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Classical character of turbulence in a quantum liquid
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~Received 26 July 1999!

A theoretical discussion is presented of recent experiments in which it has been shown that turbulence in the
superfluid phase of liquid4He can be very similar in its characteristics to that in a conventional fluid; particular
attention is focused on the work of Stalp, Skrbek, and Donnelly@Phys Rev. Lett.82, 4831~1999!#. It is argued
that on length scales significantly greater than both the spacing between the quantized vortex lines in the
turbulent superfluid component and the scale on which viscous dissipation occurs in the normal fluid, the two
fluids are likely to be coupled together and to behave like a conventional fluid. On smaller length scales
account must be taken of dissipation, due to viscosity in the normal fluid, frictional interaction between the
vortex lines and the normal fluid, and the radiation of sound from the vortex lines; it is shown that the rate of
dissipation is likely to be given by an expression that is similar to that in a conventional fluid but with some
important differences. Emphasis is placed on the need for experiments at a very low temperature in which the
complicating effects of the normal fluid are either absent or easily taken into account, and the paper includes
some theoretical discussion of the decay of superfluid turbulence in the absence of normal fluid and when the
normal fluid density is very low. This last discussion is inspired by the ideas of Svistunov@Phys. Rev. B52,
3647 ~1995!#.
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I. INTRODUCTION

During the past two or three years it has been obser
experimentally that certain types of turbulent flow in the s
perfluid phase of liquid4He ~helium II! are surprisingly simi-
lar to analogous types of flow in a classical fluid at hi
Reynolds number. This similarity exists in spite of the fa
that helium II is described by a two-fluid model, where r
tational flow in the superfluid component must take the fo
of discrete quantized vortex lines,1 and that there can be n
conventional viscous dissipation in the superfluid com
nent. The similarity has also been observed in the result
computer simulations of turbulent flow in superfluid heliu
at very low temperatures, based on the Gross-Pitaev
equation~nonlinear Schrodinger wave equation!.2

We have two aims in this paper. First, we consider
results of one particular experiment carried out and analy
recently by Stalp, Skrbek, and Donnelly,3 following earlier
work by Smithet al.4 This experiment was concerned wi
flow behind a moving grid, and the authors showed that th
was indeed a remarkable similarity between the obser
behavior of the helium II and that expected in turbulent flo
behind a similar grid in a classical fluid. We aim to discu
this similarity, to understand some aspects of it, and to fo
attention on some remaining problems. Although our ana
sis is confined to the results of this particular experiment,
believe that with suitable modifications it will prove to b
applicable to other experiments. The experiments of St
Skrbek, and Donnelly were carried out only at relatively hi
temperatures, above about 1.4 K. Our second aim is to
cuss the evolution of superfluid grid turbulence at mu
lower temperatures, where the effect of the normal fluid
either absent or much smaller than it is at higher tempe
tures. Different and interesting features should then be
PRB 610163-1829/2000/61~2!/1410~11!/$15.00
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dent, indicating that experiments at these lower temperat
should be of great interest. It is pleasing to note that so
very preliminary experiments at these lower temperatures
now being carried out by McClintock and his collaborato
Our discussion of the low-temperature regime proves us
also in understanding some recent and as yet unpublis
results of Stalp on the temperature dependence of a pa
etern8 above 1.2 K, which we introduce at the end of Sec.

It should be emphasized that throughout this paper
shall take a rather simple-minded view of classical fully d
veloped turbulence: one that involves a dynamical casc
by which energy in the large scale motion is transferred i
random manner to motion on smaller and smaller len
scales until viscous dissipation becomes important, but
in which we ignore intermittency and the associated loca
ordered flow patterns on a small scale.5 It should also be
emphasized that our discussion is often quite speculative
important aim is to stimulate further work.

The plan of the paper is as follows. In Sec. II we descr
the experiments of Stalp, Skrbek, and Donnelly and p
questions that arise from them. In Sec. III we discuss how
describe the vorticity in the superfluid component, and
consider in general terms how quantized vortex lines are
ranged in the superfluid grid turbulence. Section IV take
look at the length scale on which viscous dissipation occ
in superfluid turbulence and how this length compares w
the spacing between vortex lines. Section V addresses
extent to which the two fluids are coupled in grid turbulenc
and in Sec. VI we suggest that on length scales at which
two fluids are coupled the turbulence should behave cla
cally. Finally, in Sec. VII we discuss in some detail ho
dissipation occurs in superfluid grid turbulence, especially
low temperatures, and we compare the results with th
applicable to classical turbulence.
1410 ©2000 The American Physical Society
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II. THE EXPERIMENTS OF STALP, SKRBEK,
AND DONNELLY

In these experiments a grid was moved at constant sp
along a tube containing helium II, and a measurement
made as a function of time of the excess attenuation of
ond sound in a small fixed region through which the grid h
moved. The grid creates turbulence in both the normal
the superfluid components. The excess attenuation of the
ond sound is due to the mutual friction caused by the qu
tized vortex lines that are associated with turbulence in
superfluid component. The length of vortex line per unit v
umeL is simply related to the excess attenuation, so that
experiment consists in essence of a measurement ofL as a
function of time at a fixed point in space after the grid h
passed through it.

If helium II is in equilibrium in a vessel that rotates at
steady angular velocityV, the superfluid component contain
a uniform array of vortex lines,1 aligned parallel to the axis
of rotation, the length of line per unit volume being given
L52V/k, where k5h/m4 is the quantum of circulation
The mean vorticity in the superfluid component is, therefo
given by^v&5kL. Stalp, Skrbek, and Donnelly assume th
the mean-square vorticity in the turbulent superfluid is giv
by the analogous expression

^v2&5~kL !2. ~2.1!

Stalp, Skrbek, and Donnelly show that their experimen
results are consistent with the following picture; i.e., the
sumptions underlying this picture lead to a predicted ti
dependence ofL that is in agreement with experiment. Th
turbulence is homogeneous and isotropic. The two fluids
‘‘coupled’’ ~locked together with the same velocity fields! on
all relevant length scales, and therefore the root-mean-sq
vorticity in both fluids is equal tokL. The turbulent energy
spectrumE(k) has the Kolmogorov form6

E~k!5C«2/3k25/3 ~2.2!

for wave numbersk in an inertial range defined by the in
equality ke,k,khr , whereke

21 is the size of the energy
containing eddies andkhr is the Kolmogorov wave numbe
at which viscous dissipation sets in for a classical turbul
fluid with kinematic viscosityn5hn /r; hn is the viscosity
of the normal component andr is the total density of the
helium. Immediately behind the grid, the size of the ener
containing eddies is of the order of the grid spacing, bu
greater distances from the grid this size increases unt
saturates at a value of order the tube size.C is a constant of
order unity, ande is the rate of energy dissipation per un
mass of helium.khr5(e/n3)1/4. In a classical fluid in which
there is homogeneous turbulence this energy dissipatio
equal to the product of the kinematic viscosity and the me
square vorticity;7 for the turbulent helium II, Stalp, Skrbek
and Donnelly take it as given by

«5n8^v2&5n8k2L2, ~2.3!

wheren8 is a parameter with the dimensions of kinema
viscosity that they suggest ought to be of ordern.

