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Double-layer systems at zero magnetic field
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We investigate theoretically the effects of intralayer and interlayer exchange in biased double-layer electron
and hole systems, in the absence of a magnetic field. We use a variational Hartree-Fock-like approximation to
analyze the effects of layer separation, layer density, tunneling, and applied gate voltages on the layer densities
and on interlayer phase coherence. In agreement with earlier work, we find that for very low layer separations
and layer densities, an interlayer-correlated ground state possessing spontaneous interlayer ¢Shetense
obtained, even in the absence of interlayer tunneling. In contrast to earlier work, we find that as a function of
total density, there exist four, rather than three, distinct noncrystalline phases for balanced double-layer sys-
tems without interlayer tunneling. The newly identified phase exists for a narrow range of densities and has
three components and slightly unequal layer densities, with one layer being spin polarized and the other
unpolarized. An additional two-component phase is also possible in the presence of sufficiently strong bias or
tunneling. The lowest-density SILC phase is the fully spin- and pseudospin-polarized “one-component” phase
discussed by Zhengt al. [Phys. Rev. B55, 4506 (1997]. We argue that this phase will produce a finite
interlayer Coulomb drag at zero temperature due to the SILC. We calculate the particle densities in each layer
as a function of the gate voltage and total particle density, and find that interlayer exchange can reduce or
prevent abrupt transfers of charge between the two layers. We also calculate the effect of interlayer exchange
on the interlayer capacitance.

[. INTRODUCTION cally the effect of interlayer exchange on the layer densities
and interlayer capacitance as a function of layer spacing,
In the last several years, double-layer electron and holearticle density, and applied gate voltage.
systems have provided an exceptionally useful tool for inves- Gated double-layer systems have the great advantage of
tigating the effects of interparticle Coulomb interactions inallowing the layer densities of electrons or holes to be varied
two dimensions, particularly at low particle densities whereby the application of a biagate voltage At high densities,
exchange and correlation effects are significant. This hathe kinetic energy per unit area dominates the exchange and
been especially true in the quantum Hall regitfeyhere the  correlation energies, and in a translationally invariant sys-
combination of a strong perpendicular magnetic figitiich ~ tem, the symmetry and properties of the ground state of a
quenches the kinetic energgnd very small layer separation many-body system are in one-to-one correspondence with
(Wh|Ch enhances inter'ayer exchamwb”izes remarkable those of a free-electron gas. At lower electron densities, the
interlayer-coherent quantum Hall stafe8.Even in the ab- Coulombic exchange and correlation energies can produce
sence of any magnetic field, interlayer capacitance and dra@Jalltatlve ch.anges in the nature of the many—part!cle ground
measurements in double-layer electron syste@IsES'S) State: numerical work on two- and thre_e-dlmen'smnal .elec—
have provided quantitative measures of the effects of elet']t-ron gases show t_hat aspin ferromagnetic state is obta_med at
tronic interactions on both the thermodynamfcand trans- ow densities, which is eventually supplanted by a Wigner

port (Coulomb drad’) of two-dimensional electron and hole crystal _state at the onvest dgnsmes. The Iow-densny ferro—
magnetic state of the interacting electron gas was anticipated

. : Lome 70 years ago by Blo¢hferromagnetism can be found
tion 2LES LO. also |.ncluc:jebd0lr,|1ble-la.)éjer hole ?ysdtems. even within the Hartree-Fock approximation when the ex-
Our work is motivated by the rapid pace of a vancement%hange interaction energy, which favors occupation of

in the engineering of double-layer semiconductor devicesgjgie-particle states of the same spin, dominates the kinetic
We expect that h_|gh-mob|llty double-layer devices will even-energy, which favors reducing the Fermi energy by equal
tually be built with both(1) separately contactabléayers,  occupation of both spin states.

and (2) layer separations and carrier densities so small that \jyltilayer semiconductor devices enhance the effects of
the interlayer correlations between the carriers are substaninterparticle interactions through the combination of reduced
tial, perhaps even without the aid of a strong quantizing magdimensionality and low particle density, and by the presence
netic field. Such devices will allow direct measurements ofof an additional electronic degree of freedom, the layer
the effects interlayer many-body effects in double-layer sysindex® In double-layer systems, layer occupancy can be
tems. As a starting point to analyze the zero magnetic fieldpecified by introducing a pseudospin variable that points up
situation, we have developed a simple mean-field model th&br one layer and down for the other layérExtending the
incorporates both intralayer and interlayer exchange in binotion of an exchange-driven ferromagnetic transition to
ased double-layer electron and hole systems in the absendeuble-layer systems suggests that at low enough densities,
of a magnetic field. We use the model to calculate theoretithe electronic ground state should be both spin and pseu-
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dospin polarized. Such reasoning, supported by Hartree-Fodmall layer separations should also follow from earlier cal-
calculations, led Ruden and Wu to propose that, at lowculations presented in Ref. 23, although no explicit inference
enough electron densities and for small enough layer separaf SILC was made in that work. Recent work that goes be-
tions, the electrons of a 2LES would minimize their ground-yond the HFA and includes correlation effects within the
state energy by having all electrons occupy a single I&er. STLS approximatioff also finds that SILC is favored over
The Ruden-Wu scenario implies that as the total density of aingle-layer occupancy for balanced layers that are suffi-
balanced 2LES is lowered, the electrons should eventuallgiently close togethet
experience an interlayer charge-transfer instability that spon- When studying a 2LES using a density-functional ap-
taneously empties out one of the two layers. Ruden and Wproach, it is important to note that SILC is a nonlocal effect.
also suggested that the inherent bistability of the resultingCalculations based on local-density approximations will not
low-density 2LES(either layer could be the one to lose or find SILC if they treat the pseudospin as an Ising-like
gain particles would constitute an exchange-driven logic variable!’ The same caveat applies to the work of Ruden
gate. The possibility of an exchange-driven interlayerand Wu, who used a restricted HFA that excluded the possi-
charge-transfer instability has been a subject of bothpility of SILC. Once the intralayer separation between elec-
theoretical®*®and experimental~**interest. trons becomes comparable to the interlayer separation be-
_ Although pseudospin polarization at sufficiently low den-yeen layers, the possibility of interlayer correlatigissich
sm_es is likely, it does not require unequa! layer densmesas SILQ must be considered. The spontaneous charge-
This has been demonstrated theoretlcally in great detail fofransfer state predicted by Ruden and Wu follows quite gen-
closely spaced double-layer systems in a strong magnetig.. v (even beyond the HPAfrom the fact that when inter-
field at unit filling factor and appears to give a good eXpla"layer correlations are ignored, the negative compressibility

B . _8 . . _
hation of experimental results” The key point is ihatelec of the electron gas guarantees an interlayer charge-transfer
trons in double-layer structures are not restricted to occupy-

ing only one of two layer eigenstates: quantum mechanicg?Stabi”ty at sufficiently s_mall Iayer spacing. But it i_s pre-
allows states that are superpositions of the two layers. Thgsely ‘t"t small layer spacings that interlayer corrglaﬂons be-
layer pseudospin must therefore be treated as a Heisenbe‘f%me important, and so their effects must be included to

variable, as was done in Refs. 6 and 7 in the quantum HaffPt@in physically meaningful results. _
regime, and by Zheng and co-workers in zero magnetic We have extended the study of the effects of Coulombic

field,'” rather than as an Ising variabi@here only “up” exchange in double-layer electron and hole systems to in-
and “down” are a”owed as was done by Ruden and Wu. clude an applled bias due to front and back gate VO|tageS,
For example, when interlayer tunneling is present, the singlewhile allowing for the possibility of interlayer exchange. In
particle eigenstates are symmetric and antisymmetric combthe balanced case, we have found that the four- to two-
nations of layer states. A major insight of Refs. 6—8 was thecomponent transition is always interrupted by the presence
concept of “spontaneous interlayer coherend@ILC): at  of a three-component phase with slightly unequal layer den-
sufficiently small layer separations, electrons can spontanesities. There are therefore four possible noncrystalline phases
ously create and occupy linear combinations of layer statefor a 2LES with balanced gates. Under bias or tunneling a
in which each layer has the same average number of elesecond(pseudospin-polarizedwo-component state is also
trons, even without any interlayer tunnelinghe spontane- possible. We have enumerated the transitions between the
ous formation of superposed layer states in double-layefive allowed states in the presence of bias, and explored the
quantum Hall(2LQH) sytems can be accomplished by the effects of bias on the one-component state.
interlayer exchange interaction alone. SILC in balanced The rest of this paper is organized as follows: In Sec. Il,
2LQH systems corresponds Y pseudospin ferromag- we introduce a simplified model for double-layer systems,
netism in which the pseudospins spontaneously magnetizegview the concept of interlayer capacitance, and give a gen-
but do not point either up or down, since neither layer hasral criterion for stability against spontaneous interlayer
(on averagemore particles than the othér. charge transfer. In Sec. lll, we develop a mean-field approxi-
The application of SILC to the zero magnetic field casemation for biased double-layer systems that allows for the
was first made by Zheng and co-workéfsyho considered possibility of interlayer coherence. In Sec. IV, we examine
the same model system as Ruden and 3Wu the special case of electrostatically balanced layers, enumer-
—electrostatically balanced zero-thickness layers of interactate the resulting four possible noncrystalline phases, and ex-
ing electrons without interlayer tunneling—but came to aplore the onset of interlayer coherence and its effect on the
very different conclusion. They proved within the Hartree- size of the subband splitting. We also obtain a phase diagram
Fock approximatiofHFA) that (1) the 2LES becomes spin for the balanced case, and perform an alternate calculation
ferromagnetic before it becomes pseudospin ferromagnetior the onset of the one-component phase. In Sec. V, we
for any finite layer separatiofthis possibility was not con- explore the effect of bias on the layer occupancies and inter-
sidered by Ruden and Wuand(2) at low enough densities layer capacitance for large, intermediate, and small layer
and small enough layer separations, the pseudospin ferrgeparations. We develop simple models capable of closely
magnetic state possesses SILC, with all electrons occupyinfiiting experimental layer-occupancy data, and expore the
one subband composed of a superposition of layer states withansitions between different phases induced by layer imbal-
equal average density in each layer. Conti and Senatore haaace. In Sec. VI, we analyze the onset and properties of the
also argued that for electrostatically balanced layers, thene-component state under bias. We summarize our findings
2LES ground state cannot be one in which all electrons arand speculate on the possible relevance of these results to the
eigenstates of the same single lay&BILC at sufficiently  strong magnetic-field regime in Sec. VII.
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1 2 B charge densitiep,, as fixed quantities, we seek the values of
AT the particle density in the inner layers that minimize the total
energy per unit are&,/L,L, . Following Ref. 26, we sepa-
rate the electrostatic part of the total energy per unit area
from the rest:
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up to an irrelevant constant, where the first term is the inter-
layer electrostatic energy density, wiih, given by Eq.(2).

The quantitye(n,,n,) represents the total energy per unit
area for a fully interacting double-layer system in which each
layer contains a uniform neutralizing charge density, for par-

Il. DOUBLE-LAYER MODEL AND INTERLAYER ticle densitiesn; andn, in layers 1 and 2, respectively. The

CAPACITANCE Fermi, exchange, and correlation energies, both intralayer
and interlayer, are contained éfn,,n,), and it is this quan-

In this section, we introduce an idealized model oftity that is calculated using many-body technigé® the
double-|ayel’ SyStemS. We reViEW the Condition fOI’ thermO'next Sectiorh we make an approxima‘te Ca|cu|ation Of
dynamic equilibrium between the inner layers, obtain a necg(n, ,n,) that includes the effects of interlayer and intralayer
essary condition for stability against interlayer charge transexchange.
fer, and review an experimentally useful measure of the Tq obtain the condition for thermodynamic equilibrium
interlayer capacitance, the Eisenstein réfio. between the inner layers, we note that for fixed external

Figure 1 illustrates schematically the geometry of thecharge densitiep,,, the constraint of overall charge neutral-
2LES device. We treat the quantum wells as zero-thicknes§y implies that the particle density in one laye.g,n,) is
layers sandwiched between two plates of neutralizing chargjetermined by that in the other layée.g., n,): n;=pg
which represent the effects of the front and back gates. Thg . _n,. We may thus regard the total energy per unit area
distance_between the front gde far lefy and the first layer Eo/L,L, as a function of the layer density, and extremize
(layer 1) is D¢ ; that between the back gatat far righy and Eo/LyLy with respect ton, at fixed pg andpg to obtaint®%°
the second layeflayer 2 is Dg; the interlayer separation is
denoted byd. Typically, d~10 nm, Dg~1 um, andDg _
~1 mm, so thatl<Dg<Djg; thus, Fig. 1 is not at all to Ha~me=eBd, “)
scale.

The two inner layers are assumed to be in thermodynami
equilibrium with each other, and the voltage of the front
(back gate relative to the common chemical potential of the Hi=de(Nng,Nz)/an; )
inner layers is denoted by (Vg). It is also assumed that
small changes’V,, in the gate voltage¥, («=F,B) pro- is the chemical potential measured relative to the energy
duce small changes in surface charge densities only at tHginimum of layeri. Equation(4) states that the difference in
gates €5p,) and in the layers £edn;,i=1,2). Overall the layer values of the chemical potential is equal to the

charge neutrality requires that the total charge density varglectrostatic potential energy difference between the layers.
ish: If the equation of state determining(n,,n,) were known,

then Eqs(2) and(4) would together determine the values of
ep-+epg—en—en,=0. (1) layer densitiesi; andn, for which the total energyy/LyL,
is an extremum.

FIG. 1. Schematic figure of a double-layer device with front-
gate surface charge densigp: at left, areal charge densities
—en; and —en, in the quantum wells, and back-gate surface
charge densitg pg at right.

@/here

(Strictly speaking, we only require that tfehangein the . . .
total charge density vanisie py + se ps— den, — sen,=0.) We now examine a necessary condition for interlayer
In writing Eq. (1), we have assumed that any stray charge ncjhermody_namlc stabilityi.e., for_the local extremum to be a
included in Eq.(1) is unchanged when the gate voltages ar ocal minimum of the enerdy First we follow Ref. 10 and
varied. This implies that the only significant effect of the introduce a set of Iengths that describe the d_e_pendence of the
stray charges is to shift the gate voltages by constemt layer chemical potentialg; on the layer densities; ,

pirically determined amounts. Sheet charge densities on the

gates and inner layers produce electric fields between the € du; € %

double Iayer.and the gatek () and between the two layers Sij= ? ﬁ_nj: ; an;an;’ (6)

(E4) according to Gauss’s law,

E,=(ele)p,, For the extremum condition in Eq4) to represent a local
) minimum of the total energy per unit area, we require that
Eio=(e/e)(pr—n1)=(€e/€)(n;—pg). the second derivative df,/L,L, with respect tan, be posi-
tive. (We again regarch; as being determined bg, for
We now obtain the conditions for thermodynamic equilib- fixed p, by the requirement for overall charge neutrality.
rium and stability between the layers. Regarding the gat&his gives a necessary condition for stability:
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d+s;+5,>0, (77 ments fix the back-gate voltagg; rather than the total den-
sity, and sweep the front-gate voltaye . Because of the
where relatively large size of the back-gate distarizg, the con-
straint of fixed back-gate voltaged{g=0) is very nearly
S1=S117S12, S$2=Sp~ S21- (8)  equivalent to that of fixed back-gate sheet charge density

The above inequality guarantees that the 2LES is at Ieaéng_Ohor’ ?}y GE"?‘USSS If"‘MEB_.O)' For‘SEBl_O’ Eq.(11)
metastable. If Eq(7) is violated, then the layer densities Shows that the Eisenstein ratio Is very nearly
constitute a local energetic maximum rather than a local

minimum, and there will be an interlayer charge instability RE*(5E12/5EF)pB
that causes charge to flow between the layers until a new

energetic minimum is reached.

