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Classical character of turbulence in a quantum liquid
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A theoretical discussion is presented of recent experiments in which it has been shown that turbulence in the
superfluid phase of liquiHe can be very similar in its characteristics to that in a conventional fluid; particular
attention is focused on the work of Stalp, Skrbek, and Donn@lhys Rev. Lett82, 4831(1999]. It is argued
that on length scales significantly greater than both the spacing between the quantized vortex lines in the
turbulent superfluid component and the scale on which viscous dissipation occurs in the normal fluid, the two
fluids are likely to be coupled together and to behave like a conventional fluid. On smaller length scales
account must be taken of dissipation, due to viscosity in the normal fluid, frictional interaction between the
vortex lines and the normal fluid, and the radiation of sound from the vortex lines; it is shown that the rate of
dissipation is likely to be given by an expression that is similar to that in a conventional fluid but with some
important differences. Emphasis is placed on the need for experiments at a very low temperature in which the
complicating effects of the normal fluid are either absent or easily taken into account, and the paper includes
some theoretical discussion of the decay of superfluid turbulence in the absence of normal fluid and when the
normal fluid density is very low. This last discussion is inspired by the ideas of Svisfiriys. Rev. B52,
3647(1999].

[. INTRODUCTION dent, indicating that experiments at these lower temperatures
should be of great interest. It is pleasing to note that some
During the past two or three years it has been observedery preliminary experiments at these lower temperatures are
experimentally that certain types of turbulent flow in the su-now being carried out by McClintock and his collaborators.
perfluid phase of liquidHe (helium 11) are surprisingly simi-  Our discussion of the low-temperature regime proves useful
lar to analogous types of flow in a classical fluid at highalso in understanding some recent and as yet unpublished
Reynolds number. This similarity exists in spite of the factresults of Stalp on the temperature dependence of a param-
that helium 1l is described by a two-fluid model, where ro- eterv’ above 1.2 K, which we introduce at the end of Sec. Il.
tational flow in the superfluid component must take the form It should be emphasized that throughout this paper we
of discrete quantized vortex linésand that there can be no shall take a rather simple-minded view of classical fully de-
conventional viscous dissipation in the superfluid compoveloped turbulence: one that involves a dynamical cascade
nent. The similarity has also been observed in the results diy which energy in the large scale motion is transferred in a
computer simulations of turbulent flow in superfluid helium random manner to motion on smaller and smaller length
at very low temperatures, based on the Gross-Pitaevskiicales until viscous dissipation becomes important, but one
equation(nonlinear Schrodinger wave equation in which we ignore intermittency and the associated locally
We have two aims in this paper. First, we consider theordered flow patterns on a small scalé. should also be
results of one particular experiment carried out and analyzedmphasized that our discussion is often quite speculative; an
recently by Stalp, Skrbek, and Donnefljpllowing earlier ~ important aim is to stimulate further work.
work by Smithet al? This experiment was concerned with  The plan of the paper is as follows. In Sec. Il we describe
flow behind a moving grid, and the authors showed that ther¢ghe experiments of Stalp, Skrbek, and Donnelly and pose
was indeed a remarkable similarity between the observeduestions that arise from them. In Sec. lll we discuss how to
behavior of the helium Il and that expected in turbulent flowdescribe the vorticity in the superfluid component, and we
behind a similar grid in a classical fluid. We aim to discussconsider in general terms how quantized vortex lines are ar-
this similarity, to understand some aspects of it, and to focusanged in the superfluid grid turbulence. Section IV takes a
attention on some remaining problems. Although our analylook at the length scale on which viscous dissipation occurs
sis is confined to the results of this particular experiment, wen superfluid turbulence and how this length compares with
believe that with suitable modifications it will prove to be the spacing between vortex lines. Section V addresses the
applicable to other experiments. The experiments of Stalpgxtent to which the two fluids are coupled in grid turbulence,
Skrbek, and Donnelly were carried out only at relatively highand in Sec. VI we suggest that on length scales at which the
temperatures, above about 1.4 K. Our second aim is to didwo fluids are coupled the turbulence should behave classi-
cuss the evolution of superfluid grid turbulence at muchcally. Finally, in Sec. VII we discuss in some detail how
lower temperatures, where the effect of the normal fluid isdissipation occurs in superfluid grid turbulence, especially at
either absent or much smaller than it is at higher temperalow temperatures, and we compare the results with those
tures. Different and interesting features should then be eviapplicable to classical turbulence.
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Il. THE EXPERIMENTS OF STALP, SKRBEK, turbulence. We discuss the origin of this similarity, although
AND DONNELLY we find that in some respects there must be significant dif-

In these experiments a grid was moved at constant spef rences that are not exposed by the analysis of Stalp,

L . rbek, and Donnelly.
along a tube containing helium I, and a measurement was It is useful to have in mind a number of questions raised
made as a_functlon of_ time of_the excess attenuation _of se Sy the analysis of Stalp, Skrbek, and Donnelly, which we
ond sound in a small fixed region through which the grid ha ust address in our discussion
moved. The grid creates turbulence in both the normal am[P (1) Can we justify the use 'of Eq2.1) for the mean-
thnedsuperzguild gom?o?ﬁ ntr.: '[hel ?r)i(ct(ia Sﬁ attenugtgm tﬂf the Sﬁgduare vorticity in the turbulent superfluid?
ond sound 1s due 1o the mutual friction caused by the gua (2) Why are the two fluids coupled? Are they coupled at
tized vortex lines that are associated with turbulence in th%ll relevant lenath scales. which means presumably at lenath
superfluid component. The length of vortex line per unit vol- 9 ' P y 9

i =1 ~1n
umeL is simply related to the excess attenuation, so that théc?gsv\\’lvr']th'g tht?]WhOIe :a(rjlgf? %etv\r/]elep antd kt;]pll t
experiment consists in essence of a measuremehtasf a y do he coupied fluids have a turbulent energy

: . , L - spectrum of the Kolmogorov form?
Lu;g;%ntﬁigggﬁ i?t a fixed point in space after the grid has (4) What is the justification for the use of E@.3)? Is the

, i S ! i 2 '
If helium 1l is in equilibrium in a vessel that rotates at a parameten’ necessarily of ordew,/p? The experimental

steady angular velocit, the superfluid component contains results of Stalp, Skrbek, and Donnelly do not allow a precise

a uniform array of vortex lineSaligned parallel to the axis de(';ermlr}atlcin ofv’, but they show thaél.'th's dcertalnly of
of rotation, the length of line per unit volume being given by °r4€" 7n/p. In More recent, as yet unpublished, experiments

L=2Q/«, where k=h/m, is the quantum of circulation. by Stalp the temperature dependencevbfhas been deter-

The mean vorticity in the superfluid component is, thereforeMiN€d. and there is evidence that this dependence accords

given by(w)=«L. Stalp, Skrbek, and Donnelly assume thatWith that of n,/p only close to the\-point, and that, contrary

H ’
the mean-square vorticity in the turbulent superfluid is giverF0 th_e behavior o,/ p, the value ofv’ falls as the tempera-
by the analogous expression ture is reduced to below about 1.6 K. We need to understand

this behavior.