This work by Stalp, Skrbek, and Donnelly, provides str
ing evidence for a similarity between quantum and class
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turbulence. We discuss the origin of this similarity, althou
we find that in some respects there must be significant
ferences that are not exposed by the analysis of St
Skrbek, and Donnelly.

It is useful to have in mind a number of questions rais
by the analysis of Stalp, Skrbek, and Donnelly, which w
must address in our discussion.

~1! Can we justify the use of Eq.~2.1! for the mean-
square vorticity in the turbulent superfluid?

~2! Why are the two fluids coupled? Are they coupled
all relevant length scales, which means presumably at len
scales within the whole range betweenke

21 andkhr
21?

~3! Why do the coupled fluids have a turbulent ener
spectrum of the Kolmogorov form?

~4! What is the justification for the use of Eq.~2.3!? Is the
parametern8 necessarily of orderhn /r? The experimenta
results of Stalp, Skrbek, and Donnelly do not allow a prec
determination ofn8, but they show that it is certainly o
orderhn /r. In more recent, as yet unpublished, experime
by Stalp the temperature dependence ofn8 has been deter
mined, and there is evidence that this dependence acc
with that ofhn /r only close to thel-point, and that, contrary
to the behavior ofhn /r, the value ofn8 falls as the tempera
ture is reduced to below about 1.6 K. We need to underst
this behavior.

III. THE MEAN-SQUARE VORTICITY
AND VORTEX-LINE CONFIGURATIONS

IN THE TURBULENT SUPERFLUID

We first discuss the validity of Eq.~2.1!, and then make
some general observations about the configuration of vo
line in the grid turbulence studied by Stalp, Skrbek, a
Donnelly.

Suppose that the superfluid contains a lengthL per unit
volume of quantized vortex line. Strictly speaking, the vo
ticity is then infinite along lines within the superfluid. I
order to deal with this, we suppose first that the vortic
~curlvs! is concentrated uniformly over a cylinder of radiu
a0 surrounding each line, and then leta0→0 ~note thata0
must be distinguished from the core radiusj0 , which deter-
mines the line energy!. We can show easily that the mea
square vorticity in the superfluid is then equal to (k2L)/pa0

2,
which tends to infinity asa0→0, in disagreement with Eq
~2.1!. There is no corresponding problem with the mean v
ticity. Any reference to the mean-square vorticity in the s
perfluid is therefore meaningless. Instead we ought to re
only to the length of vortex line per unit volumeL, which is
well defined and is indeed the quantity that is measured
perimentally from the attenuation of second sound. We
of course introduce an effective mean-square vorticity in
superfluid component, defined by^v2&eff5k2L2, and we use
this quantity occasionally in this paper. As noted by Sta
~private communication!, the quantity (kL)2 can also be re-
garded as the square of the mean value of the modulus o
vorticity in the superfluid, but it still seems generally best
think in terms of the directly measured quantityL.

Turning to the configuration of vortex line in grid turbu
lence, we recall first the types of superfluid motion that c
in principle, take place.1 The motion must be irrotational
except on the cores of the quantized vortex lines. The nea
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1412 PRB 61W. F. VINEN
approximation to uniform rotation of the superfluid comp
nent, such as occurs if the helium is in equilibrium in
vessel rotating uniformly at a high angular velocityV, is, as
we have already mentioned, a structure containing a unif
array of parallel vortex lines, all with the same sense
rotation~completely ‘‘polarized’’!, the length of line per unit
volume beinĝ v&/k, where^v&52V is the magnitude of the
spatially averaged superfluid vorticity. However, we can a
have less regular arrays of vortex lines such as the rand
tangled array that is set up in counterflowing helium8 carry-
ing a heat current. If the array is completely random,
which we mean that the lines are randomly oriented~no po-
larization!, the spatially averaged vorticity must be zero,
though^v2&eff is still by definition equal tok2L2. Interme-
diate situations are also possible, especially at a partic
instant of time and within a subvolume of the helium,
which the array of lines is partly polarized. The instan
neous mean vorticity~within, say, the subvolume! is then
nonzero, but it is smaller in magnitude thankL.

If the turbulent energy spectrum in the inertial range h
the form ~2.2!, the spectrum of the mean-square vortici
which must be something likek2E(k), must have the form
D«2/3k1/3. It follows that in the experiments of Stalp, Skrbe
and Donnelly the mean-square vorticity in the coupled flu
is concentrated in the region of high wave numbers wit
the inertial range, i.e., around the wave numberkhr , as in
grid turbulence in a conventional liquid. Therefore, at a
instant, the square of the mean vorticity associated with
dies larger than the Kolmogorov lengthkhr

21, must be small
compared with^v2&eff , so that the vortex lines within the
superfluid component must be oriented in a largely rand
manner, a relatively small polarization being sufficient
generate the eddies that are significantly larger thankhr

21,
including the energy-containing eddies.

It should be explained at this point it is not our intentio
to discuss the very early stages of the evolution of the
bulence, when the necessary high density of vortex line
being created by the moving grid. We cannot expect to
derstand these early stages without a detailed understan
of the interaction between the grid and the superfluid, a
also, very probably, between the grid and the residual vo
lines that are believed to be important in vortex nucleation
relatively low velocities.1

IV. THE KOLMOGOROV LENGTH khr
21 COMPARED

WITH THE INTERVORTEX SPACING

Let us follow Stalp, Skrbek, and Donnelly and assu
first that the two fluids are fully coupled, and second that
mean-square vorticity in the normal fluid is equal tok2L2.
We shall show that the Kolmogorov length,khr

21, must then
be comparable with the intervortex spacingl 5L21/2, which
means that in reality the two velocity fields cannot be
same on a length scale comparable withkhr

21. The assump-
tion that the two fluids are fully coupled, even on leng
scales comparable withkhr

21, cannot therefore be true. It i
only on length scales significantly larger thankhr

21 that the
two fluids can be coupled, in the sense that the two velo
fields can then be the same. This result further underlines
need to understand why an equation of the form~2.3! can
hold.
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Motion in a classical fluid on a length scale equal to t
Kolmogorov lengthkh

21, is characterized by a Reynold
number equal to unity, in the sense that

kh
215

n

u
, ~4.1!

n being the appropriate kinematic viscosity andu being a
typical fluid velocity on this length scale. Applying this t
the two fluids, and assuming complete coupling, we put
mean-square vorticity in the coupled fluids equal tok2L2.
This vorticity is concentrated at wave numbers of orderkhr ,
and therefore a typical coupled velocity on the length sc
khr

21 is given bykhru;kL. It follows that

khr
21;S n

kL D 1/2

5S n

k D 1/2

l , ~4.2!

wheren5hn /r. Substituting numerical values forn andk,
we find that the Kolmogorov scale,khr

21, and the intervortex
line spacing are indeed similar in magnitude.

