® or EELS?® with some refinements proposed later
phonons:® has now been shown to be able to give surfacehat use a shell partitioning of the crysta? The reason for
crystallographic parameters as w¥llSimultaneously, in- such a choice of basis probably lies in the fact that spherical
verse methods such as bremstrahlung isochromatiaves are localized functions and thus thought more suited
spectroscopy (BIS) or inverse photoelectron diffractith  to describe the physical process. The other approach, which
were developed to study both empty states and crystallograan be called the slab appraoch, involves a patrtitioning of the
phy depending on the energy. All these tools, from which acrystal into planes so that the periodicity of each plane can
great variety of knowledge about a crystal can be obtainedye taken into account. Consequently, the wave function inci-
commonly use, in one way or another, electrons as thelent upon a plane is expanded into a set of discrete plane
source of information. waves satisfying the Born—Von Iaan cyclic conditions of
The termelectron spectroscopis used here in a very the corresponding plane. This is the case in LEEDwhere
general way: it simply means that the spectra obtained fronthe use of plane waves, which are inherently nonlocalized, is
the experiments contain, directly or indirectly, the informa-particularly adapted to the nature of the problem. In this
tion that is sought as a result of the scattering processesense, LEED theories can be viewed as the spectroscopic
undergone by an electron inside a crystal. In that sense, thequivalent to the layer Korringa-Kohn-RostokéKKR)
electron need not be the particle entering the detector, praheory?® Mixed approaches have, however, been developed
vided that the resulting signal is related somehow to the besuch as cluster theories of LEET?® or slab theories of
havior of an electron. PhD’%2" or EELS?® But at all events, all the existing meth-
From the point of view of crystallography, it is possible to ods rely either on spherical waves or on plane waves. These
divide electron spectroscopies into two categories accordingases have the advantage of being both simple and flexible.
to the type of parameters they depend upon, and hence on thet they have an important drawback: their use is energeti-
kind of information they will be able to provide. Namely, cally limited due to the rate of convergence of the corre-
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sponding expansions, which varies considerably with energyneither spherical waves nor plane waves are really adapted to
If this rate is too slow, many basis functions will be neededthe 1 keV range for electron spectroscopies. Therefore, there
to achieve convergence, and hence a computational bottlés clearly a need for another approach, at least in this energy
neck will soon be reached. Let me give an example to illustange, that covers a majority of the work that can be found in
trate the problem. As is well known the convergence of thethe literature. Indeed, the energy dependence of the cutoff
spherical-wave expansion is controlled by the upper valugoverning the expansion of the usual basis functions consid-
| max Of the angular momentum indéxgiven by the relatiof®  erably limits the complexity of the systems studied, either by
Kra~VlImaxdlmaxt 1), wherek is the wave number of the memory (exact calculationor by CPU time(series expan-
electron and , the radius of the potential centered on atam sjon) requirements.
around which the expansion is made. The number of basis To overcome this problem, | propose here an alternative
functions used in the expansion corresponds to the number @pproach that generalizes both the cluster and slab theories.
values of (,m), which is (na,+1)% Low-energy PhD@as  The basic idea is to develop a theory of electron spectros-
an examplgcan be described exactly by inverting the mul- copy techniques that does not make any assumption concern-
tiple scattering matri¥’ expressed in a spherical wave basis.ing the choice of the basis. Thus, a general formalism will be
Let me suppose now, to simplify the reasoning, that crystafiescribed that allows the derivation of cross sections using
symmetries are not taken into account. Obviously, the incluonly operators. Therefore, the choice of the basis is left to the
sion of symmetries will reduce the size of the problem, escomputing strategyit will be the object of a forthcoming
pecially when combined with an appropriate partitioning ofarticle) and can be tailored to the problem at hand. Note as
the cluster, either into plan&s(case of translational symme- well that no particular shape will be assumed for the poten-
try) or into shell$® (point group symmetry The size of the  tial to keep the generality of the method. Spherical-wave
matrix that has to be inverted is theN(lmaxt1)?>  cluster theories will then be only a particular case of this
X Nat(Imaxt 1)?, whereNy, is the number of atoms in the general framework, and so will be plane-wave slab theories,
cluster. Consequently, the storage of the matrix will increaserovided that the cluster, and hence the corresponding opera-
with the square of energy and the calculation will soon betors have been appropriately partitioned as a preliminary to
come impossible. Indeed, for a kinetic enerfgy~35 eV, the introduction of the plane-wave basis functions. This im-
I max is Of the order of 4 and the number of basis functionsportant question of the basis-independant partitioning will be
necessary to expand the photoelectron wave function arourttie subject of another article. The interesting point here is
a particular atomic center is about 25. On the other handhat other choices can be made that will simplify the calcu-
when the kinetic energy reaches 1 keV, the number of basitions. Some, such as screened spherical wivieaye al-
functions becomes of the order of 400, therefore preventingeady been shown to be very successful in electronic struc-
the exact calculation of the cross section. This is why highture calculations. Note that this philosophy is not too distant
energy photoelectron diffraction has to be described using &rom the actual debate in the electronic structure community
series expansion, i.e., by performing analytically, instead ofvhere people are seeking the best choice of a basis for the so
numerically, the inversion and truncating it to a certain ordercalledO(N) methods¥(i.e., methods for which the CPU time
which is always a very time-consuming procedure. As a conand the memory scale linearly with the dimensirof the
sequence, spherical waves are well suited to low energigsroblen), and for which it has been demonstrated that only
(because there the wave function of the electron resembleslacalized bases are good candidates.
spherical wave and hence few nonzero coefficients are left in In addition, this approach in terms of operators has a fur-
the expansionbut not to medium or high energies. ther advantage: operators are directly connected to a physical
Another approach to photoelectron diffraction has beerprocessof which matrix elements are only a particular rep-
made recently! which uses a reflection high-energy electronresentationand hence can serve as a graphical interface be-
diffraction (RHEED)-type formalism, i.e., an expansion of tween the physics behind the experiments and the equations.
the photoelectron wave function into a set of discrete planén other words, the present theory will allow us in a straight-
waves reflecting the periodicity conditions of the crystal. Inforward manner to translate a sketch of the experiment into
the range of energies used in RHEED, which is a few tens oan operator equation and then into the cross section. The
keV, the number of plane waves necessary to achieve comphysics behind the equations becomes therefore very easy to
vergence is about 10. This is why plane waves are particuidentify and the manipulation of these equations is more
larly suited to RHEED, which is a direct consequence fromtransparent.
the fact that at these energies, the wave function of the elec- In order to devise this framework, | will divide the physi-
tron is close to a plane wave. Then, when the energy igal problem corresponding to a given electron spectroscopy
decreased to x-ray photoelectron diffractiotPD) energies, technique into a series of building blocks. Two of these
that is, to 1 keV or so, the number of basis functions needetiuilding blocks can be considered as the basis blocks: the
increases to about 300. Note that these plane waves are rexcitation and the propagation. The propagation block,
lated to planes and not to atoms as the spherical waves anehich is nothing but the well-known scattering path
However, the expected gain in CPU time is counterbalancedperato?® and has already been recognized by Gunnella
here by the fact that the calculation has to be redone for eadt al?® as giving a unified description of electron spectros-
angle point in contrast to spherical waves where the use of eopy techniques. | will show here how the excitation block
scattering path operator model disconnects what happens tan be defined and the way to match these two building
the electron inside the crystal from its escape towards thelocks. A sub-block of the propagation block, which can be
detector. termed the closed-loop propagation block, will also be intro-
This comparison between the two approaches means thdticed as a standard building block to describe absorption
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processes. All electron spectroscopies can then be comvhereG(z)=(z—H) ! Itis important to note here that the

