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Double-layer systems at zero magnetic field

C. B. Hanna, Dylan Haas,* and J. C. Dı´az-Vélez
Department of Physics, Boise State University, Boise, Idaho 83725

~Received 19 August 1999!

We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron
and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to
analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities
and on interlayer phase coherence. In agreement with earlier work, we find that for very low layer separations
and layer densities, an interlayer-correlated ground state possessing spontaneous interlayer coherence~SILC! is
obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of
total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer sys-
tems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has
three components and slightly unequal layer densities, with one layer being spin polarized and the other
unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or
tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized ‘‘one-component’’ phase
discussed by Zhenget al. @Phys. Rev. B55, 4506 ~1997!#. We argue that this phase will produce a finite
interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer
as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or
prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange
on the interlayer capacitance.
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I. INTRODUCTION

In the last several years, double-layer electron and h
systems have provided an exceptionally useful tool for inv
tigating the effects of interparticle Coulomb interactions
two dimensions, particularly at low particle densities whe
exchange and correlation effects are significant. This
been especially true in the quantum Hall regime,1,2 where the
combination of a strong perpendicular magnetic field~which
quenches the kinetic energy! and very small layer separatio
~which enhances interlayer exchange! stabilizes remarkable
interlayer-coherent quantum Hall states.3–9 Even in the ab-
sence of any magnetic field, interlayer capacitance and d
measurements in double-layer electron systems~2LES’s!
have provided quantitative measures of the effects of e
tronic interactions on both the thermodynamics10 and trans-
port ~Coulomb drag11! of two-dimensional electron and hol
systems. Unless otherwise specified, we shall take the n
tion 2LES to also include double-layer hole systems.

Our work is motivated by the rapid pace of advanceme
in the engineering of double-layer semiconductor devic
We expect that high-mobility double-layer devices will eve
tually be built with both~1! separately contactablelayers,
and ~2! layer separations and carrier densities so small
the interlayer correlations between the carriers are subst
tial, perhaps even without the aid of a strong quantizing m
netic field. Such devices will allow direct measurements
the effects interlayer many-body effects in double-layer s
tems. As a starting point to analyze the zero magnetic fi
situation, we have developed a simple mean-field model
incorporates both intralayer and interlayer exchange in
ased double-layer electron and hole systems in the abs
of a magnetic field. We use the model to calculate theor
PRB 610163-1829/2000/61~20!/13882~32!/$15.00
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cally the effect of interlayer exchange on the layer densi
and interlayer capacitance as a function of layer spac
particle density, and applied gate voltage.

Gated double-layer systems have the great advantag
allowing the layer densities of electrons or holes to be var
by the application of a bias~gate voltage!. At high densities,
the kinetic energy per unit area dominates the exchange
correlation energies, and in a translationally invariant s
tem, the symmetry and properties of the ground state o
many-body system are in one-to-one correspondence
those of a free-electron gas. At lower electron densities,
Coulombic exchange and correlation energies can prod
qualitative changes in the nature of the many-particle gro
state: numerical work on two- and three-dimensional el
tron gases show that a spin ferromagnetic state is obtaine
low densities, which is eventually supplanted by a Wign
crystal state at the lowest densities. The low-density fer
magnetic state of the interacting electron gas was anticip
some 70 years ago by Bloch;12 ferromagnetism can be foun
even within the Hartree-Fock approximation when the e
change interaction energy, which favors occupation
single-particle states of the same spin, dominates the kin
energy, which favors reducing the Fermi energy by eq
occupation of both spin states.

Multilayer semiconductor devices enhance the effects
interparticle interactions through the combination of reduc
dimensionality and low particle density, and by the prese
of an additional electronic degree of freedom, the lay
index.13 In double-layer systems, layer occupancy can
specified by introducing a pseudospin variable that points
for one layer and down for the other layer.14 Extending the
notion of an exchange-driven ferromagnetic transition
double-layer systems suggests that at low enough dens
the electronic ground state should be both spin and ps
13 882 ©2000 The American Physical Society
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PRB 61 13 883DOUBLE-LAYER SYSTEMS AT ZERO MAGNETIC FIELD
dospin polarized. Such reasoning, supported by Hartree-F
calculations, led Ruden and Wu to propose that, at
enough electron densities and for small enough layer sep
tions, the electrons of a 2LES would minimize their groun
state energy by having all electrons occupy a single laye15

The Ruden-Wu scenario implies that as the total density
balanced 2LES is lowered, the electrons should eventu
experience an interlayer charge-transfer instability that sp
taneously empties out one of the two layers. Ruden and
also suggested that the inherent bistability of the resul
low-density 2LES~either layer could be the one to lose
gain particles! would constitute an exchange-driven log
gate. The possibility of an exchange-driven interlay
charge-transfer instability has been a subject of b
theoretical15–18 and experimental19–22 interest.

Although pseudospin polarization at sufficiently low de
sities is likely, it does not require unequal layer densiti
This has been demonstrated theoretically in great detail
closely spaced double-layer systems in a strong magn
field at unit filling factor and appears to give a good exp
nation of experimental results.6–8 The key point is that elec
trons in double-layer structures are not restricted to occu
ing only one of two layer eigenstates: quantum mechan
allows states that are superpositions of the two layers.
layer pseudospin must therefore be treated as a Heisen
variable, as was done in Refs. 6 and 7 in the quantum H
regime, and by Zheng and co-workers in zero magn
field,17 rather than as an Ising variable~where only ‘‘up’’
and ‘‘down’’ are allowed! as was done by Ruden and W
For example, when interlayer tunneling is present, the sin
particle eigenstates are symmetric and antisymmetric com
nations of layer states. A major insight of Refs. 6–8 was
concept of ‘‘spontaneous interlayer coherence’’~SILC!: at
sufficiently small layer separations, electrons can sponta
ously create and occupy linear combinations of layer sta
in which each layer has the same average number of e
trons,even without any interlayer tunneling. The spontane-
ous formation of superposed layer states in double-la
quantum Hall~2LQH! sytems can be accomplished by t
interlayer exchange interaction alone. SILC in balanc
2LQH systems corresponds toXY pseudospin ferromag
netism in which the pseudospins spontaneously magne
but do not point either up or down, since neither layer h
~on average! more particles than the other.6

The application of SILC to the zero magnetic field ca
was first made by Zheng and co-workers,17 who considered
the same model system as Ruden and W15

—electrostatically balanced zero-thickness layers of inter
ing electrons without interlayer tunneling—but came to
very different conclusion. They proved within the Hartre
Fock approximation~HFA! that ~1! the 2LES becomes spi
ferromagnetic before it becomes pseudospin ferromagn
for any finite layer separation~this possibility was not con-
sidered by Ruden and Wu!, and~2! at low enough densities
and small enough layer separations, the pseudospin fe
magnetic state possesses SILC, with all electrons occup
one subband composed of a superposition of layer states
equal average density in each layer. Conti and Senatore
also argued that for electrostatically balanced layers,
2LES ground state cannot be one in which all electrons
eigenstates of the same single layer.18 SILC at sufficiently
ck
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small layer separations should also follow from earlier c
culations presented in Ref. 23, although no explicit inferen
of SILC was made in that work. Recent work that goes b
yond the HFA and includes correlation effects within t
STLS approximation24 also finds that SILC is favored ove
single-layer occupancy for balanced layers that are su
ciently close together.25

When studying a 2LES using a density-functional a
proach, it is important to note that SILC is a nonlocal effe
Calculations based on local-density approximations will n
find SILC if they treat the pseudospin as an Ising-li
variable.17 The same caveat applies to the work of Rud
and Wu, who used a restricted HFA that excluded the po
bility of SILC. Once the intralayer separation between ele
trons becomes comparable to the interlayer separation
tween layers, the possibility of interlayer correlations~such
as SILC! must be considered. The spontaneous char
transfer state predicted by Ruden and Wu follows quite g
erally ~even beyond the HFA! from the fact that when inter-
layer correlations are ignored, the negative compressib
of the electron gas guarantees an interlayer charge-tran
instability at sufficiently small layer spacing. But it is pre
cisely at small layer spacings that interlayer correlations
come important, and so their effects must be included
obtain physically meaningful results.

We have extended the study of the effects of Coulom
exchange in double-layer electron and hole systems to
clude an applied bias due to front and back gate voltag
while allowing for the possibility of interlayer exchange. I
the balanced case, we have found that the four- to tw
component transition is always interrupted by the prese
of a three-component phase with slightly unequal layer d
sities. There are therefore four possible noncrystalline pha
for a 2LES with balanced gates. Under bias or tunnelin
second~pseudospin-polarized! two-component state is als
possible. We have enumerated the transitions between
five allowed states in the presence of bias, and explored
effects of bias on the one-component state.

The rest of this paper is organized as follows: In Sec.
we introduce a simplified model for double-layer system
review the concept of interlayer capacitance, and give a g
eral criterion for stability against spontaneous interlay
charge transfer. In Sec. III, we develop a mean-field appro
mation for biased double-layer systems that allows for
possibility of interlayer coherence. In Sec. IV, we exami
the special case of electrostatically balanced layers, enum
ate the resulting four possible noncrystalline phases, and
plore the onset of interlayer coherence and its effect on
size of the subband splitting. We also obtain a phase diag
for the balanced case, and perform an alternate calcula
for the onset of the one-component phase. In Sec. V,
explore the effect of bias on the layer occupancies and in
layer capacitance for large, intermediate, and small la
separations. We develop simple models capable of clo
fitting experimental layer-occupancy data, and expore
transitions between different phases induced by layer im
ance. In Sec. VI, we analyze the onset and properties of
one-component state under bias. We summarize our find
and speculate on the possible relevance of these results t
strong magnetic-field regime in Sec. VII.
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13 884 PRB 61C. B. HANNA, DYLAN HAAS, AND J. C. DÍAZ-VÉLEZ
II. DOUBLE-LAYER MODEL AND INTERLAYER
CAPACITANCE

In this section, we introduce an idealized model
double-layer systems. We review the condition for therm
dynamic equilibrium between the inner layers, obtain a n
essary condition for stability against interlayer charge tra
fer, and review an experimentally useful measure of
interlayer capacitance, the Eisenstein ratio.10

Figure 1 illustrates schematically the geometry of t
2LES device. We treat the quantum wells as zero-thickn
layers sandwiched between two plates of neutralizing cha
which represent the effects of the front and back gates.
distance between the front gate~at far left! and the first layer
~layer 1! is DF ; that between the back gate~at far right! and
the second layer~layer 2! is DB ; the interlayer separation i
denoted byd. Typically, d;10 nm, DF;1 mm, andDB
;1 mm, so thatd!DF!DB ; thus, Fig. 1 is not at all to
scale.

The two inner layers are assumed to be in thermodyna
equilibrium with each other, and the voltage of the fro
~back! gate relative to the common chemical potential of t
inner layers is denoted byVF (VB). It is also assumed tha
small changesdVa in the gate voltagesVa (a5F,B) pro-
duce small changes in surface charge densities only at
gates (edpa) and in the layers (2edni ,i 51,2). Overall
charge neutrality requires that the total charge density v
ish:

epF1epB2en12en250. ~1!

~Strictly speaking, we only require that thechangein the
total charge density vanish:depF1depB2den12den250.!
In writing Eq. ~1!, we have assumed that any stray charge
included in Eq.~1! is unchanged when the gate voltages
varied. This implies that the only significant effect of th
stray charges is to shift the gate voltages by constant~em-
pirically determined! amounts. Sheet charge densities on
gates and inner layers produce electric fields between
double layer and the gates (Ea) and between the two layer
(E12) according to Gauss’s law,

Ea5~e/e!pa ,
~2!

E125~e/e!~pF2n1!5~e/e!~n22pB!.

We now obtain the conditions for thermodynamic equil
rium and stability between the layers. Regarding the g

FIG. 1. Schematic figure of a double-layer device with fro
gate surface charge densityepF at left, areal charge densities
2en1 and 2en2 in the quantum wells, and back-gate surfa
charge densityepB at right.
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charge densitiespa as fixed quantities, we seek the values
the particle density in the inner layers that minimize the to
energy per unit areaE0 /LxLy . Following Ref. 26, we sepa
rate the electrostatic part of the total energy per unit a
from the rest:

E0

LxLy
5

e

2
E12

2 d1«~n1 ,n2!, ~3!

up to an irrelevant constant, where the first term is the in
layer electrostatic energy density, withE12 given by Eq.~2!.
The quantity«(n1 ,n2) represents the total energy per un
area for a fully interacting double-layer system in which ea
layer contains a uniform neutralizing charge density, for p
ticle densitiesn1 andn2 in layers 1 and 2, respectively. Th
Fermi, exchange, and correlation energies, both intrala
and interlayer, are contained in«(n1 ,n2), and it is this quan-
tity that is calculated using many-body techniques.26 In the
next section, we make an approximate calculation
«(n1 ,n2) that includes the effects of interlayer and intralay
exchange.

To obtain the condition for thermodynamic equilibriu
between the inner layers, we note that for fixed exter
charge densitiespa , the constraint of overall charge neutra
ity implies that the particle density in one layer~e.g,n1) is
determined by that in the other layer~e.g., n2): n15pF
1pB2n2. We may thus regard the total energy per unit a
E0 /LxLy as a function of the layer densityn2, and extremize
E0 /LxLy with respect ton2 at fixedpF andpB to obtain10,26

m12m25eE12d, ~4!

where

m i[]«~n1 ,n2!/]ni ~5!

is the chemical potential measured relative to the ene
minimum of layeri. Equation~4! states that the difference i
the layer values of the chemical potential is equal to
electrostatic potential energy difference between the lay
If the equation of state determiningm i(n1 ,n2) were known,
then Eqs.~2! and~4! would together determine the values
layer densitiesn1 andn2 for which the total energyE0 /LxLy
is an extremum.

We now examine a necessary condition for interlay
thermodynamic stability~i.e., for the local extremum to be
local minimum of the energy!. First we follow Ref. 10 and
introduce a set of lengths that describe the dependence o
layer chemical potentialsm i on the layer densitiesnj ,

si j [
e

e2

]m i

]nj
5

e

e2

]2«

]nj]ni
. ~6!

For the extremum condition in Eq.~4! to represent a loca
minimum of the total energy per unit area, we require th
the second derivative ofE0 /LxLy with respect ton2 be posi-
tive. ~We again regardn1 as being determined byn2 for
fixed pa by the requirement for overall charge neutrality!
This gives a necessary condition for stability:
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PRB 61 13 885DOUBLE-LAYER SYSTEMS AT ZERO MAGNETIC FIELD
d1s11s2.0, ~7!

where

s1[s112s12, s2[s222s21. ~8!

The above inequality guarantees that the 2LES is at l
metastable. If Eq.~7! is violated, then the layer densitie
constitute a local energetic maximum rather than a lo
minimum, and there will be an interlayer charge instabil
that causes charge to flow between the layers until a
energetic minimum is reached.

In the absence of interlayer correlations~the case consid
ered in Refs. 15 and 10!, s125s2150, and the lengthsii is
directly related to the electronic compressibilityk i in layer i
according to26

sii 5
e

e2ni
2k i

. ~9!

Equations~7! and~9! together with the experimentally mea
sured negative compressibility (k,0) of the electrons imply
that when interlayer correlations are ignored (s1250), suffi-
ciently small interlayer separationd will always lead to a
charge-transfer instability when the density of either~or
both! layer is sufficiently small. This result is true even wh
intralayer correlations are included beyond the HFA calcu
tion of Ruden and Wu; only interlayer correlations that p
duce sufficiently negative values ofs12 to satisfy Eq.~7! can
suppress interlayer charge-transfer instabilities at very sm
interlayer separations.

If the two layers of the 2LES sample can be contac
separately, then the Eisenstein ratioRE provides a sensitive
measure of the interlayer capacitance that avoids the l
gate-distance factors that dominate the gate capacitance
unit area.10,26 The Eisenstein ratio is defined as the ratio
the differential change in the electric fieldE12 between the
inner layers to that of the electric fieldEF between the front
gate and the inner layers:

RE[
dE12

dEF
512dn1 /dpF , ~10!

where we have made use of Gauss’s law, Eq.~2!. In the
following sections, we calculate the layer occupanciesni as a
function of the gate chargespa ; we then use Eq.~10! to
obtainRE by computing the change inn1 with respect topF .
In the classical limit~corresponding to large enough partic
densities and layer separations so that only the electros
energies are relevant!, n15pF ~for pF.0), so that by Eq.
~10!, RE50. Note also that ifn150 ~e.g., due topF,0),
thenRE51. By using Eqs.~4! and~6! to express differentia
changes inE12 in terms of the electronic lengthssi j and
using Gauss’s law, the Eisenstein ratio may be expresse

RE5
s12s2dEB /dEF

d1s11s2
. ~11!

The Eisenstein ratio has an especially simple form
fixed total density since thendEB52dEF ; from Eq. ~11!,
RE5s/(d1s), where s[s11s2. However, most experi-
st
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ments fix the back-gate voltageVB rather than the total den
sity, and sweep the front-gate voltageVF . Because of the
relatively large size of the back-gate distanceDB , the con-
straint of fixed back-gate voltage (dVB50) is very nearly
equivalent to that of fixed back-gate sheet charge den
(dpB50 or, by Gauss’s law,dEB50). FordEB50, Eq.~11!
shows that the Eisenstein ratio is very nearly

RE'~dE12/dEF!pB
5

s1

d1s11s2
. ~12!