V. THE COUPLING OF THE TWO FLUIDS

There remains the possibility that the two fluids a
coupled together on length scales significantly greater t
khr

21. In this section we shall examine the possibility th
mutual friction is sufficient to ensure this coupling.

The presence within the superfluid of vortex lines giv
rise to a force of mutual friction between the two fluids, as
result of the scattering of the normal-fluid excitations by t
lines. We write the force per unit length of line asg(vL
2vn), where (vL2vn) is the velocity of the vortex line rela
tive to the normal fluid, assumed to be flowing at right ang
to the line. The force per unit volume containing a random
arranged length of lineL is then given roughly by1,9

Fsn5
2

3 S g

rk D rkL~vs2vn!, ~5.1!

where we have assumed that on average the vortex line
locity is equal to the superfluid velocityvs . We have intro-
duced the dimensionless parameterg/rk, which will appear
again in our discussion in Sec. VII. We argue that the ext
to which this force ensures coupling of the two veloc
fields depends on the relative value of two characteri
times.

Consider eddy motion on a length scaleR, greater than
khr

21. We use as a model two coincident rigid spheres, e
of radiusR, one composed of the normal fluid, the other
the superfluid. Initially the spheres rotate about a comm
axis, with different angular velocities. It is easy to show th
as a result of the mutual friction~5.1! the two spheres acquir
a common angular velocity with a time constant that is ind
pendent ofR and given by

tc5
3

2kL S rk

g D rsrn

r2 ; ~5.2!

rs andrn are the densities of the superfluid and normal flu
components. This is the first relevant characteristic time. T
other time is the ‘‘lifetime’’ of an eddy of sizeR; i.e., the
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PRB 61 1413CLASSICAL CHARACTER OF TURBULENCE IN A . . .
time associated with the inertial transfer of energy from t
eddy to eddies of other sizes. This is given by

t i~R!5
R

U
, ~5.3!

where U is the fluid speed associated with the eddy. W
make the reasonable assertion that the motion assoc
with the two fluids will be coupled if

tc!t i~R!. ~5.4!

Let Lmin(R) be the minimum length of vortex line that woul
allow the superfluid eddy of sizeR to rotate with the required
angular velocity,U/R; i.e., Lmin(R)52U/kR. The condition
~5.4! can then be written

S g

rk D r2

rsrn

L

Lmin~R!
@1. ~5.5!

We noted in Sec. III that in the experiments of Stalp, Skrb
and Donnelly the vortex lines in the turbulent superflu
must be oriented in a largely random manner. Eddies of
R(@khr

21) are generated by a small degree of polarization
follows that L@Lmin(R). In the whole of the temperatur
range studied by Stalp, Skrbek, and Donnelly the param
(g/rk)(r2/rsrn) is close to unity.15 Therefore condition
~5.5! must be satisfied. We conclude that the eddies la
compared withkhr

21 in the two fluids are indeed likely to b
strongly coupled. If the passage of the grid induces differ
velocity fields on a length scaleR, the difference will disap-
pear in a time that is small compared witht i(R). This result
alone is sufficient to ensure that the two fluids can be
pected to behave as a single fluid with densityr on length
scales significantly greater than the Kolmogorov lengthkhr

21.

VI. TIME EVOLUTION OF THE VELOCITY FIELDS
IN THE INERTIAL RANGE

In the case of a classical turbulent fluid, dissipation~due
to viscosity! can be neglected on length scales significan
greater than the Kolmogorov length,kh

21. At high Reynolds
numbers there is associated with the turbulence a signifi
inertial rangein which the Fourier components of the velo
ity field have wave numbers less thankh . Within this inertial
range the turbulence evolves as follows: we consider g
turbulence in a channel of finite widthd. There is an inertial
transfer of energy between different wave numbers,
transfer being most effective if the different wave numb
are not too different in magnitude~the ‘‘independence of
Fourier components for distant wave numbers’’6!. The rate
of transfer is determined by the characteristic timest i(R) for
the different length scalesR ~Fourier components 1/R!. Vis-
cosity has very little effect; the inertial transfer is due to t
nonlinear terms in the hydrodynamic equations. Turbule
is generated initially on a length scale comparable with
grid spacingM. Inertial transfer of energy takes place t
wards eddies that are both larger and smaller than the
spacing, but the former process saturates because e
larger than the channel size cannot exist. After a relativ
short time, the turbulence reaches a state of ‘‘universal
tistical equilibrium,6’’ at least within an inertial subrange6
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defined by the inequalityM 21!k!kh ; a state approximat-
ing to universal equilibrium probably exists over the wid
range of wave numbersd21<k<kh , as assumed by Stalp
Skrbek, and Donnelly. The wave numberke , at whichE(k)
is a maximum~defining the energy-containing eddies!, in-
creases until it saturates atke5d21 ~Stalp, Skrbek, and Don
nelly!. After this saturation has occurredE(k) takes the form
~2.2!, at least approximately, for all wave numbers in t
ranged21<k<kh , and there is a simple energy cascad
energy being transferred to higher and higher wave numb
until it is dissipated by viscosity atk;kh .

Turning now to two-fluid turbulence, we note first th
when the two fluids are coupled there can be negligible d
sipation due to mutual friction. We shall argue in the ne
section that dissipation in the superfluid component~due in
essence to vortex reconnections and the damping of h
wave-number Kelvin waves by mutual friction! can be ne-
glected on length scales significantly greater than the in
vortex spacingl 5L21/2. Since, as we demonstrated in Se
IV, khr

21; l , we can assume that dissipative processes ha
negligible effect in both fluids for wave numbers less th
khr .