structed by combination of these blocks. definition of G implies that its poles correspond to the eigen-
In Sec. I, | will recall some basic definitions of scattering values ofH. Consequently, all the information we are look-

theory. They can be found in more detail in any textbook oning for is contained inG. Reasoning in terms d is there-

the subject but as some of them, such as thdIMowave fore equivalent to solving the Schiimger equatior(2.1).

operator, have never been used in the field of electron spec- Introducing the transition operatd@r~ by

troscopieqat least to my knowledgethis will greatly help . .

the understanding of the making of the building blocks. T-=V+VG YV, (2.9

fraction, will be given in Sec. IV. Finally, in the Conclusion Schwinger equatiof2.2) can then be recast as

I W|Il.draw some perspectives that will be illustrated in forth- iy =[1+G* V]| e

coming articles.

=[1+Go T 110, (2.9

wherel is the identity of the Hilbert space associated with

I will give here only the main results necessary for thethe electron, and the corresponding Dyson equation as
building of the present framework. A more detailed account . e .
will be found in standard texbooks on scattering thédty G™ =Gy +Gy T" Gy =[1+G, T"]Gq
which the reader is referred. From now on, | will suppose the - o
atomic potentiald/; to be both local and real. In other words, =GolI+T7Gol. (2.9
Vi will be considered as a Hermitian operator. | will use The interpretation of this equation is straightforward when
reduced units throughout the text, i.e., all operators are Sufoticing thatG, describes the propagation of a free electron
posed to be divided bj“/2m, wherem is the mass of the = angT* the effect of the potential upon the incoming elec-
electron involved in the process. Moreover, | will make theqp.
further assumption that the potentials converge faster than | et me turn now to the expressié®.5) of the Lippmann-
1/r at infinity, which is the mathematical conditi¥frfor the Schwinger equation. The Mer wave operatof)(*) can be
Mdller wave operator to exist over the entire Hilbert space gefined as the operator transforming a free staf¢ into a
More precisely, | will suppose that they can be truncate cattering statéy;). In other words,
somewhere, this value defining the range of these potentials.

II. BASIC DEFINITIONS

But, except as otherwise stated, | will not assume any par- Q) =14+G6*V
ticular shape for these potentials. In other words, the present
formalism is very general and not restricted to the so called =1+Gy T". (2.7

muffin-tin potential. _ . £y . . : .
Note in particular that althougf(*) is not unitary, it satis-

A. Case of a single potentiaV fies
Let me consider first the case of an electron in the pres- QT =], (2.9
ence of a single potenti&l. Any electronic state must there-

fore satisfy the Sctiinger equation The dagger T indicates here the Hermitian conjugate.

Actually, a scattering state corresponds, by definition, to a
(Ho+ V) [t =K2 | o). (2.1  Wwave function of an electron located outside the range of the
) potential. But this wave function matches smoottdnd so
If the solution of the Schidinger equation in the abscence of does its derivativeto an inner wave function corresponding
V is called|¢y), the state$y) are given by the well-known to a continuum state of the potentid! It is therefore pos-

Lippmann-Schwinger equation sible to analytically continu€(*) within the potential, and
N . . it is this prelongated operator that | will use from now on.
|4 ) =1e +Go V) (2.2 |45y will therefore describe either the outer scattering states

Here, G2 is the free-electron propagator. The solutions  ©F the inner continuum states. But note that, in addition to the
' 0 continuum states, there exist as well bound states that will

originate from the fact that the Green opera@g(z)=(z _ o ; .