The advantage of measuringRE rather than the usual gat
capacitances per unit area~such asedpF /dVF) is that RE
depends only on the electronic lengthssi and the interlayer
distanced, not on the much larger gate distancesDa . The
difficulty in measuringRE is that ~at least one of! layers 1
and 2 must be separately contactable, which becomes
creasingly difficult as the layer separationd becomes very
small. Nonetheless, measurements of the Eisenstein
have been used to demonstrate the negative compressi
of the electron gas,10 and it is to be expected that device
with separately contactable layers will be built with increa
ingly narrow layer separations. Note also thatRE is very
sensitive to charge-transfer instabilities. In fact, from Eq.~7!,
the condition for the onset of an instability to interlay
charge transfer,d1s11s250, shows thatRE formally di-
verges at the instability. This can also be seen from the
lation RE512dn1 /dpF , since a charge-transfer instabilit
would produce an abrupt change in the layer densityn1 in
response to a small change in the gate densitypF . Although
evidence for abrupt interlayer charge transfers has been
ported based on Shubnikov–de Haas~SdH! measurements,19

the Eisenstein ratio would be a far more sensitive measur
abrupt interlayer charge transfers.

In subsequent sections, we calculate the layer densitieni
as a function of the front-gate particle densitypF , for fixed
back-gate particle densitypB . Fortunately,pB may be found
experimentally from SdH measurements as the value of
layer densities when the system is balanced: i.e., for eq
layer densities (n15n2) and minimum subband separatio
(na2nb). OncepB ~which we assume is very nearly con
stant! is known,pF may be determined from charge conse
vation by measuring the total layer density, either by SdH~as
the sum of the subband densities! or by Hall effect measure-
ments. It is therefore possible to determinepF experimen-
tally, without recourse to the gate voltages. Of course,
perimentally, it isVF that is varied directly whileVB is kept
fixed, andpF changes in response toVF ~while pB changes
very little for largeDB). We describe how the gate voltage
may be determined from a knowledge ofpF , pB , andm i in
Sec. I of the Appendix.

III. MEAN-FIELD APPROXIMATION

In this section, we introduce the microscopic Hamiltoni
for the gated double-layer system and make a variatio
approximation for the ground-state wave function that allo
for interlayer coherence. The resulting approximate grou
state energy per unit area depends on both intralayer
interlayer exchange.

We now consider the microscopic Hamiltonian for th
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13 886 PRB 61C. B. HANNA, DYLAN HAAS, AND J. C. DÍAZ-VÉLEZ
double-layer system illustrated in Fig. 1. We idealize t
inner layers as being two-dimensional, and treat interla
tunneling in the tight-binding approximation. The Ham
tonian for the interacting system is then

H5(
j ks

«kcj ks
† cj ks2t(

ks
~c1ks

† c2ks1c2ks
† c1ks!

1
1

2LxLy
(

q
(

j 1k1s1
(

j 2k2s2

Vj 1 j 2
~q!

3cj 1k11qs1

† cj 2k22qs2

† cj 2k2s2
cj 1k1s1

2(
j ks

(
a

Vj a~q50!pacj ks
† cj ks

1
LxLy

2 (
ab

Vab~q50!papb , ~13!

where cj ks (cj ks
† ) denotes the second-quantized destruct

~creation! operator for an electron or hole in layerj with
momentum\k and spins. Here«k5\2k2/2m* is the kinetic
energy in the effective mass (m* ) approximation,t is the
interlayer tunneling amplitude, and the Fourier-transform
Coulomb potential is given by

Vi j ~q!5
e2

2eq
e2qdi j , ~14!

where di j is the distance between layeri and layerj. The
indicesa,b in Eq. ~13! take the valuesF ~front gate! or B
~back gate!, Vab is the direct Coulomb interaction betwee
gatesa and b, and Va j is the direct Coulomb interaction
between gatea and layerj. The last two terms in Eq.~13!
represent the direct interaction between the layers and g
and between front and back gates, respectively.

We use a mean-field approximation~MFA! that is varia-
tionally based and that reduces to the Hartree-Fock appr
mation for the balanced case of equal layer densities. T
approximation includes the effects of interlayer correlatio
in the simplest possible way. The variational ground-st
wave function is composed of two subbands,a and b, con-
taining spin up (↑) and spin down (↓) electrons:

uC0&5 )
k4

k4<kb↓
bk4↓

† )
k3

k3<kb↑
bk3↑

† )
k2

k2<ka↓
ak2↓

† )
k1

k1<ka↑
ak1↑

† u0&,

~15!

wherekas and kbs denote the Fermi wave vectors for ele
trons or holes of spins in subbandsa and b. The creation
operators for the subbands are related to the layer crea
operators by a canonical transformation that we take to b
the form

aks
† 5cos~u/2!c1ks

† 1sin~u/2!eifc2ks
† ,

bks
† 52sin~u/2!e2 ifc1ks

† 1cos~u/2!c2ks
† . ~16!

When u5p/2 andf50, subbanda is the symmetric sub-
band and subbandb is the antisymmetric subband. In th
language of pseudospin, the superposition of layer state
Eq. ~16! corresponds to treating the layer pseudospin a
Heisenberg, rather than an Ising, spin variable.17 The form of
r

n

d

es,

i-
is
s
e

on
of

in
a

the canonical transformation in Eq.~16! is not completely
equivalent to a fully self-consistent Hartree-Fock calculat
because we have takenu and f to be independent of the
wave vectork and spins. It would be interesting to explore
the effects of including thek ands dependence ofu andf in
a future calculation. Our simpler variational calculatio
which is equivalent to Ref. 17 for the special case of b
anced layers, offers a reasonable starting point, which
probably qualitatively correct over a large range of lay
densities. It certainly gives layer densities that are in clo
agreement with experimental values obtained from S
measurements, as we shall show.

The layer occupation numbers may be expressed in te
of the subband occupation numbers by using Eq.~16!:

^c1ks
† c1ks&5cos2~u/2!^aks

† aks&1sin2~u/2!^bks
† bks&,

^c2ks
† c2ks&5sin2~u/2!^aks

† aks&1cos2~u/2!^bks
† bks&,

~17!
^c1ks

† c2ks&5sin~u/2!cos~u/2!eif~^aks
† aks&2^bks

† bks&!,

^c2ks
† c1ks&5^c1ks

† c2ks&* ,

where the asterisk denotes complex conjugation, and
have used Eq.~15! to eliminate cross terms such as^aks

† bks&.
SILC occurs when

^c1ks
† c2ks&Þ0 ~18!

in the absence of interlayer tunneling. According to Eqs.~17!
and ~18!, SILC requires that the following occurs:~1! u
Þ0,p so that the subband densities are different from
layer densities. SILC is therefore excluded when the ps
dospin is treated as an Ising variable.~2! naÞnb so that the
subband densities are not equal~nonzero pseudospin polar
ization!. When nas5nbs ~completely unpolarized pseu
dospin!, the MFA ground state can be expressed as the p
uct of two uncorrelated single-layer wave functions
performing a global pseudospin rotation.

Although it is straightforward to generalize our approa
to finite temperature, we calculate numerical results in
limit of zero temperature (T50), both for the sake of sim-
plicity and because measurements can~and have! been made
on double-layer systems at low temperatures, even dow
millikelvin temperatures in the quantum Hall regime.5 For
the zero-magnetic-field case treated here, we expect tha
nite temperature will not produce signifcant qualitati
changes in the layer densities if the temperatureT is below a
fraction of the Fermi temperatureTF[EF /kB , whereEF is
Fermi energy andkB is Boltzmann’s constant. For a laye
density of n51010 cm22, TF is roughly 4 K for n-type
GaAs, and 1 K for p-type GaAs. The scale of the Hartre
charge-transfer energy,e2dn/2e, is larger than the Fermi en
ergy except for ultrasmall layer separations (d,5 nm for
n-type GaAs andd,1 nm for p-type GaAs.!

The other reason we work at zero temperature is to
dress matters of principle, such as whether an interla
charge-transfer instability can occur when the layers are v
close together; finite temperatures would presumably sm
out such a transfer, if it could occur. In the limit of zer
temperature, Eq.~15! implies that
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^aks
† aks&5Q~kas2k!, ^bks

† bks&5Q~kbs2k!, ~19!

where the subband Fermi wave vectors and number dens
are related through

kas5A4pnas, kbs5A4pnbs. ~20!

Summing Eqs.~17! over wave vectork relates the numbe
densities of the layers to those of the subbands:

n1s1n2s5nas1nbs ,
~21!

n1s2n2s5~nas2nbs!cosu.

We may use the preceding equations to express
ground-state energy per unit area in terms of the subb
occupanciesnas and the angleu:

E0

LxLy
5

1

n0
(
as

nas
2 2t~na2nb!sinu cosf

1
e2d

8e
@~na2nb!cosu2~pF2pB!#2

2
1

2LxLy
(
qas

V11~q!I aas~q!

1
sin2u

4LxLy
(
qs

@V11~q!2V12~q!#

3@ I aas~q!1I bbs~q!22I abs~q!#, ~22!

wheren05m* /(p\2) is the density of states per unit are
for noninteracting spin-1/2 particles in two dimensions,q
5k12k2, and

I abs~q![
1

LxLy
(
K

Q~kas2uK1q/2u!Q~kbs2uK2q/2u!.

~23!

HereK5(k11k2)/2, and the subband indicesa andb can
be eithera or b. Equation~23! says thatI abs(q) is 1/(2p)2

times the common area of two circles of radiikas and kbs
whose centers are separated byq. When b5a, then kbs
5kas , and the first exchange integral in Eq.~22! may be
carried out explicitly:

2
1

2LxLy
(

q
V11~q!I aas~q!52

8

3Ap

e2

4pe
nas

3/2. ~24!

Equation~24! is just the exchange energy per unit area fo
uniform single-layer spin-polarized two-dimensional ele
tron gas of areal densitynas .

The last term in Eq.~22!, which contains the interlaye
exchange contribution, may be conveniently expressed a

sin2u

4

e2d

2e
~na2nb!2G, ~25!

whereG is the interlayer exchange parameter, given by
ies

e
nd

a
-

G[
1

LxLy
(
qs

FV11~q!2V12~q!

e2d/2e
G

3F I aas~q!1I bbs~q!22I abs~q!

~na2nb!2 G . ~26!

The properties ofG are described in Sec. IV of the Appen
dix. The last term in Eq.~22! must in general be evaluate
numerically, although it vanishes atd50 or when nas
5nbs . It also vanishes ifu is 0 orp, in which case subband
a is the layer~1 or 2! with most particles, while subbandb is
the layer with the fewest particles. Ruden and Wu implici
treated the layer pseudospin as an Ising-like variable wit
andp as the only allowed values foru; in their approxima-
tion, the last term in Eq.~22! vanishes, and the interlaye
effects we shall discuss here do not appear.

For definiteness, we takena>nb , na↑>na↓ , and 0<u
<p. Our procedure consists of finding the values ofnas and
u that minimize the expected energy per unit area, Eq.~22!.
Within our variational approximation, we find~as in17 the
HFA! that the spins in a given subband are always eit
completely polarized~ferromagnetic at sufficiently low sub
band densities! or completely unpolarized~paramagnetic at
higher densities!. Real systems probably possess interme
ate polarization for a range of low densities.27,28 For finite t
.0, the ground-state energy per unit area, Eq.~22!, is mini-
mized for f50. In the absence of interlayer tunneling, th
ground-state energy per unit area is independent off, pro-
vided thatf is constant; for convenience we setf50. The
layer densitiesn1s andn2s may be obtained fromnas andu
via Eq. ~21!. We begin our calculations in the next sectio
by considering the case of electrostatically balanced gate

IV. BALANCED GATES

In this section, we consider the case of electrostatica
balanced gates (pF5pB), beginning with zero interlayer tun
neling. This was the situation originally considered by Rud
and Wu,15 and more recently in Refs. 17, 18, and 23. F
balanced gates, our approximation is equivalent to the u
stricted HFA of Zheng and co-workers,17 and except for our
analysis of the three-component phase, most of our res
agree with theirs.

A. Zero tunneling

The balanced case raises an important question of p
ciple: can exchange and correlation effects alone, unaide
applied gate biases and unhindered by interlayer tunnel
ever produce a ground state in which the densities of
inner layers are not equal? Based on a restricted HFA~which
did not allow for SILC! Ruden and Wu proposed that, fo
small enough layer densities and layer separations, the
swer is yes. Zheng and co-workers argued recently tha
unrestricted HFA~which allows for, but does not mandat
SILC! gives the opposite answer.17 We find that, except for a
small region in density that supports a three-compon
phase that has a slight layer imbalance, the layer densitie
equal when the gates are balanced.
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1. Zero layer separation

In order to classify the four noncrystalline phases that
find for gate-balanced double-layer systems, it is usefu
begin with the idealized case of zero layer separationd
50). For d50, the Hamiltonian is invariant under spin ro
tation, pseudospin rotation, and the interchange of spin
pseudospin. It is the same as the Hamiltonian for a four-la
system of spinless fermions with zero separation betwee
the layers: layers, subbands, and spins become intercha
able labels for the four components. Thed50 double-layer
system is therefore equivalent to a single-layer tw
dimensional system of fermions with CP~3! symmetry. At
d50, the interlayer Hartree energy is zero and the interla
(V12) and intralayer (V11) Coulomb interactions are equa
As a consequence, the variational energy in Eq.~22! is inde-
pendent ofu and ~for t50) of f whend50,

E0

LxLy
5(

as
Fnas

2

n0
2

8

3Ap

e2

4pe
nas

3/2G[(
as

«~nas!, ~27!

and the MFA is equivalent to the HFA.
For generality, we first consider anN-component system

where N is twice the number of layers:N54 for double-
layer spin-1/2 systems. Atd50, the MFA lacks intercompo-
nent correlations; thus, the total energy of the system is
the sum of the individual energies«(nas) of each compo-
nent. We can investigate the distribution of component d
sities in the MFA ground state in anN-component system by
taking all but two of component densities to be fixed, a
minimizing the energy of the remaining two-component s
tem. If we label the two components we seek to minimize
1 and 2, then according to Sec. II, the condition for sta
equilibrium ~local minimum of the total energy! is

m~n1!5m~n2!, s~n1!1s~n2!.0, ~28!

wherem(nj )5]«(nj )/]nj is the chemical potential relativ
to the minimum energy of componentj, and s(nj )
5]m(nj )/]nj is inversely proportional to the compressibili
of componentj. When «(nj ) is the sum of the kinetic and
exchange energies as in Eq.~27!, then the MFA energy is
minimized only if ~1! both layer densities are equal (n1
5n2), or ~2! one or both layers are empty. There are
intermediate possibilities in the MFA. Thisd50 result for
N52 gives the results found by Ruden and Wu: when (n1
1n2) is sufficiently large, the component densities are equ
when (n11n2) is sufficiently small, there is an exchang
driven intercomponent charge instability that empties out
of the components. In the absence of intercomponent co
lations, we expect that at low enough densities the com
nent compressibilities will be negative and that therefore
of the components will empty out, even if intracompone
correlations are included. In theN-componentd50 MFA
ground state, any pair of layers either has equal densit
has at least one of the layers empty.

There are thereforeN possible MFA ground states in a
N-component system atd50, characterized by the numbe
of componentsp that have nonzero and equal densities. T
remainingN2p components have zero density. Defining t
dimensionless average interparticle spacingper component
by r s51/Ap(nT /N)a0

2 for an N-component system, wher
e
o

d
er
all
ge-

-
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-
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l;

e
e-
o-
e
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a054pe\2/m* e2 is the effective Bohr radius, we may writ
the energy per unit area for the ‘‘p-component’’ MFA
ground state as

Ep

LxLy
5

e2

4pea0
3

pFpS N

pr s
2p

D 2

2
8

3Ap
S N

pr s
2p

D 3/2G . ~29!

In the limit N→`, p becomes a continuous variable th
minimizes the energy~29! for p5p` , where

p`5NS 3p

4r s
D 2

5S 3p

4 D 2

pa0
2nT , ~30!

where we have assumed thatr s>(3p/4); otherwise,p`

5N. Equation~30! shows that in the limitN→`, p is pro-
portional tonT for r s>3p/4, and equal toN otherwise. As
expected, the numberp of equally occupied component
drops asnT is reduced. Equation~30! is equivalent to saying
the dimensionless interparticle separation per componen
which p5p` is

r s~p`!5
3p

4
AN

p`
~31!

when p` /N<1. The equilibrium value of theN→` MFA
energy corresponding to Eq.~30! is

«`52S 4

3p D 2 e2

4pea0
nT . ~32!

For arbitrary finiteN, Eq. ~29! can be used to find the
interparticle spacing per componentr s

(0)(p,p11) at which
the p- and the (p11)-component phases have the same
ergies atd50:

r s
(0)~p,p11!5

3p

8 SAN

p
1A N

p11D . ~33!

This is the interparticle spacing per component for the M
transition between thep- and (p11)-component phases. It i
interesting to compare this result to Eq.~31! and to note that

r s
(0)~p,p11!,r s~p`!,r s

(0)~p21,p!, ~34!

so that even for finiteN, r s(p`) always gives a value for the
interparticle spacing that is in thep-component MFA phase
at d50.

For systems of physical interest containingN/2 layers of
spin-1/2 particles, it is convenient to work with the interpa
ticle spacingper layer ~rather than the spacingper compo-
nent!. This is accomplished by dividing Eq.~33! by A2. For
double-layer systems of spin-1/2 particles (N54),

r s
(0)~1,2!5

3p

8
~A211!'2.844,

r s
(0)~2,3!5

3p

8
~11A2/3!'2.140, ~35!

r s
(0)~3,4!5

3p

8
~A2/31A1/2!'1.795,
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where the superscript (0) denotes zero layer separation.
that the direct four- to two-component MFA transition pr
dicted to occur at

r s~2,4!5
3p

8
~11A1/2!'2.011 ~36!

does not exist. In fact, we find that whenr s5r s(2,4), the
gate-balanced (pF5pB) double-layer system is always in th
three-component MFA phase, regardless of the layer sep
tion. The three-component system, which atd50 hasna↑
5na↓5nb↑5nT/3, has a spin-unpolarized subband (na↑
5na↓) with greater density than the other subband (na
.nb), which is spin-polarized. These features of the thr
component phase persist at finite layer separations, altho
the layer imbalance is greatly reduced.