We have seen in Sec. V that mutual friction leads
strong coupling of the two fluids on length scales grea
thankhr

21. It is plausible to suppose, therefore, that on the
length scales the system will behave as a single inviscid fl
of densityr, so that a classical cascade will be set up, a
with it an energy spectrum of the Kolmogorov form. Inde
we can go further: we suggest that once mutual friction
brought the two velocity fields into coincidence, these fie
will evolve in essentially identical ways, without the furthe
need for mutual friction. This is because~a! the two velocity
fields are forced by quantum effects~the presence of discret
quantized vortex lines! to be different only on length scale
comparable with or less thankhr

21; l , and ~b! the nonlinear
terms in the hydrodynamic equations couple only wave nu
bers that are not too different in magnitude, so that the
havior at wave numbers significantly less thankhr is unaf-
fected by these quantum effects. If flow through the grid
the experiment of Stalp, Skrbek, and Donnelly were to p
duceinitially the same velocity fields in the two fluids, mu
tual friction would need to play hardly any role. Furthe
more, we would expect the Kolmogorov energy spectrum
be set up even at zero temperature, when there is no no
fluid, for k, l 21.

VII. DISSIPATION AT HIGH WAVE NUMBERS

There remain questions associated with the dissipatio
turbulent energy at high-wave-number components of the
locity fields. In a classical fluid such dissipation occurs a
result of viscosity in the region of the Kolmogorov wav
numberkh , the rate of dissipation per unit mass of flu
being given, as we saw in Sec. II, by the product of t
kinematic viscosity and the mean-square vorticity

«5n^v2&. ~7.1!

The situation in a two-fluid system is generally much mo
complicated, since it involves dissipative processes in b
fluids, the two fluids being also coupled together. We co
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1414 PRB 61W. F. VINEN
sider first the situation at zero temperature where ther
only a superfluid component, and then go on to more gen
cases.

A. Dissipation in a random distribution of vortex lines
at zero temperature

At zero temperature in isotopically pure4He there is no
normal fluid, so that the frictional force acting on a movin
vortex is zero. We shall consider initially the case of a ra
dom distribution of vortex lines, corresponding to a situati
where there are no eddies within the superfluid with s
significantly larger than the vortex spacingl 5L21/2. We also
assume initially that the vortex-line configuration has
structure ~no Fourier components! on length scales much
smaller thanl. ~We emphasize that this statement does
imply that the superfluidvelocity fieldhas no structure on a
length scale much smaller thanl. The structure of an indi-
vidual vortex leads to a velocity field that has structure
length scales down to the core sizej0 . We do mean, how-
ever, that there is, for example, no wavelike structure on
vortex lines with wave numbers greater thanl 21.! If we
ignore logarithmic terms, there is only one characteristic
locity associated with this configuration: roughly,k/ l . Not-
ing that a vortex line with radius of curvatureR has a self-
induced velocity of order (k/R)ln(R/j0), we see that, more
accurately, the characteristic velocity ought to be written

v l5~k/ l ! f 1@ ln~ l /j0!#, ~7.2!

where f 1 is a function that depends on the detailed form
the vortex configuration. Therefore, there is only one ch
acteristic time associated with the vortex configuratio
which can be written as

t l5
l 2

k
f 2F lnS l

j0
D G , ~7.3!

where f 2 is another function that depends on the detai
form of the configuration.

Dissipation can occur only as a result of the emission
thermal excitations~phonons and rotons! from the vortex
lines. Such emission can take place, in principle, as the re
of three processes: the movement of an element of a
with velocity exceeding the Landau critical velocity; th
emission of sound waves~phonons! by an oscillating vortex;
and vortex reconnections. In practice the characteristic ve
ity k/ l is always much smaller than the minimum Land
critical velocity ~for roton creation!, so that we can rule ou
the first of these processes. However, any oscillatory mo
of an element of the vortex line will have a characteris
frequency of 1/t l , and this can lead, in principle, to th
radiation of sound; i.e., to the generation of phonons.

We know of no existing calculation of the rate of radi
tion of sound from an oscillating vortex. We have made
estimate ourselves of this rate, based on the physical pic
of sound radiation from a turbulent velocity field, as d
scribed by Morse and Ingard,10 and we find the following
results. We use as a model the radiation from a Kelvin w
of amplitudef, wave numberk̃, and angular frequencyṽ,
on a rectilinear vortex;ṽ and k̃ are related by the approxi
mate dispersion relation
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k k̃2

4p
lnS 1

k̃j0
D . ~7.4!

At distances from the vortex line that are small compa
with k̃21 the radiation is dipolar and the power radiated p
unit length of line is given roughly by

P5
p2rk2ṽ3f2

c2 , ~7.5!

wherec is the speed of sound. In the opposite limit the r
diation is quadrupolar, and the power~7.5! is multiplied by a
factor (ṽ/ck̃)2, which is, in practice, significantly smalle
than unity. It is easy to show from Eq.~7.5! that energy will
be lost from the Kelvin wave at a rate that is characterized
a time constantts , given by roughly

ts
~d!5

c2

k3k̃4
;

c2

kṽ2
, ~7.6a!

for the case of dipole radiation, and by

ts
~q!5

4pc4

k5k̃6
, ~7.6b!

for the case of quadrupole radiation. We are interested in
rate of radiation of sound energy from a vortex tangle w
the characteristic frequency 1/t l . We make the reasonabl
assumption that the time constant associated with this ra
tion will be obtained roughly by puttingṽ51/t l into Eq.
~7.6!. We find that the resulting time constant is mu
greater thant l . We conclude that the radiation of soun
from the vortex tangle at the frequency 1/t l can cause decay
of the turbulence only on a time scale much greater thant l .

It is known, for example from the work of Schwarz11 on
superfluid turbulence in a heat current, in which there i
counterflow of the two fluids, that vortex reconnections a
likely to play an important role in our present problem. P
tures of the way in which such reconnections might oc
were given by Schwarz12 without discussion of the micro
scopic processes, and Koplik and Levine13 have provided a
more microscopic picture with numerical simulations bas
on the Ginsburg-Pitaevski~or nonlinear Schrodinger! equa-
tion. Similar numerical simulations of a more ambitiou
type, applying to a whole superfluid turbulent field, ha
been developed by Nore, Abid, and Brachet2 and have been
applied to the Taylor-Green flow. As we have already not
the results of this latter type of simulation display a rema
able similarity to the results for a corresponding classi
flow, an energy spectrum of the Kolmogorov form bein
seen in appropriate circumstances. Dissipation of turbu
energy in the Taylor-Green flow leads ultimately to the p
duction of sound waves~phonons!; the precise mechanism i
not yet clear, although the authors believe that reconnec
processes may be involved.