—Hg) ! is not defined wherz is a positive re(Zf number. satisfy the Schmnnger equat!orﬁz.l) but that will not match

Therefore,G, has to be constructed either by approachingt0 any scatt_erlng state outside AS? consequence, it wil
not be possible to reach them with—.

the real axis from abovg+ solution or from below N he Li Schwi 69 b
(— solution. The corresponding states are then OUtgom%\/ri ow, the Lippmann-Schwinger equati¢2.5) can be re-

states for thet+ solution and ingoing states for the solu- tten as
tion. +
=y ()
Equivalently, one has, in terms of the propagators, the )= i) (2.9
Dyson equation and the Dyson equation as
G*=Gy+Gy VG* G =0"G;=G6;0 T, (2.10

=Gy +G*V Gy, (2.3 |¢,) is called an asymptotical state with respecitd®
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Multiplying Eq. (2.5 by V and using the definitio2.4)  was only one potentidV, it was implicitly assumed that the
of T*, one obtains origin of space was at the center of this potential. This is not
. the case anymore. However, it is easy to verify that all the
VIg)=T"|ew. (211 preceding results still hold provided that any operatpat-
tached to a certain atomic sifeis replaced by its origin

This is a fundamental result for the construction of the for-
centered counterpart

malism. It means thak acts on arasymptotical statavhile V
acts on aninner statewith both actions giving the same -
result. Inserting now Eq(2.9) into Eq. (2.11) leads to the Ai=T(R) A T(=R) (2.1
equivalent expression where7(R;) is the translation operator amij the position of
_ sitei with respect to an arbitrary origin. The unitary transla-
£ (=@t , ; X
T"=va =0 V. (2.12 tion operator is defined B

Again, this equation is of great importance for our pur- TR)=e Ri'Vi 2.18
pose. Indeed, excitation always takes place via a potential. ! '
Consequently, an asymptotical state with respect to and verifies
V—uwhich is basically the kind of state obtained after the

propagation of an electron within the clusteihas to be TR)[r)=[r+Ri),
transformed by{) into an inner state so that the perturbation (2.19
V can act upon it
Equation(2.12) can be transformed into (r| (R =(r—Ry,
V-l Tt —logr -1 1 (2.13 and
This quantity will appear frequently in the present theory and T'(R)=T YR)=T—R)). (2.20
| will therefore write it as With the previous equation, it is clear that H8.17) is the

Qg T -1 usual unitary transform expression for operafdrie.,

TA]=TAT, (2.21)

the transform being here the translationRyf T[A] is theT
transform ofA.

Actually, Eq.(2.17) can be interpreted in two ways. As a
atter of fact, the wave functio(r) is constructed, in
Dirac’s notation, from the scalar product of a ket particle
state|¢) and a bra space state|, namely,(r|#), with {r|

=T 1+ Gg (2.14

and call it the renormalized Mier wave operator.

As V has been supposed to be a real operddst, will
also be real, which means that its matrix elements in a rearl1
basis will be real. This choice d&f real is not a true limita-
tion as most of the previous results still hold for complex

potentials, as | will demonstrate it in a forthcoming article. ] e .
Indeed, the Dyson equations f@&; T, andQ remain valid, referred to the arbitrary origin. i; is made to act upohy),

and it is still possible to define- and — solutions with It SIMPly means that ay) state located in the vicinity of
respect to the branch cut, although the latter will not be orfomi will be translated close to the origin B - R;), and

the real axis anymore. The main difference now is that théN€NA; can act upon it as in the case of a single potential,
relation between the- and — operatorsand hence between and the resulting state is then transferred back near the atom

+ and — states will change according to i by 7(R;). Reasoning in space, i.e., from left to right, Eq.
(2.17 means now that the origin is translatedi toy 7(R;);

AP () =A%) (2.15  thenA; can act and finally, the origin is transferred back to

its real location by7(—R;). Both views are equivalent,
thus defined acts on states centered at the origin vihigets
AN T (2)=A)(2) (2.1  On states centered on atam _ _ o
Equation(2.17 is an important piece in the building of
for any operatoA. the formalism. In fact, it is the operator’s equivalent to the
well-known addition theorem$used when thinking in terms
B. Case in whichV is a superposition of potentials of wave functions. The connection between the two is pre-
ﬁented in Appendix A.
as a cluster. It is generally possible to write the cluster po- With Fhis In mind, we can adapt the results of _the previogs
tential ) it f local potential tered thsubsecuon to the case of a collection of potentials. Keeping
ential as a sUperposition ot focal potentials centered on Mg, . definition(2.4) of T* and definition(2.7) of Q) we

atomic sites. This is true as long as the optical potential o : :
. ; . tan partition these operators accordinglyMo As a direct
which accounts for the inelastic losses and has been ne- . - .
. ) . ; consequence of the notig2.17) of origin-centered atomic
glected here by making the assumption thatis real, is ased operators. it is possible to write
considered as local. In this case, it has been demons??atedb P ’ P
that the general scattering expressions do not depend on the o _
particular shape of the potential, and in particular, that they thz Tﬁi),
still hold true for a collection of generally shaped, space- '
filling potentials. But care must be taken here: when there (2.22

instead of

Let me turn now to the case of an assembly of atoms suc
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Let me point out here thaf is not the atomic transition
operator associated with site nor is w; the Mdler wave

operator corresponding to siteThese atomic operators will

be noted here &§; and();, respectively.
From Eq.(2.12, we see thaf; is related toV by