2. Finite layer separation

Classically~when only the electrostatic energies are co
sidered!, balanced layers (n15n2) are obtained whenpF
5pB , in order to make the electric fieldE12 between the
inner layers vanish. This result gives the asymptotically c
rect behavior for high layer densities and large layer sep
tions. At sufficiently low densities and layer separations,
exchange energy can dominate the kinetic and electros
energies, so that the possibility of strong intralayer excha
leading to an interlayer charge-transfer instability must
considered. However, within the MFA, it can be proved th
the inner layer densities are always equal, except in
three-component phase.

If the subband densities are equal (na5nb , the case of
‘‘pseudospin paramagnetism’’!, then Eq.~21! shows thatn1
5n2. Thus the four-component (nas5nT/4) and two-
component~with na↑5nb↑5nT/2) phases have balanced la
ers. This is because the MFA state constructed by occup
equally the single-particle subband statesa andb is equiva-
lent ~up to a global pseudospin rotation! to the MFA state
constructed by occupying equally the single-particle la
states 1 and 2. The fact that the ground-state energy in
~22! is independent ofu and f when na5nb is due to the
invariance of the ground-state energy under global ps
dospin rotation.

If the subband densities are not equal (na.nb), extrem-
izing the total energy per unit area in Eq.~22! with respect to
u for pF5pB and t50 gives the condition sin(2u)50. The
requirement that the extremum be a minimum~i.e., that the
second derivative of the total energy per unit area with
spect tou be positive! gives

sinu5H 1 if G,1

0 if G.1
~37!

where the interlayer exchange parameterG is defined in Eq.
~26!. The properties ofG are described in Sec. 4 of the Ap
pendix. Using the inequality

e2d/2e.V11~q!2V12~q!, ~38!

which is true ford.0, it follows from Eq. ~26! that for d
.0,
te

ra-
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gh
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u-

-

G,
1

LxLy
(
qs

F I aas~q!1I bbs~q!22I abs~q!

~na2nb!2 G
5(

s

~nas2nbs!
2

~na2nb!2
. ~39!

Thus the condition

~na↑2nb↑!~na↓2nb↓!>0 ~40!

is sufficient to guarantee thatG,1 for d.0, so thatu
5p/2, which balances the layers. The one-component ph
(na↑5nT) satisfies Eq.~40!, so u5p/2 and the layers are
balanced. No interlayer charge transfer is obtained in
one-component phase because the combined effects of
trostatics and interlayer exchange, which favor balanced
ers, always dominate the unbalancing influence of intrala
exchange:e2d/2e1V12(q).V11(q).

Within the MFA, the spins in subbandsa andb are either
completely unpolarized~at higher densities! or fully polar-
ized ~at sufficiently low densities!. Therefore the only pos-
sible MFA configurations of spin and pseudospin that co
have unbalanced layers (na.nb ,uÞp/2) when pF5pB
would be three-component states with

na↑5na↓,nb↑ , nb↓50. ~41!

We find numerically that such states always haveG.1 when
t50, so that sinu50. Hence, there is no interlayer pha
coherence, and the pseudospins are Ising-like. States
na.nb and sinu50 have partially unbalanced layers, wit
the lower-density layer being spin-polarized and the high
density layer being spin-unpolarized, even for balanced g
(pF5pB). This is the behavior we find for the three
component MFA phase. For infinitesimald, one ~spin-
unpolarized! layer has twice the density of the other~spin-
polarized! layer, and the phase exists in the ranger s

(0)(3,4)
,r s,r s

(0)(2,3). At finite d, the three-component phase h
only a slight layer imbalance and exists only in a narro
region of average interparticle spacing aroundr s'r s(2,4).

The equality of the inner-layer densities in the balanc
case~except for the three-component phase! has also been
shown to be true for the one-component phase when in
layer and interlayer correlations are included within t
STLS approximation.25 We note that if interlayer exchang
were omitted from the total energy per unit area by sett
V12(q)50 in Eq. ~22!, then four MFA ground states would
still be obtained, and the four-, three-, and two-compon
states would be unchanged. However, Eq.~38! would not be
satisfied at smallq, and at large interparticle distances~at
small values ofkF , or low densities! the vanishing of the
second derivative with respect tou would give the condition
cos(2u).0, so that cos(u)561. This would produce the in-
terlayer charge instability of Ruden and Wu for the on
component phase.15 The fact that the one-component pha
has equal densities is due to the effects of interlayer
change.

Before obtaining the MFA phase diagram for doub
layer systems, it is convenient to express lengths and e
gies as dimensionless quantities. We therefore express
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layer separationd and the average density per layernT/2 in
terms of the effective Bohr radius of the sample,a0
54pe\2/m* e2, where e is the dielectric constant in th
material, andm* is the effective mass. For GaAs, the diele
tric constant ise'13e0. For n-type GaAs,m* '0.07me so
thata0'9.8 nm, while forp-type GaAs,m* '0.3me so that
a0'2.3 nm. The average density per layer can be expre
in terms of dimensionless ratior s5r 0 /a0 of the interparticle
spacingr 0 for a single layer of averaged densitynT/2 ~de-
fined throughpr 0

2nT/251) to the effective Bohr radiusa0.
Thus, for the same total density,p-type GaAs will have a
value for r s that is about 9.8/2.3'4.3 times larger than for
n-type GaAs. We define the Fermi wave vectorkF in terms
of the total densitynT as

kF5A4pnT /p5A2

p

2

r sa0
~42!

for p51,2,4. For the spin-polarizedp52a state and for the
completely unpolarizedp54 state,kF is equal to the Ferm
wave vector corresponding to the average density per la
(nT/2). The energy scale associated with the effective B
radius is v05e2/4pea05\2/m* a0

2, which gives v0
'11 meV for n-type GaAs, andv0'48 meV for p-type
GaAs.

The HFA phase diagram for balanced double layers w
out tunneling was obtained by Zheng and co-workers,17 ex-
cept for the three-component phase. Like them, we find
within the MFA, three of the stable phases have equal a
age inner layer densities. Only the three-component ph
has unequal layer densities. To understand the origin of
MFA phases, it useful to consider the five terms that cont
ute to the total energy per unit area in Eq.~22!. The first term
of Eq. ~22! is the kinetic~Fermi! energy, which favors dis-
tributing the particles equally among the subbands and sp
At the highest densities, the kinetic energy term domina
and the double-layer system is a four-component spin
pseudospin paramagnet:na↑5na↓5nb↑5nb↓5nT/4. The
second term of Eq.~22! is the tunneling energy, which w
take to be zero for now. In general, it favorsna.nb ~pseu-
dospin polarization!, without regard to the real spin. Th
third term of Eq.~22! is the electrostatic energy, which van
ishes when the gates and inner layers are balanced. In
eral, the electrostatic term favors complete screening, wh
would maken15pF andn25pB , without regard to the rea
spin.

The fourth term in Eq.~22! is an intrasubband exchang
term that dominates at the smallest densities and layer s
rations. It has the opposite effect of the kinetic energy, ev
tually producing a one-component spin and pseudospin
romagnet at very low densities and small layer separatio
The last term~containing the interlayer exchange! favors
pseudospin paramagnetism (nas5nbs), but is indifferent to
the polarization of the real spin, so long as it is the same
both subbands. Thus whenpF5pB and d.0, the last term
and the electrostatic terms are responsible for producin
two-component phase that is ferromagnetic in real s
rather than in pseudospin:na↑5nb↑5nT/2. ~At d50, two-
component states that are ferromagnetic in either the spi
pseudospin are degenerate. Ford.0, the pseudospin ferro
magneticp52b state is favored only for substantial tunne
ing t and/or layer imbalanceupF2pBu.! In the absence of the
kinetic energy term~e.g., in the limitm* →`), the real spin
ed
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is always polarized due to intralayer exchange. Howev
because of the interlayer exchange, the two-component s
is always obtained at high densities or large layer sep
tions, while the one-component state is favored only for l
densities and small layer separations.

Finite layer separation (d.0) differentiates between spi
and pseudospin, so that the symmetry of the problem
comes SU(2)3U(1) rather than the CP~3! symmetry atd
50. At finite layer separation,V12(q),V11(q), and the last
term in the energy per unit area in Eq.~22! is minimized by
equal subband densities, rather than by equal real spin
sities. This does not effect thep51 ~fully spin and pseu-
dospin polarized! or p54 ~completely spin- and pseudospin
unpolarized! phases. However, whent50 andpF5pB , the
two-component (p52) MFA phase has its real spin fully
polarized and its pseudospin completely unpolarized.

Finite layer separation also changes the densities at w
the transitions between neighboringp-component phases oc
cur. The densities at which the transitions between
phases occur in the MFA can be determined by compa
MFA energies. This task is made easier by the fact that
MFA always makes the real spins in a given subband eit
completely unpolarized~paramagnetic! of fully polarized
~maximally ferromagnetic!. This would probably not be true
if correlation-energy effects were properly included,27 and it
is likely that in real double-layer systems, states with par
polarization may be stable in some regions of density. T
same MFA behavior~the restriction to the two extremes o
either zero or full polarization! is also found for the pseu
dospin when the layers are balanced and the interlayer
neling is zero, except for the three-component phase, wh
has partial pseudospin polarization.

The four-component and two-component phases b
have equal subband densities, so their MFA energies are
dependent of the layer separationd. If there were a direct
transition between these two phases, it would be simpl
spin paramagnetic to ferromagnetic transition in each s
band or layer. Therefore, within the MFA, such a fou
component to two-component transition would occur at
same layer density as the spin-polarization transition fo
single-layer system with a layer density equal to the subb
densities: i.e., forr s(2,4)53p(11A1/2)/8'2.011, indepen-
dent of the layer separation. As we discuss below, the di
four- to two-component transition is interrupted by a thre
component phase, which has one subband~layer! spin-
polarized and the other spin-unpolarized. So it is still tr
that MFA spin-polarization transitions occur nearr s

'r s(2,4). However, the actual value ofr s needed to obtain
spin polarization in a real sample is likely to be significan
higher. For single-layer systems, diffusion Monte Ca
simulations show that the low-density ferromagnetic st
predicted by the HFA does occur; however, correlatio
energy effects move the transition to densities that are p
ably 100 times lower, tor s'20.28 Such high values ofr s
have been achieved in low-densityp-type GaAs samples
which possess a larger effective mass~and therefore larger
r s) thann-type samples.29 Large values of the effective mas
will favor the existence of the lower-component (p,4) de-
scribed here, in that they increaser s .
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We find empirically that the three-component MFA pha
has sinu50. In order to analyze this phase, consider a M
ground state with

nb↑5~nT/3!~11x/2!, nb↓50,
~43!

na↑5na↓5~nT/3!~12x/4!,

and sinu50, for 0<x<1. Note that the layer imbalance
given by

Dn[na2nb5~nT/3!~12x!. ~44!

Whend50, the three-component phase distributes the d
sities equally between the three components~but not be-
tween the two layers!, so thatx50. As d→`, the Coulom-
bic cost of layer imbalance becomes prohibitive, andx→1
so that Dn→0. We plot the layer imbalance rati
Dn/(nT/3)5(12x) for r s5r s(2,4)'2.011 in Fig. 2.

As d→0,

x'
~4/3!~d/a0!

12r s /~pA2/3!
→6.174

d

a0
, ~45!

to linear order ind/a0, where the last expression in the equ
tion above is forr s5r s(2,4), which is the only value ofr s
for which the double-layer system is in the three-compon
phase for arbitrary layer separation. Asd→`,

Dn

nT/3
512x'

a0

d

3

4 F r s

~111/A2!p/2
G→ 3

16

a0

d
, ~46!

to linear order ina0 /d, where the last expression in the equ
tion above is forr s5r s(2,4). Equation~46! says that the
layer imbalanceDn in the three-component phase is i
versely proportional tod/a0 for large values ofd/a0.

For infinitesimal d, the energy per unit area of three
component phase increases by the amount (e2d/
8e)(nT/3)2 to linear order ind, while that of the four- and
two-component phases are unchanged. Equating the th
component energy to the four- and to the two-compon
energies gives

FIG. 2. Layer-imbalance ratioDn/(nT/3)512x in the three-
component phase forr s5r s(2,4)'2.011. The imbalance decreas
with increasing layer separation.
n-

-

t

-

ee-
t

r s~2,3!'r s
(0)~2,3!S 12

1

3

d

a0
D ,

~47!

r s~3,4!'r s
(0)~3,4!S 11

2

3

d

a0
D ,

to first order ind/a0 asd/a0→0, and

r s~2,3!'r s
(0)~2,4!S 11

1

16

a0

d D ,

~48!

r s~3,4!'r s
(0)~2,4!S 12

1

16

a0

d D ,

to first order ina0 /d asd/a0→`. Note that bothr s(2,3) and
r s(3,4) approachr s(2,4) in the limit d→`. This is because
as d→`, the double-layer system consists of two indepe
dent layers, andr s(2,4) is the interparticle spacing at whic
the spin-polarized and spin-unpolarized energies are equ
a single-layer system. Thus, asd→`, the energies of the
four-, three-, and two-component phases are all equal ar s
5r s(2,4).

We now consider the two-component to one-compon
transition in the MFA. Ford50, the MFA transition to pseu-
dospin ferromagnetism is equivalent to a real-spin param
netic to ferromagnetic transition in a single layer having to
densitynT ~rather thannT/2). Thus ford50, the MFA criti-
cal density per layer for the two- to one-component transit
is exactly half the critical density for the four- to two
component transition, so thatr s

(0)(1,2)53p(A211)/8
'2.844. By equating the one- and two-component phase
ergies per area, the critical density for the one- to tw
component transition may be obtained:

r s
(0)~1,2!

r s~1,2!
512~111/A2!

3pz

32
G1~z!

512~111/A2!@12S~z!#, ~49!

where

z52kFd52dA4pnT54A2d/~r sa0!

5~22A2!
32

3p

d

a0

r s
(0)~1,2!

r s
, ~50!

G15G(na↑5nT), and

S~z!5
3

2E0

1

dx e2zx@arccos~x!2xA12x2#

5
3p

4z H 12
2

z
@ I 1~z!2L1~z!#J

→H 12~3p/32!z1~1/5!z2, z→0

3p/4z, z→`.
~51!

Here I 1 and L1 are modified Bessel and modified Struv
functions of the first kind, respectively. The derivation of t
above formula is discussed in Sec. 4 C of the Append
Equations~49! and ~50! determiner s(1,2), which we have
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plotted as the upper solid line in Fig. 3. It follows from E
~51! that r s(1,2)/r s

(0)(1,2)→(11d/a0) in the limit d/a0
→0. The value ofr s(1,2) at very large layer separation
(d/a0→`) can be obtained by settingr s(1,2)/r s

(0)(1,2)50
in the left-hand side of Eq.~49! and then solving the result
ing equation numerically forz. The result isz→4.015, or
r s(1,2)/r s

(0)(1,2)→0.495d/a0, so that r s(1,2)→1.409d/a0.
We note that if interlayer exchange were ignored and
pseudospins treated as Ising variables (sinu50), then the
two- to one-component MFA transition would occur
r s

(0)(1,2)(11d/a0) ~for all values ofd/a0) and would put all
~spin-polarized! particles in a single layer. Interlayer ex
change makes the layer densities equal in the one-compo
MFA state, and causes the two- to one-component M
transition to occur at a somewhat lower value ofr s than
would be predicted using Ising pseudospins.

B. Infinitesimal tunneling

In this subsection, we discuss the effects of very sm
interlayer tunneling. The contribution of interlayer tunnelin
to the MFA energy per unit area is given by22t(na
2nb)sinu. Finite interlayer tunneling thus has two importa
effects. First, it removes the Ising character of the spins
making sinu.0. We discuss this in more detail in the ne
subsection. Second, it always produces some degree of p
dospin polarization (na2nb.0). We have parametrized th
dependence of the subband splitting (na2nb) on t in terms
of the pseudospin Stoner interaction parameter, which
calculate in the second subsection below.

1. Effect of tunneling on phase angle

We first consider the effect of interlayer tunneling on t
interlayer phase angleu. Extremizing the energy per un

FIG. 3. MFA ~solid lines! phase diagram for a gate-balanc
(pF5pB) double-layer system witht50. At the highest densities
~smallestr s , bottom of figure!, the four-component state, which
both spin and pseudospin unpolarized, is energetically favored.
narrow region aroundr s(2,4)'2.011 ~dotted line!, the three-
component state has the lowest energy. At lower densitities, a
component state, which is spin polarized but pseudospin unpo
ized, is favored. At the lowest densities~large r s , top of figure! a
one-component state which is both spin and pseudospin polariz
favored. The dotted line at the top is a GRPA estimate for the o
of the one-component phase.
e

ent
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ll

y

eu-

e

area@Eq. ~22!# with respect tou for t.0 gives two possible
solutions. The solution

cosu50 ~52!

is always an extremum, and is a minimum wheneverG,1,
which is true for all phases exceptp53 near balance (pF
'pB ). Of course, ift were large enough to cause full pse
dospin polarization (na5nT), then cosu50.