We now argue that reconnections must lead to a violat
of our assumption that the vortex-line configuration has
structure on length scales significantly smaller thanl. Recon-
nections leave sharp kinks on the reconnected vo
lines,12,13 and the evolution of these kinks can be describ
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in terms of Kelvin waves~Svistunov14!. The wavelengths of
some of these waves must be significantly smaller thanl, so
that the vortex-line configuration must indeed have struct
on a length scale significantly smaller thanl, unless the
Kelvin waves of short wavelength are strongly damped.
deed, the reconnection process itself must involve v
small-scale structures, at least for short periods of time.
Kelvin waves will lose energy by radiation of sound, as d
scribed by Eq.~7.5!. As we have seen, the resulting dampi
of the waves is small for wavelengths comparable withl;
indeed we can go further and state that damping is not la
enough to eliminate Kelvin waves unless their waveleng
are significantly smaller thanl, so that there must indeed b
structure on length scales less thanl. Ultimately, however,
the Kelvin waves will be dissipated by the radiation
sound, and we must conclude that this dissipation is at l
a major contributor to the energy loss from the turbule
superfluid. Whether the reconnection process itself invol
the generation of sound is not clear; probably it does,
such a process may not be distinct from the radiation
sound in the early stages of the evolution of the Kelv
waves. The generation of sound~phonons!, either by Kelvin
waves or during reconnection processes, seems to be
only dissipative mechanism that can operate on superfl
turbulence at the lowest temperatures. In the absence of
theory describing phonon emission during reconnections,
shall ignore such processes, allowing only for phonon em
sion from the Kelvin waves. It should be added that rec
nections may lead to the generation of vortex rings. We
low Svistunov14 in assuming that these rings play no spec
role in the loss of energy from the vortex tangle; any rin
produced will be reabsorbed by the tangle, leading only
new reconnections.

For our present purposes we would like to know the r
of loss of turbulent energy in the case of superfluid g
turbulence, or, equivalently, the rate of decrease inL due to
this sound~or phonon! emission. As we have noted, a loss
turbulent energy takes place in the simulations of No
Abid, and Brachet and this loss must be due to sound em
sion. But the rate of dissipation of turbulent energy in a fo
useful in the present context is hard to extract, althoug
appears to be comparable in magnitude with that expecte
an analogous flow in helium I.

In homogeneous grid turbulence in a classical fluid th
is, as we have explained, a flow of energy from compone
of the velocity field with small wave numbers to compone
with large wave numbers, energy being dissipated by visc
ity near the Kolmogorov wave numberkhr . We have sug-
gested that in superfluid grid turbulence there is a sim
flow of energy towards higher wave numbers, by a sim
mechanism, at least as far as wave numbers of orderl21.
However, we see now that at the lowest temperatures t
can be no significant dissipation at these latter wave n
bers. Instead the energy is transferred to Kelvin waves w
wave numbers greater thanl21, and it can be dissipated onl
at Kelvin-wave wave numbers greater than, say,k̃2
(@ l21), where there can be rapid energy loss by radiation
sound. This type of picture seems first to have been
cussed by Svistunov,14 who suggested that the Kelvin wave
achieve a state of universal statistical equilibrium similar,
principle, to that associated with eddies of different sizes t
e
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leads to the Kolmogorov energy spectrum. Energy flow
tween Kelvin waves with wave numbers in the rangel21 to
k̃2 occurs as the result of nonlinear interactions, reconn
tions and perhaps other types of processes mentioned
Svistunov. The superfluid grid turbulence at a very low te
perature then involves two cascades: one operating ove
range of wave numbers less thanl21; and another operating
in the range of wave numbers greater thanl21 and less than
k̃2 , energy being ultimately dissipated by radiation of sou
near the wave numberk̃2 .

We shall develop this idea in a way that is simpler, b
perhaps less general, than that given by Svistunov. Foll
ing Svistunov, we shall introduce a ‘‘smoothed’’ length
vortex line per unit volumeL0 , obtained after all the Kelvin
waves have been removed. For the present we shall cont
to assume that the superfluid contains no eddies with
significantly larger thanl, which we now take to be the av
erage line spacing of the smoothed lines, i.e.,l5L0

21/2. With
this simplification only the Kelvin wave cascade operat
On the length scalel the only characteristic velocity is Eq
~7.2! and the only time scale is Eq.~7.3!. Therefore, it seems
reasonable to assume that energy is fed into the casca
wave numberl21 at a rate per unit volume of helium equal
the energy per unit volumerk2/ l2 divided by the timel2/k,
i.e., at the raterk3l245rk3L0

2, where we have made th
rough approximation of settingf 1,251 in Eqs.~7.2! and~7.3!
and have ignored factors of order unity. Therefore, the rat
which energy is injected per unit length of smoothed line
rk3L0 . It follows also that the rate of decay of the smooth
length of lineL0 , is given by

dL0

dt
52zkL0

2, ~7.7!

wherez may, strictly speaking, be a function of ln(j0 L0
1/2),

as we see if we take into account the presence of the fu
tions f 1,2 in Eqs.~7.2! and ~7.3!.

Let Ek( k̃)dk̃ be the energy per unit length of smoothe
vortex line associated with Kelvin waves with wave numbe
in the rangek̃ to k̃1dk̃. The Kelvin waves do not exist fo
wave numbers less thanl21. Energy is dissipated from the
Kelvin waves whenk̃. k̃2 , where k̃2 is determined by the
rate of phonon radiation~7.5!; since Eq. ~7.5! depends
strongly on the Kelvin wave frequency and even mo
strongly on its wave number, the wave numberk̃2 is likely to
be rather well defined. We make an estimate ofk̃2 below. In
the range of wave numbers between 1/l and k̃2 dissipation
can be neglected, and the energy spectrum, assumed un
sal, can depend on only the energy per unit length of
vortex line, the wave numberk̃, and the rate of dissipation
eK at wave numbers of the orderk̃2 . We shall take the en-
ergy per unit length of the vortex line to berk2, where we
neglect a weak~logarithmic! dependence on an appropria
upper limit in the integration of the kinetic energy of flui
flow per unit volume. A dimensional argument then sho
that

EK~ k̃!5Ark2k̃21, ~7.8!
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1416 PRB 61W. F. VINEN
independentof «K , whereA is a constant@possibly a func-
tion of ln(k̃j0)#.

We emphasize at this point that the total length of vor
line per unit volumeL is greater than the lengthL0 by an
amount that depends on the extent to which the Kel
waves have been excited. It is the lengthL that is likely to be
measured in any experiment, as was indeed the case in
work of Stalp, Skrbek, and Donnelly. We emphasize thaL
Þ l22. We can calculateL as follows.

The total energy contained in the Kelvin waves is giv
by

E
1/l

k̃2EK~ k̃!dk̃5Ark2 ln~ k̃2l!. ~7.9!

Therefore, the extra length of line per unit length
smoothed line resulting from the presence of the Kel
waves must be given by

DL5A8 ln~ k̃2l!, ~7.10!

whereA8 is another constant. Therefore,

L5L0@11A8 ln~ k̃2l!#. ~7.11!