,Z—i(i):ViQ(i):Q(I)TVi, (2.23

where Q) is the total Mdler wave operator. Moreover, it

satisfies the relation

T =7 (2.24

It is convenient at this stage to introduce a further partition-
ing of the T operator, which defines the scattering path

operator® by
i (=),

Ty FOoY 7

i ]

(2.295
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From this expression, we can deduce

=q) 5,J+E o (G, (2.34

Now, if we multiply this equation by; on the left-hand
side, and use Eq2.28, we obtain the expression for the
scattering path operator as a function of the atomic transition
operators

i 5H+§J TS GG 7 ),

(2.39

The mirror equation

=)= }i>5ij+k¢i AE G T (2.36

can be worked out in a similar way. o
Iteration of any of the above equations shows th&t
represents the set of all the terms in the Born development

Clearly, the origin centered scattering path operator can betarting with T; (i is then called the entrance poirand

expressed 43
;ji(t):,]—(Rj)Tth)f](_Ri)_ (2.26

From the definition(2.4) of T, one can deduce that

=V, 51V, 6TV, (2.27)
and from Eq.(2.23 that
P E=v P =0y, (2.28
Note in particular that Eq2.27) impIies that
Fi () =i (). (2.29

We can establish now the well-known expression of the

scattering path operator as a function of the atomapera-
tors. If we define the atomic propagators by

G =G;+G; T\ Gy, (2.30

it can be showff in the case of two potentials that

G*=G;+G; V,G*=G; +G*V,G; . (2.3)

Equivalent expressions are obtained by exchanging the roles
of the two potentials. The generalization to a collection of

potentials is straightforward by setting;=V; and V,
=2, V; and leads to
G*=G+Y, G V,G* (2.32

]#I

and its mirror counterpart Making use of E@.10), multi-
plying by Gy ~
Egs.(2.23 and(2.10 thatV; G-—’]‘+ Gy , gives

QH=05+Y o 6¢ 7*
j#i

(2.33

1 on the right-hand side and noticing from

ending withT; (j is the exit point. Therefore, it is the sum
of all the scattering paths connecting j and containing the
scattering by the two extremity potentials. As a consequence,

7' describes completely the propagation of an electron be-

tweeni andj. It will then serve as one of the building blocks.
Note as well that”!' can be considered as a photograph of
the geometry of the cluster. With this in mind, the definition
(2.29 and Eq.(2.23 have now a simple interpretatiofi{ )
represents all the scattering paths starting or ending atiatom
Here, the+ sign indicates that the paths are followed pro-
gressively, while the— sign means that the propagation is
made “backward in time.”Z; was originally introduced by
Velicky, Kirkpatrick, and Ehrenreicf? o

Let me now come back to the express(@nZ?) of 7' in

terms ofV; andV; . We can multiply it byQ( )T on the left
and Qi(” on the right, or equivalently, b@}” on the left

and Q{7 " on the right. Recalling, according to E(.13,
that these quantities are nothing but the inverse of the poten-
tial operator, one obtains straightforwardly

Gr=-0{" g+ A )

=—0" g+ QA T (2.37
This important result is the operator’s equivalent to that
originally derived for the Green function by Beéfyand
generalized by Faulkner and Sto¢ksThe recovery of the
latter expression is given in appendix A. With the definition
(2.14 of the renormalized atomic Mier wave operator

Qi(i) , the first of these equations corresponds exactly to the
result derived by VvendensK{.However, no physical inter-

pretation of this result has been given in the literature, at
least to my knowledge. The introduction of the renormalized
atomic Mdler wave operators provides here an elegant way
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being, that an electron undergoing an excitation on an atom
labeled 0 will then travel inside the crystal towards another
part that may be the vacuum.

As | developed the idea in the introductory section, at
least two building blocks are necessary to construct an op-
erator’s theory of electron spectroscopy: one for the excita-
tion of an electron and one for its propagation within a col-
lection of scatterers. The last one is obviously related to the
scattering path operator. After the excitation, the subsequent
propagation can be described by

FIG. 1. Geometrical interpretation of the development of the _ o
propagatoiG ' in terms of the scattering path operatdt. To= 2 0, (3.1
]

to interpret it. Let us consider the second equatiB87) and ) ) ) _ ) _
suppose thai is different fromj. Developing the renormal- following the interpretation of this operator given previously.

ized Mdler wave operators, it can be rewritten as | recall that the left-hand side index in the scattering path
o - o operator has been chosen to be the exit point, while the right-
G =(I+Gy T T, A T H1+T17Gy). hand side index is the entrance point. Now, becaigseon-

(2.39 sists of a Born expansion of atomic transition operators, it

will act on states that are asymptotic with respect to atom 0.