If G.1 ~three-component phase! then the solution

sinu5
t

~G21!e2d~na2nb!/2e
~53!

gives the correct minimum, provided that the right-hand s
is positive and does not exceed unity. Even in the thr
component phase,t will increase (na2nb), but since (na
2nb) is already finite att50, sinu will be proportional tot,
to first order int.

The effect of including a small amount of interlayer tu
neling can often be described perturbatively, and produc
smooth increase in the pseudospin polarization (na2nb) that
is proportional tot. However, the results obtained in th
combined limitst→0 andd→0 can depend on the order o
these limits. For example, atd50, the lowest-energy two-
component phase hasna↑5na↓5nT/2 ~pseudospin-polarized
but spin-unpolarized! for arbitrarily small but finitet. How-
ever, att50, the lowest-energy two-component phase h
na↑5nb↑5nT/2 ~spin-polarized but pseudospin-unpolarize!
for arbitrarily small but finited. By comparing the MFA
energies per unit area of two competingp52 ground states
with cosu50 ~spin-polarized p52a versus pseudospin
polarized p52b), it can be shown that the pseudospi
polarized two-component (p52b) ground state requires

t.
e2dnT

8e
G~na↑5na↓5nT/2!5

e2dnT

8e
G1~p52!

5
e2dnT

8e

16

3pz
@12S~z!#

→H e2dnT/16e, kFd→0

~4/3A2p!e2AnT/4pe, kFd→`.
~54!

Herez52kFd52dA2pnT, andS(z) is defined in Eq.~51!.
Therefore it is the size oft relative toe2dnT/16e that must be
considered as botht and d approach zero in the two
component phase. A rough estimate of the minimum tunn
ing energytc necessary to obtain the pseudospin-polariz
two-component phase may be made by calculat
e2dnT/16e for the smallest value ofnT that still gives the
two-component phase: i.e., forr s;r s

(0)(1,2)'2.844. Ford
510 nm, this givestc;0.7 meV for n-type GaAs andtc
;13 meV forp-type GaAs. The differences between the
two values oftc arise from the fact thatn-type GaAs spin-
polarizes at a much lower density thanp-type GaAs, due to
the differences in the effective mass~and therefore inr s .)
We stress that there exist twop52 two-component states
which can be either spin- or pseudospin-polarized. Thep
52 state that we focus on most will be the spin-polariz
state (p52a).
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2. Pseudsopin Stoner parameter

The differenceDn[na2nb between the subband dens
ties ~obtained from SdH measurements! of a balanced
double-layer system is often used as a measure of the si
the interlayer tunneling matrix elementt by applying the
formulana2nb5(p/2)tn0, which is valid for noninteracting
particles.23 Here p54 for spin-unpolarized particles,p52
for spin-polarized particles, andn05m* /(p/\2) is the two-
dimensional density of states per unit area. For interac
electrons or holes, the pseudospin Stoner interaction pa
eter I is defined through23

na2nb5
~p/2!tn0

12I
. ~55!

For noninteracting particles,I 50. For interacting particles,I
is a function ofr s andd/a0; in general, it also a function o
t. We do not considerp53 or p51, since both the three
and the one-component phases havena.nb at t50, corre-
sponding toI 51. The onset of SILC (na.nb and sinu.0
even whent50) occurs at the two- to one-component tra
sition, and corresponds toI→1 for p52.

The Stoner interaction parameterI can be calculated ana
lytically in the limit of vanishing interlayer tunneling (t
→0), as we show in Sec. 5 of the Appendix.~For finite t, we
calculateI numerically.! The basic idea is to start with equ
subband densities (na5nb) and infinitesimally smallt, and
then calculate the change in energy due to moving an in
tesimal amount of charge from subbandb to subbanda.
Minimizing the change in energy with respect to the amo
of charge transferred between the subbands gives the li
response to small interlayer tunneling and yields the follo
ing expression for thet→0 limit of the Stoner interaction
parameter:

I 5
n0e2

2pekF
S 12p

p

4
kFdG0D

5
n0

p H 2V11~2kF!2E
0

1

dx
@V11~2kFx!2V12~2kFx!#

A12x2 J
5

r s

p
Ap

2F12
1

2E0

p/2

du
~12e22kFd sin u!

sinu G , ~56!

where kF5A4pnT /p for p52,4, and G0[G(na→nb).
Equation~56! is equivalent to the generalized random-pha
approximation~GRPA! result in Eq.~14! of Ref. 23.

Note that I 51 ~when p51) corresponds to SILC, an
that the GRPA result for the phase boundary, which is sho
as the dashed sloped line in Fig. 3, is different~has largerr s)
than the MFA result. That the GRPA gives a higher value
r s(1,2) is not surprising, given that the GRPA goes beyo
MFA and contains correlation effects in an approximate w
To lowest order ind, I (d)/I (0)5(12d/a0), so that ford
→0, the GRPA gives a higher critical value of the interpa
ticle spacing for SILC than the MFA:r s(1,2)'p(1
1d/a0). As expected, a similar calculation of the linear r
sponse of the real spins to a weak Zeeman field shows th
hypothetical four- to two-component GRPA transition wou
occur at twice the density of thed50 two- to one-
component transition, i.e., atr s(1,2)5p/A2. However, as
with the MFA, we
of

g
m-

-

i-

t
ar
-

e

n

r
d
.

-

t a

expect that a three-component GRPA phase preempts
direct four- to two-component GRPA transition, and tha
three-component is always obtained within the GRPA atr s

5p/A2.
As pointed out in Ref. 23, interactions enhance the s

band splitting (I .0) for kFd,1.13, but reduce the splitting
(I ,0) for kFd.1.13. The critical value forr s at larged that
separates the one- and two-component phases is determ
by solving Eq.~56! for I 51 andr s→`. Asymptotically~for
r s ,d/a0→`), it occurs at the same value ofr s that hasI
50, i.e., kFd→1.134 or r s(1,2)/r s

(0)(1,2)→0.620d/a0,
which gives r s(1,2)→1.764d/a0. Within the GRPA, SILC
occurs once the interparticle spacing is roughly twice
interlayer spacing. In the limitkFd→`, I (d)/I (0)51
2(1/2)@ ln(4kFd)1g#, whereg'0.5772 is Euler’s constant
In Ref. 23 it is argued that althoughI (d) is large and nega-
tive as d→`, its apparently divergent behavior is an u
physical artifact of the GRPA.

We have calculated the Stoner interaction parameterI for
a few values of the interlayer tunnelingt in Figs. 4 (n-type
GaAs! and 5 (p-type GaAs! for a hypothetical sample with
total densitynT51011 cm22. The complete polarization o
the pseudospin (na5nT) is indicated by the mesalike region
where I becomes flat:na↑5na↓5nT/2 for n-type GaAs and
na↑5nT for p-type GaAs. Increasing the size oft favors
pseudospin polarization and allows it to persist to larger v

FIG. 4. Stoner interaction parameterI 5122tn0 /(na2nb) vs
kFd for n-type GaAs at total densitynT51011 cm22 for t50, 0.1,
1.0 meV.

FIG. 5. Stoner interaction parameterI 5122tn0 /(na2nb) vs
kFd for p-type GaAs at total densitynT51011 cm22 for t50, 0.1,
1.0 meV.
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ues of kFd. Note that at fixedt, the Stoner interaction is
equal toI max5122tn0 /nT askFd→0, so thatI max decreases
with increasingt. The fact thatI max(t50.1).I max(t50) is an
artifact of the order in which the limitst→0 andd→0 are
taken: for any finitet, the two-component phase will hav
na↑5na↓5nT/2 as d→0, but for any finite d, the two-
component phase will havena↑5nb↑5nT/2 as t→0. For
n-type GaAs witht51 meV ~dotted line in Fig. 4!, the sys-
tem goes through three phases as a function ofkFd: ~1! a
pseudospin-polarized two-component phase (na↑5na↓
5nT/2) for kFd→0, ~2! a three-component phase (na↑
5na↓,nb↑) for intermediate values ofkFd, indicated by the
‘‘missing piece’’ on the right side of the mesa in Fig. 4,~3!
a real-spin-polarized two-component phase (na↑5nb↑
5nT/2) for largerkFd→`.

SILC is indicated by havingI (t50)51 and occurs only
for p-type GaAs~Fig. 5, for kFd,0.7): I (t50) is directly
proportional ton0, and therefore to the effective mass of t
particles, so that SILC is more likely to be observed inp-type
(m* /me'0.3) rather thann-type (m* /me'0.07) GaAs.

V. EFFECT OF BIAS

In this section, we study the effect of bias (pFÞpB , due
to applied gate voltages! on the subband and layer densitie
The classical results

n15pFQ~pF!, n25pBQ~pB!, ~57!

and

VF5eDFEF1edE121eVF
(0) ~58!

give the asymptotically correct behavior for high layer de
sities and large layer separations. Double-layer system
low densities and small layer separations show measure
deviations from the classical behavior, most notably beca
of quantum-mechanical exchange. We shall find it con
nient to study the effects of layer imbalance by fixing t
total density (nT5pF1pB) and then varying the gate
imbalance parameterz, defined by

z[
pF2pB

pF1pB
5~pF2pB!/nT . ~59!

The case of balanced gates (pF5pB) corresponds toz50.
In the presence of bias and/or tunneling, there are

possible noncrystalline MFA ground states, which we wr
in order of increasingr s in Table I. Only the last (p51)
phase can exhibit SILC. The last two phases are pseudo

TABLE I. Subband occupancies of the five possible noncrys
line MFA ground states for a double-layer system with gate imb
ance (upF2pBu.0) or tunneling (t.0).

p54 na↑5na↓>nb↑5nb↓.0

p53 na↑5na↓>nb↑.0 nb↓50

p52a na↑>nb↑.0 na↓5nb↓50

p52b na↑5na↓.0 nb↑5nb↓50

p51 na↑5nT na↓5nb↑5nb↓50
.
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se
-

e
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polarized and can have 0<sinu<1, with the value ofu be-
ing determined by the layer separation, density, bias,
tunneling. The first three phases are Ising-like (sinu50)
whent50, and therefore do not involve interlayer exchang
in the absence of interlayer tunneling. Note that there are
p52 phases, one that is pseudospin-polarized but s
unpolarized (p52b), and another that is spin-polarized b
pseudospin unpolarized (p52a). The pseudospin-polarize
p52b requires bias and/or tunneling. For all MFA phase
the real spin is either fully polarized or completely unpola
ized.

We begin this section by studying the case of vanish
interlayer exchange, which is the relevant situation for
majority of double-layer samples that have been studied
perimentally, except in the quantum Hall regime.5 This is the
case when layer separations are sufficiently far apart
interlayer exchange is negligible in zero or weak magne
fields. A model without interlayer exchange is able to
existing double-layer data well, and obtains the correct fo
three-, and two-component phases, although it fails to pr
erly describe the one-component phase. We then include
effects of interlayer exchange and solve for the subband
layer densities using our MFA, which allows for the pos
bility of interlayer exchange, even in the absence of int
layer tunneling. Finally, we give a full treatment of the on
component phase within the MFA, including bias a
tunneling.

A. No interlayer exchange

It is simplest to begin our study of the effects of lay
imbalance (pFÞpB) by first considering the limit of vanish
ing interlayer exchange. This limit is relevant to most
double-layer samples that have been studied experiment
except in the quantum Hall regime.5 It corresponds to layer
separations that are sufficiently far apart that interlayer
change is negligible in zero or weak magnetic fields. W
shall also demonstrate that a very simple model which
sumes that the particles are always spin-unpolarized giv
good fit to existing data on the subband occupancies
double-layer systems, except at low densities.

1. No tunneling

Interlayer exchange is negligible when the layer sepa
tion is large compared to the interparticle spacing. This c
dition may be expressed in various ways: e.g.,kFd@1 or
r s!d/a0, and is satisfied for most samples. In this limit, w
ignore interlayer tunneling and correlations and write t
exchange-correlation energy in Eq.~3! as

«~n1 ,n2!'«~n1!1«~n2!, ~60!

where«(n) is the sum of the kinetic~Fermi!, exchange, and
correlation~but not the electrostatic! energies, for a single-
layer two-dimensional electron gas~2DEG! of densityn. In
the absence of interlayer exchange and tunneling, we
work directly with the layer densities rather than the subba
densities because the pseudospins are Ising variables:

l-
l-
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na5max~n1 ,n2!, nb5min~n1 ,n2!,
~61!

u5pQ~pB2pF!5H p, pF,pB

0, pF.pB

so that sinu50.
No interlayer exchange is required to correctly descr

the four-, three-, and two-component MFA phases att50,
since all have sinu50. Our analysis of these phases therefo
proceeds as before. It is nonetheless useful to look at
phases of system in terms of the equilibrium and stabi
conditions of Sec. II, which we do below.

Although it would be straightforward to include intralay
correlation-energy effects in«(n), we do not do so here fo
the sake of simplicity. Even so, the resulting approxim
model does a very good job of fitting SdH data until the lay
densities get so low that they violate our initial assumpt
that kFd is large. We therefore begin with

«~n!'(
s

Fns
2

n0
2

8

3Ap

e2

4pe
ns

3/2G
5H n2/2n02~8/3A2p!~e2/4pe!n3/2, n.nc

n2/n02~8/3Ap!~e2/4pe!n3/2, n,nc .

~62!

wherenc is the critical density for the MFA spin-polarizatio
transition in a single-layer system. The conditionn.nc cor-
responds to spin-unpolarized electrons and occurs at hi
densities, whereasn,nc corresponds to spin-polarized ele
trons and occurs at lower densities. When sinu50 ~which is
the case we are considering in this section!, nc is the critical
density of the MFA~or the HFA! spin-polarization transition
for a single layer, which occurs when the single-layerr s has
the valuer s(2,4)5(3p/8)(11A1/2)'2.011, shown as the
dashed line in Fig. 3. Note thatr s[1/Apna0

2 for a single-
layer system of number densityn, which givesnca0

25(2/
3)(4/p)3(122A2/3)'0.078 70. In the MFA, which is
equivalent to the HFA for balanced layers, the spin polari
tion is either completely unpolarized~at higher densities! or
completely polarized~at lower densities!. Correlation-energy
effects probably produce a range of intermediate spin po
izations.

The chemical potential measured relative to layeri is m i
5m(ni), where

m~n!5]«~n!/]n

5H n/n02~4/A2p!~e2/4pe!An, n.nc

2n/n02~4/Ap!~e2/4pe!An, n,nc
~63!

where we have used Eqs.~5! and ~62!. The values of the
layer densities can be determined by using Eq.~63! in the
equilibrium condition of Eq.~4!, m12m25eE12d.

The electronic lengthssi j that determine the Eisenste
ratio RE @Eq. ~11!# and the condition for stability agains
interlayer charge transfer@Eq. ~7!# can be calculated from
Eqs. ~6! and ~63!. Ignoring interlayer correlations as in Eq
~60! givessi j 50 for iÞ j andsi5sii 5s(ni), where
e

e
he
y

e
r
n

er

-

r-

s~n!

a0
5

e

e2a0

]m~n!

]n
5H 1/42~A2/p!/~4pa0An!, n.nc

1/22~2/Ap!/~4pa0An!, n,nc

5H 1/42~A2/4p!r s , n.nc

1/22~1/2p!r s , n,nc .
~64!

Note that the MFA compressibilityk can be calculated from
the above result using Eq.~9!, and thats(n) and thereforek
are negative at sufficiently low densities. The lengths(n)
and the compressibilityk jump discontinuously atn5nc ,
where the ground state changes abruptly from sp
unpolarized to spin-polarized. For densities just abovenc ,
s(nc

1)/a0'0.0237, while for densities just belownc ,
s(nc

2)/a0'0.1799. Sensitive measurements of the interla
capacitance~e.g., the Eisenstein ratioRE) could detect the
exchange-driven spin polarization of a 2DEG through its
fect on the compressibility, especially inp-type GaAs
samples when the density in a layer could be made sm
enough to polarize the holes in that layer.

It is straightforward to calculate the effect of spin pola
ization in a low-density layer onRE using Eqs.~12! and~64!.
For the usual case in which the interlayer separationd is
substantially larger than the electronic lengthss(ni) ~i.e., for
d/a0@0.2), the MFA gives an abrupt jump inRE by almost
a factor of 8, from approximately 0.0237a0 /d for densities
just abovenc , to approximately 0.1799a0 /d for densities
just belownc . Of course, the MFA overestimates the size
the jump, but it is nonetheless plausible that measurem
of RE could detect changes in the compressibility of a lo
density layer due to the exchange-driven polarization of
spins.