It now follows from Eq.~7.7! that

dL

dt
'2

zkL2

11A8 ln~ k̃2L0
21/2!

. ~7.12!

Now we estimate the value ofk̃2 . The energy cascad
described by Eq.~7.8! involves the injection of energy at th
wave numberl21 and dissipation at the wave numberk̃2 .
We have suggested that the rate of injection of energy
unit length of smoothed line isrk3L0 @again ignoring cor-
rections of order ln(j0 L0

1/2)#. Sound radiation leads to a ra
of loss of energy from Kelvin waves with wave numbers
the rangek̃ to k̃1dk̃ equal tots

21EK8 ( k̃)dk̃, whereEK8 ( k̃) is
the actual energy spectrum existing after the radiation
taken into account. We see thatk̃2 will be given roughly by

E
l21

k̃2 ts
21EK~ k̃!dk̃5rk3l22. ~7.13!

Hence, we find

k̃2l5S cl

A1/2k D 1/2

, ~7.14a!

for the case of dipole radiation, where we have assum
justifiably, thatk̃2l@1. For the case of quadrupole radiatio
Eq. ~7.14a! is replaced by

k̃2l5S 24pc4l4

Ak4 D 1/6

. ~7.14b!

The result~7.12! is similar to one given by Svistunov
except in two respects. His factor@11A8 ln(k̃2 L0

21/2)# in Eq.
~7.12! is raised to a powern, which is, however, of order
unity. And he ignores the possibility that energy loss c
take place by the radiation of sound. He has to assume
x

n

the

er

is

d,

n
at

the temperature is not accurately zero, so that energy is
sipated by a small frictional interaction between the vortic
and the normal fluid, as we discuss in the next section.
emphasize that the result~7.12! depends on the existence o
the analog of the Kolmogorov energy spectrum in the Kel
waves fork̃. l21, for which, as we see it, there is as yet n
real proof, and on our ignoring phonon production duri
reconnections. Experiments at very low temperatures are
quired to test the validity of Eq.~7.12!.

B. Dissipation in a random distribution of vortex lines
at a very low temperature

So far we have assumed that the drag force on a vorte
accurately zero. If there is a small density of normal flu
there will be a small frictional force on a moving vortex, an
it becomes possible thatk̃2 is determined by this force rathe
than by the phonon radiation. If the force of mutual frictio
per unit length of line is written asgvL , wherevL is the line
velocity, the normal fluid being assumed to be at rest,
resulting dissipation of energy in a Kelvin wave is describ
by the time constanttMF , given approximately by

tMF;
r

g k̃2
. ~7.15!

A straightforward modification of the argument leading
Eq. ~7.14! then shows that this frictional force will lead t
significant dissipation at wave numbers greater than
given by

k̃2 f l5S rk

Ag D 1/2

, ~7.16!

in essential agreement with a result given by Svistunov.
see then that mutual friction becomes more important t
phonon radiation if the friction parameter exceeds the va
given by

gc

rk
5

k

cl
5

kL0
1/2

c
, ~7.17a!

for the case of dipole radiation, or

gc

rk
5S k4L0

2

24pc4D 1/3

, ~7.17b!

for the case of quadrupole radiation. The temperature dep
dence ofg is given in Ref. 15. For a value ofL0 of, say,
1010m22 (kL5103 s21!, gc56310210 kg m21 s21 for the
case of dipole radiation, which corresponds to a tempera
of about 0.65 K; for the case of quadrupole radiationgc
54.9310212 kg m21 s21, which corresponds to a tempera
ture of about 0.47 K. Below this temperature, dissipation
phonon emission dominates; above it, mutual friction dom
nates. We emphasize, however, that this result depend
the validity of our rough analysis of sound emission by
Kelvin wave, which awaits an independent check.

We note also that high-wave-number Kelvin waves
main important (k̃2 f l@1) as long as the dimensionless p
rameterg/rk is small compared with unity; i.e., the excita
tion of these waves plays an important role in the dissipat
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of superfluid turbulent energy ifg/rk!1. Whether this con-
dition is satisfied at a given temperature depends on the
cise value of the parameterA. If, for example,A51, we find
that k̃2 f l.10 for all temperatures less than 1.7 K. It cou
well be the case, therefore, that high-wave-number Ke
waves are important even at quite high temperatures.

We emphasize that in this analysis we have assumed
the normal fluid is at rest. We shall return to the validity
this assumption in Sec. VII E, where we shall argue t
probably it is effectively valid at all low temperatures.

C. Relationship to earlier work and to dissipation
in a conventional fluid

An equation of the form~7.7! was written down by
Vinen8 in his early work on the theory of superfluid turbu
lence in counterflowing helium at temperatures above 1
with the suggestion, supported by experiment, thatz;1. The
numerical simulations of Schwarz,11 based on a classica
treatment of vortex motion with the added possibility of vo
tex reconnections, confirmed this form, although they s
gested thatz should depend on the mutual friction constang
and should vanish at very low temperatures. Loss of vor
line could then occur only as the result of mutual frictio
We see now that this work of Schwarz failed to take in
account the possibility of energy loss by phonon radiat
from a Kelvin wave. The recent work of Nore, Abid, an
Brachet,2 to which we have already referred, also shows t
this conclusion by Schwarz is incorrect.

We shall now show that the energy dissipation rate in
low-temperature superfluid turbulence has a form tha
closely similar to Eq.~7.1!. We have already suggested th
the rate at which energy associated with a random arra
ment of vortex lines is injected into the Kelvin waves is
order rk3L0

2 per unit volume of helium, and this must b
equal to the rate at which energy is ultimately dissipa
from the Kelvin waves. The rate of energy dissipation p
unit mass of helium is therefore given by

«852k3L0
252

k3L2

@11A8 ln~ k̃2L0
21/2!#2

, ~7.18!

where we have made use of Eq.~7.11! and ignored correc-
tions involving ln(j0 L0

1/2); k̃2 is replaced byk̃2 f at the higher
temperatures. If we write (kL)25^v2&eff , as we did in Sec.
III, we see that we can write Eq.~7.18! in the form

«852n9^v2&eff52
k

@11A8 ln~ k̃2L0
21/2!#2

^v2&eff .

~7.19!