Now, if we suppose, as is sketched in Fig. 1, an electron et me callVE* the perturbation responsible for the excita-
incoming on a cluster represented by its asymptotic stat@on. Its effect is to promote an electron originally into a

with respect to the cluster potentidl!~ " will transform  bound statéeB) of atom 0 to a continuum stafeg") of the
this state into an asymptotical state with respect to potentiggame atom. Note that the latter has to be a continuum state if
V; prior to the scattering by atorn It can be viewed as a Propagation is considered afterwar@s prior to the excita-
localization of the state of the incoming electron right beforetion). |5*) matches the corresponding scattering state out-

i. This is a direct consequence of the deﬁnitionaﬁ_) t side the potentiaV/,, of atom 0.7, cannot act directly upon

which, as can be seen from EQ.39), starts by propagating it as |4 is not an asymptotical state with respect\tg.
the state of the outer electron towards atbbefore renor-  According to the interpretation of the Mer wave operator,

malizing it so that the matching condition is satisfied. Then(_zg |Z8X> is such an asymptotical state, but it already contains

7" will propagate it o] including the scattering by this latter the effect ofv, as doesZ,. Therefore, the matching of the
atom, that is, transform it into an asymptotical state withyyq blocks is not directly possible. However, a simple physi-

respect tov; after scattering by. Finally, Q{*) will trans-  cal argument indicates thék} andZ,T, * can match to form

form it back into an asymptotic state outside the cluster, i.e.the product operator. Indeed, there is always the possibility,

delocalize it from atonj. Again, this is a consequence of the in quantum scattering theory, that the incoming electron does

construction 05}”, which renormalizes the state first and not “feel” .the perturbing pote_ntiql, in contrast to classi_cal

then propagates it elsewhere. Therefore, the atomic renoneorY' This can be seen easily in the Llpp.m_ann-Schwmger
o equation(2.2). In the Mdler wave operator, it is accounted

malized Mbler wave operatof); acts as a localization, or for by the presence of the identity operatoiThis property

delocalization, operator connecting an outer state to an asnust survive the matching of the operatdfg.can be writ-

ymptotical state with respect to the potentigl. ten, following Eq.(2.35, as

It is important to note at this stage that although both
expressions in Eq2.37) are mathematically equivalefthe _
two renormalized Mber wave operators are equal and in TO=?°°+E 710

practice will lead to the same wave functignenly the last 1#0
one has a simple physical explanati@i’ is known to con- _ _ _ _
tain all the electronic structure information of the crystal as =Tot > (1+ToGy) 0=To+ >, Q{770
its imaginary part is proportional to the density of stdftes. i#0 i#0
Equation(2.37) shows as well that the crystallographic in- (3.2
formation, contained i, can also be easily extracted from
It. and it is clear thatf; T, * will satisfy this property.
This can be demonstrated more formally. Let us consider
lll. THE BUILDING BLOCK MODEL now an electron initially in a statép;,) incident upon a

In the forthcoming discussion, | will consider only the cluster. In the abscence of the excitation, this electron will

case where a core atom is involved in an excitation proces$€, after scattering by atom 0, in the st&g¢;,). If we

It simplifies the reasoning and still keeps the generality ofturn on the perturbatiotVg*, the electron will undergo a
the method, as all the necessary ingredients can be found transition on atom 0 and, following the argument given be-
this example. More precisely, | will suppose, for the timefore, should be, after the whole process, in the state



PRB 61 BASIS-INDEPENDENT MULTIPLE-SCATTERING . . . 14 173

Detector

r

FIG. 2. Pictorial representation of the matching of the two build-
ing blocks.

(VO-I-VSX) 50?61?“;“1), (3.3 FIG. 3. Schematic of a photoelectron diffraction experiment.

_ Each part has been associated with its corresponding operator.

as the potential the electron “feels” on atom 0 %

ex : . . : . _

+Vg'. In practice,V, is omitted because it cannot induce of the core electron has been labeld®. It is obviously

the transition. Here, however, we wgn)f to check _the validityre|ated to the interaction Hamiltonia®/(n) A-p (the Cou-

of Eq. (3.3, and hence we must maké* tend continuously  lomb gauge is used heravhereA is the vector potential of

towards zero and see if we recovgy| ¢;,). In this case, the the electromagnetic field ang the momentum of the elec-

transition will also tend to zero, and therefok& must be  tron. In reduced units, the excitation potential becomes

kept in Eq.(3.3). As, according to Eq(2.12

- —., 2e 2e —
Vo Qo=To, (3.4) VSXZEIERO)A'pﬂ_Ro):ﬁ(A'p)o- 4.9

we see immediately that ] )
As the process here is the time reversal of the process

im (Vot+ Ve Qo Ty ' T l@in) =To | @), (3.5  used to establish Eq3.3), the optical excitation operator is
%o

. . . 00_ 28\ Syt =T
which demonstrates the validity of E€8.3. The matching o —?A Qp " (€Pp)o- (4.2
condition is illustrated in Fig. 2.

Now we have the two matching b”Ck.S together and WEA is the modulus of the potential vector aadts unit vector.
meLf(SL choose where_to draw the frontier _b(_atween them\'Nith the initial statgi) and the continuum state being eigen-
Vo' Qo and7, are obviously blocks, but a decision has to begates of the same Hamiltonian, one can use the well-known
made about the renormalization operatdg ! that can resulf!
equally well be attached to any of the two blocks. To be
consistent with the existing literature, | will include it in the € p=imo, €r, 4.3
excitation block. Therefore, the two building blocks become
wherew, is the angular frequency of the incident photon, to

Vex oy T owith O ; ; >
Vo Qo and 7y with Q4 being the renormalized Mier wave Wnsformooo into

operator. In the case of certain electron spectroscopies sué

as XAS or EELS, the sub-block®® of 7, will also be 5
; ; —  .2me R p—

needed. It describes closed-loop propagation from and to O°0=|—2Awq Q5T (er),. (4.4

atom O.