2. Unpolarized spins

Ruden and Wu assumed not only that the pseudos
were Ising-like (sinu50), but also that the real spins wer
always unpolarized.15 This limited the phases they found a
pF5pB to two: pseudospin-unpolarized (p54) at high den-
sity and pseudospin-polarized (p52b) for low density. It is
straightforward to compare the energy of the four-compon
phase with that of the hypothetical pseudospin-polarizedp
52b) phase of Ruden and Wu and show that they are eq
when r s /r s

(0)(1,2)5112d/a0. Although neither assumption
was, strictly speaking, correct, it is an interesting and use
fact that making such assumptions can yield a simple mo
that fits experimental data for layer densities versus gate
quite well, except at the lowest densities. Figure 6 sho
experimental SdH data30 and a theoretical fit from a simple
theory that ignores interlayer exchange and takes the spin
be unpolarized. The value of the interlayer separationd used
in the model is taken to be a fitting parameter. The values
d that we obtain with this simplified model always locate t
idealized two-dimensional electron layers inside the con
ing quantum wells, althoughd always seems to be somewh
larger than the midwell to midwell distance. Note that t
experimental data fit very well almost everywhere, exc
where the densityn1 is very small when layer 1 is nea
depletion. Here the simplest theory~which omits the possi-
bilities of spin and pseudospin polarization! erroneously pre-
dicts an interlayer charge-transfer instability. As we d
cussed in Sec. II, such an instability is unavoidable wh
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interlayer correlations (s12) are neglected. According to th
stability criterion of Eq.~7!, the interlayer charge-transfe
instability should occur in the simplest theory~spin-
unpolarized, no interlayer exchange! when

r s1>pA2~112d/a0!2r s2 , ~65!

wherer si51/Apnia0
2 is the dimensionless interparticle sep

ration in layeri, and we have takenn1<n2 ~or r s1>r s2). At
balance, settingr s15r s2 in Eq. ~65! gives r s5(p/A2)(1
12d/a0) as the GRPA version of the critical particle sep
ration for the Ruden-Wu hypothetical pseudosp
polarization (p54→p52b) transition. @In the MFA,
r s(2b,4)5r s

(0)(2,4)(112d/a0) gives the Ruden-Wu hypo
thetical pseudospin-polarization transition at balance.#

Note that even in the limit of equal layer densities a
zero layer separation,r s1>Ap/2, which is the GRPA value
of the particle separation for a single layer to spin-polari
Thus even in a theory that neglects interlayer correlatio
the particles in the lower-density layer~or both layers, if they
are balanced! spin-polarize before the layer empties out. A
noted in Ref. 17, the spin polarization of the electrons p
dicted by the HFA was ignored by Ruden and Wu.15 How-
ever, including the spin polarization does not eliminate
interlayer charge-transfer instability, which according to E
~7! and ~64! would occur at

r s1.2p~3/41d/a0!2r s2 /A2, ~66!

when layer 1 is spin-polarized but layer 2 is not, and at

r s1>2p~11d/a0!2r s2 , ~67!

when both layers are spin-polarized, if interlayer correlatio
could be ignored.

3. LDF model

We now introduce a tight-binding local density function
~LDF! model, which includes the effects of interlayer tunn
ing in a simple way. We shall follow the previous sectio

FIG. 6. Plot of the experimental~circles and triangles! and cal-
culated~solid curves! layer densitiesn1 andn2 vs front-gate num-
ber densitypF . A simple model that neglects interlayer exchang
intralayer correlations, and spin polarization, and assumes
layer thickness yields a good fit to the experimental densities,
cept whenn1 becomes small.
-
-

.
s,

-

e
.

s

-

and ignore for now the effects of interlayer exchange, and
shall even take the electron densities to be always s
unpolarized. Such an elementary model is capable of fitt
experimental data quite well, despite its simplicity.

The Kohn-Sham single-particle equations for our tig
binding LDF model is conveniently expressed as a 232 ma-
trix equation:

S e1 2t

2t e2
D S z1

(l)

z2
(l)D 5ElS z1

(l)

z2
(l)D , ~68!

where

e j5~21! j
1

2
eE12d1mxc~nj ! ~69!

represents the ‘‘on-site’’ energy of layerj, and the tunneling
matrix element2t is off-diagonal. The amplitude of the
wave function for subbandl (l5a,b) in layer j is zj

(l) , and
the subband energy isEl . The Hartree contribution to the
on-site energy enters via the interlayer electric fieldE12, as
shown in Eq.~2!. The intralayer exchange and correlatio
contributions to the on-site energy are given by t
exchange-correlation potentialmxc . In LDF theory,mxc(n)
is equal to the derivative, with respect to density, of t
exchange plus correlation energies per unit area of a t
dimensional single-layer system of uniform areal densityn.
Equivalently,mxc(nj ) is equal tom j @see Eq.~5!# minus the
kinetic energy contribution tom j . For simplicity, we do not
include intralayer correlation energy contributions tomxc , so
we write

mxc~n!'2
4

Ap

e2

4pe
An. ~70!

The density in layerj is given by

nj5 (
l51

2

Nluzj
(l)u2, ~71!

where

Nl[~EF2El!n0Q~EF2El! ~72!

is the areal-density contribution from subbandl, and n0
5m* /p\2 is the two-dimensional density of states for no
interacting particles. The self-consistency of the Kohn-Sh
equations enters via Eqs.~71! and ~72!, since the layer den-
sitiesnj , together with the gate densitiespa , determine the
interlayer electric fieldE12 appearing in Eq.~69!. The Fermi
energyEF is chosen so that the sum of the subband dens
Nl is equal to the total densitypF1pB .

This simple LDF model, which takes the layers to ha
zero thickness and assumes that the real spins are unp
ized, is capable of fitting the experimental layer density d
closely. This is illustrated in Fig. 7, which shows SdH da
taken from sample A of Ref. 20. The front-gate voltag
used in Fig. 7 were calculated using Eq.~58!.
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B. Interlayer exchange

We now allow for the possibility of interlayer exchange
biased systems. We found that for balanced systems, in
layer exchange becomes important only at low densities
small layer separations, occuring only in the one-compon
phase. In this section, we explore the effect of interla
exchange on biased double layers, and find that it can red
or suppress interlayer~although not intersubband! charge
transfers. We find that bias always increases pseudospin
larization and sometimes reduces the total density require
achieve SILC.

1. Interlayer phase angle

When the interlayer tunnelingt is zero, it is possible to
determine the equilibrium value ofu that minimizes the tota
energy per unit area, in terms of the equilibrium subba
densities. Extremizing Eq.~22! with respect tou for na
.nb gives

cosu5H 21, X<21

X, 21<X<1

1, X>1
~73!

X5
~pF2pB!/~na2nb!

12G
,

whereG is defined in Eq.~26!. In the four-component phase
the kinetic energy dominates over the exchange energy,
(na2nb),upF2pBu, so that sinu50. In practice, the only
time that we find ucosuu,1 ~for t50) is in the one-
component phase. For Eq.~73! to minimize the energy with
respect tou, the second derivative of the energy with resp
to u must be positive, which is equivalent to requiring th
G,1. If G.1 ~which is true for thep53 phase near bal
ance!, then cosu561.

It follows from Eqs.~21! and ~73! that

FIG. 7. Experimental subband densities forna ~squares! andnb

~circles! vs front-gate voltage, together with fit~solid curves! from
tight-binding LDF model.
r-
d

nt
r
ce

o-
to

d

nd

t
t

~n12n2!5H 2~na2nb!, X<21

~pF2pB!/~12G!, 21<X<1

~na2nb!, X>1.

~74!

In the special case of interest whereuXu,1 ~which requires
p51), we can calculate the Eisenstein ratioRE at the point
where the layers are balanced:

RE~pF5pB!52
1

2
~12dpB /dpF!

G

12G
, ~75!

where we have used Eqs.~10! and ~74!. ~Recall that
dpB /dpF'0 if the back-gate voltageVB is kept fixed, but
that dpB /dpF521 if the total density is kept fixed.!

Within the tight-binding model of tunneling, the MFA
model shows that any finite value of the tunneling mat
elementt prohibits either layer from completely emptyin
out, regardless of the gate charges (pF ,pB). Extremizing the
energy per unit area@Eq. ~22!# with respect tou for t.0 and
pFÞpB shows that neither sinu50 nor cosu50 are ever
local extrema. Whent is small andpF!pB , including any
negative values ofpF ~i.e., for z<21, roughly speaking!,
then extremizing the energy per unit area yields

p2u'
t/~e2dnT/2e!

@ uzu2~12G!#
, ~76!

to lowest order int/(e2dnT/2e). This result is a local mini-
mum provided that it is positive, which is true in the limit w
are considering here. It follows from Eq.~21! that n1 /nT
'(f/2)2, so thatn1}t2. Hencen1, although small, is always
nonzero fort.0. In actual samples, large bias changes
tunneling matrix elementt. Sufficiently large bias shifts the
bottom ~minimum energy! of the wells relative to one an
other so greatly thatt can be driven~for all practical pur-
poses! to zero.

Interlayer exchange is significant only when the lay
densities and their separation are sufficiently small. In or
for interlayer exchange to contribute, there must be~1! more
particles in one subband than another (na.nb), and~2! non-
zero sinu (uÞ0,p). Thus, for example, the case of balanc
layers withu5p/2 at very low densities (na↑5nT) is a situ-
ation in which interlayer exchange contributes strongly. W
discuss this case in Sec. VI, and we find there that interla
exchange does indeed suppress interlayer charge tran
For the case of unbalanced layers at high total density, g
erally na.nb ; but whent50, u is usually equal to 0 orp,
so that in the MFA, interlayer exchange does not contribu
Near depletion, where one of the layers empties out, the s
ation is not as clear, so we now analyze that situation
some detail later below.

Even with interlayer exchange, it turns out that the MF
model is always unstable with respect to an abrupt exchan
driven intersubbandcharge transfer from~low-density! sub-
bandb to ~higher-density! subbanda when the particle den-
sity in subbandb gets small enough. The abrupt intersubba
charge transfer is probably an unphysical feature of the M
model that is not observed in real experiments. We beli
that a proper treatment of the correlation energies~which
have been entirely omitted here! would help fix this short-
coming. Nevertheless, we can still investigate what the M
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has to say aboutinterlayer charge transfer, since the su
bands are in general different from the layers, when we
clude interlayer exchange.

2. Subbands densities nearly equal

We now consider the limit in whichDn[(na2nb)
!nT , so that the double-layer system is only sligh
pseudospin-polarized. This will be the case for the two-p
52a) and four- (p54) component ground states for smalt
and upF2pBu. We begin by computing the change in th
ground-state energy per unit area due to changingDn from
zero to a small but finite value. Expanding Eq.~22! to second
order inDn gives

DE0

LxLy
5

~Dn!2

pn0
2tDn sinu2

e2

4pe

~Dn!2

AppnT

1
e2d

8e
@Dn cosu2~pF2pB!#2

1G0

e2d

2e S Dn

2 D 2

sin2u, ~77!

where

G0[ lim
na→nb

G. ~78!

The quantityG0 is calculated in Sec. 4 B of the Appendi
Extremizing Eq.~77! with respect tou gives

22t cosu1
e2d

2e
~pF2pB!sinu

5~12G0!
e2d

2e
Dn sinu cosu. ~79!
is
ti

e
n

-
By taking the second derivative of Eq.~77! with respect tou,
we find that Eq.~79! is a local minimum provided that

2t sinu1
e2d

2e
~pF2pB!cosu

2~12G0!
e2d

2e
Dn cos~2u!.0. ~80!

Except forp53 near balance, 0,G0,1, so that

0,12G0,1. ~81!

Hence Eqs.~79! and ~80! imply that if t.0 but upF2pBu
50, then cosu50 so thatu5p/2 ~except forp53.! If, how-
ever, upF2pBu.0 but t50, then sinu50 so thatu50,p
~except forp51.! There is thus a competition between th
effects of t and upF2pBu. If neither t nor upF2pBu is zero,
then sinuÞ0 and cosuÞ0. In the limit that (e2d/2e)upF
2pBu!t, then

cosu'
~e2d/2e!~pF2pB!

2t
!1 ~82!

for Dn→0. On the other hand, in the limit thatt
!(e2d/2e)upF2pBu, then

sinu'
2t

~e2d/2e!@ upF2pBu2~12G0!Dn#
!1. ~83!

In general,u must be solved numerically.
Extremizing Eq.~77! with respect toDn gives
Dn5
2t sinu1~e2d/e!~pF2pB!cosu

4/pn01~e2d/2e!~cos2u1G0sin2u!2~e2/4pe!~4/AppnT!
, ~84!
re-
er

tate
which is a local minimum provided that its denominator
positive, as may be seen by computing the second deriva
of Eq. ~77! with respect toDn. Note that both interlayer
tunneling ~t! and gate bias (upF2pBu) produce pseudospin
polarization~increaseDn).

When pF5pB and t is ~arbitrarily! small but nonzero so
that u5p/2, Eq.~84! yields the pseudospin Stoner enhanc
ment factor in Eq.~56!. This is discussed in more detail i
Sec. IV B 2.

When sinu50 ~which requirest50), then Eq.~84! gives

Dn

upF2pBu
5

d/a0

d/a01~2/p!@12r s /~pA2/p!#
. ~85!

This is the case for thep52a and p54 states forDn/nT
!1. It follows from this that near balance (pF'pB), the
Eisenstein ratio for fixedpB is given by
ve

-

RE5
1

2 F11
~p/2!d/a0

12r s /~pA2/p!
G21

, ~86!

where we have use of Eq.~10!. Equation~85! says that, when
sinu50, thenDn,upF2pBu for smallDn/nT , provided that

r s,pA2/p. ~87!

Now, the GRPA estimate of the interparticle separation
quired for spin polarization in a single two-dimensional lay
is r s5p/A2, which is just the right-hand side of Eq.~87! for
p54. We therefore expect that, as long as the ground s
has four components, it will be true thatDn,upF2pBu, and
this is indeed what our MFA calculations find for smallr s .

According to Eq.~85!, Dn,upF2pBu for small Dn/nT
for p52a until r s.p. The interparticle separationr s5p is
also the GRPA estimate ofr s

(0)(1,2) required for pseudospin
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polarization. Thus ford.0 we expect that at higher densitie
~small r s), Dn,upF2pBu throughout thep54 state and in
the low-r s region of the p52a state, but thatDn.upF
2pBu for the high-r s region of thep52a state, at least for
small Dn/nT . This is in fact what our MFA calculations
show. It is also true that in thep53 phase~which hasDn
.0 even whenpF5pB), Dn.upF2pBu for z!1, although
not for z on the order of one. Of course, forr s sufficiently
small, pseudospin polarization occurs so thatDn5nT.upF
2pBu.

Figure 8 shows a plot of the subband densitiesnas and the
ratio (pF2pB) /(na2nb) versusr s for fixed layer separation
d/a055 and fixed layer imbalancez50.2. For smallr s , the
p54 phase is obtained, and (pF2pB)/(na2nB).1. For r s
'2.011, the p54 phase is obtained, and (pF2pB)/(na
2nB),1. For largerr s , the spin-polarizedp52a phase is
obtained. Note that forp52a the ratio (pF2pB)/(na2nB)
is larger than one for smallerr s , but smaller than one fo
larger r s . For even largerr s ~not shown!, the p51 phase
would be obtained with (pF2pB)/(na2nB)5z, which in
this case hasz50.2.

If the denominator in Eq.~84! is not positive, then the
global minimum for the energy per unit area occurs forDn
5nT , corresponding to pseudospin polarization. Thus
GRPA condition for stability against abruptintersubband
charge transfer is just the condition that denominator in
~84! be positive, or equivalently

d

a0
1

~2/p!@12r s /~pA2/p!#

~cos2u1G0sin2u!
.0. ~88!

When sinu50 ~which requirest50) so that the pseudospi
is Ising-like and interlayer exchange does not contribu
then Eq.~88! is equivalent to the stability condition again
abrupt interlayer charge transfer given in Eq.~7!, when the
electron lengthss(n) are approximated by Eq.~64!. When
cosu50 ~e.g., whenpF5pB and t has any finite positive
value!, then the violation of the inequality in Eq.~88! is
equivalent to the condition that the pseudospin Sto

FIG. 8. Normalized subband densities and the ratio (pF

2pB)/(na2nB), vs average interparticle separationr s , for fixed
d/a055 and fixed gate-imbalance parameterz50.2. Thep54, p
53, andp52a phases are obtained successively asr s is increased.
e

.

,

r

ehancement factorI, given in Eq.~56!, is equal to one, which
signals the transition to pseudospin ferromagnetism
SILC. Because 0,G0,1, the gate imbalance (upF2pB

u.0, so that sin2u decreases and cos2u increases! makes the
double-layer system more unstable towards pseudospin
larization.

3. Subband densities versus bias

In this section, we show some illustrative calculations
the effect of layer imbalance. We plot the subband densi
nas and the value ofG versus the gate-imbalance parame
z5(pF2pB)/nT at fixed layer separationd/a055 assuming
zero interlayer tunneling (t50), for different values ofr s .
We find that if we fix layer density~or equivalently,r s) and
vary the gate-imbalance parameterz, then ~for t50) there
are six distinct patterns of transitions between noncrystal
MFA ground states. We list the six possibilities below,
order of increasing layer imbalance~beginning atz50) from
left to right, and in order of increasing average interparti
separation per layerr s from top to bottom.

~1! r s,r s(3,4): (p54)→(p53)→(p52b), all with
sinu50.

~2! r s(3,4),r s,r s(2,3): (p53)→(p52b), all with
sinu50.

~3! r s(2,3),r s,A2r s(2,4): (p52a)→(p53)→(p
52b), all with sinu50.

~4! A2r s(2,4),r s,r s(1,2) and zc.(12G1): (p52a)
→(p51), all with sinu50.

~5! A2r s(2,4),r s,r s(1,2) and zc,(12G1): (p52a)
→(p51), with sinu.0 for zc,z,(12G1).

~6! r s.r s(1,2): (p51) only, with sinu.0 for 0<z
,(12G1).

Here (p52a) denotes the spin-polarized two-compone
state, (p52b) denotes the pseudospin-polarized tw
component state, andzc is the value of the gate imbalanc
parameterz at which the (p52a)→(p51) transition oc-
curs. The quantityA2r s(2,4) appearing in cases~4! and ~5!
above correspond to the critical densitync for the MFA spin-
polarization transition for a single layer, expressed in ter
of the average interparticle spacing per layer: 1/Ap(nc/2)a0

2.
~Note that for the same total densitynT , a double-layer sys-
tem has an average layerr s51/Ap(nT/2)a0

2 that isA2 larger
than the single-layerr s51/ApnTa0

2.! The quantitync is dis-
cussed below Eq.~62!. We shall illustrate the first four of
these possibilities in the remainder of this section, and d
cuss the last two possibilities~which exhibit SILC! in Sec.
VI. It is evident from the above list that SILC, which re
quires sinuÞ0, occurs only forp51.