(0?)=(kL)2 (2.1

Stalp, Skrbek, and Donnelly show that their experimental A:\IIII'DT\;'OER“#EQT_&EU?OR;FYSUR; L?’llgxls

results are consistent with the following picture; i.e., the as- IN THE TURBULENT SUPERFLUID

sumptions underlying this picture lead to a predicted time

dependence of that is in agreement with experiment. The  We first discuss the validity of Eq2.1), and then make
turbulence is homogeneous and isotropic. The two fluids arsome general observations about the configuration of vortex
“coupled” (locked together with the same velocity fieldsn  line in the grid turbulence studied by Stalp, Skrbek, and
all relevant length scales, and therefore the root-mean-squaBonnelly.

vorticity in both fluids is equal tocL. The turbulent energy Suppose that the superfluid contains a lengtper unit

spectrumE(k) has the Kolmogorov forfh volume of quantized vortex line. Strictly speaking, the vor-
o 513 ticity is then infinite along lines within the superfluid. In
E(k)=Ce“k (2.2 order to deal with this, we suppose first that the vorticity

(curlvg) is concentrated uniformly over a cylinder of radius
ay surrounding each line, and then k—0 (note thata,
must be distinguished from the core radés which deter-
[nines the line energy We can show easily that the mean-
square vorticity in the superfluid is then equal t&()/wag,
which tends to infinity as,—0, in disagreement with Eq.
(2.2). There is no corresponding problem with the mean vor-
{icity. Any reference to the mean-square vorticity in the su-
perfluid is therefore meaningless. Instead we ought to refer
only to the length of vortex line per unit volune which is
well defined and is indeed the quantity that is measured ex-
perimentally from the attenuation of second sound. We can
f%f course introduce an effective mean-square vorticity in the
superfluid component, defined Kw?)es=«°L?, and we use
this quantity occasionally in this paper. As noted by Stalp
(private communication the quantity &L)? can also be re-
garded as the square of the mean value of the modulus of the
e=1"(w?)=v'k2L2, 2.3 vo_rtici_ty in the superflu_id, but it still seems generally best to
think in terms of the directly measured quantity
where v’ is a parameter with the dimensions of kinematic  Turning to the configuration of vortex line in grid turbu-
viscosity that they suggest ought to be of order lence, we recall first the types of superfluid motion that can,
This work by Stalp, Skrbek, and Donnelly, provides strik- in principle, take placé.The motion must be irrotational,
ing evidence for a similarity between quantum and classicaéxcept on the cores of the quantized vortex lines. The nearest

for wave numberk in an inertial range defined by the in-
equality k.<k<k,,, where k;l is the size of the energy-
containing eddies ankl,,, is the Kolmogorov wave number
at which viscous dissipation sets in for a classical turbulen
fluid with kinematic viscosityv= 5,/p; 7, is the viscosity
of the normal component ang is the total density of the
helium. Immediately behind the grid, the size of the energy
containing eddies is of the order of the grid spacing, but a
greater distances from the grid this size increases until i
saturates at a value of order the tube stzés a constant of
order unity, ande is the rate of energy dissipation per unit
mass of heliumk,,,= (e/v®) In a classical fluid in which
there is homogeneous turbulence this energy dissipation
equal to the product of the kinematic viscosity and the mean
square vorticity” for the turbulent helium 1I, Stalp, Skrbek,
and Donnelly take it as given by
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approximation to uniform rotation of the superfluid compo- Motion in a classical fluid on a length scale equal to the
nent, such as occurs if the helium is in equilibrium in aKolmogorov lengthk, !, is characterized by a Reynolds
vessel rotating uniformly at a high angular velodidy is, as  number equal to unity, in the sense that
we have already mentioned, a structure containing a uniform
array of parallel vortex lines, all with the same sense of
rotation(completely “polarized’), the length of line per unit
volume being w)/k, where{ w)=2() is the magnitude of the . _ _ o . _
spatially averaged superfluid vorticity. However, we can alsov being the appropriate kinematic viscosity anceing a
have less regular arrays of vortex lines such as the randorfy/pical fluid velocity on this length scale. Applying this to
tangled array that is set up in counterflowing heffurarry-  the two fluids, and assuming complete coupling, we put the
ing a heat current. If the array is completely random, bymean-square vorticity in the coupled fluids equalxfd.?.
which we mean that the lines are rand0m|y Orier(m po- This VOI’tiCity is concentrated at wave numbers of Oﬂd%f,
larization), the spatially averaged vorticity must be zero, al-and therefore a typical coupled velocity on the length scale
though(w2) is still by definition equal tac?L2. Interme- K, is given byk, ,u~«L. It follows that
diate situations are also possible, especially at a particular "™ "™
instant of time and within a subvolume of the helium, in klw(L) :<K) | 4.2
which the array of lines is partly polarized. The instanta- 7\ kL K ' '
neous mean vorticitfwithin, say, the subvolumeis then
nonzero, but it is smaller in magnitude thah. , -1 ,

If the turbulent energy spectrum in the inertial range hagVe find that the Kolmogorov scalk,,;, and the intervortex
the form (2.2, the spectrum of the mean-square vorticity, '€ Spacing are indeed similar in magnitude.
which must be something like’E(k), must have the form
D&?3*3, It follows that in the experiments of Stalp, Skrbek, V. THE COUPLING OF THE TWO FLUIDS
and Donnelly the mean-square vorticity in the coupled fluids

is concentrated in the region of high wave numbers within There remains the possibility that the two fluids are
L : 9 9 . coupled together on length scales significantly greater than
the inertial range, i.e., around the wave numkey, as in

grid turbulence in a conventional liquid. Therefore, at anyk”P' In this section we shall examine the possibility that

instant, the square of the mean vorticity associated with eomutual friction is sufficient to ensure this coupling.

dies larger than the Kolmoaorov lendki: must be small The presence within the superfluid of vortex lines gives
ger P g o), . o rise to a force of mutual friction between the two fluids, as a
compared with{(w?)es, SO that the vortex lines within the