This has the same form as Eq.~7.1!. Furthermore, the nu
merical factor multiplyinĝ v2&eff is quite close in magnitude
to the kinematic viscosity of helium I. We conclude, ther
fore, that the energy dissipation rate in turbulent helium
very low temperatures is indeed rather similar to that occ
ring for a similar type of flow in helium I, as suggested b
the computations of Nore, Abid, and Brachet. Furthermo
for very low temperatures we can identify the parametern9
introduced in Eq.~7.19! with the parametern8 introduced by
Stalp, Skrbek, and Donnelly@Eq. ~2.3!#.
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D. Dissipation in superfluid grid turbulence
at a very low temperature

In the preceding section we assumed that there were
eddies within the superfluid with size significantly larg
than the~smoothed! vortex spacingl5L0

21/2. The vortex ar-
rays occurring in grid turbulence give rise to energy spec
with wave-number components extending down to values
order the reciprocal of the channel width. There must then
some local polarization of the lines, so that the loss of vor
line described by Eq.~7.7! must be to some extent inhibite
~it becomes impossible in a completely polarized array
lines!. We take account of this effect by supposing that t
length of the line that can take part in the processes un
lying Eq. ~7.7! is less than the total, by an amount that d
pends on the degree of polarization; thus we introduce
effective line densityL1(,L0), which depends on the form
of the Kolmogorov energy spectrumE(k) for k, l21. We
speculate later about this dependence, but for the momen
guess thatL1 is not very much less thanL0 , since, as we
have already emphasized in Sec. III, the degree of polar
tion in the experiments with which we are concerned is re
tively small. The existence of the energy cascade descr
by E(k) means that there is a mechanism by whichL1 can
grow, as energy is transferred to wave numbers of orderl21

with a resulting decrease in the degree of polarization of
vortices. Thus we suppose thatL1 obeys an equation of the
form

dL1

dt
52zkL1

21G, ~7.20!

whereG is the rate of growth that we have just described
We emphasize that ifL were to obey Eq.~7.7!, unmodi-

fied, it would decay in time ast21 for larget, as is probably
the case in counterflow turbulence.8,11 With the extra termG
in Eq. ~7.20! the decay is modified, and is determined by t
rate of decay of the large eddies. In fact, as shown by St
Skrbek, and DonnellyL might then be expected to decay
t23/2 for large t. A decay ofL as t21 will occur only in the
absence of eddies greater in size than the vortex-line spac
~Strictly speaking the analysis of Stalp, Skrbek, and Do
nelly related to temperatures above about 1 K, but their
gument leading to a decay ast23/2 applies equally well to
grid turbulence at low temperatures.!

We now offer a speculative argument for the factor
which L1 is less thanL. For the completely random vorte
tangle the energy spectrum has no Fourier components
wave vectors significantly smaller thanL1/2, and the same is
true for the spectrum of the mean-square vorticity~we take
the mean-square vorticity as^v2&av, as defined in Sec. II!.
For an energy spectrum of the Kolmogorov form the sp
trum of the mean-square vorticity has the formD«2/3k1/3, as
we noted in Sec. III. The total mean-square vorticity is th
given by

^v2&eff~k.0!5E
0

L1/2

D«2/3k1/3dk5
3

4
D«2/3L2/3,

~7.21!

there being no Fourier components in the spectrum of^v2&eff
with wave numbers greater thanL1/2. Those Fourier compo-



i
av

vo

-
in

th
n
a
m
nt
ow
ha
wi
a
a
d

lvi

ve
y

m
il-
a

r
r-

s

rs
s

t i

bu
th

t so
e
lp,
ra-
and
ust
ro-
have
al
ses

nd-
en-
lds
i-
ain
s,
os-

o
all

e in
he
ith
ly
al

he
o-
the
d
he
that

h

uid

n

of
gth
e
er-

the
is

er-
de,

-

1418 PRB 61W. F. VINEN
nents of the mean-square vorticity that are connected w
adjacent oppositely directed vortex lines must have w
numbers close toL1/2; say between roughlyL1/2 and 0.5L1/2.
The corresponding contribution to the total mean-square
ticity is given by

^v2&eff~k.0.5L1/2!5E
0.5L1/2

L1/2

D«2/3k1/3dk50.6
3

4
D«2/3L2/3.

~7.22!

The ratio of Eq.~7.22! to Eq. ~7.21!, equal to 0.6, is a mea
sure of the extent to which the vortex lines are arranged
random unpolarized manner, and we speculate thatL1 /L is
of the order of the same ratio. Note that the ratio remains
same at all stages of the decay. The fact that the ratio is
very different from unity is a consequence of the fact th
even in grid turbulence the vortex tangle is almost rando

We conclude this section by noting that our argume
lead to the conclusion that grid turbulence at a very l
temperature ought to behave in a way very similar to t
observed by Stalp, Skrbek, and Donnelly. That is, there
be a conventional Kolmogorov energy spectrum at sm
wave numbers. This spectrum terminates at an upper w
number of orderl215L0

1/2, where the energy is transferre
without dissipation to a second cascade formed from Ke
waves with wave numbers extending froml21 to k̃2 . Energy
is ultimately dissipated from these Kelvin waves at wa
numbers neark̃2 , either by radiation of sound at the ver
lowest temperatures or by friction against a residual nor
fluid at slightly higher temperatures. The energy flow is
lustrated in Fig. 1. The rate of dissipation is given by
formula @Eq. ~7.19!# that is very similar to that expected fo
a conventional viscous fluid with kinematic viscosity of o
derk/@11A8 ln(k̃2 L0

21/2)#2, which is close to that for helium
I at temperatures near 1 K but falls at lower temperature
owing to an increasing value ofk̃2 .

A picture in which vortex motion at wave numbe
greater thanl21 is described in terms of simple Kelvin wave
is probably an oversimplification, but we can hope tha
incorporates the essential physics of the problem.

E. Dissipation at higher temperatures

So far we have discussed dissipation of superfluid tur
lent energy at high wave numbers only for the case when

FIG. 1. Illustrating the flow of energy in superfluid grid turbu

lence at a low temperature. At the very lowest temperaturesk̃2

. k̃2 f ; at higher temperaturesk̃2, k̃2 f , as illustrated.
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normal fluid is either absent or can be regarded as at res
that its effect is only to introduce a frictional drag on th
moving vortices in the superfluid. The experiments of Sta
Skrbek, and Donnelly were generally carried out at tempe
tures where the two fluids have comparable densities,
where, as we have explained, turbulence in both fluids m
be taken into account. Dissipation must then involve p
cesses inherent in the superfluid component, such as we
discussed in Secs. VII A–VII D, together with convention
viscous dissipation in the normal component. Both proces
must be affected by the frictional interaction~mutual fric-
tion! between the vortices and the normal fluid.

In general, this is a complicated problem. An understa
ing of the dissipative process in each fluid acting indep
dently is not enough because the two turbulent velocity fie
are coupled through mutual friction, which is itself a diss
pative force. We argue, however, that we can usefully obt
results valid in the limits of both low and high temperature
sensible interpolation between these limits being then p
sible.