In the absence of interlayer correlatioftse case consid-
ered in Refs. 15 and 10s;,=s,;=0, and the lengtls;; is
directly related to the electronic compressibilityin layeri
according t8°

S1

S d+s;ts,” (12

The advantage of measuriig rather than the usual gate
capacitances per unit aréauch asedpg/6Ve) is that Rg
depends only on the electronic lengthsand the interlayer
distanced, not on the much larger gate distand2s. The
difficulty in measuringRg is that (at least one oflayers 1
and 2 must be separately contactable, which becomes in-
- (9 creasingly difficult as the layer separationbecomes very
eznizxi small. Nonetheless, measurements of the Eisenstein ratio
i _ i have been used to demonstrate the negative compressibility
Equations(7) and(9) together with the experimentally mea- f the electron ga¥ and it is to be expected that devices
sured negative compressibilitx 0) of the electrons imply \yith separately contactable layers will be built with increas-
that when mte_rlayer correlaﬂons are _|gn0resqlzé 0), suffi- ingly narrow layer separations. Note also tiRy is very
ciently small interlayer separation will always lead 10 @  gensitive to charge-transfer instabilities. In fact, from &,
charge-transfer instability when the density of either e condition for the onset of an instability to interlayer
both) layer is sufficiently small. This result is true even when charge transferd+s,+s,=0, shows thaRg formally di-
intralayer correlations are included beyond the HFA calcula—\,erges at the instability. This can also be seen from the re-
tion of Ruden and Wu; only interlayer correlations that pro-|ation Re=1—6n,/pe, since a charge-transfer instability
duce sufficiently negative values sf, to satisfy Eq.(7) can  \ouId produce an abrupt change in the layer densityin
suppress interlay(_ar charge-transfer instabilities at very Smaﬂesponse to a small change in the gate denityAlthough
interlayer separations. evidence for abrupt interlayer charge transfers has been re-

If the two layers of the 2LES sample can be contactedported based on Shubnikov—de H4&sH) measurements,

separately, then the Eisenstein rafilg provides a sensitive e Ejsenstein ratio would be a far more sensitive measure of
measure of the interlayer capacitance that avoids the 'argé’orupt interlayer charge transfers.

gate-distance factors that dominate the gate capacitances per|, g psequent sections, we calculate the layer densities
unit qreal. : .The Elsengteln ratio is defmed as the ratio of 55 5 function of the front-gate particle dengity, for fixed

Fhe differential change in the eI_ecFrlc fieleh, between the back-gate particle densitys . Fortunatelypg may be found
inner layers to that of the electric fieleg between the front  experimentally from SdH measurements as the value of the

€
Si =

gate and the inner layers: layer densities when the system is balanced: i.e., for equal
layer densities rf;=n,) and minimum subband separation
o= 5E12=1—5n1/5pF, (10) (na—r_lb). Oncepg (which we assume is very nearly con-
oEr stan} is known, pg may be determined from charge conser-

vation by measuring the total layer density, either by $dsi
the sum of the subband densilies by Hall effect measure-
ments. It is therefore possible to determipe experimen-
tally, without recourse to the gate voltages. Of course, ex-
perimentally, it isVg that is varied directly while/g is kept
fixed, andpg changes in response Y- (while pg changes
t{/Cery little for largeDg). We describe how the gate voltages
may be determined from a knowledgemf, pg, andy; in
Sec. | of the Appendix.

where we have made use of Gauss's law, Bj. In the
following sections, we calculate the layer occupanaciess a
function of the gate charggs,; we then use Eq(10) to
obtainRg by computing the change im; with respect t@g .

In the classical limitcorresponding to large enough particle
densities and layer separations so that only the electrosta
energies are relevantn,=pg (for pg>0), so that by Eq.
(10), Re=0. Note also that ilh;=0 (e.g., due tope<0),
thenRg=1. By using Eqs(4) and(6) to express differential
changes inE;, in terms of the electronic lengths; and

using Gauss's law, the Eisenstein ratio may be expressed as Il. MEAN-FIELD APPROXIMATION

In this section, we introduce the microscopic Hamiltonian
_S175,0Eg/ 5B (11) for the gated double-layer system and make a variational
E d+s;+s, approximation for the ground-state wave function that allows
for interlayer coherence. The resulting approximate ground-
The Eisenstein ratio has an especially simple form forstate energy per unit area depends on both intralayer and
fixed total density since thedEg= — SE; from Eq. (11), interlayer exchange.
Rg=s/(d+s), where s=s;+s,. However, most experi- We now consider the microscopic Hamiltonian for the
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double-layer system illustrated in Fig. 1. We idealize thethe canonical transformation in E¢L6) is not completely
inner layers as being two-dimensional, and treat interlayeequivalent to a fully self-consistent Hartree-Fock calculation
tunneling in the tight-binding approximation. The Hamil- because we have takehand ¢ to be independent of the
tonian for the interacting system is then wave vectork and spins. It would be interesting to explore
the effects of including thk ands dependence of and¢ in

a future calculation. Our simpler variational calculation,
which is equivalent to Ref. 17 for the special case of bal-
anced layers, offers a reasonable starting point, which is

_ t T T
H= % Skcjkscjks_t% (C1xsCoks T CoksCiks)
i

1

E 2 V. (q) probably qualitatively correct over a large range of layer
2L,y G ks iskgs, (Y2 densities. It certainly gives layer densities that are in close
. " agreement with experimental values obtained from SdH
X Cj ky+0s,Cloky—as,Ci k05, 1 kg5 measurements, as we shall show.
The layer occupation numbers may be expressed in terms
_Jzks % Vja(qzo)paC;rkstks of the subband occupation numbers by using @6):
L (ClusCiks) = COS(0/12) (agsaus) + SIP(012)(bicbics),
x-y
+ 2 Vaﬁ(qzo)papﬂv (13) .
2 (ChusCaks) = SIMP(612) (@ sBks) + COS(/2)(bibys),
where ¢jys (Ckas) denotes the second-quantized destruction t ) i)t + (17)
(creation operator for an electron or hole in laygmwith (C1ksCaks) = SIN(0/2)cOg 0/2)€'“((aksys) — (bysbis))
momentunm:k and spins. Heree, =#%2k?/2m* is the kinetic
. . . . . T _ /T *
energy in the effective massnf) approximation,t is the (CksCiks) = {CiksCoks) ™
interlayer tunneling amplitude, and the Fourier-transformed , i i
Coulomb potential is given by where the asterisk denotes complex conjugation, and we
have used Eq15) to eliminate cross terms such & by).
e? g SILC occurs when
Vij(q)= 5—e 9%, (14

2e
. . ) . . (ClksCaks) 0 (18
whered;; is the distance between layerand layerj. The
indicesa, 8 in Eq. (13) take the value$ (front gate¢ or B in the absence of interlayer tunneling. According to E3)
(back gatg V,4 is the direct Coulomb interaction between and (18), SILC requires that the following occur¢l) 6
gatesa and 8, andV,; is the direct Coulomb interaction # 0,7 so that the subband densities are different from the
between gater and layerj. The last two terms in Eq13)  layer densities. SILC is therefore excluded when the pseu-
represent the direct interaction between the layers and gatedospin is treated as an Ising variab{) n,# n, so that the
and between front and back gates, respectively. subband densities are not eq@abnzero pseudospin polar-
We use a mean-field approximatiéMFA) that is varia- ization). When nys=n,s (completely unpolarized pseu-
tionally based and that reduces to the Hartree-Fock approxdospin, the MFA ground state can be expressed as the prod-
mation for the balanced case of equal layer densities. Thiact of two uncorrelated single-layer wave functions by
approximation includes the effects of interlayer correlationgperforming a global pseudospin rotation.
in the simplest possible way. The variational ground-state Although it is straightforward to generalize our approach
wave function is composed of two subbandsandb, con-  to finite temperature, we calculate numerical results in the

taining spin up {) and spin down [) electrons: limit of zero temperature{=0), both for the sake of sim-
plicity and because measurements Gamd have been made
el U I e on double-layer systems at low temperatures, even down to
= I1 of, I ol I1 af, IT a0 llikelvin temperatures i um Hall reg
Vo) > b g [ kol 5 kg 117 millikelvin temperatures in the quantum Hall regimé&or

(15)  the zero-magnetic-field case treated here, we expect that fi-
i nite temperature will not produce signifcant qualitative
wherek,s andk,s denote the Fermi wave vectors for elec- changes in the layer densities if the temperafiie below a
trons or holes of spirs in subbandsa andb. The creation _fraction of the Fermi temperatufB-=E /kg, whereE; is
operators for the subbands are related to the layer creatighg m; energy andg is Boltzmann's constant. For a layer
operators by a canonical transformation that we take to be Qﬁensity of n=10 cm 2, T, is roughy 4 K for n-type
the form GaAs, aml 1 K for p-type GaAs. The scale of the Hartree
t_ T ; ipat charge-transfer energg?dn/2e, is larger than the Fermi en-
= + .
A5 = COK 012)Cyies+SIN(6/2)€ s, ergy except for ultrasmall layer separatiors<(5 nm for
bl = —sin(g/2)e " 1%ct. +cog6/2)ch . 16 n-type GaAs andil<1l nm forp-type GaAs) .
ks n(6/2) 1ks+ COS 0/2)Cys (16) The other reason we work at zero temperature is to ad-
When #=7/2 and ¢=0, subbanda is the symmetric sub- dress matters of principle, such as whether an interlayer
band and subband is the antisymmetric subband. In the charge-transfer instability can occur when the layers are very
language of pseudospin, the superposition of layer states iclose together; finite temperatures would presumably smear
Eqg. (16) corresponds to treating the layer pseudospin as aut such a transfer, if it could occur. In the limit of zero
Heisenberg, rather than an Ising, spin varidbl€he form of  temperature, Eqi15) implies that
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(afsas) =0 (Kas—K),  (Dibys) =0 (kps—k), (19) o 1 Vll(q)—Vlz(q)]
where the subband Fermi wave vectors and number densities Lily s e’d/2e
are related through
9 y Iaas(q>+lbbs(q>—2|abs<q>] -
Kas= V4mN,e  Kps= V4mNpe (20) (Na—Np)? '

Summing Eqgs(17) over wave vectok relates the number

densities of the layers to those of the subbands: The properties of" are described in Sec. IV of the Appen-

dix. The last term in Eq(22) must in general be evaluated
numerically, although it vanishes a=0 or when ng
=nys. It also vanishes i) is O or 7, in which case subband
2D aisthe layer(1 or 2 with most particles, while subbariziis
N1s— N2s= (Nas™ Npg) COSH. the layer with the fewest particles. Ruden and Wu implicitly
) . treated the layer pseudospin as an Ising-like variable with 0
We may use the preceding equations to express thgnd s as the only allowed values far; in their approxima-
ground-state energy per unit area in terms of the subbangon, the last term in Eq(22) vanishes, and the interlayer
occupancies),s and the angley: effects we shall discuss here do not appear.
For definiteness, we take,=ny, n,,=n,;, and 0<#@
&o _i E 2 t(n.— ing <. Our procedure consists of finding the valuesgf and
LyLy vy 5 Nas™ UNa=Np)SiN 6 cOSH ¢ that minimize the expected energy per unit area, ().
Within our variational approximation, we fintas int’ the
Lo _ 0= (Do 2 HFA) that the spins in a given subband are always either
8e [(na=np)cos6 = (Pr—pg)] completely polarizedferromagnetic at sufficiently low sub-
band densitigsor completely unpolarizedparamagnetic at

N1st Nas=Ngst Nps,

2

B 1 2 V(@)1 (Q) higher densities Real systems probably possess intermedi-
2L,L, G5 M Gaasld ate polarization for a range of low densités® For finite t
] >0, the ground-state energy per unit area, 6), is mini-
Sirf mized for ¢=0. In the absence of interlayer tunneling, the

* 4L,L, % (Vi) =Vid@)] ground-state energy per unit area is independenp,abro-

vided that¢ is constant; for convenience we set0. The
X[Taad @)+ 1opd(@) =2l apga) ], (220 |ayer densities1,s andn,s may be obtained from, and 6
via Eq.(21). We begin our calculations in the next section,

—m* 2y i i :
where vo=m*/(a4%) is the density of states per unit area by considering the case of electrostatically balanced gates.

for noninteracting spin-1/2 particles in two dimensious,
= kl_ k2, and
IV. BALANCED GATES

1
Laps()= 1 > O(Kus— |K+0/2)O (kgs— |[K—a/2)). In this section, we consider the case of electrostatically
Xy K 23 balanced gateg = pg), beginning with zero interlayer tun-

neling. This was the situation originally considered by Ruden

HereK = (k;+k,)/2, and the subband indicesand 8 can  and Wu;® and more recently in Refs. 17, 18, and 23. For
be eithera or b. Equation(23) says that ,z«(q) is 1/(2)2 ba!anced gates, our approximation is equivalent to the unre-
times the common area of two circles of raklj; andkg, ~ Stricted HFA of Zheng and co-worketéand except for our
whose centers are separated dayWhen 8=, then kg, analysis of the three-component phase, most of our results

—k,., and the first exchange integral in E@2) may be agdree with theirs.
carried out explicitly:

5 A. Zero tunneling

€&

1 8 . . . .
S S The balanced case raises an important question of prin-
2LxLy % Vll(q)laas(q) \/; 4W€na5' (24) p q p

ciple: can exchange and correlation effects alone, unaided by
) o . applied gate biases and unhindered by interlayer tunneling,
Equation(24) is just the exchange energy per unit area for aayer produce a ground state in which the densities of the
uniform single-layer spin-polarized two-dimensional elec-jnner layers are not equal? Based on a restricted Wif#ich
tron gas of areal density,s. . _ did not allow for SILQ Ruden and Wu proposed that, for
The last term in Eq(22), which contains the interlayer small enough layer densities and layer separations, the an-
exchange contribution, may be conveniently expressed as swer is yes. Zheng and co-workers argued recently that an
unrestricted HFA(which allows for, but does not mandate,
sinf ed 2 SILC) gives the opposite answ&rWe find that, except for a
——e(na—nb) L @5 small region in density that supports a three-component
phase that has a slight layer imbalance, the layer densities are
wherel is the interlayer exchange parameter, given by  equal when the gates are balanced.

3
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1. Zero layer separation ag=4meh?/m* e? is the effective Bohr radius, we may write

In order to classify the four noncrystalline phases that wdhe energy per unit area for thep“component” MFA
find for gate-balanced double-layer systems, it is useful t@round state as
begin with the idealized case of zero layer separatidn ( 2 32
=0). Ford=0, the Hamiltonian is invariant under spin ro- &p __ ¢ - _ 8 N
tation, pseudospin rotation, and the interchange of spin and  L,L, 4wea8p 3\/; wrip
pseudospin. It is the same as the Hamiltonian for a four-layer
system of spinless fermions with zero separation between alf the limit N—c, p becomes a continuous variable that
the layers: layers, subbands, and spins become interchang@inimizes the energy29) for p=p.., where
able labels for the four components. Ttiee 0 double-layer 2
system is therefore equivalent to a single-layer two- p.= (3_77) :(3_77
dimensional system of fermions with 3 symmetry. At ” 4rg 4
d=0, the interlayer Hartree energy is zero and the interlayer . .
(V12 and intralayer ¥;;) Coulomb interactions are equal. where we have assumed theg=(3w/4); otherwise, p..

As a consequence, the variational energy in @@) is inde- - Equation(30) shows that in the limiN—, p is pro-
pendent off and (for t=0) of ¢ whend=0, portional tont for r¢=3x/4, and equal tdN otherwise. As

expected, the numbep of equally occupied components

2 N

wrip

. (29

2
magn, (30)

< n? . drops a1y is reduced. Equatio(B0) is equivalent to saying
%0 _ s T 32 EE e(n,), (27) the dimensionless interparticle separation per component for
Lily @ | vo 3rdme ] & ¢ which p=p., is
and the MFA is equivalent to the HFA. 37 [N
For generality, we first consider aftcomponent system, Io(Pos) = T\/— (31
where N is twice the number of layerdN=4 for double- P

layer spin-1/2 systems. At=0, the MFA lacks intercompo- \whenp,./N<1. The equilibrium value of thé\—~ MFA
nent correlations; thus, the total energy of the system is jusinergy corresponding to E40) is

the sum of the individual energieqn,s) of each compo-

nent. We can investigate the distribution of component den-

sities in the MFA ground state in @component system by €=
taking all but two of component densities to be fixed, and

minimizing the energy of the remaining two-component sys-  Eor arbitrary finiteN, Eq. (29) can be used to find the
tem. If we label the two components we seek to minimize ASnterparticle spacing per componenif’)(p,va 1) at which

1 and 2, then according to Sec. Il, the condition for stablethe p- and the p+ 1)-component phases have the same en-
equilibrium (local minimum of the total energys ergies atd=0:

m(ng)=pu(ny), s(ny)+s(ny)>0, (28) 37 N N
. . . . (0)(p p+1):_ \/:+ I
where w(n;)=de(n;)/dn; is the chemical potential relative s P, 8 p p+1)

to the minimum energy of component and s(n;) o . ) )

= gu(n;)/dn; is inversely proportional to the compressibility This is the interparticle spacing per component for the MFA
of componenfj. Whenz(n;) is the sum of the kinetic and transition between thp- and (p+1)-component phases. Itis
exchange energies as in E@7), then the MFA energy is nteresting to compare this result to E§1) and to note that
minimized only if (1) both layer densities are equai;( ©) 0)

=n,), or (2) one or both layers are empty. There are no s (P,p+1)<rg(p=)<rg’(p—1p), (34)

interme_diate possibilities in the MFA. Thit=0 result for  gg that even for finite\, r«(p..) always gives a value for the
N=2 gives the results found by Ruden and Wu: when ( interparticle spacing that is in thecomponent MFA phase
+n,) is sufficiently large, the component densities are equalgt q=0.

when (. +n,) is sufficiently small, there is an exchange-  For systems of physical interest containiNg layers of
driven intercomponent charge instability that empties out ongpin-1/2 particles, it is convenient to work with the interpar-
of the components. In the absence of intercomponent corrgicle spacingper layer (rather than the spacinger compo-

lations, we expect that at low enough densities the COMPOAeny. This is accomplished by dividing E¢33) by 2. For
nent compressibilities will be negative and that therefore ONQouble-layer systems of spin-1/2 particldé= 4)
of the components will empty out, even if intracomponent '

correlations are included. In thd-componentd=0 MFA 37
ground state, any pair of layers either has equal density or r1,2)= ?(\/5+ 1)~2.844,
has at least one of the layers empty.