- . : result of the scattering of the normal-fluid excitations by the
superfluid component must be Or_'e”FEd na Iargely _randor‘r“nes_ We write the force per unit length of line agv,
manner, a refatively small polarization being sufficient to—vn) where {/ —v,,) is the velocity of the vortex line rela-
generate the eddies that are significantly larger th@lh tive to the normal fluid, assumed to be flowing at right angles

including the energy—.containin_g ed(_jies_. . . . to the line. The force per unit volume containing a randomly
It should be explained at this point it is not our intention arranged length of liné is then given roughly by
to discuss the very early stages of the evolution of the tur-

bulence, when the necessary high density of vortex lines is 2

being created by the moving grid. We cannot expect to un- anz—(—>pKL(VS—Vn), (5.1
4 . . 3l pk

derstand these early stages without a detailed understanding

of the interaction between the grid and the superfluid, angvhere we have assumed that on average the vortex line ve-

also, very probably, between the grid and the residual vortexcity is equal to the superfluid velocity,. We have intro-

lines that are believed to be important in vortex nucleation afjyced the dimensionless paramefésx, which will appear

Ki=", 4.1)
7 U

wherev= 7, /p. Substituting numerical values far and «,

Y

relatively low velocities. again in our discussion in Sec. VII. We argue that the extent
to which this force ensures coupling of the two velocity
IV. THE KOLMOGOROV LENGTH k;,} COMPARED fields depends on the relative value of two characteristic
WITH THE INTERVORTEX SPACING times.

Consider eddy motion on a length scde greater than
Let us follow Staip, Skrbek, and Donnelly and assume& -1 \ye yse as a model two coincident rigid spheres, each

i i np
first that the two fIl_mds are fully coupled,_ and second thzat theof radiusR, one composed of the normal fluid, the other of
mean-square vorticity in the normal fluid is equal#6l2.

" the superfluid. Initially the spheres rotate about a common
1

We shall show thgt the Kolmogorov lengik, ;[‘,"ZUSI t_hen axis, with different angular velocities. It is easy to show that
be comparable with the intervortex spacinglL ~~'4, which

: : R as a result of the mutual frictiofd.1) the two spheres acquire
means that in reality the two velocity fields cannot be the o5.1) b q

) a common angular velocity with a time constant that is inde-
same on a length sc_ale comparable V\kqj The assump- pendent ofR and given by

tion that the two fluids are fully coupled, even on length

scales comparable With;pl, cannot therefore be true. It is 3 [ pk\ pspn
only on length scales significantly larger thip, that the Tczm<7)7§ (5.2)

two fluids can be coupled, in the sense that the two velocity

fields can then be the same. This result further underlines thes andp,, are the densities of the superfluid and normal fluid
need to understand why an equation of the fdgh8) can  components. This is the first relevant characteristic time. The

hold. other time is the “lifetime” of an eddy of siz&; i.e., the
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time associated with the inertial transfer of energy from thisdefined by the inequalitil ~*<k< k,; a state approximat-
eddy to eddies of other sizes. This is given by ing to universal equilibrium probably exists over the wider
range of wave numbemd <k= k,, as assumed by Stalp,
Skrbek, and Donnelly. The wave number, at whichE(k)
is a maximum(defining the energy-containing eddien-
] ) ) ] creases until it saturateslkat=d ! (Stalp, Skrbek, and Don-
where U is the fluid speed associated with the eddy. Wepgy) After this saturation has occurr&(k) takes the form
m.ake the reaspnab[e assertion that the motion assomat@g_z)’ at least approximately, for all wave numbers in the
with the two fluids will be coupled if ranged *<ksk,, and there is a simple energy cascade,
energy being transferred to higher and higher wave numbers
Te=<Ti(R). ©4  until it is dissipated by viscosity d~k, .
Let L in(R) be the minimum length of vortex line that would ~ Turning now to two-fluid turbulence, we note first that
allow the superfluid eddy of siZR to rotate with the required When the two fluids are coupled there can be negligible dis-
angular velocity,U/R; i.e., L,n(R)=2U/kR. The condition sipation due to mutual friction. We shall argue in the next

R
7(RI= 5.3

(5.4) can then be written section that dissipation in the superfluid componhte in
essence to vortex reconnections and the damping of high-

y\ p? L wave-number Kelvin waves by mutual frictipean be ne-
(p_K)@ m>1. (5.9  glected on length scales significantly greater than the inter-

vortex spacind =L %2 Since, as we demonstrated in Sec.
We noted in Sec. Ill that in the experiments of Stalp, Skrbek]v, k;p1~l, we can assume that dissipative processes have a
and Donnelly the vortex lines in the turbulent superfluidnegligible effect in both fluids for wave numbers less than
must be oriented in a largely random manner. Eddies of sizg .
R(>k;p1) are generated by a small degree of polarization. It 'We have seen in Sec. V that mutual friction leads to
follows that L>L,y(R). In the whole of the temperature strong coupling of the two fluids on length scales greater
range studied by Stalp, Skrbek, and Donnelly the parametehan k;pl. It is plausible to suppose, therefore, that on these
(ylpK)(p?lpspy) is close to unity®> Therefore condition length scales the system will behave as a single inviscid fluid
(5.5 must be satisfied. We conclude that the eddies largef densityp, so that a classical cascade will be set up, and
compared witrk;pl in the two fluids are indeed likely to be with it an energy spectrum of the Kolmogorov form. Indeed
strongly coupled. If the passage of the grid induces differentve can go further: we suggest that once mutual friction has
velocity fields on a length scal, the difference will disap- brought the two velocity fields into coincidence, these fields
pear in a time that is small compared witf{R). This result  will evolve in essentially identical ways, without the further
alone is sulfficient to ensure that the two fluids can be exneed for mutual friction. This is becau&® the two velocity
pected to behave as a single fluid with dengitgn length  fields are forced by quantum effedthe presence of discrete
scales significantly greater than the Kolmogorov Iedg;;fm. quantized vortex lingsto be different only on length scales
comparable with or less thdn;pl~l, and (b) the nonlinear

VL. TIME EVOLUTION OF THE VELOCITY FIELDS terms in the hydrOdynamiC equations COUple Only wave num-

IN THE INERTIAL RANGE bers that are not too different in magnitude, so that the be-
havior at wave numbers significantly less thay), is unaf-