Consider first thecase of low temperatures. This is the
case considered in Secs. VII A–VII D, but with the provis
that motion of the normal fluid can be neglected. We sh
now drop that proviso.

We shall take the case of low temperatures to mean on
which the density of the normal fluid is small, so that t
turbulent energy in the normal fluid is small compared w
that in the superfluid. This condition might hold reasonab
well up to temperatures of at least 1.32 K, where the norm
fluid fraction is only 5%. Then we need to consider only t
dissipation of the turbulent energy in the superfluid comp
nent. We have argued that this dissipation is described in
way that we have explained in Secs. VII A–VII D, provide
that motion of the normal fluid can be neglected on t
length scales relevant to this dissipation. We now argue
such a neglect is indeed justified.

The normal fluid can affect the superfluid only throug
the frictional interaction described by the parameterg. One
possible process is the transfer of energy from the superfl
to the normal fluid,via this frictional interaction, followed by
viscous dissipation of this energy in the normal fluid. O
length scales significantly larger thanl5L0

21/2 the two fluids
are strongly coupled, as we saw in Sec. V, so this type
energy transfer can be neglected. However, on the len
scalel5L0

21/2 it might be important. The characteristic tim
associated with the evolution of the turbulence in the sup
fluid component on this length scale is given by Eq.~7.3!.
The time associated with the transfer of momentum from
superfluid to the normal fluid by frictional interaction
given in order of magnitude by

tsn5
rs

gL0
'

r

gL0
, ~7.23!

provided that the velocities of the normal fluid, the sup
fluid, and the vortex lines are all comparable in magnitu
as we see by noting thatrsṅs;g(nn2nL)L0 . The ratio
tsn /t l is, therefore, given by

tsn

t l
5

rk

g
, ~7.24!
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where we have taken the logarithmic factor in Eq.~7.3! to be
unity. We have already seen that this ratio is probably la
compared with unity at all low temperatures. It follows th
the energy transfer on which we are focusing attention
probably take place only slowly in comparison with the ra
at which energy is injected into the Kelvin mode casca
and it can, therefore, be neglected. It is important to ask a
whether the damping of the Kelvin modes by friction@Eq.
~7.15!# is likely to be significantly affected by any motion o
the normal fluid. This depends on the ratio of the norm
fluid velocity in the direction of the smoothed vortex line
the wave velocity of the Kelvin wave. Provided that this ra
is small compared with unity there is very little effect.16 We
assume that the normal fluid velocity on the relevant len
scale is not greater thank/l. Using the dispersion relation
~7.4! we find that for Kelvin waves of wave numberk̃ the
ratio is not greater than about 1/k̃l, which is indeed small
compared with unity for most of the relevant Kelvin wave

We conclude that in, say, grid turbulence at temperatu
below about 1.3 K, the presence of the normal fluid can
neglected except in its effect in damping the Kelvin wav
described in Sec. VII B and therefore in determining t
wave numberk̃2 at which dissipation occurs in the Kelvi
wave cascade described in Sec. VII A.

Consider now thecase of high temperatures, by which we
mean temperatures at which the superfluid density is so s
that the turbulent energy in the superfluid component can
neglected. The superfluid fraction is less than 5% forTl

2T,7 mK. Here the frictional interaction can transfer e
ergy from the normal fluid to the superfluid, but there is
mechanism by which it can be dissipated in the superfl
independently of this frictional interaction. Continuous tran
fer is not possible. There can, therefore, be very little eff
on the turbulence in the normal fluid. We conclude that
these high temperatures the presence of the superfluid c
ponent can be neglected, and the dissipation can be take
being associated almost entirely with the normal fluid visc
ity.

F. Comparison with experiment

We suggested in the preceding section that at low te
peratures, less than roughly 1.3 K, the presence of the no
fluid plays no role except in determining the parameterk̃2 ,
and that Eq.~7.19! therefore applies. This is certainly con
sistent with Stalp’s most recent~unpublished! observations,
mentioned in Sec. II; the parametern9 in Eq. ~7.19! has the
same order of magnitude as hisn8, and it correctly exhibits a
value that falls with falling temperature. To determin
whether there is quantitative agreement we would need
know the exact value of the parametersA andA8 introduced
in Sec. VII A; at present we cannot go further than to sugg
that they are likely to be of order unity.

We also suggested in the preceding section that we
neglect the presence of the superfluid component when
consider dissipation in grid turbulence at temperatures c
to thel point. Unfortunately, this suggestion cannot be co
pared in a straightforward way with the recent observati
of Stalp. These observations do suggest that the parametn8
has a temperature dependence at high temperature th
similar to that ofn5hn /r. However, this similarity is con-
e
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sistent with our suggestion only if at these high temperatu
k2L2 is equal to the mean-square vorticity in the norm
fluid. We have not found any convincing argument that lea
to this equality.

We have no theory of the intermediate range of tempe
tures. If we accept that at high temperaturesk2L2 is equal to
the mean-square vorticity in the normal fluid, the experime
tal results seem to be a reasonable interpolation between
high- and low-temperature limits.

VIII. CONCLUSIONS

We have shown that in grid turbulence in helium II the
can be an inertial range of wave numbers in which dissi
tive processes are unimportant, the velocity fields of the t
fluids are coupled, and the turbulent energy spectrum has
Kolmogorov form, as in a conventional fluid. Dissipatio
takes place at wave numbers greater than or of the orde
the inverse of the vortex-line spacing. The dissipation is g
erally complicated, involving viscous dissipation in the no
mal fluid, frictional interaction between the vortex lines a
the normal fluid, and, especially at very low temperatur
radiation of sound from moving vortices. Some simplific
tion is possible at high and low temperatures. At tempe
tures close to thel point, the superfluid component plays
minor role, and dissipation is due almost entirely to viscos
in the normal fluid. At very low temperatures, the turbulen
in the normal fluid can be neglected; turbulent energy in
superfluid component is transferred to Kelvin waves of h
wave number, where it is dissipated either as a result
frictional interaction between the vortex lines and the
sidual normal fluid or, at the very lowest temperatures,
radiation of sound by the Kelvin waves. Even at low tem
peratures the rate of energy dissipation is given by a form
similar to that applying in a conventional fluid, but wit
some significant differences. These conclusions are con
tent with the experimental results of Stalp, Skrbek, and D
nelly for grid turbulence in helium II in the temperatur
range down to about 1.4 K and with the recent unpublish
results of Stalp at slightly lower temperatures. There is
need for further experimental exploration of the region
very low temperatures, where the effect of the normal fluid
either absent or takes the form only of a frictional dampi
of the vortex motion. The theory is still quite speculative a
requires further development.
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