Then, using the two building blocks previously defined, the
wave function of the electron reaching the analyzer located

As an example to illustrate the use of this formalism, letat R from the origin can be written as
me take the case of core photoelectron diffraction. A more Tt 0 .
thorough derivation of the cross sections of the most popular (Rl)=(R|Gy 7§ T O®T(Ry) [i). (4.5

electron spectroscopies, including those involving two elec-, ., . - : .
trons and delocalized levels, will be given elsewtdre. If |i) is the initial state of the excited electron, with respect to

In a PhD experiment, a beam of monochromatic light in_atom Q,_therﬂ'(Ro) i) isf the corr_esponding state re_f_erred to
cident upon a sample excites core electrons that can escagée orgmn ff the goordmates WitRq .bemg the position of
this sample and reach a detector positioned along a givefio™ 0-Go describes the propagation of the electron Tfrom
direction. By carefully choosing the energy of the electronsthe_last scatterer encountered to the analyzer, #hd
entering the detector, it is possible to select only those origi=7§") the propagation of this electron from atom 0 to the
nating from a certain core level on a particular chemicallast scatterer within the cluster.
species. This physical process is illustrated in Fig. 3 where As R is large compared to interatomic distances, one can
the optical excitation operator responsible for the promotionwrite

IV. EXAMPLE: CORE PHOTOELECTRON DIFFRACTION
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7 elkR account. These expressions further simplify if the cluster is
(R|Gg=— \@ ?<k|, (4.6 translationally invariant as shown in Appendix B.
Extension of Eq.(4.12 to one of the spin-orbit compo-
with the definitionk =kR. This result is obtained by devel- Nents|n;,ji,m;), if they can be resolved, is trivial and gives
oping the Green functiofiR|Gq |r) to the first order inr/R

whatever the value af. do Mo
_ 2 q 1
Th tion is defined b —=4n’ak——2 2> 3 mg]
e cross section is defined by dk h% wh, S
do desc )T AT 2 . 2
29 _Re (k| 732 TG T (€ R)g & TRy |Nijimi Y.
a0 d¢in' 4.7 < | 0® 0® 0® 0 | ir)i ]|>

. : : (4.14
where d¢;, and d¢s. are, respectively, the incoming and _ . _
scattered flux. The incoming flux of photons can be shown td'he summation over the spin of the outgoing electron comes
be’? from the fact that the detector has been assumed not to be
able to differentiate spin orientations, in which case,
NgC
d¢in=(2T)3- (4.9 do do ) do ) 415
—=——=(+)+—=(—). .
. . dk dk( dk(
Here, N is the number of photons of energy», contained
in the incoming beam and the speed of the light. With a The index® indicates that the operator acts in the product

normalization to & “function,” the modulus of the poten- space. If the spin dependance of the potential is neglected,

tial vector is® the product operatord; , reduce to
1/2 — —
A L ( Ny7 ) | 4.9 A o=A®lsg, (4.16
(2m)32\ 2€0wq . o .
wherel g is the identity in the spin space.

whereeg, is the dielectric constant of the vacuum. Equations(4.12 and (4.14) are valid whatever the shape

The scattered flux through a unit surface positione® at of the atomic potentials, as the only assumption that was
is given by made about them is that their superposition coincides with

the crystal potential. It is interesting to see now how the
usual spherical wave cluster resfilcan be recovered from
' (4.10 the general resuli4.12).
Obviously, the way to introduce the basis into the previ-
where Im indicates the imaginary part. In case of a sphericabus expressions is through the closure relation of the selected

aP(r)
ar

h
dosdR)= —Im| ¢*(R)

r=R

wave U(R) e*R/R, the scattered flux becomes basis. Therefore, it is preferable to work with the orthonor-
mal basis so that this closure relation equals the identity of
% |U(§)|2 the Hilbert space of the electron, that is to say in the case of
dopsc=— (4.1)  spherical waves
m R
Combining these results with exp_ressi(_m5) of the wave f > [KL) (KL| dk=1, (4.17)
function gives the photoelectron diffraction cross section in- T

dependent of the basis, o
where L stands for the two angular momentum indices

do Mo B (I,m). Consequently, | will define free spherical waves by
EZSWZQKTqEO: ; Kk| 7577 Q5" (e-1)o
li

. (r|kL)y=k \/Zi'h(kr)YL(F). (4.18
XT(Ro) i) (4.12 7
or, equivalently Here j,(kr) is the spherical Bessel function of orderThe
spherical waves in the literature are, most of the time, not
do Mo normalized. In general, they are chosen so that the matrix
—=8nfak——m), > ‘E (k| T(R)) elements of the transition operatdrreduce to the simple
k Ao fo w1 form t;=(sing) €%, where §, is the Ith phase shift of the
2 potentialV taken, in this case, to be spherically symmetric.
X 0 ﬁg*)‘r (1) I, (4.13 Here, the matrix elements dfare, for a spherically symmet-
ric potential,

a=e?l4meyhc is the fine-structure constant and the summa- oK

tions are over the different absorbers 0 and the angular (KoLo| T |keLy)=——(sind;.) e 6 | 8(k,—kq)
momentum index of the core initial statg)=|n; I;,m ). & ' v

The final result has been multiplied by 2 to take the spin into X 8(ki—k), (4.19
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wherek is the wave number associated with. The Diracé

“functions” in this expression ensure the conservation of
energy throughout the whole scattering process. The use %f

normalized plane waves, i.e.,

1 :
(I’lK) e|K~r

:(2,“.)3/2 (42()

imposes the following relation under the change of the basi

1 .
(K[KL) =1 YL(R) 8(k=K). (4.20)

Introducing Egs(2.25 in Eqg. (4.12 and expressing the
origin-centered atomic operators in terms of their atomic

centered counterparts according to Eg8.17) immediately
leads to

qu

d
—U=8W2ak—2 E

dk h % m;

j
o~ 2
x (k| 70Q5 ) e r i)

(4.22

The insertion of the closure relation of the baskgL o)} and
{Ik;L;)} centered, respectively, on atom 0 and ajoatiows
the direct recovery of the usual equatidn

do Mw
- _qgq-2,_4d 00
i 87 «a ik 20: %‘,‘ % ML,
. A _ 2
ijL oL, Yo (k) e R (4.23
L
with the matrix elements
MEgLi:<k0|—o|ﬁEf)T%'r|i>- (4.24

This is the starting point of all spherical-wave cluster theo-
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V. CONCLUSION

| have presented in this paper a very general framework to
uild the multiple scattering theory of electron spectroscopy.