Figure 9 is an example of case~1!, with r s51. This gives
a four-component (p54) phase when the gates are balanc
(z50), and maintains ap54 state for most of the range o
z, followed by ap53 state forz near one. If we were to
increasez beyond one~not shown!, corresponding topB
,0, then a pseudospin-polarizedp52b state would be ob-
tained.

Figure 10 is an example of case~2!, with r s5r s(2,4)
'2.011. This gives a three-component (p53) state when
the gates are balanced (z50), and maintains ap53 state for
most of the range ofz, followed by a pseudospin-polarize



al

a
r

a

es
in-

f

l
the

e
e
-
in-
-
ent
s a
in
all

ng

n

t
.

nge

-

nge

13 900 PRB 61C. B. HANNA, DYLAN HAAS, AND J. C. DÍAZ-VÉLEZ
p52b state forz near one and beyond. Note that for sm
z, G(p53).1.

Figure 11 is an example of case~3!, with r s52.5. This
gives a spin-polarized two-component (p52a) state when
the gates are balanced (z50), and maintains ap52a state
for z,0.55, followed by ap53 state for 0.55,z,0.95, and
then a pseudospin-polarizedp52b state forz.0.95.

Figure 12 is an example of case~4!, with r s59. This
gives a spin-polarized two-component (p52a) state when
the gates are balanced (z50), and maintains ap52a state
for z,zc'0.45, followed by a one-component (p51) state
for z.zc . Becausezc.12G1 , sinu50 throughout, and
thus no SILC is found. In the next section, we consider v
ues of r s large enough that thep51 state is achieved fo
zc,12G1, thereby producing SILC.

VI. PSEUDOSPIN-POLARIZED STATES

In this section, we consider the case in which all the p
ticles are in the lowest-energy subband (na5nT), corre-

FIG. 9. Normalized subband densities and interlayer excha
parameterG, vs layer-imbalance parameterz5(pF2pB)/nT , for
d/a055 andr s51. Thep54 state is obtained except forz near 1,
where thep53 state is obtained. Beyondz51 ~not shown! the p
52b state is obtained.

FIG. 10. Normalized subband densities and interlayer excha
parameterG vs layer-imbalance parameterz5(pF2pB)/nT , for
d/a055 andr s5r s(2,4)'2.011. Thep53 state is obtained excep
for z near 1, where the pseudospin-polarizedp52 state is obtained
l

l-

r-

sponding to full pseudospin polarization. There are two typ
of pseudospin-polarized MFA ground states: sp
unpolarized (p52b), and spin-polarized (p51). The spin-
unpolarized case requires either interlayer tunneling (t.0)
or gate imbalanceupF2pBu.0, or both. In the absence o
tunneling, the pseudospin-polarizedp52b state has sinu
50 ~Ising-like pseudospin!, and occurs whenever the tota
density and the layer imbalance are sufficiently large. If
tunnelingt is sufficiently large and the total densitynT is not
too small, then it is possible in principle to obtain ap52b
state with cosu50, for pF5pB . Tunneling also reduces th
value of r s required to achieve thep51 state. Because th
pseudospin-polarizedp52b MFA state does not occur with
out bias or tunneling, we shall focus mainly on the sp
polarized one-component (p51) phase, which can in prin
ciple arise without bias or tunneling. The one-compon
phase is especially interesting because it can occur a
broken-symmetry ground state of a double-layer system
the absence of tunneling or layer imbalance, at very sm
particle densities and layer separations.17

e

ge

FIG. 11. Normalized subband densities and interlayer excha
parameterG vs layer-imbalance parameterz5(pF2pB)/nT , for
d/a055 andr s52.5. Thep52a state is obtained forz,0.6, fol-
lowed by a p53 state for 0.6,z,0.8, and then a pseudospin
polarizedp52b state forz.0.8.

FIG. 12. Normalized subband densities and interlayer excha
parameterG vs layer-imbalance parameterz5(pF2pB)/nT , for
d/a055 andr s59. The p52a state is obtained forz,zc'0.45,
followed by ap51 state~without SILC! for z.zc .
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Whenna5nT , the ground-state energy~22! becomes

E0

LxLy
5

nT
2

pn0
2tnTsinu2

8

3App

e2

4pe
nT

3/2

1
e2dnT

2

8e
~cosu2z!21

sin2u

4

e2dnT
2

2e
G1 , ~89!

whereG15G(na5nT) andz5(pF2pB)/nT . The properties
of G1 are described in Sec. 4 of the Appendix. Equation~89!
includes the two casesp51 (na↑5nT) and p52b (na↑
5na↓5nT/2). For t50, the p52b case has cosu561, so
we will focus on the spin- and pseudospin-polarized o
component (p51) ground state.

A. Spontaneous interlayer coherence

The pseudospin-polarized ground state offers the poss
ity of SILC. Recall that SILC occurs when the off-diagon
~or interlayer! density matrixr12 is nonzero in the absence o
interlayer tunneling:

r12[(
ks

^c1ks
† c2ks&5

1

2
~na2nb!sinuÞ0, ~90!

which requires both finite pseudospin polarization (na.nb)
and sinuÞ0. In the pseudospin-polarized ground state (na
5nT), r12 is just the geometric mean of the layer densiti

r125
1

2
nTsinu5An1n2, ~91!

where we have made use of Eq.~17!. So if the pseudospin
polarized ground state has some density of particles in e
layer, it has interlayer phase coherence,r12Þ0. Note that in
the one-component phase,

sinu5~r121r21!/nT ~92!

measures the interlayer density matrix, normalized by
total density.

For t50 andp51, Eq. ~73! gives

n12n2

nT
5cosu5H 21, X<21

X, 21<X<1

1, X>1

X5
z

12G1
5

z

12~32/3pp!@12S~z!#/z

→ z

~32/45p!z2~1/24!z2
,

~93!

wherez52kFd, and we have made use of Eq.~21!. The last
line of Eq. ~93! holds in the limit thatz→0. The layer den-
sities are equal (n15n2) only at exaclypF5pB ; when pF
.pB , layer 1 tends to be occupied, and whenpF,pB , layer
2 tends to be occupied. Thus, the hypothetical bistability
the one-component phase proposed by Ruden and Wu
not exist, due to SILC.15 Equation~93! gives

sinu5A12@z/~12G1!#2Q~12G12uzu!dna↑ ,nT
, ~94!
-

il-

:

ch

e

f
es

so that sinu in nonzero only foruzu,12G1 and for na↑
5nT . It is interesting to note that when the ground state
pseuodspin-polarized, the dependence of the layer dens
on external parameters~e.g., layer imbalancez) does not
involve the effective massm* of the electrons or holes.

We have found that layer imbalance (pFÞpB) can induce
SILC at higher total densities than in the balanced case. T
is illustrated forr s511 in Fig. 13, which is an example o
case~5! introduced in Sec. V B 3. Figure 13 shows a sp
polarized two-component (p52a) state when the gates ar
balanced (z50), and maintains ap52a state for z,zc

'0.28, followed by a one-component (p51) state forz
.zc . Becausezc,12G1 , sinu.0 for zc,z,12G1, pro-
ducing SILC in a finite region of layer imbalance away fro
z50, at a smaller value ofr s than is required to achieve
SILC for balanced layers.

When the toal density~and layer separation! are suffi-
ciently small, thep51 phase with SILC is obtained even i
the balanced case. This is illustrated forr s515 in Fig. 14,

FIG. 13. Normalized subband densities, interlayer exchange
rameterG and normalized interlayer density matrix sinu, vs layer-
imbalance parameterz5(pF2pB)/nT , for d/a055 and r s511.
The p52a state is obtained forz,zc'0.45, followed by ap51
state with SILC forzc,z,12G1. SILC is lost forz.12G1.

FIG. 14. Normalized interlayer density matrix sinu and inter-
layer exchange parameterG vs layer-imbalance parameterz5(pF

2pB)/nT in the one-component phase (na↑5nT), for d/a055 and
r s515. SILC is lost forz.12G1.
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which is an example of case~6! introduced in Sec. V B 3.
Figure 14 shows a one-component (p51) state throughou
the range ofz, with sinu.0 for z,12G1, producing SILC
in that region. Note that asr s→`, thenz52kFd→0, so that
G1(z)→1, and thus 12G1→0. Therefore the maximum
amount of imbalancez which allows SILC decreases wit
the density, at very low densities.

Figure 15 shows sinu versusz at d/a0'4.356 for the
three values ofr s , where sinu obeys Eq.~94!. At the lowest
density shown (r s511), the system exhibits SILC when ba
anced (z50) and under bias, untilz512G1. As the density
is raised, SILC is lost for the balanced system but appe
suddenly aroundz'0.2 for r s510.5 when an abrupt inter
subband charge transfer produces pseudospin polariz
(p51). For r s59 there is only a very small region of laye
imbalancez that exhibits SILC, and forr s slightly smaller
than this value, SILC disappears completely.

Using Eqs.~89!, ~91!, and ~93!, we may calculate the
energy per unit area«(n1 ,n2) defined in Eq.~3!, for the
one-component phase:

«~n1 ,n2!5
nT

2

n0
2

8

3Ap

e2

4pe
nT

3/21
e2dn1n2

2e
G1 , ~95!

wherenT5n11n2. Recall that« does not include the elec
trostatic contribution to the energy per unit area. We may
Eqs.~5! and~95! to calculatem1, the chemical potential mea
sure relative to the energy minimum of layer 1,

m15
2nT

n0
2

4

Ap

e2

4pe
AnT1

e2dn2

2e S G11n1

dG1

dnT
D , ~96!

where we have used the fact that in the one-compon
phase,G1 depends onn1 and n2 only throughnT5n11n2.
The quantitym2 may be obtained by interchangingn1 andn2
in Eq. ~96! and can be used to compute the front-gate volt
VF using Eq.~A3! in the Appendix. It is straightforward to
check that the difference betweenm1 and m2 satisfies the
equilibrium condition in Eq.~4!. Equations~6! and~96! may
be used to calculate the electronic lengthsi j defined in Sec.
II:

FIG. 15. Interlayer exchange strength (r121r21)/nT5sinu as a
function of the gate-imbalance parameterz5(pF2pB)/nT for fixed
d/a0'4.356.
rs

ion

e

nt

e

s11

a0
5

1

2
2

r s

2pA2
1

1

2

d

a0
n2S 2

]G1

]nT
1n1

]2G1

]nT
2 D . ~97!

The quantitys22 may be obtained by interchangingn1 andn2
in Eq. ~97!.

Interlayer correlations produce a nonzero value of
electron lengths12. From Eqs.~6!, ~8!, and~96! we have

s125s111
d

2 FG11~n12n2!
]G1

]nT
G . ~98!

Note thats215s12, and that

s1[s112s1252
d

2 FG11~n12n2!
]G1

]nT
G . ~99!

The lengths2 can be obtained froms1 by interchangingn1
andn2. Note that

s[s11s252G1d, ~100!

so that, from Eq.~11!, the Eisenstein ratio for fixed tota
density~constantnT) is

RE5
s

d1s
5

2G1

12G1
→ 21

~32/45p!z
, ~101!

wherez52kFd, and the right-hand side holds in the limitz
→0. It is interesting to note thatRE}21/d asd→0, just as
was found in Ref. 26 for thenT51 2LQH state. For fixedpB
~nearly equivalent to keeping the back-gate voltageVB con-
stant!,

RE5
s1

d1s
52

@G11~n12n2!]G1 /]nT#

2~12G1!
, ~102!

which in the balanced case (pF5pB so thatn15n2) gives
Eq. ~75!, which is exactly half of Eq.~101!.

Figure 16 shows an example of the one-component ph
under bias for fixed back-gate densitypB ~essentially fixed
back-gate voltageVB .) The normalized layer densitiesn1
andn2 are shown, together with the interlayer density mat
r12/pB andG, and also the Eisenstein ratioRE . For pF /pB
,0.5, layer 2 contains all the charge (n25nT) and layer 1 is
empty, so that Eq.~10! gives RE51. For 0.5,pF /pB

,2.25, bothn1 andn2 are partially occupied,r125An1n2 is

FIG. 16. Layer densitiesn1 ,n2 and normalized interlayer den
sity matrix 2r12/nT5sinu, in the one-component phase, vers
front-gate densitypF /pB , for fixed back-gate densitypB .
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PRB 61 13 903DOUBLE-LAYER SYSTEMS AT ZERO MAGNETIC FIELD
nonzero, andRE has dropped abruptly and become negati
reflecting the presence of SILC, with its value in this regi
given by Eq.~102!. For pF /pB.2.25, layer 2 is empty,n1

5nT , andRE50. Figure 16 illustrates an interesting hyp
thetical situation in which bias and the exchange interac
have completely emptied out layer 2, despite the fact thapB

is nonzero. It turns out that within the MFA, sufficently larg
pF would eventually repopulate layer 2. We analyze t
issue further below, when we calculate the energy gapDab in
a pseudospin-polarized state (na5nT) to an otherwise empty
subband (nb50).

Although Zheng and co-workers showed~within an unre-
stricted HFA! that an abruptinterlayer charge transfer doe
not occur when the gates are electrostatically balancedpF
5pB), one may ask if an abrupt interlayer charge trans
can occur if the system is biased. According to the MF
developed here, the answer is yes, except at sufficie
small densities.~We are speaking here of zero tunnelin
otherwise, neither layer is strictly empty, according to t
MFA.! In the MFA, sufficiently strong bias or tunneling o
sufficient lowering of the densities eventually produces
abrupt intersubbandcharge transfer, i.e., at some point,na
suddenly jumps. Whether this translates into abruptinter-
layer charge transfers depends on what happens with
phase angleu. If sin uÞ0 ~SILC!, then the interlayer charg
transfer is suppressed, or at least somewhat reduced. I
density is so high that strong bias produces thep52b
pseudospin-polarized phase with sinu50, then the MFA
does give an abrupt interlayer charge transfer, because
cosu561, and there is no difference between subband d
sities and layer densities. So, for example, a system wi
density that would correspond top54 when balanced will
not exhibit SILC. It is likely that including correlation
energy effects eliminates the abruptness of the transition,
these effects have not been included here.

B. Intersubband gap

The intersubband energy gapDab for the pseudospin-
polarized (p51 or p52b) phase is defined as the ener
required to move a particle from the occupieda subband
with na5nT to the ~otherwise empty! b subband:

Dab5
d

dn S E0

LxLy
D , ~103!

for

na↑→~1/p!~nT2dn!, nb↑→dn,
~104!

na↓→~121/p!~nT2dn!, nb↓50.

An outline of the MFA calculation ofDab is given in Sec. 6
of the Appendix. In units of the energy scalev0
5e2/4pea0, the MFA intersubband gap is
,

n

s

r

ly

n

e

he

en
n-
a

ut

Dab

v0
5

2t

v0
sinu2

4

r s
2 F1

p
1

d

a0
cosu~cosu2z!G

1A2

p

4

p

1

r s
2sin2uA2

p

1

r s
H @e2z/22~12z/2!#

z/2

1
2

pE0

1

dx~12e2zx!arccos~x!J , ~105!

where z5(pF2pB)/nT , and z52kFd is the layer imbal-
ance.

The intersubband gapDab is useful for at least two pur-
poses. First, it provides an estimate for the location of
pseudospin-polarization transition. The conditionDab.0
means the pseudospin-polarized ground state is stable ag
intersubband charge transfers, whereasDab,0 implies the
opposite. Thus, solving the equationDab50 in the MFA
yields an estimate of the location of the pseudosp
polarization transition. It turns out that this procedure give
lower value of r s for the p51 transition than the GRPA
estimate~obtained using the pseudospin Stoner enhancem
factor I ): at d50, the MFA Dab calculation ~for t5z50
5cosu50) gives r s

(0)(1,2)5p/A2, compared tor s
(0)(1,2)

5p from the GRPA. Figure 17 showsDab versusd/a0 when
t5z5cosu50 for r s51,2,3,6. It is evident thatDab.0 only
for sufficiently large r s , and that it decreases with laye
separationd/a0. Negative values ofDab indicate regions
where the pseudospin-polarized state is not stable.

The intersubband gap has a simple form whent5sinu
50:

Dab

v0
52

4

r s
2 F1

p
1

d

a0
~12uzu!G1A2

p

4

p

1

r s
. ~106!

Equation~106! provides an estimate of when one of the la
ers cotains all the particles. It tells us that for sufficently hi
total density~small r s), Dab,0 and both layers must b
occupied, provided that 1/21(d/a0)(12uzu).0 ~which in-
cludesz51, corresponding topB50.! This is because the
kinetic energy~and the Coulomb energy, foruzu,1), which
favors occupying both layers, dominates over the excha
energy, which favors occupying a single layer, at higher d

FIG. 17. Normalized intersubband energy gapDab for transfer-
ring particles from the occupied lower-energy subbanda to the
~assumed empty! higher-energy subbandb, for r s51,2,3,6,10.
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sities. For example, forp52 andz51, Eq.~106! shows that
both layers will be occupied even whenpB50, provided that
r s,p/2. On the other hand, forp51 and sinu50 ~i.e., uzu
.12G1), only one layer will be occupied, provided thatr s

.(p/A2)@11(d/a0)(12uzu)#. This is the situation shown
in Fig. 16, which shows that layer 2 has completely empt
for pF /pB.2.25. At higher values ofpF /pB ~e.g, r s,p/2,
not shown!, layer 2 would no longer be empty.