In the case of a classical turbulent fluid, dissipatidne  fected by these quantum effects. If flow through the grid in
to viscosity can be neglected on length scales significantlythe experiment of Stalp, Skrbek, and Donnelly were to pro-
greater than the Kolmogorov Ienglh;,l. At high Reynolds  duceinitially the same velocity fields in the two fluids, mu-
numbers there is associated with the turbulence a significantial friction would need to play hardly any role. Further-
inertial rangein which the Fourier components of the veloc- more, we would expect the Kolmogorov energy spectrum to
ity field have wave numbers less thiap. Within this inertial ~ be set up even at zero temperature, when there is no normal
range the turbulence evolves as follows: we consider gridluid, for k<|~1.
turbulence in a channel of finite width There is an inertial
transfer of energy between different wave numbers, the
transfer being most effective if the different wave numbers
are not too different in magnitudéhe “independence of There remain questions associated with the dissipation of
Fourier components for distant wave numbets The rate  turbulent energy at high-wave-number components of the ve-
of transfer is determined by the characteristic timg&) for  locity fields. In a classical fluid such dissipation occurs as a
the different length scaleR (Fourier components R). Vis-  result of viscosity in the region of the Kolmogorov wave
cosity has very little effect; the inertial transfer is due to thenumberk,,, the rate of dissipation per unit mass of fluid
nonlinear terms in the hydrodynamic equations. Turbulencéeing given, as we saw in Sec. Il, by the product of the
is generated initially on a length scale comparable with theinematic viscosity and the mean-square vorticity
grid spacingM. Inertial transfer of energy takes place to-
wards eddies that are both larger and smaller than the grid e=1{w?). (7.2
spacing, but the former process saturates because eddies
larger than the channel size cannot exist. After a relativelyrhe situation in a two-fluid system is generally much more
short time, the turbulence reaches a state of “universal stasomplicated, since it involves dissipative processes in both
tistical equilibrium®’ at least within an inertial subranfe fluids, the two fluids being also coupled together. We con-

VII. DISSIPATION AT HIGH WAVE NUMBERS
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sider first the situation at zero temperature where there is ke 1
only a superfluid component, and then go on to more general 2= — (7.4)
cases. 4 ké&o

A. Dissipation in a random distribution of vortex lines AF dlftances from _thelvor.tex line that are small c'ompared

at zero temperature with k™! the radiation is dipolar and the power radiated per
o . ) unit length of line is given roughly by
At zero temperature in isotopically puféle there is no

normal fluid, so that the frictional force acting on a moving w2 pk?H3P?
vortex is zero. We shall consider initially the case of a ran- = —%——o, (7.5

dom distribution of vortex lines, corresponding to a situation

where there are no eddies within the superfluid with sizewherec is the speed of sound. In the opposite limit the ra-
significantly larger than the vortex spacingL 2. We also  diation is quadrupolar, and the pow@t5) is multiplied by a
assume initially that the vortex-line configuration has nofactor ((;)/CT<)2, which is, in practice, significantly smaller
structure (no Fourier componentson length scales much than unity. It is easy to show from E(7.5) that energy will
smaller thanl. (We emphasize that this statement does nobe lost from the Kelvin wave at a rate that is characterized by
imply that the superfluidvelocity fieldhas no structure on a a time constant, given by roughly
length scale much smaller thanThe structure of an indi-
vidual vortex leads to a velocity field that has structure on c? c2
length scales down to the core si¢gg. We do mean, how- W= (7.6a

. . 34 2
ever, that there is, for example, no wavelike structure on the k’k* K@
vortex Iines_ With wave numbe_rs greater thbn'.) If We  (or the case of dipole radiation, and by
ignore logarithmic terms, there is only one characteristic ve-

locity associated with this configuration: roughkyl. Not- g
ing that a vortex line with radius of curvatuRehas a self- 9= , (7.6b
induced velocity of order #/R)In(R/&), we see that, more kK8

accurately, the characteristic velocity ought to be written . , i
y Y oug for the case of quadrupole radiation. We are interested in the

vi= (/D f4[In(1/&)], (7.2) rate of radiation of sound energy from a vortex tangle with
) ) . the characteristic frequency 71/ We make the reasonable
wheref, is a function that depends on the detailed form ofassumption that the time constant associated with this radia-
acteristic time associated with the vortex configuration,7.6). We find that the resulting time constant is much

which can be written as greater thanr,. We conclude that the radiation of sound
2 | from the vortex tangle at the frequencyrltan cause decay
=—*f, In(—” (7.3 of the turbulence only on a time scale much greater than
K o) |’ It is known, for example from the work of Schwatzon

qsuperfluid turbulence in a heat current, in which there is a
counterflow of the two fluids, that vortex reconnections are
{ikely to play an important role in our present problem. Pic-
ures of the way in which such reconnections might occur
ere given by SchwatZ without discussion of the micro-

copic processes, and Koplik and Levihbave provided a

fhore microscopic picture with numerical simulations based

where f, is another function that depends on the detaile
form of the configuration.

Dissipation can occur only as a result of the emission o
thermal excitationgphonons and rotonsfrom the vortex
lines. Such emission can take place, in principle, as the resu,
of three processes: the movement of an element of a lin

g;;?sggfg'ftéoiﬁcfsvicg thhoenol‘%ngagncgggiﬁgt\iflo\fg?’t;;he on the Ginsburg-Pitaevskor nonlinear Schrodinggrequa-
P y 9 ' tion. Similar numerical simulations of a more ambitious

and vortex reconnections. In practice the characteristic velog-: : . )
ity /I is always much smaller than the minimum Landauctype’ applying to a whole superfluid turbulent field, have

- ) . been developed by Nore, Abid, and Brac¢hetd have been
crltlcgl velocity (for roton creatioh so that we can rule OUt. applied to the Taylor-Green flow. As we have already noted
thfe fr|1rst|01;1th§;se fp[gcejsrets.xl—:izwev\\//ﬁlr ,har:/y osulkI‘atroryt n:imt'io'f'he results of this latter type of simulation display a remark-
of an element of the vorte € ave a characteristic ;o similarity to the results for a corresponding classical
frequgncy of 14, ?”d this can Iead,. in principle, to the flow, an energy spectrum of the Kolmogorov form being
radiation of sound; i.e., to the generation of phonons. !