There are therefor®l possible MFA ground states in an 3
N-component system at=0, characterized by the number r02,9="~(1+ \J2/3)~2.140, (35)
of componentp that have nonzero and equal densities. The 8
remainingN—p components have zero density. Defining the
dimensionless average interparticle spaduey component
by rg= l/\/7-r(nT/N)aO2 for an N-component system, where

nt. (32

4 2 e2
%) 4meay

(33

3
(O34 = (V2B3+ 172 ~1.795,



PRB 61 DOUBLE-LAYER SYSTEMS AT ZERO MAGNETIC FIELD 13889

where the superscript (0) denotes zero layer separation. Note 1 | +1 —92l
that the direct four- to two-component MFA transition pre- F<rr > aad @)+ lond 4) 5 avd9)
dicted to occur at x-y as (Na—Np)
3 (Ngs— Npo)?
r(2,4)= — (1+1/2)~2.011 (36) =3 = (39
8 s (Ng—np)

does not exist. In fact, we find that wheg=r4(2,4), the Thus the condition

gate-balancedp= pg) double-layer system is always in the

three-component MFA phase, regardless of the layer separa- (Na1—Np)(Na—Np ) =0 (40)

tion. The three-component system, whichdat 0 hasn,; _ N

=N, =Np;=n/3, has a spin-unpolarized subband,( is sufficient to guarantee thdt<1 for d>0, so that6
=n,) with greater density than the other subbamg, (= 7/2, which balances the layers. The one-component phase
>ny), which is spin-polarized. These features of the three{n,; =ny) satisfies Eq(40), so #==/2 and the layers are
component phase persist at finite layer separations, althoudt@lanced. No interlayer charge transfer is obtained in the

the layer imbalance is greatly reduced. one-component phase because the combined effects of elec-
trostatics and interlayer exchange, which favor balanced lay-
2. Finite layer separation ers, always dominate the unbalancing influence of intralayer

exchangee?®d/2e+ V15(q) >V14(q).

Within the MFA, the spins in subbandsandb are either
completely unpolarizedat higher densitiesor fully polar-
ized (at sufficiently low densities Therefore the only pos-
'sible MFA configurations of spin and pseudospin that could
%ave unbalanced layersn{>n,,0+ w/2) when pg=pg
ould be three-component states with

Classically(when only the electrostatic energies are con-
sidered, balanced layersnj=n,) are obtained whermpg
=pg, in order to make the electric fiel#,, between the
inner layers vanish. This result gives the asymptotically cor
rect behavior for high layer densities and large layer separ
tions. At sufficiently low densities and layer separations, th
exchange energy can dominate the kinetic and electrostatic
energies, so that the possibility of strong intralayer exchange
leading to an interlayer charge-transfer instability must be

congidered. However, \_/vithin the MFA, it can be proveq thatyye find numerically that such states always hBvel when
the inner layer densities are always equal, except in th?zo, so that sirf=0. Hence, there is no interlayer phase

three-component phase_._ coherence, and the pseudospins are Ising-like. States with
I the subband densities are equak{ny, the case of |, ~ “and sing=0 have partially unbalanced layers, with
pseudospin paramagnetismy’then Eq.(21) shows than, e |ower-density layer being spin-polarized and the higher-
=N,. Thus the four-componentnfs=n/4) and tWwo-  gensity layer being spin-unpolarized, even for balanced gates
componentwith ny; =ny,; =n+/2) phases have balanced lay- (,_— )" This is the behavior we find for the three-
ers. This is because the MFA state constructed by occupyingomponem MFA phase. For infinitesima, one (spin-
equally the single-particle subband staéeandb is equiva- unpolarizedl layer has twice the density of the othepin-
lent (up to a global pseudospin rotatjoto the MFA state olarized layer, and the phase exists in the ramé‘@(S 4)
constructed by occupying equally the single-particle I.aye<rs<r§°)(2,3).,At finite d, the three-component phas,e has
s 1002 e ottt the Sround site e " S a gt layer Imbelance and exiss oy n @ artow
invariance of the ground-state enerSy u%der global pseur-eglon of average mterpamcle spacing growgérs(2,4).
dospin rotation The equality of the inner-layer densities in the balanced
If the subbaﬁd densities are not equalény), extrem- case(except for the three-component phabas also been
izing the total energy per unit area in Hg§2) witﬁ r’espect to Shown to be true for the one-component phase when intra-
6 for pe=pg andt=0 gives the condition sin@=0. The layer and mt_erlayer5 correlations are included within the
requireanentBthat the extremum be a minimue thét the STLS approximatiod®> We note that if interlayer exchange
o L ' were omitted from the total energy per unit area by setting
second denvauvz_a.of the total energy per unit area with re'\/lz(q)=0 in Eq.(22), then four MFA ground states would
spect to6 be positive gives still be obtained, and the four-, three-, and two-component
. states would be unchanged. However, B8 would not be
sing= 1 if <1 37) satisfied at smalfj, and at large interparticle distancést
0 if I'>1 small values ofkg, or low densities the vanishing of the
second derivative with respect towould give the condition
where the interlayer exchange paramdteis defined in Eq.  cos()>0, so that co{)=+1. This would produce the in-
(26). The properties of" are described in Sec. 4 of the Ap- terlayer charge instability of Ruden and Wu for the one-

naT:nal<an, nbl=0. (41)

pendix. Using the inequality component phas€. The fact that the one-component phase
has equal densities is due to the effects of interlayer ex-
e’d/2e>V1(q) — V1), (38)  change.

Before obtaining the MFA phase diagram for double-
which is true ford>0, it follows from Eq.(26) that ford layer systems, it is convenient to express lengths and ener-
>0, gies as dimensionless quantities. We therefore express the
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layer separatiom and the average density per layg#2 in  is always polarized due to intralayer exchange. However,
terms of the effective Bohr radius of the sample, because of the interlayer exchange, the two-component state

=4776_ﬁ2/m*62; where € is the dielectric constant in the s always obtained at high densities or large layer separa-
material, andn* is the effective mass. For GaAs, the dielec-tions, while the one-component state is favored only for low

tric constant ise~13¢,. For n-type GaAs,m*~0.0"m, SO yensities and small layer separations.

thatayg~9.8 nm, while forp-type GaAsm* ~0.3m, so that Finite la ; : ; ;
: yer separationdt>0) differentiates between spin
ap~2.3 nm. The average density per layer can be expresseé}]d pseudospin, so that the symmetry of the problem be-

in terms of dimensionless ratie=r,/a, of the interparticle
spacingr, for a single layer of averaged density/2 (de- comes S_U_(ZX u(1) rather_ than the CR3) symmetry atd
=0. At finite layer separatiorVV15(q) <V41(q), and the last

fined throughmr2n/2=1) to the effective Bohr radiua,. . ) : L
Thus, for the same total densitg;type GaAs will have a (€M in the energy per unit area in E2) is minimized by
value forry that is about 9.8/2:34.3 times larger than for €dual subband densities, rather than by equal real spin den-

n-type GaAs. We define the Fermi wave veckgrin terms  sities. This does not effect the=1 (fully spin and pseu-

of the total densityn; as dospin polarizegdor p=4 (completely spin- and pseudospin-
unpolarized phases. However, whear=0 andpg=pg, the
ke= m: Ei (42) two-c_omponen_t =2) MFA phase has its real _spin fully
Prsao polarized and its pseudospin completely unpolarized.
for p=1,2,4. For the spin-polarizepl=2a state and for the Finite layer separation also changes the densities at which

completely unpolarizegp=4 state kg is equal to the Fermi the transitions between neighboripgcomponent phases oc-
wave vector corresponding to the average density per layeur. The densities at which the transitions between the
(n{/2). The energy scale associated with the effective Bohphases occur in the MFA can be determined by comparing
radius is vo=e*/4meay=Hh2m* ag, which gives vg MFA energies. This task is made easier by the fact that the
~11 meV for n-type GaAs, andvo~48 meV for p-type  MFA always makes the real spins in a given subband either
GaAs. _ _completely unpolarizedparamagnetic of fully polarized
The HFA phase diagram for balanced double |all’§&W'th'(maximally ferromagnetic This would probably not be true

e e e e s coeetion-enrgy sfects werspropety nludén i
within the MFA, three of the stable phases havé equal aver: likely that in real double-layer systems, states with partial

age inner layer densities. Only the three-component phas%olanzatlon may pe stable N SOme regions of density. The
has unequal layer densities. To understand the origin of the2Me MFA behaviotthe restriction to the two extremes of
MFA phases, it useful to consider the five terms that contrib8ither zero or full polarizationis also found for the pseu-
ute to the total energy per unit area in E2@). The firstterm  dospin when the layers are balanced and the interlayer tun-
of Eq. (22) is the kinetic(Fermi energy, which favors dis- neling is zero, except for the three-component phase, which
tributing the particles equally among the subbands and spinfas partial pseudospin polarization.

At the highest densities, the kinetic energy term dominates, The four-component and two-component phases both
and the double-layer system is a four-component spin anflave equal subband densities, so their MFA energies are in-
pseudospin paramagnen; =ng =Ny =Ny =nt/4. The  dependent of the layer separatidnlf there were a direct
second term of Eq(22) is the tunneling energy, which we ransition between these two phases, it would be simply a

take to be zero for now. In general, it favarg>ny, (pseu-  gpin paramagnetic to ferromagnetic transition in each sub-
dospin polarization without regard to the real spin. The band or layer. Therefore, within the MFA, such a four-

.th;}rd terhm oftEq.(ZZt) IS th(; glectrtnlstat|c energyi wh|c(;1 \I/an- component to two-component transition would occur at the
IShes when the gates and Inner fayers are baianced. In gegy o layer density as the spin-polarization transition for a

eral, the electrostatic term favors complete screening, which. : .
would maken, = pe andn,=pg, without regard to the real single-layer system with a layer density equal to the subband
1EF 27 FB densities: i.e., for(2,4)=3m(1+ \1/2)/8~2.011, indepen-

spin. : : .
The fourth term in Eq(22) is an intrasubband exchange dent of the layer separation. As we dllscuss below, the direct
ur- to two-component transition is interrupted by a three-

term that dominates at the smallest densities and layer sep%?— i .
rations. It has the opposite effect of the kinetic energy, evencOmponent phase, which has one subbdlayen spin-
tually producing a one-component spin and pseudospin feolarized and the other spin-unpolarized. So it is still true
romagnet at very low densities and small layer separationghat MFA spin-polarization transitions occur near

The last term(containing the interlayer exchangéavors — ~T1(2,4). However, the actual value of needed to obtain
pseudospin paramagnetism,(=n,J), but is indifferent to  spin polarization in a real sample is likely to be significantly
the polarization of the real spin, so long as it is the same irhigher. For single-layer systems, diffusion Monte Carlo
both subbands. Thus whex=pg andd>0, the last term simulations show that the low-density ferromagnetic state
and the electrostatic terms are responsible for producing predicted by the HFA does occur; however, correlation-
two-component phase that is ferromagnetic in real spirenergy effects move the transition to densities that are prob-
rather than in pseudospim,, =ny; =n/2. (At d=0, two-  ably 100 times lower, tas~202® Such high values of
component states that are ferromagnetic in either the spin drave been achieved in low-densipytype GaAs samples,
pseudospin are degenerate. or0, the pseudospin ferro- which possess a larger effective mdasd therefore larger
magneticp=2b state is favored only for substantial tunnel- rg) thann-type sample$’ Large values of the effective mass
ing t and/or layer imbalancipe— pg|.) In the absence of the will favor the existence of the lower-componemt<(4) de-
kinetic energy ternie.g., in the limitm* — o), the real spin  scribed here, in that they increasg



PRB 61 DOUBLE-LAYER SYSTEMS AT ZERO MAGNETIC FIELD 13891

©0) 1d
r«(2,3~rg’(2,9 1—§a—0 ,

(47)
ro(3,4~r%(3,4

1+2 d
33

to first order ind/ay asd/ay,—0, and

r(2,3~r%2,4

1 1 ag
164/

(48)

1a
rs(3,4)~rg°>(2,4)( 1— EE"),

FIG. 2. Layer-imbalance ratian/(n/3)=1—x in the three- to first order inay/d asd/ay— . Note that bothr4(2,3) and
component phase for,=r(2,4)~2.011. The imbalance decreases r¢(3,4) approachi4(2,4) in the limitd—c. This is because
with increasing layer separation. asd—o, the double-layer system consists of two indepen-

dent layers, andg(2,4) is the interparticle spacing at which

We find empirically that the three-component MFA phasethe spin-polarized and spin-unpolarized energies are equal in
has sing=0. In order to analyze this phase, consider a MFAa single-layer system. Thus, @s-«, the energies of the
ground state with four-, three-, and two-component phases are all equa} at

=rq(2,4).
Npr=(N7/3)(1+x/2), n, =0, We now consider the two-component to one-component
(43)  transition in the MFA. Fod=0, the MFA transition to pseu-
Naj=Na, =(N/3)(1—x/4), dospin ferromagnetism is equivalent to a real-spin paramag-
netic to ferromagnetic transition in a single layer having total
and sind=0, for 0<x=1. Note that the layer imbalance is densityny (rather tham+/2). Thus ford=0, the MFA criti-
given by cal density per layer for the two- to one-component transition
is exactly half the critical density for the four- to two-
An=n,—ny=(n7/3)(1—Xx). (44)  component transition, so that{®(1,2)=3x(y2+1)/8
~2.844. By equating the one- and two-component phase en-
Whend=0, the three-component phase distributes the derergies per area, the critical density for the one- to two-
sities equally between the three componeftitst not be-  component transition may be obtained:
tween the two layeps so thatx=0. As d— =, the Coulom-

bic cost of layer imbalance becomes prohibitive, and 1 r9(1,2) 3wz
so that An—0. We plot the layer imbalance ratio (L2 :1_(1+1/\/§)¥F1(Z)
An/(n:/3)=(1—-x) for rg=r4(2,4)~2.011 in Fig. 2.