The second use of the MFA calculation ofDab is as a
rough estimate of the minimum energy~thermal, or from
photons! required to excite particles from the occupied to t
unoccupied subband in the one-component state. Per
this could be detected with sensitive heat-capacity meas
ments or by measuring microwave absorption.

C. Coulomb drag

One very interesting feature of the one-component s
with SILC is that it is expected to exhibit interlayer dra
~finite dc transresistance!, even at zero temperature. Ord
narily, if the layers are not correlated in the ground sta
current in one layer can drag along particles in the ot
layer ~due to the Coulomb interaction between the laye!
only at finite temperature.11 But if r12Þ0, due to either tun-
neling or, more interestingly, to SILC, then interlayer corr
lations present in the 2LES ground state will produce int
layer drag even at zero temperature, as has been predicte
interlayer-correlated 2LQH states.7,31 Based on the Kubo for-
mula with the ground state of Eq.~15!, we expect that a
calculation of the zero-temperature dc transconductivitysd
will give

sd}
e2r12

m*
}

e2~na2nb!sinu

m*
. ~107!

Calculations of the drag conductivity for a pseudosp
polarized ground state are currently being carried out
other researchers.32 According to Eqs.~91! and ~107!, we
expect that in thep51 phase (na5nT), sd;An1n2, ap-
proximately~i.e., within an MFA calculation ofsd).

It would be interesting to clarify the relationship betwe
s12, r12, andsd . We conjecture that finite interlayer drag
zero temperature requiresr12Þ0 ~or at leastr12r21Þ0) at
zero temperature~although we have not proved this! and that
r12Þ0 at zero implies finite interlayer drag at zero tempe
ture. It is certainly true thatr12Þ0 andsdÞ0 occur together
at zero temperature in the interlayer correlated 2LQH effe7

We also think it likely that a similar relation holds betwee
s12 and r12, and hence betweens12 and sd , although we
have not proved this either.

VII. CONCLUSIONS

We investigated the effects of intralayer and interlay
exchange in biased double-layer systems, in the absence
magnetic field. This was accomplished using a mean-fi
approximation~MFA! which, in the limit of balanced layers
~no bias!, is equivalent to the unrestricted HFA of Zheng a
co-workers.17
d
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A. Findings

We found that a balanced 2LES possesses four poss
noncrystalline MFA ground states. The spin- a
pseudospin-unpolarized four-component (p54) state is ob-
tained at the highest densities. In contrast to earlier work,
found that as the density is lowered, a three-componenp
53) state with slightly unequal layer densities is obtaine
Thus, we find that there is no direct four- to two-compone
transition. At finite layer separation (d.0) and zero inter-
layer tunneling (t50), the (p54)→(p53) MFA transition
involves a small but abrupt interlayer charge transfer. A
such abrupt interlayer charge transfer will in principle res
in a large~formally infinite! value of the Eisenstein ratioRE

at the transition. The Eisenstein ratio is a sensitive meas
of the interlayer capacitance discussed in Sec. II.

Like Zheng and co-workers, we found that as the to
density was lowered, a spin-polarized two-componentp
52a) state preceded a low-density one-component (p51)
state possessing SILC, provided that the gates were bala
(pF5pB). This p51 state is different from that of Rude
and Wu, whose proposed one-component state occupi
single layer, rather than a single subband consisting o
linear combination of both layers. We obtained a MFA pha
diagram for the noncrystalline phases of the 2LES, shown
Fig. 3. This phase diagram is similar to that of Ref. 1
except for the presence of thep53 phase between thep
54 and p52 phases. Only thep51 phase was found to
possess SILC—i.e., a nonzero interlayer density ma
(r12Þ0) even with zero interlayer tunneling (t50.! We also
defined the pseudospin Stoner interaction parameterI, and
considered the linear response of the MFA ground state
interlayer tunneling, equivalent to a GRPA calculation. W
usedI to obtain an alternate~GRPA! estimate of the location
of the (p52)→(p51) transition, shown as the dotted lin
at the top of Fig. 3. Of course, in the limit of vanishing tot
density (r s→`), we expect that a Wigner crystal state
obtained~in the absence of disorder!. We did not consider
the effects of disorder here, except to note that it limits
maximumr s for a state with mobile particles.

Under bias (upF2pBu.0), we found that there are five
possible noncrystalline ground states. In every case,
MFA gave subbands, which, when occupied, were eit
completely spin-unpolarized or fully spin-polarized. Inclu
ing correlation-energy effects would likely produce grou
states with intermediate spin polarizations, as is appare
the case in three dimensions.27 The additional state that ca
appear under sufficiently large bias and/or interlayer tunn
ing is a pseudospin-polarized two-component (na↑5na↓
5nT/2) state, which we labeledp52b. The p52b state
requires bias and/or tunneling, and has sinu50 ~and thus no
SILC! for t50. In Sec. V we studied the effect of bias b
considering sytems at fixed total densitynT , for a range of
values of the layer-imbalance parameterz5(pF2pB)/nT .
We enumerated the six possible scenarios for bias-dri
transitions between the~five possible! noncrystalline MFA
ground states fort50. We also showed that a very simp
model that assumes no interlayer exchange and no spin
larization is capable of fitting experimental SdH data qu
well ~see Fig. 6!, and that a simple LDF model can do th
same in the presence of interlayer tunneling~see Fig. 7!.
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We studied the one-component phase under applied b
finding that bias lowers ther s required for SILC~see Fig.
15!. Within the MFA, SILC occurs only in the one
component phase: whent50, sinu is nonzero only when
na↑5nT . Perhaps including correlation-energy effects wou
allow SILC for states with partial pseudospin polarizatio
But p51 is only a necessary condition for SILC, not a su
ficient one. We found that if the layer-imbalance parame
was too large (z.12G1), then SILC was lost. When SILC
occurs, the MFA gave a value of the interlayer density m
trix equal to the geometric mean of the layer densities:r12

5An1n2. For the case that SILC is present, we calculated
layer densities (ni), local values of the chemical potentia
(m i), electronic lengths (si j ), and Eisenstein ratio (RE) ~see
Fig. 16!.

Ruden and Wu originally predicted an abrupt interlay
charge tranfer fort50 at sufficiently low densities and laye
separations, in the balanced case (pF5pB).15 Like Zheng
and co-workers, we found that an abruptinterlayer charge
transfer does not occur in the balanced case, due to S
However, the MFA~and the unrestricted HFA of Ref. 17!
does produce abruptintersubbandcharge transfers, even fo
the balanced case. This a feature of the HFA that requ
correlation-energy effects to remedy. In the case of nonz
bias, intersubband transfers are equivalent to interlayer tr
fers if sinu50, which is the usual case, except possibly
p51. Interlayer subband transfers att50 are reduced or
suppressed in the MFA only for the (p52a)→(p51) tran-
sition, and only ifz,(12G1) in the p51 phase. So SILC
when present, does reduce or eliminate abrupt interlayer
band transfers, but the MFA does not always eliminate th
under bias (pFÞpB). If the system is at sufficiently low den
sity and layer separation that it stays in thep51 state, then
there are no abrupt interlayer charge transfers under bia
the MFA, despite the fact that the layers can empty out aspF
is changed~see Fig. 16!.

We also calculated the intersubband gapDab for the
pseudospin-polarized (p51 or p52b) phases within the
MFA, defined as the energy to move a particle from t
lower energya subband to the higher energy~empty! b sub-
band. This energy provides an estimate of the single-par
intersubband gap in the pseudospin-polarizedp51 and p
52b phases, and can be used to estimate the stabilit
those phases. If thep51 phase can be obtained experime
tally, Dab might be measured using heat-capacity
microwave/optical techniques. A very interesting feature
the one-component phase with SILC is that it should h
nonzero interlayer drag, even at zero temperature, with
size of the interlayer drag conductivity being proportional
the interlayer density matrixr12.

Pseudospin polarization can be detected by SdH meas
ments, which exhibit oscillations that are periodic in 1/H
~whereH is the applied magnetic field!. The periods of the
SdH oscillations are given by

Das~1/H !5
2pe

\

1

Aas
5

2pe

\

1

pkas
2 5

e

h

1

nas
, ~108!

where Aas is the cross-sectional area of the Fermi surfa
perpendicular to the applied magnetic field for electrons
subbanda with spin s. Knowing the total densitynT ~e.g.,
s,
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from Hall measurements!, SdH measurements of the su
band densitiesnas could allow a determination of the degre
of spin and pseudospin polarization. For example, in the c
of equally balanced layers (n15n25nT/2) having a
p-component ground state (p51,2,4) in theabsence of tun-
neling (t50), there is a single~p-fold degenerate! SdH os-
cillation period,

Dp~1/H !5
2pe

\

1

Ap
5

2pe

\

1

pkF
2 5

e

h

p

nT
, ~109!

which allowsp to be determined directly from SdH measur
ments.

B. Can it exist?

Can the one-component state be realized in the balan
case? Thep51 state is a legitimate solution of in the HFA
but we have not examined its stability here. It is hypothe
cally possible that thep51 state might always be preempte
by a Wigner crystal state. Conti and Senatore18 carried out
diffusion Monte Carlo~DMC! simulations in thed50 limit,
calculating thep54 ground-state energy as a function ofr s
and using previous single-layer DMC results28 to estimate
thep52 andp51 energies. They also estimated the groun
state energy for a Wigner crystal state, and found that
p54 state is obtained forr s,42, and that the Wigner crysta
state is obtained for larger values ofr s . In their calculation,
neither thep52 nor thep51 states are ever favored ene
getically.

Although the DMC results in Ref. 18 show the need
examine the existence and stability of thep51 state beyond
the HFA, they do not rule out its existence. This is becaus
d50 the fermions possess CP~3! symmetry~spin and pseu-
dospin fully rotatable and interchangeable!, and estimating
thep52 andp51 energies using single-layer results miss
part of the correlation energy, which lowers thep51 and
p52 ground-state energies. Ideally, a DMC simulation
CP ~3! fermions would be most useful to determine theore
cally if the p51 state can be obtained, but such calculatio
might be prohibitively difficult to carry out. As a start, a
lowing for the possibility of Wigner crystallization~broken
translational symmetry! within the MFA calculation would
be helpful. Alternatively, a time-dependent MFA calculatio
of the collective mode would indicate where~for what den-
sity and layer separation! the collective mode of the 2LES
goes soft (v→0), signaling the onset of Wigner crystalliza
tion. We are currently developing such a calculation of t
collective mode. Better yet would be a double-layer ST
calculation allowing for the possibility of Wigner crystalli
zation, or at least a determination of when the STLS coll
tive mode goes soft in a double-layer system.

More important is the question of whether SILC can
achieved experimentally in the absence of a strong magn
field, which serves to quench the kinetic energy of the p
ticles. The MFA and HFA underestimate the value ofr s
required for the transitions, perhaps by a factor of 10. F
example, the spin-polarization transition for a single lay
has been estimated to occur forr s;20.28 Although such high
values of r s have been achieved inp-type GaAs samples
even higher values ofr s will be required to achieve sponta
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neous pseudospin polarization. Disorder imposes fur
constraints, because it limits the maximumr s for which the
particles are still mobile. However, given the impress
progress in producing double-layer systems with ever-lo
particle densities and ever-higher mobilities, it does not se
prudent to rule out the possibility that such a state mi
someday be realized.

As pointed out by Zheng and co-workers17 and by Conti
and Senatore,18 most of the considerations presented in R
7 for SILC in the quantum Hall regime should be relevant
the p51 phase~with SILC! in the absence of a magnet
field. In both cases, there is a ground state with broken U~1!
symmetry~when t50), due to interlayer exchange at sma
layer separations and particle densities. It is therefore
pected that thep51 state will exhibit many of the nove
features of the 2LQH state with SILC, including zer
temperature interlayer drag, vortex excitations@of the angle
f in Eq. ~22!# and an associated finite-temperatu
Kosterlitz-Thouless transition~for t50), and interesting
many-body effects in tilted magnetic fields for finite inte
layer tunneling.6–8

C. Speculations regarding the 2LQH regime

It is interesting to speculate about the applicability
these ideas to the 2LQH effect at total filling factor unity7

For sufficiently small distances (d,dc'1.2l , where l
5A\/eB is the magnetic length6!, the 2LQH system exhibits
a quantum Hall effect.5 Theoretically, the small-d 2LQH
state has nonzeror12 even for t50 ~SILC!, and the 2LQH
system exhibits strong Coulomb drag.7,31 At sufficiently
large layer separations, it is found experimentally that
quantum Hall effect disappears,5 and it has been propose
that there is a quantum phase transition to a state with
SILC.7 The nature of the ground state ford.dc is a topic of
active investigation. It has been analyzed as a system of
weakly coupled layers ofn51/2 composite fermions~CF’s!.
Theoretical calculations of the drag at low temperatures p
dict that the drag resistivity should scale with temperature
T4/3, based on calculating the effects of gauge fluctuations
two CF layers in the metallic state.33–35 It has also been
proposed that the weak coupling between the CF’s in dif
ent layers produces BCS pairing between them at sufficie
low temperatures,36 and that this paired state leads to a fin
drag resistivity at zero temperature.37,38

We point out here that besides the apparent BCS insta
ity between CF’s in different layers, double-layer CF sy
tems might be unstable to pseudospin polarization. In
limit d→`, the double-layernT51 system may be regarde
as a p52a phase ~i.e., spin-polarized but pseudospin
unpolarized! of CF’s in zero effective magnetic field (n
51/2 per layer!. Naively, the presumably large effectiv
mass of the CF’s would correspond to a much larger eff
tive value ofr s than for the zero-field case, perhaps produ
ing a value ofr s sufficently large to obtain a pseudospi
polarizedp51 phase. Another way of saying this is that t
large magnetic field experienced in eachn51/2 layer
quenches the kinetic energy of the particles, and that
quenching might strongly enhance exchange instabilities
in this case towards pseudospin polarization (na.nb), pre-
sumably with sinu51 ~whenpF5pB), since no spontaneou
er
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interlayer transfer has been found to occur forpF'pB . One
appealing feature of a hypotheticalp51 CF state is that it
would have small or zero resistivity in the pseudospin ch
nel ~i.e., for oppositely directed currents!, the same channe
in which the 2LQH state exhibits superfluidity at sufficient
small layer separations.7 Such ap51 state of CF’s would
exhibit SILC (r12Þ0 even whent50) and therefore posses
zero-temperature Coulomb drag. Recent experiments w
double-layer systems corresponding to filling factorn51/2
in each layer provide evidence for the possibility of zer
temperature drag.39 We are currently investigating the poss
bility and consequences of pseudospin polarization
double-layer CF systems.

We also note that a perpendicular magnetic fieldB will
generally enhance spin and pseudospin polarization bec
it tends to quench the kinetic energy. This effect enhan
the exchange and correlation effects that lead to polarizat
We therefore expect that SILC can in principle be found
any filling factor nT5(h/e)nT/B, provided that the total
densitynT and the layer separationd are sufficiently small.
In particular, if it exists in the one-component phase for ze
magnetic field, SILC will probably persist, and even gro
stronger, when a perpendicular magnetic field is applied.
nally, we remark that it may prove instructive to view th
vT51 2LQH state as a Chern-Simons bosonic conden
of spin- and pseudospin-polarized (p51) electrons bound to
unit flux quanta.

Note added in proof. It has recently been found@I. B.
Spielman et al., cond-mat/0002387~unpublished!# that
double-layer systems in strong magnetic fields near total
ing factor unity exhibit a huge resonant enhancement of
interlayer tunneling conductivity when SILC is present.
would be interesting to measure the tunneling conductiv
for a tilted sample, since many-body effects in a state w
SILC strongly suppress the interlayer tunneling amplitu
when the parallel component of the magnetic field exceed
critical value. This suppression is much stronger than fo
system without SILC. We expect a similar strong enhan
ment of the tunneling conductivity at zero magnetic fie
provided that the system possesses SILC. Such tunne
measurements could prove very useful for measuring
strength of SILC in double-layer systems at zero~or higher!
magnetic field.
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APPENDIX

1. Gate voltages

The layer densities (n1 ,n2) are determined theoreticall
by minimizing the total ground-state energy per unit a
@Eq. ~22!# for fixed gate densities (pF ,pB). Experimentally
however, it is the gate voltages which are tuned. If need
the gate voltages for a given value of (pF ,pB) can be calcu-
lated using

eVF5eDFEF1m11eVF
(0) ,

~A1!

eVB5eDBEB1m21eVB
(0) ,

and Eq.~5!. Here the gate electric fields depend on the g
sheet densities through Gauss’s law,Ea5(e/e)pa , and
eVa

(0) are sample-dependent constant gate-voltage shifts
though eVa is approximately equal toeDaEa , Eq. ~A1!
shows that the layer valuesm i of the chemical potential also
contribute to the gate voltages.

The layer values of the chemical potentialm i can be com-
puted numerically from the variation of the equilibriu
value of the total energy per unit area~regarded as a function
of the front- and back-gate densitiespF andpB) with respect
to infinitesimal changes in gate densities:

d Ē0 /LxLy5m1dpF1m2dpB . ~A2!

For the typical case in which the back-gate voltageVB is
kept constant and the back-gate distanceDB is much larger
than the interparticle and interlayer separation so thatpB is
nearly constant, it is convenient to use Eq.~4! and write

eVF5eDFEF1edE121m21eVF
(0) , ~A3!

where Eq.~A2! gives

m2'
]

]pB
S Ē0

LxLy
D

pF

. ~A4!

Equation~A3! has the advantage of being applicable ev
when layer 1 empties out. Equations~A3! and ~A4! can be
used to calculate theoretically the front-gate voltage. In
limit where the interlayer separation is larger than the int
layer particle separation and~which usually amounts to the
same thing! interlayer correlations can be neglected, th
variations of m2 with pF are small in comparison with
edE12, so that the effects ofm2 can be absorbed into th
voltage shifteVF

(0) , thus giving

VF'EFDF1E12d1VF
(0) . ~A5!