" h . seen in appropriate circumstances. Dissipation of turbulent
We know of no existing calculation of the rate of radia- Pprop P

i ‘ df i tex. We h d energy in the Taylor-Green flow leads ultimately to the pro-
lon of sound from an oscillating vortex. Vve have made any,,jqn of sound wavephonons; the precise mechanism is
estimate ourselves of this rate, based on the physical pictu

e . .
o o ot yet clear, although the authors believe that reconnection
of sound radiation from a turbulent velocity field, as de- Y 9

scribed by Morse and Ingard,and we find the following processes may be involved.

its. W del the radiation f Kelvi We now argue that reconnections must lead to a violation
results. We use as a model the radiation from a Rein Wave assumption that the vortex-line configuration has no

of amplitude #, wave numbek, and angular frequency,  structure on length scales significantly smaller thaRecon-
on a rectilinear vortexip andk are related by the approxi- nections leave sharp kinks on the reconnected vortex
mate dispersion relation lines!?'3and the evolution of these kinks can be described
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in terms of Kelvin wavegSvistunov?). The wavelengths of leads to the Kolmogorov energy spectrum. Energy flow be-
some of these waves must be significantly smaller thao  tween Kelvin waves with wave numbers in the rangé to

that the vortex-line configuration must indeed have structur&, occurs as the result of nonlinear interactions, reconnec-
on a length scale significantly smaller thanunless the tions and perhaps other types of processes mentioned by
Kelvin waves of short wavelength are strongly damped. In-Svistunov. The superfluid grid turbulence at a very low tem-
deed, the reconnection process itself must involve veryperature then involves two cascades: one operating over the
small-scale structures, at least for short periods of time. Theange of wave numbers less thiart; and another operating
Kelvin waves will lose energy by radiation of sound, as de-in the range of wave numbers greater thah and less than
scribed by Eq(7.5. As we have seen, the resulting dampingy, - energy being ultimately dissipated by radiation of sound
of the waves is small for wavelengths comparable wijth -
indeed we can go further and state that damping is not Iarg@ear the wave numbekrz.. : . L

enough to eliminate Kelvin waves unless their wavelengths We shall develop this idea in a way that 1S simpler, but
are significantly smaller thah so that there must indeed be berhaps less general, than that given by Svistunov. Follow-

structure on length scales less thHarUltimately, however, ng SV|§tunov, we shall mtroduce_a smoothed Iength of
the Kelvin waves will be dissipated by the radiation of vortex line per unit volumé 5, obtained after all the Kelvin

sound, and we must conclude that this dissipation is at lea oa\éizuhrﬁgetr?gte ?hl’eel’;j) V:g[u'i:g r:gﬁ;;?igt \évgdisgs I\llvcit%mslri1zuee
a major contributor to the energy loss from the turbulent P

superfluid. Whether the reconnection process itself involveg'gn'ﬂcamIy larger tharl, which we now take o be the av-

; ; ; —1/2 ;
the generation of sound is not clear; probably it does, bu?rgge_llne_gpa(_:lng of the smooth_ed lines, lel., . With
such a process may not be distinct from the radiation ofhis simplification only the Kelvin wave cascade operates.

sound in the early stages of the evolution of the Kelvin©ON the length scalé the only characteristic velocity is Eq.

waves. The generation of soufhonons, either by Kelvin (7.2) and the only time scale is E(q?.?;_). Ther'efore, it seems
waves or during reconnection processes, seems to be thgasonable to assume that energy is fed into the cascade at
only dissipative mechanism that can operate on superfluit}@ve numbet " at arate perzuglt volume of helium egua' to
turbulence at the lowest temperatures. In the absence of af(¢ €Neray per U”g)’f'“mﬁ;‘ 2“ divided by the time*/«,
theory describing phonon emission during reconnections, wk€- at the ratep«*I™*=p«°Ls, where we have made the
shall ignore such processes, allowing only for phonon emistough approximation of settinfy ,=1 in Eqs.(7.2 and(7.3)
sion from the Kelvin waves. It should be added that recon&nd have ignored factors of order unity. Therefore, the rate at
nections may lead to the generation of vortex rings. We folWhich energy is injected per unit length of smoothed line is
low Svistuno¥* in assuming that these rings play no specialpx°Lo. It follows also that the rate of decay of the smoothed
role in the loss of energy from the vortex tangle; any ringslength of lineL,, is given by
produced will be reabsorbed by the tangle, leading only to
new reconnections. dLg )

For our present purposes we would like to know the rate T —{kly, (7.7)
of loss of turbulent energy in the case of superfluid grid

turbulence, or, equivalently, the rate of decrease iue to  \here may, strictly speaking, be a function of g3,
this soundor phonon emission. As we have noted, a 10ss of 55 we see if we take into account the presence of the func-
turbulent energy takes place in the simulations of Noreionsf,,in Egs.(7.2) and(7.3.

Abid, and Brachet and this loss must be due to sound emis- TN AT .
sion. But the rate of dissipation of turbulent energy in a form Let Ey(k)dk be the energy per unit length of smoothed

. . .vortex line associated with Kelvin waves with wave numbers
useful in the present context is hard to extract, although it — o~ ) )
the rangek to k+dk. The Kelvin waves do not exist for

appears to be comparable in magnitude with that expected i iy vaves -

an analogous flow in helium . wave numbers Iess~th§n . Energy is dissipated from the
In homogeneous grid turbulence in a classical fluid therd<elvin waves wherk>k,, wherek, is determined by the

is, as we have explained, a flow of energy from componentsate of phonon radiation(7.5); since Eq.(7.5 depends

of the velocity field with small wave numbers to componentsstrongly on the Kelvin wave frequency and even more

with large wave numbers, energy being dissipated by viscosstrongly on its wave number, the wave numkegis likely to

ity near the Kolmogorov wave numbér,,. We have sug- e rather well defined. We make an estimat&obelow. In

gested that in superflmd_grld turbulence there is a s_|m_|lac[he range of wave numbers betweeh aMdT<2 dissipation
flow of energy towards higher wave numbers, by a similar

; _ can be neglected, and the energy spectrum, assumed univer-
mechanism, at least as far as wave numbers of drder 9 gy sp

However, we see now that at the lowest temperatures ther%al’ car_1 depend on only thf" energy per unit '?”9‘“ _Of the
tex line, the wave numbéy, and the rate of dissipation,

can be no significant dissipation at these latter wave num¥Y©" Al
bers. Instead the energy is transferred to Kelvin waves witlfx at wave numbers of the ordé&s. We shall take the en-
wave numbers greater th&nt, and it can be dissipated only ergy per unit length of the vortex line to hec?, where we
at Kelvin-wave wave numbers greater than, sky, neglect a weaKlogarithmio dependence on an appropriate

(>1~1), where there can be rapid energy loss by radiation ofPper limit !n the integrati_on of _the kinetic energy of fluid
sound. This type of picture seems first to have been dis!OW Per unit volume. A dimensional argument then shows
cussed by Svistunot¥ who suggested that the Kelvin waves that

achieve a state of universal statistical equilibrium similar, in

principle, to that associated with eddies of different sizes that Ex(k)=ApxZk1, (7.9
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independendf e, whereA is a constanfpossibly a func- the temperature is not accurately zero, so that energy is dis-
tion of In(k&y)]. sipated by a small frictional interaction between the vortices

We emphasize at this point that the total length of vortexand the_normal fluid, as we discuss in the next section. We
line per unit volumeL is greater than the length, by an emphasize that the resylt.12 depends on the exlstence of
amount that depends on the extent to which the Kelvirfhe analog of the Kolmogorov energy spectrum in the Kelvin
waves have been excited. It is the lengtthat is likely to be  waves fork>1"1, for which, as we see it, there is as yet no
measured in any experiment, as was indeed the case in theal proof, and on our ignoring phonon production during
work of Stalp, Skrbek, and Donnelly. We emphasize that reconnections. Experiments at very low temperatures are re-
#172. We can calculaté as follows. quired to test the validity of Eq(7.12).