This formalism does not make any assumption concerning
the choice of the basis used to expand the wave function of
the electron. As such, it is a generalization of existing theo-

ries. Indeed, both spherical-wave cluster theories and plane-
wave slab approaches are particular cases of it. However, in

She latter case, a partitioning of the scattering path operator

(as it is done in the layer KKR thed®y has to be carried out
prior to the use of the plane-wave basis. Work on the differ-
ent modes of partitioning is currently in progress.

The first advantage of the present formalism lies in the

fact that any basis of the Hilbert space can be used—it is not

limited to the standard basis. Therefore, the choice of the
basis can be made to minimize the computational effort. In
particular, a new basis remains to be found in the medium-
energy rangdaround 1 keV. This will be the subject of a
forthcoming study.

Its second advantage is that, when dealing with operators
that have a well-defined physical meaning, the equations be-
come more transparent. As a consequence, this formalism
can serve as a graphical interface between experiments and
calculations, as each part of a sketch of the experimental
process can be associated with a well-identified building
block composed of one or two operators. Hence, the deriva-
tion of the cross section of a given electron spectroscopy
reduces to the combining of these building blocks according
to the sketch of the experiment. This has been illustrated in
the case of core photoelectron diffraction. The basis-
independent theory of the other major electron spectroscopy
techniques will be the subject of a forthcoming paper. Fi-
nally, the last advantage of this general framework is to re-
place the fastidious addition theorems by the more friendly
translation operator.
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normalization(4.18), (r|Q§ |koLo) is the continuum state

that matches smoothly to

—\/Et_l"o' kr)+it, hi(P(kn)]1Y, (F) 8(ko—k
5ty oL (kn)+ity h(kn) Y (r) 8(ko—k)

T~ =+
== \@Rﬂr) (ko= k)

APPENDIX A: THE RECOVERY OF THE ADDITION
THEOREMS AND OF THE FAULKNER-STOCKS RESULT

In this appendix, | want to show how well-known results
such as the addition theorems for spherical wétes, the
Faulkner-Stocks formul&, can be naturally deduced from
the translation operator's approach. Let me point out first
that the translation operator for any translation ved®r

across the limit of the bounding sphere of the potential. Noteommutes with the propagat@j , i.e.,

as well that due to the use of normalized free-electron wave .
functions,r{_?Lo differs by a factor— 2k/ s from the expres- [Go . 7(Rj)]=0. (A1)

sion found in the literature. Taklng these two differences intOThiS important property will prove most useful here. | will
account will Change the coefficient before the modulus in tthse throughout this appendix normalized Spherica| waves as
cross section into Ba fiwgk (2m/#i%). The term (/4% defined by Eq(4.18. Before proceeding further, we need to
here comes from the fact that reduced units have been us¢fd the scattered wave functiotg G (k)|k,L;). Recalling

to establish the cross section. When multiplied bydfanc-  nat py definition ofG (k),

tion that is omitted here and that accounts for kReconser-
vation, it will eventually gives(f wq—E,—E;) with E; be- IK)
ing the binding energy of the core electron promoted to a Gg (K) [K)y= lim
scattering state with kinetic enerdgy, . e—0*

K2—K2+ie (A2)
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mow=—hﬂﬁNM)am—m,
(A7)
B(0*)=—imh{*(~kr) 8(k;+k),

k, and k being positive real numberg3(0*) is zero and
hence

(r|Gg (K)[kyL )= —i \/§iuh.<;><kr> YL, (1) 8(ky—K).
(A8)

We need now to consider the separable representation of
the Green function. As found in any textbotkit is written
as

FIG. 4. Integration contour for the calculation of(e) and
B(€). K, andK, correspond tax(e) with the upper single arrowed ) ) - -
contour whileK; and K, with the lower double arrowed contour (r'|Gg (k)|ry=—ik 2 ji(kro) hiP(kr2) Yo(r) YE(r),

correspond tQ3(e). (A9)

the insertion of the closure relation of the plane-wave basigyherer _ (r.) designates the smalléiargep of r andr’. It
into the definition of the scattered wave function immedi'is necessary for convergence tinat is the argument of the
ately leads to spherical Bessel function. With Eq$4.18 and (A8), its
5 demonstration becomes trivial by inserting the closure rela-
+ N Y o tion of the spherical-wave basis {n|Gg (k)|r’). The only
(r|Go (K)lkL)= \/;' tYL, (1) lim knowledge we need from the standar% proof is where to in-
sert this closure relation. Clearly, we can accept as a general
o Kjll(Kr) S8(ky—K) rule that when dealing with free-electron propagators and
xf I K. space vectors, the closure relation must be inserted between
0 k"= K +ie G, and the smaller of the space vectors.
(A3) Now, starting from a scattered wave centered on atom
we can write, ifr;=r — Ry; (Ry; is the vector connecting O to
Owing to the ¢ function, the integral, hereafter named j) is a position referred to this atom,
I(€), can be extended tooe. If we decompose the spherical
Bessel function according to (rilGo (K)[Liy=(rj+ri—rj|Gg (K)|L;)

e—0"