2. Hartree-Fock approximation

In the Hartree-Fock approximation~HFA! the two-body
interaction is factored so that the ground-state energy
unit area is
a

d,

e

l-

n

e
-

n

er

EHF

LxLy
5

1

LxLy
(
ks

«k^c1ks
† c1ks1c2ks

† c2ks&

2
t

LxLy
(
ks

^c1ks
† c2ks1c2ks

† c1ks&

2
1

2~LxLy!2 (
j 1k1s1

(
j 2k2s2

Vj 1 j 2
~ uk22k1u!

3^cj 1k2s1

† cj 2k2s2
&^cj 2k1s2

† cj 1k1s1
&

1
1

2 (
j 1

(
j 2

Vj 1 j 2
~q50!nj 2

nj 1

2(
j

(
a

Vj a~q50!panj

1
1

2 (
ab

Vab~q50!papb . ~A6!

The effect last three~the Hartree! terms of Eq.~A6! may be
calculated by noting that

lim
q→0

Vi j ~q!5 lim
q→0

e2

2eq
@12~12e2qdi j !#

5S lim
q→0

e2

2eqD 2
e2

2e
di j [~`!2

e2

2e
di j , ~A7!

where (̀ ) denotes the formally divergent part in the last lin
of Eq. ~A7!. The last three~the Hartree! terms of Eq.~A6!
become

~`!
1

2
~n11n22pF2pB!21

e2d

2e
~pF2n1!~n22pB!

1
e2DF

2e
pF~n11n22pB!1

e2DB

2e
pB~n11n22pF!.

~A8!

Requiring the first term of Eq.~A8! to not diverge imposes
charge neutrality:n11n25pF1pB . From Gauss’s law, the
Hartree energy@Eq. ~A8!# may therefore be written, up to a
overall constant, as

e

2
@E12

2 d1EF
2DF1EB

2DB#, ~A9!

whereE12 is the electric field between layers 1 and 2,EF is
the electric field between the front gate and layer 1, andEB is
the electric field between the back gate and layer 2.

Equation~A9! is just the electric field energy per unit are
for the sample; we drop the last two terms since they may
regarded as constants for fixedpF andpB . The ground-state
energy per unit area may thus be written as
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E0

LxLy
5

1

LxLy
(
ks

«k^c1ks
† c1ks1c2ks

† c2ks&

2
t

LxLy
(
ks

^c1ks
† c2ks1c2ks

† c1ks&1
e2d

2e
~n12pF!2

2
1

2~LxLy!2 (
j 1k1s1

(
j 2k2s2

Vj 1 j 2
~ uk22k1u!

3^cj 1k2s1

† cj 2k2s2
&^cj 2k1s2

† cj 1k1s1
&. ~A10!

3. Exchange integrals

The exchange integralI abs(q) is defined as

I abs~q!5
1

LxLy
(
K

Q~kas2uK1q/2u!Q~kbs2uK2q/2u!,

~A11!

where a and b can be eithera or b, and wherekas ,kbs
denote the Fermi wave vectors for particles of spins5↑,↓ in
subbandsa or b. Note that Eq.~A11! implies that I abs is
1/(2p)2 times the shaded area shown in Fig. 18, where
concretenessq is taken be in thex̂ direction. Let the quantity
K0/2 equal the value ofKx at which the Fermi circles o
radiuskas andkbs intersect:

K05~kas
2 2kbs

2 !/q54p~nas2nbs!/q. ~A12!

Then

I abs~q![@nbsQ~kas2kbs2q!1nasQ~kbs2kas2q!#

1Q~kas1kbs2q!Q~q2ukas2kbsu!

3
1

p H nasFcos21S q1K0

2kas
D

2S q1K0

2kas
DA12S q1K0

2kas
D 2G

1nbFcos21S q2K0

2kbs
D

2S q2K0

2kbs
DA12S q2K0

2kbs
D 2G J . ~A13!

Whenb5a, thenkbs5kas , K050, and Eq.~A13! becomes

I aas~q![nasQ~2kas2q!
2

p Fcos21S q

2kas
D

2S q

2kas
DA12S q

2kas
D 2G , ~A14!

and the first exchange integral in Eq.~22! may be carried out
explicitly:
r

2
1

2LxLy
(

q
V11~q!I aas~q!52

8

3Ap

e2

4pe
nas

3/2.

~A15!

Equation~A15! is just the exchange energy per unit area
a uniform spin-polarized two-dimensional electron gas of
eal densitynas .

4. Interlayer exchange parameter

A key quantity in our discussion of the effects of inte
layer exchange in double-layer systems is the interlayer
change parameterG, defined by

G[
1

LxLy
(
qs

FV11~q!2V12~q!

e2d/2e
G

3F I aas~q!1I bbs~q!22I abs~q!

~na2nb!2 G , ~A16!

which is positive and a monotonically decreasing function
the interlayer separationd:

0,G~d.0!,G~d→0!, ~A17!

when the subband densities are regarded as fixed. We
that in the three-component phase (p53), unlike the (p
51,2,4) phases, the equilibrium subband densities cha
with d, so that according to Eq.~46!,

lim
d→`

Geq~p53!}
1

~na2nb!2d
}

d

a0
→`, ~A18!

whenpF5pB , in apparent disagreement with Eq.~A17!. We
stress that the inequality in Eq.~A17! is true only when the
subband densitiesnas are regarded as fixed, which is not th
case in Eq.~A18!.

The interlayer exchange parameterG is important because
it determines when SILC is possible~for z,12G1 and p
51), i.e., when sinuÞ0. It also determines the value of th
pseudospin Stoner enhancement factorI ~which depends on
G0). G affects the state of the system~e.g., layer densities
and Eisenstein ratioRE) whenever sinuÞ0.

FIG. 18. The quantityI abs(q) is proportional to the area of the
shaded region of overlap between two circular Fermi surfaces
radii kas and kbs , which are centered atKx56q/2. The circular
Fermi surfaces intersect atKx[K0/2.
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a. Inequality

Using the inequality

e2d/2e.V11~q!2V12~q!, ~A19!

which is true ford.0, it follows from Eq. ~A16! that for
d.0,

G,
1

LxLy
(
qs

F I aas~q!1I bbs~q!22I abs~q!

~na2nb!2 G
5(

s

~nas2nbs!
2

~na2nb!2
5G~d→0!, ~A20!

where we have used the fact that

lim
d→0

@V11~q!2V12~q!#

e2d/2e
51 ~A21!

and

1

LxLy
(
qs

@ I aas~q!1I bbs~q!22I abs~q!#

5
1

~LxLy!2 (
qKs

@Q~kas2uK1q/2u!2Q~kbs2uK1q/2u!#

3@Q~kas2uK2q/2u!2Q~kbs2uK2q/2u!#

5(
s

H 1

LxLy
(

k
@Q~kas2k!2Q~kbs2k!#J 2

5(
s

~nas2nbs!
2. ~A22!

Thus the condition

~na↑2nb↑!~na↓2nb↓!>0 ~A23!

is sufficient to guarantee thatG,1.
Equation~A22! is true at finite temperature whenI abs(q)

is generalized appropriately. This is because

lim
d→0

@V11~q!2V12~q!#5
e2d

2e
~A24!

is independent of the wave vectorq. We may write

G5
1

~LxLy!2 (
k1 ,k2 ,s

FV11~ uk22k1u!2V12~ uk22k1u!

e2d/2e
G

3H ~^ak2s
† ak2s&2^bk2s

† bk2s&!~^ak1s
† ak1s&2^bk1s

† bk1s&!

~na2nb!2 J ,

~A25!

which generalizesG to finite temperatures. In the limitd
→0, Eq. ~A24! shows thatG approaches
1

~na2nb!2 (
s

F 1

LxLy
(

k
~^aks

† aks&2^bks
† bks&!G2

5
1

~na2nb!2 (
s

~nas2nbs!
2

→5
1, p51 ~na↑5nT!

1, p52a ~na↑5nb↑5nT/2!

1, p53 ~na↑5na↓5nb↑5nT/3!

1/2, p52b ~na↑5na↓5nT/2!

1/2, p54 ~na↑5na↓5nb↑5nb↓5nT/4!.

~A26!

Empirically, we find that within the MFA, the spins in
subbandsa and b are either completely unpolarized~at
higher densities! or fully polarized~at sufficiently low den-
sities.! Therefore the only possible MFA configurations
spin and pseudospin that would not satisfy the inequality
Eq. ~A23! and that might therefore haveG.1 would be
three-component (p53) states in which subbanda ~the ma-
jority subband! is spin-unpolarized and subbandb ~the mi-
nority subband! is spin-unpolarized:

na↑5na↓ ,na.nb↑.nb↓50. ~A27!

b. Pseudospin-unpolarizedG

It is useful to define and evaluate

G0[ lim
na→nb

G. ~A28!

We begin our calculation ofG0 by noting that

I aas~q!1I bbs~q!22I abs~q!

5
1

LxLy
(
K

@Q~kas2uK1q/2u!2Q~kbs2uK1q/2u!#

3@Q~kas2uK2q/2u!2Q~kbs2uK2q/2u!#

'
~kFDn/nT!2

LxLy
(
K

d~kF2uK1q/2u!d~kF2uK2q/2u!

5S kF

2p

Dn

nT
D 2Q~12x!

xA12x2
, ~A29!

whereDn[(na2nb)→0, kF5A4pnT /p is the Fermi wave
vector per layer for the state withp components (p52,4),
andx[q/2kF . Using Eq.~A29!, we obtain

G05
2

p

2/p

e2d/2e
E

0

1

dx
@V11~2kFx!2V12~2kFx!#

A12x2

5
2

p

2

pzE0

p/2

du
~12e2z sin u!

sinu
, ~A30!
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wherez52kFd, and the second line is obtained by the su
stitution of variablesx5sinu. It is straightforward to obtain
G0(z) for smallz→0 by expanding the last line of Eq.~A30!
in powers ofz,

lim
z→0

G0~z!5
2

p F12
1

p
z1

1

12
z2G , ~A31!

up to second order inz.
ObtainingG0 for z→` is more cumbersome. One way

proceed is to define a cutoffe that satisfies

1

z
!e!1 ~A32!

so that sinu'u for u,e andzsinu@1 for u.e. Then

G0'
2

p

2

pz F E
0

e

du
~12e2zu!

u
1E

e

p/2

du
1

sinuG . ~A33!

The first integral in Eq.~A33! may be carried out using th
identity40,41

E
0

R

dt
~12e2t!

t
5 ln~R!1g1E

R

`

dt
e2t

t
, ~A34!

whereg'0.5772 is Euler’s constant, andR[ze→`, so that
the last term of Eq.~A34! can be dropped for largeR. The
second integral in Eq.~A33! is well known:42

E du
1

sinu
5 ln@ tan~u/2!#. ~A35!

Now, tan(e/2)'e/2 for e!1, so that the logarithmically di-
vergent (; ln e) parts of the two integrals in Eq.~A33! cancel
each other, leaving

lim
z→`

G05
2

p

2

pz
@ ln~2z!1g#. ~A36!

c. Pseudospin-polarizedG

We now compute

G1[ lim
na→nT

G. ~A37!

When the double-layer system is pseudospin polarized
that na5nT , then I bbs(q)5I abs(q)50, and it follows from
Eqs.~A14! and ~A16! that

G15
1

p

16

pzE0

1

dx~12e2zx!@arccos~x!2xA12x2#

5
1

p

32

3pz
@12S~z!#, ~A38!

wherez[2kFd, and

S~z!5
3

2E0

1

dx e2zx@arccos~x!2xA12x2#

5
3p

4z H 12
2

z
@ I 1~z!2L1~z!#J
-

so

→H 12~3p/32!z1~1/15!z22~p/256!z3, z→0

3p/4z, z→`
~A39!

so that

G1~z!→ 1

p H 12~32/45p!z1~1/24!z2, z→0

~32/3p!/z28/z2, z→`.
~A40!

Here I 1 and L1 are modified Bessel and modified Struv
functions of the first kind, respectively:43,44

I n~z!5 i 2nJn~ iz!, Ln~z!5 i 2(n11)Hn~ iz!, ~A41!

whereJn is the ordinary Bessel function of ordern, andHn is
the Hankel function of ordern.

Obtaining Eq.~A39! is somewhat involved. The first par
of the integral in the first line of Eq.~A39! can be obtained
by writing

E
0

1

dx e2zxarccos~x!5E
0

1

dx e2zxFp2 2arcsin~x!G ,
~A42!

and using the identity45

E
0

1

dx e2zxarcsin~x!5
p

2z
@ I 0~z!2L0~z!2e2z#,

~A43!

which corrects a misprint in Eq.~4.551.1! of Ref. 40. One
then obtains

E
0

1

dx e2zxarccos~x!5
p

2z
@11L0~z!2I 0~z!#. ~A44!

The second part of the integral in the first line of Eq.~A39!
can be obtained by writing

E
0

1

dx e2zxxA12x252
]

]zE0

1

dx e2zxA12x2

52
]

]zF12E
0

1

dx
ze2zx

A12x2G
5

p

2

]

]z FL1~z!2I 1~z!

z G , ~A45!

and by using the identities46

]

]z F I 1~z!

z G5
I 2~z!

z
,

]

]z FL1~z!

z G5
L2~z!

z
1

2

3p
, ~A46!

to obtain

E
0

1

dx e2zxxA12x25
1

3
1

p

2z
@L2~z!2I 2~z!#. ~A47!

Combining Eqs.~A44! and ~A47! and using the identities47
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I 0~z!2I 2~z!5
2I 1~z!

z
,

~A48!

L0~z!2L2~z!5
2L1~z!

z
1

2z

3p
,

gives the second line of Eq.~A39!. The third line of Eq.
~A39! follows from power series~for small z) and
asymptotic~for largez) expansions ofI 1(z) andL1(z).48

We note that for the same value ofp, G1(z)<G0(z) for
all z. This may be seen by the subsitution of variablesx
5sinu in Eq. ~A38!:

G1~z!5
2

p

2

pE0

p/2

du
~12e2z sin u!

z sinu

3$sin~2u!@~p22u!2sin~2u!#%<G0~z!,

~A49!

whereG0 is expressed as an integral overu in the last line of
Eq. ~A30!. However, for differing values ofp, G1(p51)
.G0(p52) for 0,z,zc'44.09. Both G1(p51) and
G0(p52) are plotted in Fig. 19. Forz.zc ~not shown!,
G1(p51),G0(p52).

5. Stoner enhancement factor

We now outline our calculation of the Stoner interacti
parameter fort→0. Consider a two- or four-component sta
with equal subband densities~pseudospin unpolarized!, na
5nb5nT/2. For smallt→0, imagine moving a small amoun
of chargeDn/2 from subbandb to subbanda, na→nT/2
1Dn/2, nb→nT/22Dn/2, so that (na2nb)5Dn, and cal-
culate the change in the total energy@Eq. ~22!# as Dn→0.
The effect of the change of densities on the last term of
~22! may be calculated by using Eq.~A30!. The change in
the energy per unit area due toDn asDn→0 is then given
by
q.

DE0

LxLy
5

~Dn!2

pn0
2tDn2

1

App

e2

4pe

~Dn!2

AnT

1
e2d

2e S Dn

2 D 2

G0 .

~A50!

Minimizing DE0 /LxLy with respect toDn to solve forDn
and using the definition, Eq.~55!, of the Stoner enhancemen
I gives

I 5
n0e2

2pekF
S 12p

p

4
kFdG0D

5
n0

p H 2V11~2kF!2E
0

1

dx
@V11~2kFx!2V12~2kFx!#

A12x2 J ,

~A51!

which is just the first line of Eq.~56!. Equation~A51! is
equal to thet→0 limit of the Stoner interaction paramete
calculated in the GRPA, given in Eq.~14! of Ref. 23.

6. Intersubband gap

The subband transfer energyDab for the pseudospin-
polarized (na5nT) p51 or p52b phase is defined as th
MFA energy required to move a particle from the occupieda
subband to the~otherwise empty! b subband:

Dab5
d

dn S E0

LxLy
D , ~A52!

wheredE0 denotes the change ofE0 under

na↑→~1/p!~nT2dn!, nb↑→dn,

na↓→~121/p!~nT2dn!, nb↓50, ~A53!

wheredn!nT , andnb↓50 reflects the fact that at low den
sities (nb5dn→0), subbandb will be spin-polarized. In or-
der to calculateDab we first compute
d

dn (
s

@ I aas~q!1I bbs~q!22I abs~q!#

5
d

dn

1

LxLy
(
K

@Q~kas2uK1q/2u!2Q~kbs2uK1q/2u!#@Q~kas2uK2q/2u!2Q~kbs2uK2q/2u!#

'
d

dn

2

LxLy
(
Ks

Q~kas2uK1q/2u!@dkasd~kas2uK2q/2u!2Q~dkbs2uK2q/2u!#

'
d

dn

1

2p2 (
s

FdkasE d2KQ~kas2uK1qu!d~kas2uK u!2Q~dkbs2uK u!G
5

d

dn

1

2p2 (
s

@2kasdkasarccos~q/2kas!Q~2kas2q!2p~dkbs!
2Q~kas2q!#

52F 2

p
Q~12x!arccos~x!12Q~1/22x!G , ~A54!
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wherekas5A4pnas so that

dkas52~2p/kF!dnas , dkb↑52A4pdn, ~A55!

*Present address: Department of Materials Science and Engi
ing, University of Arizona, Tucson, AZ 85721.
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