As d—0, =1-(1+142)[1-S(2)], (49)

h
(@3diay)  d us where
X~ ———— 6. :
1—r4/(m\2/3) ag z=2ked=2d\4mn;=4+2d/(r )

i - ion i 32 d r{(1,2

to linear order ind/ay, where the last expression in the equa- —2-y2) =25 ' (50

tion above is forrg=r¢(2,4), which is the only value ofg
for which the double-layer system is in the three—componenf
phase for arbitrary layer separation. #s-o,

3 dp g

1=I(ng;=ny), and

31
An a 3 e ao S(z)=§f0 dx e ?{arcco$x) — xy1—x?]
—=l-x~—=—|—|—> =, (46
n/3 d 4 (1+1/J2)m/2| 16d “o
37 2
to linear order iray/d, where the last expression in the equa- = 27117 Z (@~ Li(2)]
tion above is forrg=r¢(2,4). Equation(46) says that the
layer imbalanceAn in the three-component phase is in- 1—(37/32)z+(1/5)22, z—0
versely proportional tal/a, for large values ofl/a,. 3./ .
For infinitesimal d, the energy per unit area of three- maz, Z=.

component phase increases by the amourg®d/( (5D
8¢)(n1/3)? to linear order ind, while that of the four- and Herel; and L; are modified Bessel and modified Struve
two-component phases are unchanged. Equating the threfmctions of the first kind, respectively. The derivation of the
component energy to the four- and to the two-componenabove formula is discussed in Sec. 4C of the Appendix.
energies gives Equations(49) and (50) determiner¢(1,2), which we have
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arealEq. (22)] with respect tod for t>0 gives two possible
solutions. The solution

cosf=0 (52

is always an extremum, and is @ minimum whenever1,
which is true for all phases except=3 near balancep
~pg). Of course, ift were large enough to cause full pseu-
dospin polarizationrfz=ny), then co¥=0.

If I'>1 (three-component phasthen the solution

— t
2 sinf= (53
(I'=1)e?d(n,—ny)/2e
0 0 1 2 3 gives the correct minimum, provided that the right-hand side
is positive and does not exceed unity. Even in the three-
d/a, component phase, will increase f,—n,), but since 6,

—ny) is already finite at=0, sind will be proportional tot,
to first order int.
The effect of including a small amount of interlayer tun-

FIG. 3. MFA (solid lineg phase diagram for a gate-balanced
(pe=pg) double-layer system with=0. At the highest densities

(smallestrg, bottom of figure, the four-component state, which is . . .
both spin and pseudospin unpolarized, is energetically favored. In gellng can often be described perturbatively, and produces a

narrow region aroundr¢(2,4)~2.011 (dotted ling, the three- _SmOOth Increase in the pseudospin pOIa”Zamm__(nb) t_hat
component state has the lowest energy. At lower densitities, a twdS Proportional tot. However, the results obtained in the
component state, which is spin polarized but pseudospin unpolaﬁomb'n_eq limitst—0 andd—0 can depend on the order of
ized, is favored. At the lowest densitiélarger., top of figur¢ a  these limits. For example, a=0, the lowest-energy two-
one-component state which is both spin and pseudospin polarized @mponent phase hasg; =n,, =n+/2 (pseudospin-polarized
favored. The dotted line at the top is a GRPA estimate for the onsddut spin-unpolarizedfor arbitrarily small but finitet. How-

of the one-component phase. ever, att=0, the lowest-energy two-component phase has
Na; =Np; =N1/2 (spin-polarized but pseudospin-unpolariged
for arbitrarily small but finited. By comparing the MFA
energies per unit area of two competipg2 ground states
with cosf=0 (spin-polarized p=2a versus pseudospin-
polarized p=2b), it can be shown that the pseudospin-
polarized two-componenfp= 2b) ground state requires

plotted as the upper solid line in Fig. 3. It follows from Eq.
(51) that rg(1,2)r9(1,2)—(1+d/ay) in the limit d/a,
—0. The value ofrg(1,2) at very large layer separations
(d/ag—) can be obtained by setting(1,2)/r{?(1,2)=0

in the left-hand side of Eq49) and then solving the result-
ing equation numerically foe. The result isz—4.015, or
ro(1,2)/r 9(1,2)—0.495/a,, so thatr(1,2)—1.409/a,. e%dn o2
We note that if interlayer exchange were ignored and the t> T
pseudospins treated as Ising variables @sif), then the

two- to one-component MFA transition would occur at
r{(1,2)(1+d/ay) (for all values ofd/ay) and would put all

dn;
1-‘(naT:naL:nT/Z): Se I'y(p=2)

_e?dny 16 s
ﬁ[ (2)]

(spin-polarized particles in a single layer. Interlayer ex- 8e

change makes the layer densities equal in the one-component )

MFA state, and causes the two- to one-component MFA e“dny/16e, ked—0

transition to occur at a somewhat lower value refthan - (4132m)e?\nildme, ked—os. (54)

would be predicted using Ising pseudospins.
Herez=2k-d=2dy2mn, andS(z) is defined in Eq(51).
B. Infinitesimal tunneling Therefore it is the size dfrelative toe?dn;/16e that must be
In this subsection, we discuss the effects of very smalfonsidered as botht and d approach zero in the two-
interlayer tunneling. The contribution of interlayer tunneling component phase. A rough estimate of the minimum tunnel-
to the MFA energy per unit area is given by 2t(n, ing energyt. necessary to obtain the pseudospin-polarized
—ny)sin 6. Finite interlayer tunneling thus has two important two-component phase may be made by calculating
effects. First, it removes the Ising character of the spins byg’dny/16e for the smallest value ofiy that still gives the
making sin>0. We discuss this in more detail in the next two-component phase: i.e., for~r%(1,2)~2.844. Ford
subsection. Second, it always produces some degree of pseas0 nm, this gives.~0.7 meV forn-type GaAs and,
dospin polarizationr{,—n,>0). We have parametrized the ~13 meV forp-type GaAs. The differences between these
dependence of the subband splitting, ¢ n,) ontin terms  two values oft, arise from the fact that-type GaAs spin-
of the pseudospin Stoner interaction parameter, which wgolarizes at a much lower density thpriype GaAs, due to
calculate in the second subsection below. the differences in the effective ma&snd therefore irrg.)
We stress that there exist two=2 two-component states,
which can be either spin- or pseudospin-polarized. Pphe
We first consider the effect of interlayer tunneling on the=2 state that we focus on most will be the spin-polarized
interlayer phase anglé. Extremizing the energy per unit state p=2a).

1. Effect of tunneling on phase angle
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2. Pseudsopin Stoner parameter 10 5

|
The differenceAn=n,—n, between the subband densi- o —— =00mev
ties (obtained from SdH measurementsf a balanced 05 | T ey

double-layer system is often used as a measure of the size of
the interlayer tunneling matrix elememtby applying the
formulang— ny=(p/2)tvy, which is valid for noninteracting
particles®> Here p=4 for spin-unpolarized g)articles',):z

for spin-polarized particles, angy=m*/(w/#<) is the two-
dimensional density of states per unit area. For interacting 05t
electrons or holes, the pseudospin Stoner interaction param-

eterl is defined throug#)

0.0

I(d)

0.0 1‘.0 2:0 310 4:0 5.0
(p/2)tvg kd

1= (55
FIG. 4. Stoner interaction parametier 1—2tvy/(n,—ny) vs
For noninteracting particles=0. For interacting particle$,  kgd for n-type GaAs at total densityr=10"* cm 2 for t=0, 0.1,
is a function ofrg andd/a,; in general, it also a function of 1.0 meV.
t. We do not considep=3 or p=1, since both the three-
and the one-component phases haye-n, att=0, corre- expect that a three-component GRPA phase preempts any
sponding tol =1. The onset of SILC{,>n, and sin>0  direct four- to two-component GRPA transition, and that a
even whert=0) occurs at the two- to one-component tran-three-component is always obtained within the GRPAat
sition, and corresponds lo—1 for p=2. =ml\2.

The Stoner interaction paramefecan be calculated ana-  As pointed out in Ref. 23, interactions enhance the sub-
lytically in the limit of vanishing interlayer tunnelingt( band splitting (>0) for ked<<1.13, but reduce the splitting
—0), as we show in Sec. 5 of the Appendikor finitet, we (1 <0) for ked>1.13. The critical value for at larged that
calculatel numerically) The basic idea is to start with equal separates the one- and two-component phases is determined
subband densitiesng=n,) and infinitesimally smalt, and by solving Eq.(56) for | =1 andr— . Asymptotically(for
then calculate the change in energy due to moving an infinir,d/a,— ), it occurs at the same value of that hasl
tesimal amount of charge from subbabdto subbanda. =0, i.e., ked—1.134 or r(1,2)/r{?(1,2)—0.620/a,,
Minimizing the change in energy with respect to the amouniyhich givesry(1,2)—1.764/a,. Within the GRPA, SILC
of charge transferred between the subbands gives the linegecurs once the interparticle spacing is roughly twice the
response to small interlayer tunneling and yields the foIIow-imenayer spacing. In the limitked—o, 1(d)/1(0)=1
ing expression for the—0 limit of the Stoner interaction —(1/2)[ In(4ked) + y], where y~0.5772 is Euler's constant.

Na—Np=

parameter: In Ref. 23 it is argued that althoudlid) is large and nega-
voe2 - tive asd—oo, its apparently divergent behavior is an un-
| = °_< 1— p—kpdro) physical artifact of the GRPA.
2meke 4 We have calculated the Stoner interaction paramiefer
_ a few values of the interlayer tunnelingn Figs. 4 (-type
2l oy k- [ [V12(2KeX) = Vi 2KeX) | GaAs and 5 (-type GaAs$ for a hypothetical sample with
11(2K) X > . L
™ 0 V1—x total densityny=10'" cm 2. The complete polarization of

" 2ked'sing the pseudospinn,=ny) is indicated by the mesalike regions
s [p - Efw deu (56) wherel becomes flatn,; =n, =n+/2 for n-type GaAs and
2)o sing ’ Na =Nt for p-type GaAs. Increasing the size bffavors

T N2

where ke=4mn /p for p=2,4, and To=T(ny—ny). pseudospin polarization and allows it to persist to larger val-
Equation(56) is equivalent to the generalized random-phase
approximation(GRPA) result in Eq.(14) of Ref. 23.

Note thatl=1 (when p=1) corresponds to SILC, and
that the GRPA result for the phase boundary, which is shown 05 |
as the dashed sloped line in Fig. 3, is differémds larger )
than the MFA result. That the GRPA gives a higher value for
rs(1,2) is not surprising, given that the GRPA goes beyond S oot
MFA and contains correlation effects in an approximate way.
To lowest order ind, 1(d)/1(0)=(1—d/ag), so that ford
—0, the GRPA gives a higher critical value of the interpar-
ticle spacing for SILC than the MFArg(1,2)~m(1
+d/ag). As expected, a similar calculation of the linear re- 1.0
sponse of the real spins to a weak Zeeman field shows that a
hypothetical four- to two-component GRPA transition would
occur at twice the density of thel=0 two- to one- FIG. 5. Stoner interaction parameter 1—2tvg/(ny;—Nny) VS
component transition, i.e., at(1,2)=/\2. However, as kgd for p-type GaAs at total densitg; =10 cm2 for t=0, 0.1,
with the MFA, we 1.0 meV.

1.0

—— t=0.0meV
—-— t=0.1 meV
e 1=1,0 meV
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TABLE I. Subband occupancies of the five possible noncrystalpolarized and can have<Gsin #<1, with the value ofg be-
line MFA ground states fora}double-layer system with gate imbal-ing determined by the layer separation, density, bias, and
ance (pg—pg|>0) or tunneling (>0). tunneling. The first three phases are Ising-like @#D)
whent=0, and therefore do not involve interlayer exchange,
in the absence of interlayer tunneling. Note that there are two
p=3 Nay=Na =Ny, >0 Ny, =0 p=2 phases, one that is pseudospin-polarized but spin-
unpolarized p=2b), and another that is spin-polarized but

p=4 Nai =Ng =Ny =N, >0

p=2a Nay=Np; >0 Nay=Np, =0 pseudospin unpolarizeg & 2a). The pseudospin-polarized
p=2b Naj=Na; >0 N =Np, =0 p=2b reqqirgs b_ias and/or tunr]eling. For all MFA phases,

the real spin is either fully polarized or completely unpolar-
p=1 Nap =Nt Ng;=Np;=np; =0 ized.

We begin this section by studying the case of vanishing
] . ~interlayer exchange, which is the relevant situation for the
ues ofkgd. Note that at fixedt, the Stoner interaction is majority of double-layer samples that have been studied ex-
equal tol pa=1—2tyg/nr asked—0, so thatl ., decreases perimentally, except in the quantum Hall regifi€his is the
with increasingt. The fact thatl ,,,,(t=0.1)>1,(t=0) is an  case when layer separations are sufficiently far apart that
artifact of the order in which the limits—0 andd—0 are interlayer exchange is negligible in zero or weak magnetic
taken: for any finitet, the two-component phase will have fields. A model without interlayer exchange is able to fit
Na;=Ng =n¢/2 as d—0, but for any finited, the two-  existing double-layer data well, and obtains the correct four-,
component phase will have,;=n,,=n{/2 ast—0. For three-, and two-component phases, although it fails to prop-
n-type GaAs witht=1 meV (dotted line in Fig. 4, the sys- erly describe the one-component phase. We then include the
tem goes through three phases as a functiokof (1) a  effects of interlayer exchange and solve for the subband and
pseudospin-polarized two-component phas@,; €n,; layer densities using our MFA, which allows for the possi-
=n¢/2) for ked—0, (2) a three-component phase( bility of interlayer exchange, even in the absence of inter-
=n, <ny,) for intermediate values d:d, indicated by the layer tunneling. Finally, we give a full treatment of the one-
“missing piece” on the right side of the mesa in Fig. (&) component phase within the MFA, including bias and
a real-spin-polarized two-component phas@, En,;  tunneling.
=n4/2) for largerkgd—oo.

SILC is indicated by having(t=0)=1 and occurs only
for p-type GaAs(Fig. 5, for ked<<0.7): 1(t=0) is directly A. No interlayer exchange
proportional tov,, and therefore to the effective mass of the 1t s simplest to begin our study of the effects of layer
particles, so that SILC is more likely to be observegitype  impalance pg+ pg) by first considering the limit of vanish-

(m*/me~0.3) rather tham-type (m*/m~0.07) GaAs. ing interlayer exchange. This limit is relevant to most of
double-layer samples that have been studied experimentally,
V. EFFECT OF BIAS except in the quantum Hall reginidt corresponds to layer

separations that are sufficiently far apart that interlayer ex-
change is negligible in zero or weak magnetic fields. We
shall also demonstrate that a very simple model which as-
sumes that the particles are always spin-unpolarized gives a
N =pe®(pe), N,=ps®(pa), (57) good fit to existing data on the subban_o_l occupancies of
double-layer systems, except at low densities.

In this section, we study the effect of biagg# pg, due
to applied gate voltage®n the subband and layer densities.
The classical results

and

Ve=eDrEr+edE,+ eV(FO) (58 1. No tunneling

give the asymptotically correct behavior for high layer den-  Interlayer exchange is negligible when the layer separa-
sities and large layer separations. Double-layer systems 4PN iS large compared to the interparticle spacing. This con-
low densities and small layer separations show measureabfliion may be expressed in various ways: elg:(>1 or
deviations from the classical behavior, most notably becauses<d/@o, and is satisfied for most samples. In this limit, we
of quantum-mechanical exchange. We shall find it conveldnore interlayer tunneling and correlations and write the
nient to study the effects of layer imbalance by fixing the®xchange-correlation energy in E§) as
total density Or=pg+pg) and then varying the gate-
imbalance parametef, defined by

e(Ng,Nz)~e(Nny)+e(ny), (60)
_Pr=PB

=p +p =(pe—pg)/nt. (59

ForB wheree(n) is the sum of the kineti¢Fermi), exchange, and
The case of balanced gatgs-& pg) corresponds t@=0. correlation(but not the electrostaticenergies, for a single-

In the presence of bias and/or tunneling, there are fivdayer two-dimensional electron gé8DEG) of densityn. In
possible noncrystalline MFA ground states, which we writethe absence of interlayer exchange and tunneling, we can
in order of increasing¢ in Table I. Only the last §=1)  work directly with the layer densities rather than the subband
phase can exhibit SILC. The last two phases are pseudospidensities because the pseudospins are Ising variables:

{
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Ng=maxny,Ny), Np=min(ny,n), s(n) e au(n) 1/4— (\2Im)l(47agyn), n>n,
(61) a e%a, N |1/2-(2Nm)/(4magyn), n<n,
7, Pr<Ps

0=m0(pg—Pr) =
(64)

0, P>Ps {1/4—(@/4w)r3, n>n,

_ “n.
so that sir=0. 12— (12m)rs,  n<n.