The total energy contained in the Kelvin waves is given
by B. Dissipation in a random distribution of vortex lines

at a very low temperature

Ko e ~
f ’Ex(k)dk=Apx?In(k,). (7.9 So far we have assumed that the drag force on a vortex is
u accurately zero. If there is a small density of normal fluid,
Therefore, the extra length of line per unit length of there will be a small frictional force on a moving vortex, and

smoothed line resulting from the presence of the Kelvinit becomes possible this is determined by this force rather

waves must be given by than by the phonon radiation. If the force of mutual friction
per unit length of line is written agv, , wherev, is the line
AL=A"In(k,l), (7.10  velocity, the normal fluid being assumed to be at rest, the

resulting dissipation of energy in a Kelvin wave is described

whereA’ is another constant. Therefore, by the time constantye, given approximately by

L=Lo[1+A’ In(k,)]. (7.11)

TME™ % . (713
It now follows from Eq.(7.7) that yk?
dL {rl? A straightforward modification of the argument leading to
—~— — . (7.12 Eq. (7.14) then shows that this frictional force will lead to
dt 1+A' In(k2L51’2) significant dissipation at wave numbers greater than that
B given by
Now we estimate the value &,. The energy cascade 1
described by Eq(7.8) involves the injection of energy at the %o l= (ﬂ) (7.16
wave numbed~! and dissipation at the wave numbley. 20 Ayl

We have suggested that 'the.ratse of injection of energy pef, essential agreement with a result given by Svistunov. We
unit length of smoothel/d line ip«>Lo [again ignoring cor-  gee then that mutual friction becomes more important than
rections of order InfLg”) ] Sound radiation leads to a rate pponon radiation if the friction parameter exceeds the value
of loss of energy from Kelvin waves with wave numbers in given py

the rangek to k+dk equal tor; *E(k)dk, whereE, (k) is

the actual energy spectrum existing after the radiation is Yo K _ KLélz (7.173
taken into account. We see tfat will be given roughly by pk cl ¢’ '
T o for the case of dipole radiation, or
2 e (k) dk=prdl 2. (7.13
1S 4 2\13
Ye [ K *o (7.17H
Hence, we find pk \24mct] '
~ cl |2 for the case of quadrupole radiation. The temperature depen-
Kol =| 212 (7.143  dence ofy is given in Ref. 15. For a value df, of, say,

10°m=2 (kL=10%s™1), y.=6%x10"10 kgm 1s7? for the

for the case of dipole radiation, where we have assumedase of dipole radiation, which corresponds to a temperature

justifiably, thatk,|>1. For the case of quadrupole radiation of about 0.65 K; for the case of quadrupole radiatign

Eq. (7.143 is replaced by =4.9x10 ' kgm s, which corresponds to a tempera-

ture of about 0.47 K. Below this temperature, dissipation by

phonon emission dominates; above it, mutual friction domi-

nates. We emphasize, however, that this result depends on

the validity of our rough analysis of sound emission by a
The result(7.12 is similar to one given by Svistunov, Kelvin wave, which awaits an independent check.

except in two respects. His factb]:-{—A’ |n(~k2 Lgllz)] in Eq. We note also that high—wave—number Kelvin waves re-

(7.12 is raised to a powep, which is, however, of order main important k,¢/>1) as long as the dimensionless pa-

unity. And he ignores the possibility that energy loss canrametery/px is small compared with unity; i.e., the excita-

take place by the radiation of sound. He has to assume théibn of these waves plays an important role in the dissipation

1/6

- 247c?
5 (7.14b

A
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of superfluid turbulent energy ¥/ px<<1. Whether this con- D. Dissipation in superfluid grid turbulence
dition is satisfied at a given temperature depends on the pre- at a very low temperature
cise value of the parametéx If, for example A=1, we find In the preceding section we assumed that there were no

thatk; (1> 10 for all temperatures less than 1.7 K. It could eddies within the superfluid with size significantly larger
well be the case, therefore, that high-wave-number Kelvinhan the(smoothed vortex spacing=L, 12 The vortex ar-
waves are important even at quite high temperatures. rays occurring in grid turbulence give rise to energy spectra
We emphasize that in this analysis we have assumed thgfith wave-number components extending down to values of
the normal fluid is at rest. We shall return to the validity of order the reciprocal of the channel width. There must then be
this assumption in Sec. VIIE, where we shall argue thaiome local polarization of the lines, so that the loss of vortex

probably it is effectively valid at all low temperatures. line described by Eq(7.7) must be to some extent inhibited
(it becomes impossible in a completely polarized array of
C. Relationship to earlier work and to dissipation lines). We take account of this effect by supposing that the
in a conventional fluid length of the line that can take part in the processes under-

An equation of the form(7.7) was written down by lying Eq. (7.7) is less than the _tota_\l, by an amount that de-
Vinerf in his early work on the theory of superfluid turbu- Pends on the degree of polarization; thus we introduce an
lence in counterflowing helium at temperatures above 1 K&ffective line density; (<L), which depends on the form

-1
with the suggestion, supported by experiment, that. The ~ ©f the Kolmogorov energy spectrut(k) for k<I"=. We
numerical simulations of Schwat?, based on a classical speculate later about this dependence, but for the moment we

treatment of vortex motion with the added possibility of vor- 9U€SS that, is not very much less thah,, since, as we
tex reconnections, confirmed this form, although they sugh@ve already emphasized in Sec. lll, the degree of polariza-

gested that should depend on the mutual friction constant t?on in the experime_nts with which we are concerned is re_la-
and should vanish at very low temperatures. Loss of vorteflVely small. The existence of the energy cascade described

line could then occur only as the result of mutual friction. PY E(k) means that there is a mechanism by whighcan

We see now that this work of Schwarz failed to take into9"OW. as energy is transferred to wave numbers of_olrdbr
account the possibility of energy loss by phonon radiationW'th_ a resulting decrease in the degree of poIan;atlon of the
from a Kelvin wave. The recent work of Nore, Abid, and Vortices. Thus we suppose thaf obeys an equation of the
Brachet? to which we have already referred, also shows thato'™m
this conclusion by Schwarz is incorrect.