=(r;+Ryj|Gq (K)|L;)
=(rj| (= Ryj) Gg (K)|L;)

1
I @=5hY@+hP*@]. (A4)

I(e) is transformed into

I(e)= E[a(e)-ﬁ-ﬂ(e)] (A5)  With Rjj=r;—r;=Rg;— R and using the fact thas, com-
2 mutes with the translation operator. According to the above-
with mentioned general rule, we deduce
v KIP(Kr) 8(ky—K) (rlGg (L) =3 (rj|L) (LI TT—Ry) Gg (WILy)
a(e)ZJ - dk, L
—o k?—K2+ie _
(AG) if R|J>rJ
» Kh{Y*(Kr) 8(k;—K
,8(e)=f+ i, (Kr) ok, >dK:a*(_E)_ =2 (1|65 (IL)) (L =R L)
- k2—K2?+ie ]
if Rjj<rj. (Al1)

These two integrals can be calculated by using a classical
contour integration as shown in Fig. 4 combined with theHere, | have suppressed the integral in the closure relation
residue theoremf' Here, a(e) is computed with the single because it disappears with thé contained either in
arrowed contour and poldé; andK,, while the calculation  (r;|Gg (k)|k;L;) or in (k;L;|7{—Ri;)Gg (K)|kiL;).
of B(e) makes use of the double arrowed contour vKih The matrix elements of the translation operator and of the
andK,. This calculation eventually leads to propagator can be easily calculated and their value is



PRB 61 BASIS-INDEPENDENT MULTIPLE-SCATTERING . . . 14 177

TJL;Li =(Lj|TT-Ry)IL;) with the convention

=4m 2 i ji(kRy) YL(Ry) GILLIL),  (A12) <r|ﬁ§*>lt>=—\/§7ﬁ“><r>=—\@ti1RL<*><r>,

(A16)
- .
Gl =(LITT-Ri))Go L) with R {")(r) matching toJ, (r)+it,H,"(r) and 7. (r) to
2i 2 i Ju(r) outsige the bounding sphere. Herek (r)
=—— ; i' (P (kR;) YL(R;) G(LjL|L)), t_=i'f|(kr)YL(r) wheref, is any of the spherical Bessel func-
ions.
whereG(L,L|L;) is a Gaunt coefficient: The replacement
of these matrix elements by their value in E411) leads to APPENDIX B: CASE OF A TRANSLATIONALLY
the addition theorems derived by Danos and Maxirffon. INVARIANT CLUSTER

In addition, this formalism greatly simplifies the develop- Let me suppose tha®. — R. is a translation that leaves
ment of the Green function around two centers which is ap, tal pph d lrll °d iqnat th bsorb
central issue in multiple scattering theory. Indeed, if we de- 1€ crystal unchanged. Herg,cesighates another absorber
fine againr;=r — Ry, whereRy; is the position of sité with situated aR,, from the origin. Clearly, for any atornand its

respect to the origin 0 T(R,— Rp)-transformedi, the scattering path operator must
' satisfy
(r|Gg (K)[r")=(ri+Rgi|Gg (K)|r] +Rg;) AN 0 (B1)
:<ri|7—(_R0i)G(;r(k)|rj,+R0j> and hence
=(rlG* "I R.
_<rI|GO(k)|rJ+RIJ> 7;1:76 (BZ)
:g (rilL;) <|—i|G3(k)|fj'+Rij> As a consequence,
TR) 7"=T(R) 7 °
it ri<|r{ +Ryl _
=TR—R)) 7(R)) 7 °
=§ (rilLi) (L TT=Ryj) Gg (K)[r}) =T(R,—Ro) 7(R;) 7 °. (B3)
The cross section corresponding to absorbean be rewrit-
=2 (L) GUL (Llr)) ten as
L i J
if r{<Ry, (A13) (Z_(f) :872ak%2 ‘eik~(RnR0)
m
which corresponds to the classical resfiSimilarly, the n '

Faulkner-Stocks expansion of the Green function can be es- 0= (o)t _
tablished easily. Indeed, we have, for example, in the case X2 (k| TIR)A Q5T (1) [i)
wherer andr’ are inside cells andj respectively, !

2

—_ —_— e do
(G ®IN=(r'[-" & + QA 0 M) = £> , (B4)
~ 0
=—(r'10NrN S
(ri | & where use has been made of the relation
+(r[ Q0 A OO ). (A14)

(k|Tta)=e""*3(K|. (B5)

Here, it can be shown that, to be consistent with the ConAccordineg, the total cross section becomes

verging expansioitA9) of the free-electron Green function,
the closure relation has to be inserted betwé€kerand the

. . . . . g 2 qu
larger of r; andr; in the first term in the right-hand side of — =87« kTE E Doy E 2 (K| TR;)
Eq. (Al14). This eventually leads to the Faulkner-Stocks ex- k POy Pm |
pansion 2

<7 %06 (er) i)

(B6)
(|6 (WIn=k > R o) T (ri-) 8
Li While in Eq. (4.13 the summation was ovell the absorb-
- _ ) _ ing atoms in the cluster, here it reduces to the inequivalent
+o > RUAr) Al RE*(r)) absorbers @ of planep. This considerably diminishes the
20 R amount of calculations that have to be dobe, is the den-
(A15)  sity of absorbers of type fin the planep.
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