No interlayer exchange is required to correctly describeNote that the MFA compressibility can be calculated from
the four-, three-, and two-component MFA phase$=a, the above result using E(), and thats(n) and thereforec
since all have sif#=0. Our analysis of these phases thereforeare negative at sufficiently low densities. The leng(m)
proceeds as before. It is nonetheless useful to look at thaend the compressibility jump discontinuously ah=n.,
phases of system in terms of the equilibrium and stabilitywhere the ground state changes abruptly from spin-
conditions of Sec. Il, which we do below. unpolarized to spin-polarized. For densities just aboye

Although it would be straightforward to include intralayer s(n;)/a,~0.0237, while for densities just below,,
correlation-energy effects ia(n), we do not do so here for s(n_)/a,~0.1799. Sensitive measurements of the interlayer
the sake of simplicity. Even so, the resulting approximatecapacitancee.g., the Eisenstein ratiBz) could detect the
model does a very good job of fitting SdH data until the layerexchange-driven spin polarization of a 2DEG through its ef-
densities get so low that they violate our initial assumptionfect on the compressibility, especially ip-type GaAs
thatked is large. We therefore begin with samples when the density in a layer could be made small
enough to polarize the holes in that layer.

It is straightforward to calculate the effect of spin polar-
ization in a low-density layer oRg using Eqs(12) and(64).

For the usual case in which the interlayer separatiois

2 2
ns 8 e 4,

v 3\/; die Ns

e(n)~2,

S

n2/2v0—(8/3@)(e2/47-re)n3’2, n>n, substantially larger than the electronic lengsfis;) (i.e., for
:| 5 5 3 d/ay>0.2), the MFA gives an abrupt jump iRg by almost
N/ vo—(8/3\m)(e’l4me)n¥?  n<n. a factor of 8, from approximately 0.0287/d for densities

(62)  just abovenc, to approximately 0.179§/d for densities
just belown, . Of course, the MFA overestimates the size of

wheren, is the critical density for the MFA spin-polarization the jump, but it is nonetheless plausible that measurements
transition in a single-layer system. The conditiorn, cor-  of Rg could detect changes in the compressibility of a low-
responds to spin-unpolarized electrons and occurs at highelensity layer due to the exchange-driven polarization of the
densities, whereas<n. corresponds to spin-polarized elec- spins.
trons and occurs at lower densities. Whenai#® (which is
the case we are considering in this secijon is the critical 2. Unpolarized spins
density of the MFA(or the HFA spin-polarization transition
for a single layer, which occurs when the single-lagehas o0 |sing-like (sig=0), but also that the real spins were
the valuer(2,4)=(37/8)(1+ V1/2)~2.011, shown as the  giways unpolarized® This limited the phases they found at
dashed line in Fig. 3. Note that= 1/\/7Tna02 for a single- Pe=pg to two: pseudospin-unpolarizeg€4) at high den-
layer system of number density which givesncaj=(2/  sity and pseudospin-polarizeg £ 2b) for low density. It is
3)(4/m)3(1—-242/3)~0.07870. In the MFA, which is straightforward to compare the energy of the four-component
equivalent to the HFA for balanced layers, the spin polarizaphase with that of the hypothetical pseudospin-polarized (
tion is either completely unpolarize@dt higher densitigsor  =2p) phase of Ruden and Wu and show that they are equal
completely polarizedat lower densities Correlation-energy — whenr/r{%)(1,2)=1+ 2d/a,. Although neither assumption
effects probably produce a range of intermediate spin polafwas, strictly speaking, correct, it is an interesting and useful

Ruden and Wu assumed not only that the pseudospins

izations. fact that making such assumptions can yield a simple model
The chemical potential measured relative to layes u;  that fits experimental data for layer densities versus gate bias
=p(n;), where quite well, except at the lowest densities. Figure 6 shows
experimental SdH dat3and a theoretical fit from a simple
m(n)=de(n)/aon theory that ignores interlayer exchange and takes the spins to
be unpolarized. The value of the interlayer separatiaised
n/”O_(Mﬂ)(ezM’T’E) Jn, n>n in the model is taken to be a fitting parameter. The values of

| 2n/vy— (41VT)(e2l4me)Jn, n<n, €3

d that we obtain with this simplified model always locate the
idealized two-dimensional electron layers inside the confin-
where we have used Eqéb) and (62). The values of the ing quantum wells, althougth always seems to be somewhat
layer densities can be determined by using &8 in the larger than the midwell to midwell distance. Note that the
equilibrium condition of Eq(4), u;,— u,=€eE;.d. experimental data fit very well almost everywhere, except
The electronic lengths;; that determine the Eisenstein where the densityn; is very small when layer 1 is near
ratio Rg [Eq. (11)] and the condition for stability against depletion. Here the simplest theofwhich omits the possi-
interlayer charge transfdiEq. (7)] can be calculated from bilities of spin and pseudospin polarizatjarroneously pre-
Egs.(6) and (63). Ignoring interlayer correlations as in Eq. dicts an interlayer charge-transfer instability. As we dis-

(60) givess;;=0 fori#j ands;=s;=s(n;), where cussed in Sec. I, such an instability is unavoidable when
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and ignore for now the effects of interlayer exchange, and we
shall even take the electron densities to be always spin-
unpolarized. Such an elementary model is capable of fitting
experimental data quite well, despite its simplicity.

The Kohn-Sham single-particle equations for our tight-
binding LDF model is conveniently expressed asxa2ma-

e Layer 2

15 | 4 Layer 1

§ 1F trix equation:
(\) (M)
€1 —t Zl Zl
0.5 - (—t 62)(2(2)\)):E)\(Z(2)\)), (68)
0 ; ‘ where
-1 0 1 2
Pe/Ps 1
e=(—1)seEd+ n; 69
FIG. 6. Plot of the experimentétircles and triangleésand cal- ! =1 2 1207+ foxel J) (€9

culated(solid curves layer densitier; andn, vs front-gate num-
ber densityps . A simple model that neglects interlayer exchange, represents the “on-site” energy of laygrand the tunneling
intralayer correlations, and spin polarization, and assumes zemnatrix element—t is off-diagonal. The amplitude of the
layer thickness yields a good fit to the experimental densities, exwave function for subband (A =a,b) in layerj is zj(”) , and
cept whem; becomes small. the subband energy &, . The Hartree contribution to the
on-site energy enters via the interlayer electric field, as
interlayer correlationssg;,) are neglected. According to the shown in Eq.(2). The intralayer exchange and correlation
stability criterion of Eq.(7), the interlayer charge-transfer contributions to the on-site energy are given by the
instability should occur in the simplest theorfspin-  exchange-correlation potential. In LDF theory, w..(n)

unpolarized, no interlayer exchangehen is equal to the derivative, with respect to density, of the
exchange plus correlation energies per unit area of a two-
ra=my2(1+2d/ag) —rg,, (65  dimensional single-layer system of uniform areal denaity

Equivalently, u(n;) is equal tou; [see Eq(5)] minus the
kinetic energy contribution te; . For simplicity, we do not
include intralayer correlation energy contributionsutg., so
we write

wherer ;= 1/\/7rniao2 is the dimensionless interparticle sepa-
ration in layeri, and we have taken;<n, (orrg=rg,). At
balance, settings;=rs, in Eq. (65) gives r=(m/2)(1
+2d/ay) as the GRPA version of the critical particle sepa-
ration for the Ruden-Wu hypothetical pseudospin- 4
polarization @=4—p=2b) transition. [In the MFA, 4 e
r5(2b,4)=r(S°)(2,4)(1+ 2d/ag) gives the Ruden-Wu hypo- Hxe(N)= N 47T€\/ﬁ, (70
thetical pseudospin-polarization transition at balahce.

Note that even in the limit of equal layer densities and
zero layer separatiomg; = \/7/2, which is the GRPA value
of the particle separation for a single layer to spin-polarize. 2
Thus even in a theory that neglects interlayer correlations, .= 2 N |z(")|2 (71)
the particles in the lower-density lay@r both layers, if they = B
are balancedspin-polarize before the layer empties out. As
noted in Ref. 17, the spin polarization of the electrons prewhere
dicted by the HFA was ignored by Ruden and WuHow-

2

The density in layef is given by

ever, including the spin polarization does not eliminate the N,=(Eg—E,)v,®(Eg—E,) (72)
interlayer charge-transfer instability, which according to Eqs.
(7) and (64) would occur at is the areal-density contribution from subband and v,
=m*/xh? is the two-dimensional density of states for non-
Fo>2m(3/4+dlag) — /2, (66) ! mens! il

interacting particles. The self-consistency of the Kohn-Sham
when layer 1 is spin-polarized but layer 2 is not, and at ~ €quations enters via Eq&1) and(72), since the layer den-
sitiesn; , together with the gate densitips , determine the
rqg=2m(l+d/ag)—re, (67) interlayer electric fieldE,, appearing in Eq(69). The Fermi
) ) . . energyEr is chosen so that the sum of the subband densities
when both layers are spin-polarized, if interlayer correlatlonq\lA is equal to the total densityr + pg .
could be ignored. This simple LDF model, which takes the layers to have
zero thickness and assumes that the real spins are unpolar-
3. LDF model ized, is capable of fitting the experimental layer density data
We now introduce a tight-binding local density functional closely. This is illustrated in Fig. 7, which shows SdH data
(LDF) model, which includes the effects of interlayer tunnel-taken from sample A of Ref. 20. The front-gate voltages
ing in a simple way. We shall follow the previous section used in Fig. 7 were calculated using E§8).
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* _(na_nb), X=-1
" (ny—ny)={ (Pe—pe)/(1-T), —1=X<1 (74
12 (Na—ny), X=1.

In the special case of interest whéd <1 (which requires
p=1), we can calculate the Eisenstein réfp at the point
where the layers are balanced:

10

subband densities (10'°cm™)
>

[e¢]

»

1 r
Re(Pr=pg)=— 5(1_ 5PB/5DF)ﬁ, (75)

where we have used Eg$10) and (74). (Recall that
opg/Spe=~0 if the back-gate voltag®y is kept fixed, but

: : : that Spg/Spe= —1 if the total density is kept fixed.
V-(()'\}) 00 01 02 Within the tight-binding model of tunneling, the MFA

F model shows that any finite value of the tunneling matrix
FIG. 7. Experimental subband densities figr(squaresandn, ~ €lementt prohibits either layer from completely emptying

(circles vs front-gate voltage, together with féolid curve from  out, regardless of the gate charges (pg). Extremizing the
tight-binding LDF model. energy per unit areEq. (22)] with respect tod for t>0 and
pe# pg shows that neither si®=0 nor cosf=0 are ever
local extrema. Wher is small andpg<<pg, including any
o i ~ negative values opg (i.e., for {<—1, roughly speaking

We now allow for the possibility of interlayer exchange in then extremizing the energy per unit area yields
biased systems. We found that for balanced systems, inter-

layer exchange becomes important only at low densities and t/(e?dnq/2¢)
small layer separations, occuring only in the one-component T O~ m (76)
phase. In this section, we explore the effect of interlayer
exchange on biased double layers, and find that it can reduge lowest order int/(e?dn;/2¢). This result is a local mini-
or suppress interlayefalthough not intersubbandcharge  mum provided that it is positive, which is true in the limit we
transfers. We find that bias always increases pseudospin pare considering here. It follows from E@21) that n,/n;
larization and sometimes reduces the total density required te (/2)?, so thatn,>t?. Hencen,, although small, is always
achieve SILC. nonzero fort>0. In actual samples, large bias changes the
tunneling matrix element Sufficiently large bias shifts the
1. Interlayer phase angle bottom (minimum energy of the wells relative to one an-
other so greatly that can be driven(for all practical pur-
poses to zero.
Interlayer exchange is significant only when the layer
NYensities and their separation are sufficiently small. In order
for interlayer exchange to contribute, there mustbemore
particles in one subband than anothes>n,), and(2) non-
zero sind (6+0,m). Thus, for example, the case of balanced
layers with6é= /2 at very low densitiesr(;; =ny) is a situ-

-04 -03 -02

B. Interlayer exchange

When the interlayer tunnelingis zero, it is possible to
determine the equilibrium value @fthat minimizes the total
energy per unit area, in terms of the equilibrium subba
densities. Extremizing Eq(22) with respect to# for n,
>n, gives

— -

Lo x=-1 ation in which interlayer exchange contributes strongly. We

cosf=9 X, —1sXs<l1 discuss this case in Sec. VI, and we find there that interlayer
1, X=1 exchange does indeed suppress interlayer charge transfer.

(73) For the case of unbalanced layers at high total density, gen-

erally n,>ny; but whent=0, 6 is usually equal to O otr,
(Pr—Ps)/(Ng—Ny) so that in the MFA, interlayer exchange does not contribute.
X= 1-T ' Near depletion, where one of the layers empties out, the situ-

ation is not as clear, so we now analyze that situation in
some detail later below.
wherel is defined in Eq(26). In the four-component phase, Even with interlayer exchange, it turns out that the MFA
the kinetic energy dominates over the exchange energy, andlodel is always unstable with respect to an abrupt exchange-
(na—Np)<|pr—psl, so that si=0. In practice, the only drivenintersubbandcharge transfer fronlow-density sub-
time that we find|cosf<1 (for t=0) is in the one- bandb to (higher-density subbanda when the particle den-
component phase. For E(.3) to minimize the energy with sity in subband gets small enough. The abrupt intersubband
respect tod, the second derivative of the energy with respectcharge transfer is probably an unphysical feature of the MFA
to # must be positive, which is equivalent to requiring thatmodel that is not observed in real experiments. We believe
I'<1. If I'>1 (which is true for thep=3 phase near bal- that a proper treatment of the correlation enerdighich
ance, then cog==*1. have been entirely omitted heraould help fix this short-
It follows from Egs.(21) and(73) that coming. Nevertheless, we can still investigate what the MFA
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By taking the second derivative of E(.7) with respect to,

bands are in general different from the layers, when we inwe find that Eq.(79) is a local minimum provided that

clude interlayer exchange.

2. Subbands densities nearly equal

We now consider the limit in whichAn=(n,—ny)

<n;, so that the double-layer system is only slightly

pseudospin-polarized. This will be the case for the two- (
=2a) and four- p=4) component ground states for small

and |pg—pg|. We begin by computing the change in the

ground-state energy per unit area due to changdingfrom
zero to a small but finite value. Expanding E22) to second
order inAn gives

A& (An)? _ e (An)?
= —tAnsinfg— —
LXLy Pvo 47e Vpmny

ed )
+ E[An cosf—(pr—Ps)]

e’d(An\? 2 .
0%¢ | 7| SO, 77
where
o= lim T. (79)
naﬁnb

The quantityl' is calculated in Sec. 4 B of the Appendix.
Extremizing Eq.(77) with respect tof gives
e’d _
— 2t cosf+ Z(pp— pg)siné
e’d _
=(1—FO)ZAn siné cosé. (79

_ e’d
2t sinf+ Z(pp— pg)cosé
e’d
—(1—FO)ZAn c0g260)>0. (80)
Except forp=3 near balance,91';<1, so that
0<1-Ty<1. (81

Hence Eqgs(79) and (80) imply that if t>0 but |pg—pg|
=0, then co®=0 so thatd= /2 (except forp=3.) If, how-
ever, |pg—pg|>0 butt=0, then siP=0 so thatd=0,7
(except forp=1.) There is thus a competition between the
effects oft and |pg— pg|. If neithert nor |pg—pg| is zero,
then sing+0 and co®+0. In the limit that @>d/2¢)|pg

— pg|<t, then

e?d/2 -
( €)(Pr—Ps) -

cosf~ ot

1 (82

for An—0. On the other hand,
<(€e%d/2€)|pe— pg/, then

in the limit that

2t
no~ 5
(e*d/2e)[|pe—ps| — (1—To)An]

<1. (83

In general,§ must be solved numerically.
Extremizing Eq.(77) with respect toAn gives

2t sin 0+ (e2d/e)(pg— pg) cosb

which is a local minimum provided that its denominator is
positive, as may be seen by computing the second derivative

An= , 84
" 4lpvo+ (€2d/2¢)(cog 6+ T osirf 0) — (e?/4me) (AN pmnyT) ®9
|
1 (p/2)d/ag
Re==|1+— 2 | 86
=2 (i) 9

of Eq. (77) with respect toAn. Note that both interlayer
tunneling (t) and gate bias|pg— pg|) produce pseudospin
polarization(increaseAn).

When pe=pg andt is (arbitrarily) small but nonzero so

that 0= 7/2, Eq.(84) yields the pseudospin Stoner enhance-

ment factor in Eq(56). This is discussed in more detail in
Sec. IVB 2.
When sind=0 (which requires=0), then Eq.(84) gives

An d/ag
Ipe— P8l drag+(2/p)[1—ro/(m\2Ip)]

This is the case for thp=2a and p=4 states forAn/n;
<1. It follows from this that near balanceg~pg), the
Eisenstein ratio for fixeghg is given by

(85

where we have use of E¢L0). Equation(85) says that, when
sin#=0, thenAn<|pg— pg| for smallAn/n;, provided that

rs<<mv2/p.