We shall now show that the energy dissipation rate in our =1
low-temperature superfluid turbulence has a form that is dt
closely similar to Eq(7.1). We have already suggested that
the rate at which energy associated with a random arrang

ment of vortex lines is injected into the Kelvin waves is of . " I 21 .
fied, it would decay in time as - for larget, as is probably

3 2 . . .
L I f hel h . .
order p«*Lg per unit volume of helium, and this must be(}he case in counterflow turbulen&&! With the extra ternG

equal to the rate at which energy is ultimately dissipate . e . .
- S in Eq. (7.20 the decay is modified, and is determined by the
from the Kelvin waves. The rate of energy dissipation Pe ie of decay of the large eddies. In fact, as shown by Stalp,

unit mass of helium is therefore given by Skrbek, and Donnelly. might then be expected to decay as

dL, )
=—{kL?+G, (7.20

é(\_/hereG is the rate of growth that we have just described.
We emphasize that if were to obey Eq(7.7), unmodi-

L2 t~32 for larget. A decay ofL ast™* will occur only in the
g =—k3L3=— — ., (7.189  absence of eddies greater in size than the vortex-line spacing.
[1+A In(kngl’Z)]2 (Strictly speaking the analysis of Stalp, Skrbek, and Don-

: nelly related to temperatures above about 1 K, but their ar-
where we have made use of Hd.1)) anq ignored correc- gument leading to a decay &s%2 applies equally well to
tions involving Ing, L5?); k, is replaced bk, ¢ at the higher  grid turbulence at low temperaturgs.
temperatures. If we writeL)*=(w?)¢, as we did in Sec. We now offer a speculative argument for the factor by
Ill, we see that we can write E¢7.18) in the form which L is less tharlL. For the completely random vortex

tangle the energy spectrum has no Fourier components with
2 wave vectors significantly smaller thart’?, and the same is
T | 12 (0% er- true for the spectrum of the mean-square vorti¢ite take
[1+A" In(K,Lg 1?72 P ol ; quare vort
(7.19 the mean-square vorticity d®°),,, as defined in Sec.)ll
For an energy spectrum of the Kolmogorov form the spec-
This has the same form as E..1). Furthermore, the nu- trum of the mean-square vorticity has the fobe 2313, as
merical factor multiplying w?)e is quite close in magnitude we noted in Sec. IIl. The total mean-square vorticity is then
to the kinematic viscosity of helium I. We conclude, there-given by
fore, that the energy dissipation rate in turbulent helium at
very low temperatures is indeed rather similar to that occur- 5 L2 e i 3 s o3
ring for a similar type of flow in helium I, as suggested by (0%)er(k>0)= L De™ k™ dk= 7 De™™L7,
the computations of Nore, Abid, and Brachet. Furthermore, (7.21)
for very low temperatures we can identify the parameter
introduced in Eq(7.19 with the parameter’ introduced by  there being no Fourier components in the spectruush o
Stalp, Skrbek, and DonnellEq. (2.3)]. with wave numbers greater thart’. Those Fourier compo-

e'=— Vrr<w2>eﬁ: _
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normal fluid is either absent or can be regarded as at rest so
that its effect is only to introduce a frictional drag on the

moving vortices in the superfluid. The experiments of Stalp,

Flow of energy in Skrbek, and Donnelly were generally carried out at tempera-

Flow of energy in

Rolmogorov | f;lcv;gewave 9 t, tures where the two fluids have comparable densities, and
K - AT where, as we have explalnec_i, tu_rbulence in both fluids must
o be taken into account. Dissipation must then involve pro-
cesses inherent in the superfluid component, such as we have
discussed in Secs. VIIA-VIID, together with conventional
Dissipation  Dissipation viscous dissipation in the normal component. Both processes
?z) gictional byd_ - must be affected by the frictional interactigmutual fric-
Qoo gzu'r‘;‘;“’“" tion) between the vortices and the normal fluid.

In general, this is a complicated problem. An understand-
FIG. 1. lllustrating the flow of energy in superfluid grid turbu- ing of the dissipative process in each fluid acting indepen-
lence at a low temperature. At the very lowest temperatitses dently is not enough because the two turbulent velocity fields
>k, at higher temperaturds,<Kk, ;, as illustrated. are coupled through mutual friction, which is itself a dissi-
pative force. We argue, however, that we can usefully obtain
nents of the mean-square vorticity that are connected witResults valid in the limits of both low and high temperatures,
adjacent oppositely directed vortex lines must have waveensible interpolation between these limits being then pos-
numbers close th Y2 say between roughly*?and 0.2 gjple.
The corresponding contribution to the total mean-square vor- Consider first thecase of low temperatureghis is the
ticity is given by case considered in Secs. VIIA-VIID, but with the proviso
3 that motion of the normal fluid can be neglected. We shall
De23k3gdk=0.6> D23 23 now drop that proviso.
4 We shall take the case of low temperatures to mean one in
(722 which the density of the normal fluid is small, so that the
The ratio of Eq.(7.22 to Eq.(7.21), equal to 0.6, is a mea- turbulent energy in the normal fluid is small compared with
sure of the extent to which the vortex lines are arranged in #at in the superfluid. This condition might hold reasonably
random unpolarized manner, and we speculate lthak is well up to temperatures of at least 1.32 K, where the normal
of the order of the same ratio. Note that the ratio remains th@uid fraction is only 5%. Then we need to consider only the
same at all stages of the decay. The fact that the ratio is nstissipation of the turbulent energy in the superfluid compo-
very different from unity is a consequence of the fact thatnent. We have argued that this dissipation is described in the
even in grid turbulence the vortex tangle is almost random.way that we have explained in Secs. VII A-VII D, provided
We conclude this section by noting that our argumentghat motion of the normal fluid can be neglected on the
lead to the conclusion that grid turbulence at a very lowlength scales relevant to this dissipation. We now argue that
temperature ought to behave in a way very similar to thasuch a neglect is indeed justified.
observed by Stalp, Skrbek, and Donnelly. That is, there will The normal fluid can affect the superfluid only through
be a conventional Kolmogorov energy spectrum at smalthe frictional interaction described by the paramegeOne
wave numbers. This spectrum terminates at an upper wavgossible process is the transfer of energy from the superfluid
number of ordet~*=L2?2, where the energy is transferred to the normal fluidyia this frictional interaction, followed by