(87)

Now, the GRPA estimate of the interparticle separation re-

quired for spin polarization in a single two-dimensional layer

is r¢=m/\/2, which is just the right-hand side of E®7) for

p=4. We therefore expect that, as long as the ground state

has four components, it will be true thAn<|pg—pg/|, and

this is indeed what our MFA calculations find for sma]l.
According to EQ.(85), An<|pg—pg| for small An/n;

for p=2a until rg> . The interparticle separatian= 1 is

also the GRPA estimate 0f”)(1,2) required for pseudospin
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FIG. 8. Normalized subband densities and the ratm: (
—pe)/(nya—ng), VS average interparticle separatiog, for fixed
d/ag=>5 and fixed gate-imbalance paramefer0.2. Thep=4, p
=3, andp=2a phases are obtained successively ds increased.

polarization. Thus fod>0 we expect that at higher densities
(smallry), An<|pg—pg| throughout thep=4 state and in
the low+ region of thep=2a state, but thatAn>|pg
—pg| for the highr region of thep=2a state, at least for
small An/ny. This is in fact what our MFA calculations
show. It is also true that in thp=3 phase(which hasAn
>0 even wherpe=pg), An>|pe—pg| for {<1, although
not for £ on the order of one. Of course, fog sufficiently
small, pseudospin polarization occurs so that=n;>|pg
—Ppgl-

Figure 8 shows a plot of the subband densitigsand the
ratio (pe—pg) /(ny—Np) versusr for fixed layer separation
d/ag=>5 and fixed layer imbalancé&=0.2. For smalrg, the
p=4 phase is obtained, ang{—pg)/(n;—ng)>1. Forrg
~2.011, thep=4 phase is obtained, andod—pg)/(n,
—ng)<1. For largerrg, the spin-polarizegp=2a phase is
obtained. Note that fop=2a the ratio g— pg)/(ny—Ng)
is larger than one for smallery, but smaller than one for
largerrg. For even largerg (not shown, the p=1 phase
would be obtained with gr— pg)/(ny—ng)={¢, which in
this case hag=0.2.

If the denominator in Eq(84) is not positive, then the
global minimum for the energy per unit area occurs Aor
=ny, corresponding to pseudospin polarization. Thus th
GRPA condition for stability against abrupttersubband
charge transfer is just the condition that denominator in Eq
(84) be positive, or equivalently

d

Qp

+(2/|o>[1—rs/<W%>]

(co26+ I ysintd) -0

(89

When sind=0 (which requires=0) so that the pseudospin
is Ising-like and interlayer exchange does not contribute
then Eq.(88) is equivalent to the stability condition against
abruptinterlayer charge transfer given in Eq7), when the
electron lengthss(n) are approximated by Ed64). When
cosf=0 (e.g., whenpg=pg andt has any finite positive
value), then the violation of the inequality in Ed88) is
equivalent to the condition that the pseudospin Stone
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ehancement factdr given in Eq.(56), is equal to one, which
signals the transition to pseudospin ferromagnetism and
SILC. Because &1I'y<1, the gate imbalance|dr—pg
|>0, so that sifg decreases and casincreasesmakes the
double-layer system more unstable towards pseudospin po-
larization.

3. Subband densities versus bias

In this section, we show some illustrative calculations of
the effect of layer imbalance. We plot the subband densities
n,s and the value of” versus the gate-imbalance parameter
{=(pr—pg)/nt at fixed layer separatiod/a,=5 assuming
zero interlayer tunnelingt& 0), for different values of .

We find that if we fix layer densityor equivalentlyr) and
vary the gate-imbalance parameterthen (for t=0) there
are six distinct patterns of transitions between noncrystalline
MFA ground states. We list the six possibilities below, in
order of increasing layer imbalan@eeginning a=0) from

left to right, and in order of increasing average interparticle
separation per layers from top to bottom.

(1) rs<ry3,4): (p=4)—(p=3)—(p=2b), all with
sin#=0.

(2) ry(3,4)<rs<r¢2,3):
sin#=0.

(3)  rg(2,3)<r <+2ry(2,4):
=2b), all with sin6=0.

(4) J2ry(2,4)<r.<r((1,2) and{.;>(1-T;): (p=2a)
—(p=1), all with sing=0.

(5) V2ry(2,4)<rs<ry1,2) and{.<(1-T,): (p=2a)
—(p=1), with sin6>0 for {.<¢{<(1-T).

(6) re>rg(1,2): (p=1) only, with sing>0 for 0<¢
<(1-T9).

Here (p=2a) denotes the spin-polarized two-component
state, p=2b) denotes the pseudospin-polarized two-
component state, angl. is the value of the gate imbalance
parameter{ at which the p=2a)—(p=1) transition oc-
curs. The quantity/2r«(2,4) appearing in casdd) and (5)
above correspond to the critical dengityfor the MFA spin-
polarization transition for a single layer, expressed in terms
of the average interparticle spacing per Iayexlﬁ(nC/Z)aoz.
(Note that for the same total density, a double-layer sys-

tem has an average layer= 1/\/17(nT/2)a02 that is+/2 larger

(p=3)—(p=2b), all with

(p=2a)—(p=3)—(p

ethan the single-layers= 1/\/7rnTa2.) The quantityn,. is dis-
0

cussed below Eq(62). We shall illustrate the first four of
these possibilities in the remainder of this section, and dis-
cuss the last two possibilitiggvhich exhibit SILQ in Sec.

VI. It is evident from the above list that SILC, which re-
quires sink#0, occurs only forpp=1.

Figure 9 is an example of cag®), with r¢=1. This gives
a four-componentf=4) phase when the gates are balanced
(£=0), and maintains @=4 state for most of the range of
¢, followed by ap=3 state for{ near one. If we were to
jncrease! beyond one(not shown, corresponding tgg
<0, then a pseudospin-polarized=2b state would be ob-
tained.

Figure 10 is an example of cas®), with rs=r(2,4)
~2.011. This gives a three-componem=(3) state when
the gates are balanced= 0), and maintains p=3 state for
most of the range of, followed by a pseudospin-polarized
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FIG. 9. Normalized subband densities and interlayer exchange FIG. 11. Normalized subband densities and interlayer exchange
parameter’, vs layer-imbalance parametér= (pg—pg)/ny, for parameterl” vs layer-imbalance parametér= (pg—pg)/ny, for
d/ay=5 andrg=1. Thep=4 state is obtained except f¢mear 1, d/ayz=5 andr,=2.5. Thep=2a state is obtained fo£<0.6, fol-
where thep=3 state is obtained. Beyont=1 (not shown the p lowed by ap=3 state for 0.6.{<0.8, and then a pseudospin-
=2b state is obtained. polarizedp=2b state for{>0.8.

p=2b state for{ near one and beyond. Note that for small sponding to full pseudospin polarization. There are two types
, I'(p=3)>1. of pseudospin-polarized MFA ground states: spin-
Figure 11 is an example of ca$8), with r¢=2.5. This  unpolarized p=2b), and spin-polarizedg=1). The spin-
gives a spin-polarized two-componeri=2a) state when unpolarized case requires either interlayer tunnelingQ)
the gates are balanced=0), and maintains @=2a state  or gate imbalancéps—pg|>0, or both. In the absence of
for £<0.55, followed by gp=3 state for 0.55:£/<0.95, and  tunneling, the pseudospin-polarized=2b state has sif
then a pseudospin-polarized=2b state for{>0.95. =0 (Ising-like pseudospin and occurs whenever the total
Figure 12 is an example of cagd), with r¢=9. This  density and the layer imbalance are sufficiently large. If the
gives a spin-polarized two-componerg=2a) state when tunnelingt is sufficiently large and the total density is not
the gates are balanced<£0), and maintains @=2a state  too small, then it is possible in principle to obtairpa 2b
for {<{.~0.45, followed by a one-componerp€ 1) state state with co®=0, for p-=pg. Tunneling also reduces the
for {>{.. Becausel,>1—-1";, sind=0 throughout, and value ofrg required to achieve thp=1 state. Because the
thus no SILC is found. In the next section, we consider val{pseudospin-polarizep=2b MFA state does not occur with-
ues ofrg large enough that thp=1 state is achieved for out bias or tunneling, we shall focus mainly on the spin-
{.<1-T4, thereby producing SILC. polarized one-componenp& 1) phase, which can in prin-
ciple arise without bias or tunneling. The one-component
VI. PSEUDOSPIN-POLARIZED STATES phase is especially interesting because it can occur as a
broken-symmetry ground state of a double-layer system in
In this section, we consider the case in which all the parthe absence of tunneling or layer imbalance, at very small
ticles are in the lowest-energy subband,€ny), corre-  particle densities and layer separatiohs.

1.0 1.0 y
J
/""‘ —_rT
O = Ny
0.8 0.8 /./ -===nin,
/,/ === ning
e == myiny
06 | 06+ 7
<
\\
0.4 | 0.4 | ~o
~
~
~
~
~
0.2 + 0.2 + AN
N
AN
AN
\
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! 0.0 0.2 0.4 0.6 0.8 1.0

FIG. 10. Normalized subband densities and interlayer exchange FIG. 12. Normalized subband densities and interlayer exchange
parameterl” vs layer-imbalance parametér=(pz—pg)/ny, for parameterl” vs layer-imbalance parametér= (pg—pg)/ny, for
d/ap=5 andrs=r(2,4)~2.011. Thep=3 state is obtained except d/ayg=5 andrs=9. Thep=2a state is obtained fof<{.~0.45,
for ¢ near 1, where the pseudospin-polariped?2 state is obtained. followed by ap=1 state(without SILC) for {>¢..
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Whenn,=nt, the ground-state enerd?22) becomes 1.0
& nf . 8 € ., 08 | ‘
LxLy—E—tnTSIH G—W mn-r //./ K
e’dn? , sirfg e*d n%r " 0er
+ Be (cosf—¢) +TT 1, (89 047\\ .
: Ny e = Rty
wherel';=T'(n,=n1) and{=(pg— pg)/ny. The properties AN I
of I'; are described in Sec. 4 of the Appendix. Equati®®9) 02 | N N ,.:I/z',
includes the two casep=1 (n,;=ny) and p=2b (ny, o sinb
=N, =n¢/2). Fort=0, thep=2b case has co#=*1, so ) f ) ) )
we will focus on the spin- and pseudospin-polarized one- 90 02 04 06 0.8 1.0
component p=1) ground state. ¢

FIG. 13. Normalized subband densities, interlayer exchange pa-
rameterl” and normalized interlayer density matrix ginvs layer-
The pseudospin-polarized ground state offers the possibiimbalance parametef=(pe—pg)/ny, for d/ag=>5 andr =11.
ity of SILC. Recall that SILC occurs when the off-diagonal The p=2a state is obtained fof <{;~0.45, followed by ap=1
(or interlayey density matrixp,, is nonzero in the absence of state with SILC for{;<{<1-T';. SILC is lost for{>1-T";.
interlayer tunneling:

A. Spontaneous interlayer coherence

1 so that sirg in nonzero only for|{|<1-T; and for n,,
plzzz <CIksC2ks>: =(ny—ny)sind+0, (90 =ny. It is interesting to note that when the ground state is
ks 2 pseuodspin-polarized, the dependence of the layer densities
which requires both finite pseudospin polarization¥n,) ~ ON external parametere.g., layer imbalancg) does not
and sind=0. In the pseudospin-polarized ground statg ( involve the effective masms* of the electrons or holes.
=n;), p1, IS just the geometric mean of the layer densities: We have found that layer imbalances# pg) can induce
SILC at higher total densities than in the balanced case. This
1 — is illustrated forrg=11 in Fig. 13, which is an example of
p1z=5 NTSING=VNiNy, (92) case(5) introduced in Sec. V B 3. Figure 13 shows a spin-
polarized two-componentp=2a) state when the gates are

where we have made use of H47). So if the pseudospin- cjﬁalanced (=0). and maintains @=2a state for /<,

polarized ground state has some density of particles in ea

layer, it has interlayer phase cohereneg0. Note thatin  —~0-28, followed by a one-componenp<1) state for{
the one-component phase, >{.. Because/<1—1T"q, sing>0 for {<{<1-T'4, pro-
ducing SILC in a finite region of layer imbalance away from
sinf@=(potps))/nt (920 (=0, at a smaller value of than is required to achieve
; ; . : ILC for balanced layers.
measures the interlayer density matrix, normalized b the‘S : . ,
total density y y y When the toal densitfand layer separationare suffi-
Fort=0 éndpzl Eq.(73) gives ciently small, thep=1 phase with SILC is obtained even in
’ the balanced case. This is illustrated fqe=15 in Fig. 14,
-1, X=-1
ni—n
- =Ccosf= X, —1=X=1 1.0
T 1,  x=1
08 r
X= ¢ = ¢ (93
1-T; 1—(32/3ap)[1-S(2)]/z 06 | .
s . ﬁjﬁﬁ:
— , 0.4 === nyiny
(32/457)z— (1/24)Z° e
wherez=2krd, and we have made use of E§1). The last 02 |
line of Eqg.(93) holds in the limit thaz— 0. The layer den-
sities are equalr(;=n,) only at exaclypr=pg; when pg 00 , ) ) )
>pg, layer 1 tends to be occupied, and whs< pg, layer Y 02 04 08 08 1.0
2 tends to be occupied. Thus, the hypothetical bistability of §

the one-component phase proposed by Ruden and Wu does

. . . FIG. 14. Normalized interlayer density matrix girand inter-
not exist, due to SILC® Equation(93) gives Y b4

layer exchange parametErvs layer-imbalance parametér (pg

. —pg)/n+t in the one-component phase.(=ny), for d/a;=5 and
Slﬂﬁz\/1_[5/(1—F1)]2®(1_F1_|§|)5naT,nTy (99 rSE':"1)5_Ts||_(; is |ostfor§>p1—rl.p o= °
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S FIG. 16. Layer densities,,n, and normalized interlayer den-
sity matrix 2pi,/ny=siné, in the one-component phase, versus

FIG. 15. Interlayer exchange strengiy 4+ p,9)/nr=sind as a
front-gate densityp /pg, for fixed back-gate densityg .

function of the gate-imbalance parameger (pe— pg)/ny for fixed
d/ag=4.356.
( ar, 9T,
Ny

2—+n
angt on3

which is an example of cas) introduced in Sec. VB 3. 2 2 222 24 ) 97

Figure 14 shows a one-componem={1) state throughout

the range off, with sin6>0 for {<1—1T"4, producing SILC  The quantitys,, may be obtained by interchanging andn,

in that region. Note that ag— o, thenz=2krd—0, so that in Eq. (97).

I'i(z)—1, and thus +T';—0. Therefore the maximum Interlayer correlations produce a nonzero value of the
amount of imbalance& which allows SILC decreases with electron lengths;,. From Eqs.(6), (8), and(96) we have

the density, at very low densities.

Figure 15 shows sifi versus{ at d/ayg~4.356 for the
three values of ¢, where sirg obeys Eq(94). At the lowest
density showni(;=11), the system exhibits SILC when bal- _
anced ¢=0) and under bias, untj=1—1T",. As the density Note thats;=s;,, and that
is raised, SILC is lost for the balanced system but appears
suddenly around’~0.2 forr,=10.5 when an abrupt inter- S$1=S11—S1o= — >
subband charge transfer produces pseudospin polarization
(p=1). Forrg=9 there is only a very small region of layer The lengths, can be obtained frors; by interchangingh,
imbalance( that exhibits SILC, and forg slightly smaller andn,. Note that
than this value, SILC disappears completely.

Using Egs.(89), (91), and (93), we may calculate the s=s;+s;=—TI'4d, (100
energy per unit area(n,n;) defined in Eq.(3), for the 5o that, from Eq.(11), the Eisenstein ratio for fixed total

JT,
S1o= S+ > I'1+(ni— nz)a_nT . (99)

o,
Fl+(nl_n2)p7_nT . (99

one-component phase: density(constaninyg) is
2 2 2 s -T -1
n 8 e e“dnsn _ _ 1
! y2 “2ry, (95 Re=4Ts~1-T,  (32/457)2' (109

S(nl’nZ)zv_0_3\/;47TEnT ¢

wherez=2kgd, and the right-hand side holds in the linzit

wherenry=n;+n,. Recall thate does not include the elec- —0. It is interesting to note tha&z>— 1/d asd—0, just as
trostatic contribution to the energy per unit area. We may usvas found in Ref. 26 for the;=1 2LQH state. For fixeghg
Egs.(5) and(95) to calculateu,, the chemical potential mea- (nearly equivalent to keeping the back-gate volt&gecon-

sure relative to the energy minimum of layer 1, stan},
I'1+(ng—ny)dl’y/ang]
2ny 4 €2 e?dn, dr, Re= St _ [Tt ng)dl/ony (102
Ml—v—o——;m\/ﬂ-r'f'? F1+n1d—nT , (96) d+s 2(1—F1)

which in the balanced caseg=pg so thatn;=n,) gives

where we have used the fact that in the one-componertq. (75), which is exactly half of Eq(101).

phaseI'; depends om; andn, only throughny=n;+n,. Figure 16 shows an example of the one-component phase
The quantityw, may be obtained by interchanging andn, under bias for fixed back-gate densjiy (essentially fixed

in Eq.(96) and can be used to compute the front-gate voltagdack-gate voltage/g.) The normalized layer densitigs,

Ve using Eq.(A3) in the Appendix. It is straightforward to andn, are shown, together with the interlayer density matrix
check that the difference betwegn, and u, satisfies the pi»/pg andI’, and also the Eisenstein ratRy. For pg/pg
equilibrium condition in Eq(4). Equationg6) and(96) may  <0.5, layer 2 contains all the charge,&ny) and layer 1 is

be used to calculate the electronic lengthdefined in Sec. empty, so that Eq.(10) gives Rg=1. For 0.5<pg/pg
Il <2.25, bothn; andn, are partially occupiedp;,= yn.n, is
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nonzero, andRg has dropped abruptly and become negative, 1
reflecting the presence of SILC, with its value in this region
given by Eq.(102. For pg/pg>2.25, layer 2 is emptyn; Re T T
=ny, andRg=0. Figure 16 illustrates an interesting hypo-
thetical situation in which bias and the exchange interaction
have completely emptied out layer 2, despite the fact paat
is nonzero. It turns out that within the MFA, sufficently large
pe would eventually repopulate layer 2. We analyze this
issue further below, when we calculate the energy&gpin
a pseudospin-polarized state,& ny) to an otherwise empty
subband K,=0).

Although Zheng and co-workers showeaithin an unre- ) 1 2 3
stricted HFA that an abrupinterlayer charge transfer does
not occur when the gates are electrostatically balanped (

_ K if bruot interl h ¢ f FIG. 17. Normalized intersubband energy gig, for transfer-
=Ps), One may ask if an abrupt interlayer charge trans erring particles from the occupied lower-energy subbantb the

can occur if the system is bigsed. According to the. MFA(assumed emphhigher-energy subbarig for r.=1,2,3,6,10.
developed here, the answer is yes, except at sufficiently

small densities(We are speaking here of zero tunneling;

S

otherwise, neither layer is strictly empty, according to the ﬂ)z Esin _ i E+£cos¢9(cose— g)}

MFA.) In the MFA, sufficiently strong bias or tunneling or Vg Vg r§ p a

sufficient lowering of the densities eventually produces an

abruptintersubbandcharge transfer, i.e., at some point, \F4 1 i 21 ([e??—(1-2/2)]
suddenly jumps. Whether this translates into abriaper- + E;r_s_s' 4 pre 212

layer charge transfers depends on what happens with the
phase angl®. If sin ##0 (SILC), then the interlayer charge 2 (1 .
transfer is suppressed, or at least somewhat reduced. If the + ;fo dx(1-e *)arccosx) r, (105
density is so high that strong bias produces fhe2b
pseudospin-polarized phase with 60, then the MFA  where {=(pr—pg)/ny, and z=2kgd is the layer imbal-
does give an abrupt interlayer charge transfer, because thamce.
cosf#==1, and there is no difference between subband den- The intersubband gafy;, is useful for at least two pur-
sities and layer densities. So, for example, a system with poses. First, it provides an estimate for the location of the
density that would correspond =4 when balanced will pseudospin-polarization transition. The conditidy,>0
not exhibit SILC. It is likely that including correlation- means the pseudospin-polarized ground state is stable against
energy effects eliminates the abruptness of the transition, buntersubband charge transfers, wherdag<<0 implies the
these effects have not been included here. opposite. Thus, solving the equatidn,,=0 in the MFA
yields an estimate of the location of the pseudospin-
polarization transition. It turns out that this procedure gives a
B. Intersubband gap lower value ofrg for the p=1 transition than the GRPA
The intersubband energy gab., for the pseudospin- estimate(obtained using the pseudospin Stoner enhancement
polarized p=1 or p=2b) phase is defined as the energy factor 1): atd=0, tg‘e MFA A,y _calculation (for t=¢=0
required to move a particle from the occupiadsubband = =c0s6=0) gives r{®)(1,2)=m/2, compared tor{”(1,2)
with n,=n1 to the (otherwise emptyb subband: = from the GRPA. Figure 17 shows,, versusd/a, when
t={=cos#=0 forrg=1,2,3,6. Itis evident thak ,,>0 only
for sufficiently largerg, and that it decreases with layer
s & separationd/a,. Negative values ofA,, indicate regions
Aab=%( ) (103  where the pseudospin-polarized state is not stable.

Liby The intersubband gap has a simple form whersin 0
=0:
for
= 4{1+ 2 1-1a +\F4 ST
Vo r2lp - ao pmrs

Nat—(1/p)(Nt—36Nn), Nyp—dn,
(1049  Equation(106) provides an estimate of when one of the lay-
ers cotains all the particles. It tells us that for sufficently high
Na,—(1—1/p)(ny—aon), ny =0. total density(small rg), A,,<O and both layers must be
occupied, provided that 1#42(d/ag)(1—1¢|)>0 (which in-
cludes{=1, corresponding t@g=0.) This is because the
An outline of the MFA calculation ofA ,, is given in Sec. 6 kinetic energy(and the Coulomb energy, fo¢|<1), which
of the Appendix. In units of the energy scale, favors occupying both layers, dominates over the exchange
=e?/4mea,, the MFA intersubband gap is energy, which favors occupying a single layer, at higher den-
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sities. For example, fap=2 andZ=1, Eq.(106) shows that A. Findings
both layers will be occupied even wheg=0, provided that
r<</2. On the other hand, fquy=1 and sir¥=0 (i.e., |{|
>1-T",), only one layer will be occupied, provided that

> (7/\2)[1+ (d/ag)(1—|Z])]. This is the situation shown
in Fig. 16, which shows that layer 2 has completely emptie
for pe/pg>2.25. At higher values opg/pg (€.9,r< /2,
not shown, layer 2 would no longer be empty.

We found that a balanced 2LES possesses four possible
noncrystalline MFA ground states. The spin- and
pseudospin-unpolarized four-componept<(4) state is ob-
4ained at the highest densities. In contrast to earlier work, we
ound that as the density is lowered, a three-compongnt (
=3) state with slightly unequal layer densities is obtained.
Thus, we find that there is no direct four- to two-component

The second use of the MFA calculation Af, is as a on. At finite | iord>0 d .
rough estimate of the minimum enerdthermal, or from transition. _t inite layer separatiord>0) and zero |_n_ter-
layer tunneling {=0), the p=4)—(p=3) MFA transition

photong required to excite particles from the occupied to the! _
unoccupied subband in the one-component state. Perhaffi/0lves & small but abrupt interlayer charge transfer. Any
this could be detected with sensitive heat-capacity measurglich abrupt interlayer charge transfer will in principle result
ments or by measuring microwave absorption_ ina |ar96(f0rma”y Inflnlte) value of the Eisenstein ratBE
at the transition. The Eisenstein ratio is a sensitive measure
of the interlayer capacitance discussed in Sec. Il.
C. Coulomb drag Like Zheng and co-workers, we found that as the total
One very interesting feature of the one-component statdensity was lowered, a spin-polarized two-componemt (
with SILC is that it is expected to exhibit interlayer drag =2a) state preceded a low-density one-compongmt {)
(finite dc transresistangeeven at zero temperature. Ordi- state possessing SILC, provided that the gates were balanced
narily, if the layers are not correlated in the ground state(pr=pg). This p=1 state is different from that of Ruden
current in one layer can drag along particles in the otheand Wu, whose proposed one-component state occupied a
layer (due to the Coulomb interaction between the layerssingle layer, rather than a single subband consisting of a
only at finite temperatur&. But if p;,#0, due to either tun- linear combination of both layers. We obtained a MFA phase
neling or, more interestingly, to SILC, then interlayer corre-diagram for the noncrystalline phases of the 2LES, shown in
lations present in the 2LES ground state will produce inter+ig. 3. This phase diagram is similar to that of Ref. 17,
layer drag even at zero temperature, as has been predicted fxcept for the presence of the=3 phase between the
interlayer-correlated 2LQH statés! Based on the Kubo for- =4 andp=2 phases. Only th¢=1 phase was found to
mula with the ground state of E15), we expect that a possess SILC—i.e., a nonzero interlayer density matrix
calculation of the zero-temperature dc transconductisify (p1,# 0) even with zero interlayer tunneling=€0.) We also
will give defined the pseudospin Stoner interaction parametand
considered the linear response of the MFA ground state to
5 5 ) interlayer tunneling, equivalent to a GRPA calculation. We
P12 € (Ng—Np)sing (107) used! to obtain an alternatéGRPA) estimate of the location
m* m* ' of the (p=2)—(p=1) transition, shown as the dotted line
at the top of Fig. 3. Of course, in the limit of vanishing total
density fs—«), we expect that a Wigner crystal state is
obtained(in the absence of disorderWe did not consider

Ty

Calculations of the drag conductivity for a pseudospin-
polarized groun?g state are currently being carried out bthe effects of disorder here, except to note that it limits the
other resear_che -According to Eqs.(91) and (107, we maximumr ¢ for a state with mobile particles.
expect th?t n thep;l DhﬁlAS;A(laTnTl), .UdeTann > ap- Under bias [pe—pg|>0), we found that there are five
proximate y(|.g., wit In an caicu atlon.o d)'. possible noncrystalline ground states. In every case, the
It would be interesting to clarify the relationship betweenMFA gave subbands, which, when occupied, were either
S12, P12, @ndoy. We conjecture that f|r|1|te interlayer drag at o,y jetely spin-unpolarized or fully spin-polarized. Includ-
zero temperature Irﬁqu'rﬁﬁiﬁg (or at eaStplépzﬁg)hat ing correlation-energy effects would likely produce ground
zero temperaturglthough we have not proved thiand that  giate with intermediate spin polarizations, as is apparently
p1270 at zero implies finite interlayer drag at zero temperahg case in three dimensioffsThe additional state that can
ture. Itis certainly true that;,# 0 andoy# 0 occur together  gnnear under sufficiently large bias and/or interlayer tunnel-

at zero temperature in the interlayer correlated 2LQH ef’fect.in is a pseudospin-polarized two-componeit...& n
We also think it likely that a similar relation holds between =gnT/2) stgte whicph V\?e labeleg=2b. Thpe p:m;atz(_st;tle

S12 and py,, and hence betweesy, and oq, although we o0 jires bias and/or tunneling, and hasési® (and thus no
have not proved this either. SILC) for t=0. In Sec. V we studied the effect of bias by
considering sytems at fixed total density, for a range of
values of the layer-imbalance parametet (pg—pg)/nt.
We enumerated the six possible scenarios for bias-driven
We investigated the effects of intralayer and interlayertransitions between théive possibl¢ noncrystalline MFA
exchange in biased double-layer systems, in the absence ofjaound states fot=0. We also showed that a very simple
magnetic field. This was accomplished using a mean-fieladnodel that assumes no interlayer exchange and no spin po-
approximation(MFA) which, in the limit of balanced layers larization is capable of fitting experimental SdH data quite
(no biag, is equivalent to the unrestricted HFA of Zheng andwell (see Fig. 6, and that a simple LDF model can do the
co-workerst’ same in the presence of interlayer tunnelisge Fig. 7.

VII. CONCLUSIONS
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We studied the one-component phase under applied biafpm Hall measuremenks SdH measurements of the sub-
finding that bias lowers theg required for SILC(see Fig. band densities s could allow a determination of the degree
15). Within the MFA, SILC occurs only in the one- of spin and pseudospin polarization. For example, in the case
component phase: wher=0, siné is nonzero only when of equally balanced layers n{(=n,=n{/2) having a
Na; =Ny . Perhaps including correlation-energy effects wouldp-component ground stat@ € 1,2,4) in theabsence of tun-
allow SILC for states with partial pseudospin polarization.neling (t=0), there is a singlép-fold degenerateSdH os-

But p=1 is only a necessary condition for SILC, not a suf- cillation period,
ficient one. We found that if the layer-imbalance parameter

was too large {>1-T",), then SILC was lost. When SILC me 1 e

occurs, the MFA gave a value of the interlayer density ma- Ap(IH)=—— 1=~ 2 hno (109
trix equal to the geometric mean of the layer densitigs:
= \n1n,. For the case that SILC is present, we calculated thgyhich allowsp to be determined directly from SdH measure-
layer densities 1f;), local values of the chemical potential ments.
(ui), electronic lengthsg;;), and Eisenstein ratioRg) (see

Fig. 16.

Ruden and Wu originally predicted an abrupt interlayer
charge tranfer fot=0 at sufficiently low densities and layer =~ Can the one-component state be realized in the balanced
separations, in the balanced casg£pg).° Like Zheng case? The=1 state is a legitimate solution of in the HFA,
and co-workers, we found that an abrupterlayer charge  but we have not examined its stability here. It is hypotheti-
transfer does not occur in the balanced case, due to SIL@ally possible that the=1 state might always be preempted
However, the MFA(and the unrestricted HFA of Ref. 17 by a Wigner crystal state. Conti and Senatbrearried out
does produce abrujmtersubbanccharge transfers, even for diffusion Monte CarldDMC) simulations in thed=0 limit,
the balanced case. This a feature of the HFA that requiresalculating thep=4 ground-state energy as a functionrgf
correlation-energy effects to remedy. In the case of nonzerand using previous single-layer DMC reséfitso estimate
bias, intersubband transfers are equivalent to interlayer tranthep=2 andp=1 energies. They also estimated the ground-
fers if sin6=0, which is the usual case, except possibly forstate energy for a Wigner crystal state, and found that the
p=1. Interlayer subband transfers &t 0 are reduced or p=4 state is obtained far,<42, and that the Wigner crystal
suppressed in the MFA only for th@€2a)—(p=1) tran-  state is obtained for larger valuesmf. In their calculation,
sition, and only if{<(1—-T';) in the p=1 phase. So SILC, neither thep=2 nor thep=1 states are ever favored ener-
when present, does reduce or eliminate abrupt interlayer sulgetically.
band transfers, but the MFA does not always eliminate them Although the DMC results in Ref. 18 show the need to
under bias e # pg). If the system is at sufficiently low den- examine the existence and stability of e 1 state beyond
sity and layer separation that it stays in fhe 1 state, then the HFA, they do not rule out its existence. This is because at
there are no abrupt interlayer charge transfers under bias =0 the fermions possess GB symmetry(spin and pseu-
the MFA, despite the fact that the layers can empty outras dospin fully rotatable and interchangeabland estimating
is changedsee Fig. 16 thep=2 andp=1 energies using single-layer results misses

We also calculated the intersubband gap, for the part of the correlation energy, which lowers the=1 and
pseudospin-polarizedp&E1 or p=2b) phases within the p=2 ground-state energies. Ideally, a DMC simulation of
MFA, defined as the energy to move a particle from theCP (3) fermions would be most useful to determine theoreti-
lower energya subband to the higher ener@gmpty b sub-  cally if the p=1 state can be obtained, but such calculations
band. This energy provides an estimate of the single-particlenight be prohibitively difficult to carry out. As a start, al-
intersubband gap in the pseudospin-polaripedl andp lowing for the possibility of Wigner crystallizatiotbroken
=2b phases, and can be used to estimate the stability dfanslational symmetjywithin the MFA calculation would
those phases. If the=1 phase can be obtained experimen-be helpful. Alternatively, a time-dependent MFA calculation
tally, A,, might be measured using heat-capacity orof the collective mode would indicate wheffer what den-
microwave/optical techniques. A very interesting feature ofsity and layer separatigrthe collective mode of the 2LES
the one-component phase with SILC is that it should haveyoes soft ¢— 0), signaling the onset of Wigner crystalliza-
nonzero interlayer drag, even at zero temperature, with théon. We are currently developing such a calculation of the
size of the interlayer drag conductivity being proportional tocollective mode. Better yet would be a double-layer STLS
the interlayer density matrix,. calculation allowing for the possibility of Wigner crystalli-

Pseudospin polarization can be detected by SdH measurzation, or at least a determination of when the STLS collec-
ments, which exhibit oscillations that are periodic inH1/ tive mode goes soft in a double-layer system.