without dissipation to a second cascade formed from Kelvirviscous dissipation of this energy in the normal fluid. On

waves with wave numbers extending fromt tok,. Energy  'ength scales significantly larger thin L, Y2 the two fluids

is ultimately dissipated from these Kelvin waves at wave@'® Strongly coupled, as we saw in Sec. V, so this type of
~ . - energy transfer can be neglected. However, on the length

numbers neak,, either by radiation of sound at the very ~12 it might be important. The characteristic time

lowest temperatures or by friction against a residual norm 9 P :

a§caIeI=L0
fluid at slightly higher temperatures. The energy flow s il- associated with the evolution of the turbulence in the super-
lustrated in Fig. 1. The rate of dissipation is given by a

fluid component on this length scale is given by EG.3).
formula[Eq. (7.19] that is very similar to that expected for The time associated with the transfer of momentum from the
a conventional viscous fluid with kinematic viscosity of or-

superfluid to the normal fluid by frictional interaction is
derk/[1+A’ In(k, Ly Y312, which is close to that for helium

given in order of magnitude by
| at temperatures ned K but falls at lower temperatures
owing to an increasing value &. Ty YLy’ (7.23
A picture in which vortex motion at wave numbers
greater than™ ! is described in terms of simple Kelvin waves provided that the velocities of the normal fluid, the super-
is probably an oversimplification, but we can hope that itfluid, and the vortex lines are all comparable in magnitude,
incorporates the essential physics of the problem. as we see by noting thaisvs~ y(v,— v )Lo. The ratio
Tsnl/ 71 IS, therefore, given by

L1/2
(@uk=0a27= [
0.5L

Ps p

E. Dissipation at higher temperatures

So far we have discussed dissipation of superfluid turbu- Tsn_ PK (7.24

lent energy at high wave numbers only for the case when the 7| y
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where we have taken the logarithmic factor in Ef3) to be  sistent with our suggestion only if at these high temperatures
unity. We have already seen that this ratio is probably large’L? is equal to the mean-square vorticity in the normal
compared with unity at all low temperatures. It follows that fluid. We have not found any convincing argument that leads
the energy transfer on which we are focusing attention caro this equality.

probably take place only slowly in comparison with the rate  we have no theory of the intermediate range of tempera-
at which energy is injected into the Kelvin mode cascadeyyres. If we accept that at high temperatukés? is equal to
and it can, therefore, be neglected. It is important to ask alsgye mean-square vorticity in the normal fluid, the experimen-

whether the damping of the Kelvin modes by frictifBq. (5] results seem to be a reasonable interpolation between the
(7.19] is likely to be significantly affected by any motion of high- and low-temperature limits.

the normal fluid. This depends on the ratio of the normal
fluid velocity in the direction of the smoothed vortex line to
the wave velocity of the Kelvin wave. Provided that this ratio
is small compared with unity there is very little effé€twe
assume that the normal fluid velocity on the relevant length o . .
scale is not greater thaw/l. Using the dispersion relation ~ We have shown that in grid turbulence in helium Il there
(7.4) we find that for Kelvin waves of wave numbkrthe €N be an inertial range of wave numbers in which dissipa-

. ~ S tive processes are unimportant, the velocity fields of the two
ratio Is not greatgr than aboutkl/ which is mdeeq small fluids are coupled, and the turbulent energy spectrum has the
compared with unity for most of the relevant Kelvin waves. . . . L

We conclude that in, say, grid turbulence at temperature§°|mogorov form, as in a conventional fluid. Dissipation

below about 1.3 K, the presence of the normal fluid can béakes place at wave numbers greater than or of the order of

neglected except in its effect in damping the Kelvin wavesthe inverse of the vortex-line spacing. The dissipation is gen-

described in Sec. VIIB and therefore in determining theerally complicated, involving viscous dissipation in the nor-
mal fluid, frictional interaction between the vortex lines and

wave cascade described in Sec. VII A. the normal fluid, and, especially at very low temperatures,

Consider now thease of high temperaturgy which we radiation of sound from moving vortices. Some simplifica-
mean temperatures at which the superfluid density is so smdfP" 1S Possible at high and low temperatures. At tempera-

that the turbulent energy in the superfluid component can b&/res close to tha point, the superfluid component plays a
neglected. The superfluid fraction is less than 5% Tqr ~ Minor role, and dissipation is due almost entirely to viscosity

—T<7 mK. Here the frictional interaction can transfer en- in the normal fluid. At very low temperatures, the turbulence
ergy from the normal fluid to the superfluid, but there is noin the normal fluid can be neglected; turbulent energy in the
mechanism by which it can be dissipated in the superfluiguperfluid component is transferred to Kelvin waves of high
independently of this frictional interaction. Continuous trans-wave number, where it is dissipated either as a result of
fer is not possible. There can, therefore, be very little effecfrictional interaction between the vortex lines and the re-
on the turbulence in the normal fluid. We conclude that atsidual normal fluid or, at the very lowest temperatures, by
these high temperatures the presence of the superfluid comadiation of sound by the Kelvin waves. Even at low tem-
ponent can be neglected, and the dissipation can be taken psratures the rate of energy dissipation is given by a formula
being associated almost entirely with the normal fluid viscossimilar to that applying in a conventional fluid, but with
ity. some significant differences. These conclusions are consis-
tent with the experimental results of Stalp, Skrbek, and Don-
F. Comparison with experiment nelly for grid turbulence in helium Il in the temperature

peratures, less than roughly 1.3 K, the presence of the normggsults of Stalp at slightly lower temperatures. There is a

fluid plays no role except in determining the paraméter need for further experimental exploration of the regior_l qf
and that Eq(7.19 therefore applies. This is certainly con- V€Y low temperatures, where the effect of the_normal fluu_j is
sistent with Stalp’s most recefnpublishedl observations, €ither absent or takes the form only of a frictional damping
mentioned in Sec. II; the parametef in Eq. (7.19 has the ©f the vortex motion. The theory is still quite speculative and
same order of magnitude as his, and it correctly exhibits a  "equires further development.

value that falls with falling temperature. To determine

whether there is quantitative agreement we would need to

VIIl. CONCLUSIONS

wave numberk, at which dissipation occurs in the Kelvin
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neglect the presence of the superfluid component when weesults and their analysis of them before publication, for
consider dissipation in grid turbulence at temperatures closmany valuable discussions during the period when the ideas
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