B. Can it exist?

(whereH is the applied magnetic fieldThe periods of the More important is the question of whether SILC can be
SdH oscillations are given by achieved experimentally in the absence of a strong magnetic
field, which serves to quench the kinetic energy of the par-
2me 1 27e 1 el ticles. The MFA and HFA underestimate the value rgf
Aus(1/H)=— A h mki hng (108 required for the transitions, perhaps by a factor of 10. For

as

example, the spin-polarization transition for a single layer
where A, is the cross-sectional area of the Fermi surfacehas been estimated to occur fr- 2028 Although such high
perpendicular to the applied magnetic field for electrons irvalues ofrg have been achieved ip-type GaAs samples,
subbanda with spin's. Knowing the total density; (e.g., even higher values af; will be required to achieve sponta-
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neous pseudospin polarization. Disorder imposes furtheinterlayer transfer has been found to occur figespg. One
constraints, because it limits the maximumfor which the  appealing feature of a hypothetiqa=1 CF state is that it
particles are still mobile. However, given the impressivewould have small or zero resistivity in the pseudospin chan-
progress in producing double-layer systems with ever-lowepel (i.e., for oppositely directed currentshe same channel
particle densities and ever-higher mobilities, it does not seenh which the 2LQH state exhibits superfluidity at sufficiently
prudent to rule out the possibility that such a state mighsmg|| jayer separatiorlsSuch ap=1 state of CF’s would
someday be realized. exhibit SILC (p1,# 0 even whert=0) and therefore possess

As pointed out by Zheng and co-work€fand by Conti zero-temperature Coulomb drag. Recent experiments with
and Senatoré® most of the considerations presented in Ref'double-layer systems corresponding to filling factor 1/2

7 for SILC in the quantum Hall regime should be relevant to; each layer provide evidence for the possibility of zero-

the p=1 phase(with SILC) in the absence of a magnetic . S -
field. In both cases, there is a ground state with broke)U te;mperature dragf: We are currently mvest!gatlng the possi-
bility and consequences of pseudospin polarization in

symmetry(whent=0), due to interlayer exchange at Sma”XQOUbIe-Iayer CF systems.

layer separations and particle densities. It is therefore e . o
pected that thgp=1 state will exhibit many of the novel We also note that a perpendicular _magnet_lc f|_BIdv|II
features of the 2LQH state with SILC, including zero- generally enhance spin and pseudospin polarization because

temperature interlayer drag, vortex excitatijné the angle It tends to quench the kinetic energy. This effect enhances
é in Eq. (22] and an associated finite-temperaturethe exchange and correlation effects that lead to polarization.
Kosterlitz-Thouless transitior(for t=0), and interesting We therefore expect that SILC can in principle be found at

many-body effects in tilted magnetic fields for finite inter- any filling factor vy=(h/e)n;/B, provided that the total
layer tunneling 2 densityny and the layer separatiahare sufficiently small.

In particular, if it exists in the one-component phase for zero
magnetic field, SILC will probably persist, and even grow
stronger, when a perpendicular magnetic field is applied. Fi-
It is interesting to speculate about the applicability of nally, we remark that it may prove instructive to view the
these ideas to the 2LQH effect at total filling factor urfity. v1=1 2LQH state as a Chern-Simons bosonic condensate

C. Speculations regarding the 2LQH regime

For sufficiently small distancesd&d.~1.2, where | of spin- and pseudospin-polarizep= 1) electrons bound to
= \Jh/eBis the magnetic lengfh, the 2LQH system exhibits unit flux guanta.
a quantum Hall effect. Theoretically, the smaltt 2LQH Note added in prooflt has recently been found. B.

state has nonzerp,, even fort=0 (SILC), and the 2LQH  Spielman et al, cond-mat/0002387 (unpublished] that
system exhibits strong Coulomb drad: At sufficiently  double-layer systems in strong magnetic fields near total fill-
large layer separations, it is found experimentally that theng factor unity exhibit a huge resonant enhancement of the
quantum Hall effect disappeatsand it has been proposed jnterlayer tunneling conductivity when SILC is present. It
that there is a quantum phase transition to a state Withoufyoy|d be interesting to measure the tunneling conductivity
SILC." The nature of the ground state fdr-d. is a topic of oy 4 tilted sample, since many-body effects in a state with
active investigation. It has been analyzed as a system of twg ~ strongly suppress the interlayer tunneling amplitude

weakly (_:oupled Iaygrs of =1/2 composite fermiontCF’s). when the parallel component of the magnetic field exceeds a
Theoretical calculations of the drag at low temperatures pre

dict that the d istivity should le with Critical value. This suppression is much stronger than for a
L%t at the drag resistivity should scale with temperature a3ystem without SILC. We expect a similar strong enhance-
T**, based on calculating the effects of gauge fluctuations o

fhent of the tunneling conductivity at zero magnetic field,
two CF layers in the metallic statd-% It has also been g Y g

rovided that the system possesses SILC. Such tunnelin
proposed that the weak coupling between the CF's in differ—p y P g

M == measurements could prove very useful for measuring the
ent layers producses BCS pairing bgtween them at S“ff'c,'e_ntl}‘,trength of SILC in double-layer systems at z&wo highe)
low temperatures® and that this paired state leads to a f'n'temagnetic field
drag resistivity at zero temperatute®® '

We point out here that besides the apparent BCS instabil-

ity between CF'’s in different layers, double-layer CF sys-
tems might be unstable to pseudospin polarization. In the
limit d— o, the double-layerr=1 system may be regarded  We thank F. David Nbez in deep appreciation of his
as ap=2a phase (i.e., spin-polarized but pseudospin- patience and enthusiasm, and for his invaluable assistance.
unpolarized of CF's in zero effective magnetic fieldv(  We thank A. R. Hamilton for providing us with SdH data for
=1/2 per laye). Naively, the presumably large effective a double-layer hole system, and for patiently answering sev-
mass of the CF’s would correspond to a much larger effeceral questions regarding experimental measurements on
tive value ofr4 than for the zero-field case, perhaps produc-double-layer systems. Special thanks are also owed to S. Das
ing a value ofrg sufficently large to obtain a pseudospin- Sarma and A. H. MacDonald for helpful discussions. C.B.H.
polarizedp=1 phase. Another way of saying this is that thethanks the Institute for Theoretical Physi@dniversity of
large magnetic field experienced in eaah=1/2 layer California, Santa Barbayawhere part of this work was car-
qguenches the kinetic energy of the particles, and that thisied out, for their support through the ITP Scholars Program.
qguenching might strongly enhance exchange instabilities —This work was supported by a grant from the Research Cor-
in this case towards pseudospin polarization>n,), pre-  poration, and by the National Science Foundation under
sumably with si=1 (whenpg=pg), since no spontaneous grant 9972332.
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APPENDIX

1. Gate voltages

The layer densitiesn(; ,n,) are determined theoretically

8HF 1

_ T T
L, = L, % £1{C1ksC1iksT CoksCoks)

t

by minimizing the total ground-state energy per unit area L 2 <CIksC2ks+ cgksclks)
xky ks

[Eq. (22)] for fixed gate densitiespi,pg). Experimentally

however, it is the gate voltages which are tuned. If needed,

the gate voltages for a given value qf(,pg) can be calcu-
lated using

eV,:= eD,:E,:-l—,ul-f- e\/(o) y
(A1)
eVB: eDBEB+/.L2+ e\/(o) ,

- 2 Vi, (ka—ka))
2(LxLy)2jlk15112k252 EE

1) T
X Cj1kos,Ci 2"252> ( Cj k8,6 1"131>

1

+5 2 2 Vy,a=0n;n;,
Ji 2

and Eq.(5). Here the gate electric fields depend on the gate
sheet densities through Gauss's lai,=(e/€)p,, and _; ; Via(Ad=0)pan;
e\/(ao) are sample-dependent constant gate-voltage shifts. Al-
though eV, is approximately equal teD,E,, Eq. (Al) 1 S _
shows that the layer valugs of the chemical potential also + 2 7 Vap(A=0)PaPy-
contribute to the gate voltages.
The layer values of the chemical potentiglcan be com-
puted numerically from the variation of the equilibrium The effect last thre¢the Hartreg terms of Eq.(A6) may be
value of the total energy per unit aréagarded as a function cajculated by noting that
of the front- and back-gate densitips andpg) with respect
to infinitesimal changes in gate densities:

(AB)

e2
_ limV;;(q)= |im2—[1—(1—e-qdu)]
0& ILxLy= p16pg+ u20pPs.- (A2) g—0 q—04€d
2 2 2
For the typical case in which the back-gate voltage is _ [ im-= _e_d__E( )—e—d-- A7)
kept constant and the back-gate distaBggis much larger q_02€d) 2e" 2¢ 7

than the interparticle and interlayer separation so fhais

nearly constant, it is convenient to use & and write where ¢0) denotes the formally divergent part in the last line

of Eq. (A7). The last thredthe Hartre¢ terms of Eq.(A6)

0 become
eV,:=eD,:E,:+edE12+,u2+eV( ), (A3)
1 , €d
where Eq.(A2) gives ()5 (N1 + N~ Pe=Pp) "+ 55— (Pr—N1) (N2~ Pg)
_ 2 2
g I3 e“Dg e“Dg
o~ 9_DB( LXEy) (A4) + 2—6PF(n1+ n2_p8)+2_EpB(nl+ N2—Pr)-

(A8)
Equation(A3) has the advantage of being applicable even
when layer 1 empties out. Equatiof&3) and (A4) can be  Requiring the first term of Eq/A8) to not diverge imposes
used to calculate theoretically the front-gate voltage. In theharge neutralityn; +n,=pg+ pg. From Gauss’s law, the
limit where the interlayer separation is larger than the intraHartree energyEq. (A8)] may therefore be written, up to an
layer particle separation ari@vhich usually amounts to the overall constant, as
same thing interlayer correlations can be neglected, then
variations of u, with pg are small in comparison with
edE;,, so that the effects oft, can be absorbed into the €2 2 2
voltage shifte A9 , thus giving 2 [Ef.d+EFDe+EgDg], (A9)

Ve~EgDg+E;d+ VO, (A5)  whereE,, is the electric field between layers 1 andg, is
the electric field between the front gate and layer 1,Bgis
the electric field between the back gate and layer 2.
Equation(A9) is just the electric field energy per unit area
In the Hartree-Fock approximatiofiHFA) the two-body  for the sample; we drop the last two terms since they may be
interaction is factored so that the ground-state energy peegarded as constants for fixpd andpg. The ground-state
unit area is energy per unit area may thus be written as

2. Hartree-Fock approximation
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& 1
L,L _LXLy E &1 C1ksCikst CoksCoks)

y ks

t t t e’d 2
Tl % (C1ksCakst CoksCiks) T e (n1—pg)
xby

1
C2(L,L,)2 Vi i, (ko= ki)
Z(LXLy)Z j1kqsy jZkEZSZ J1l2 | 2 ]_l

+ T
x(c; 1kzslcj2k252><cj2klszcj1klsl>- (A10)

3. Exchange integrals

The exchange integrdl,z5(q) is defined as

1
Iaﬁs(on:m; O (Kas— |K+0/2))® (kgs— |K—a/2]),
(A11)

where @ and g can be either or b, and wherek,s,Kgs
denote the Fermi wave vectors for particles of spinf, | in
subbandsa or b. Note that Eq.(A11) implies thatl s is

1/(21)? times the shaded area shown in Fig. 18, where for

concreteness is taken be in the direction. Let the quantity
Ko/2 equal the value oK, at which the Fermi circles of
radiusk s andk s intersect:

Ko=(K2—K30)/q=4m(Ns—npo)lq.  (Al12)

Then

I aﬁs(q)E[nﬁs@)(kas_ kﬁs_ q) + nas®(kﬁs_ kas_ q)]
+ (kas+ kﬁs_ q)(q_ |kas_ kBs|)

1

+K
w qd+Ko
a

2K o
q+ KO)Z}

naS

cos 1(

q+Ko
2K s

2K s
q—Ko>
2K s
RE Sl
2Kgs 2Kgs '

Wheng=a, thenkgs=K,s, Ko=0, and Eq(A13) becomes

+ng

cos 1(

(A13)

cos 1(

2 q
Iaas(q)EnaSQ(Zkas_q); 2k
as

2
L[
)

and the first exchange integral in E§2) may be carried out
explicitly:

, (A14)

1A
2K,
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2
32

1 E v | _ 8 e
TaLL, 4 11D aas(@) =~ 30 Ameas
(A15)
Equation(A15) is just the exchange energy per unit area for

a uniform spin-polarized two-dimensional electron gas of ar-
eal densityn .

4. Interlayer exchange parameter

A key quantity in our discussion of the effects of inter-
layer exchange in double-layer systems is the interlayer ex-
change parametdr, defined by

1

I'=
LXLy gs

V11(Q)_V12(CI)]
e?d/2e

% Iaas(Q)"’ I bbs(Q)_ZIabs(q)
(na_nb)2

which is positive and a monotonically decreasing function of
the interlayer separatioi

. (A1)

0<T(d>0)<T(d—0), (A17)

when the subband densities are regarded as fixed. We note
that in the three-component phasp=(3), unlike the ¢
=1,2,4) phases, the equilibrium subband densities change
with d, so that according to Eq46),

d
o€ — 00, (A18)

imI =3)xt ———
e P=3) (n,—Nnp)2d @

d—w

whenpg=pg, in apparent disagreement with E§17). We
stress that the inequality in E¢A17) is true only when the
subband densities, are regarded as fixed, which is not the
case in Eq(A18).

The interlayer exchange parameleis important because
it determines when SILC is possibléor {<1—1'; andp
=1), i.e., when si#0. It also determines the value of the
pseudospin Stoner enhancement fat¢towhich depends on
I'p). I' affects the state of the systefe.g., layer densities
and Eisenstein rati®g) whenever sirg#0.

-q/2

gy

FIG. 18. The quantity ,44(q) is proportional to the area of the

shaded region of overlap between two circular Fermi surfaces of
radii k,s andkgs, which are centered a,=*+q/2. The circular
Fermi surfaces intersect Kt,=K/2.
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a. Inequality

Using the inequality
e?d/2e>V11(q) — V1A a), (A19)

which is true ford>0, it follows from Eqg.(A16) that for
d>0,

1 Iaas(Q)+|bbS(Q)_2|abs(Q)
<|—x|—y % (na_ nb)2
(nas_ nbs)2

=> 2 2 _1(d—0),
g (na_nb)2 ( 0)

r

(A20)

where we have used the fact that

_ [Vi(a@)—=ViAq)]
lim =1
d—0 e?d/2e

(A21)

and

1
T 2 Haad @)+ lopd @)~ 20 and )]
xty gs

(L2 22 10(kas= K-+ 0/2]) =6 (kys— K+ /2]

X[0(kas—|K—=0/2]) = O (kps—|K—a/2])]

1 2
=2 (T 2 [0(kas k)= O (kns—k)]
S xky k

= Es: (Nas— nbs)z- (A22)
Thus the condition
(Na;—=Npp)(Ng =Ny ) =0 (A23)

is sufficient to guarantee th&t<1.
Equation(A22) is true at finite temperature whepss(q)
is generalized appropriately. This is because

eZ

M [V1y(q) = Vig(@)]=—=—
dlino[ 11(d) 12d)] P

(A24)

is independent of the wave vectqr We may write

B 1
- (LyLy)? ki'Rp.s
[ ((af s, — (bl i, ((af s~ <bllsbkls>>}

(na_ nb)2

Via(lka—kq|) = Vi |ka—kq|)
e2d/2e

X

(A25)

which generalized” to finite temperatures. In the limd
—0, Eq.(A24) shows thatl" approaches
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2

1 1
(n -n )2 2 L |_y ; (<alsaks>_<blsbks>)
a— fp S X

1
= E (nas_nbs)2

(ng—np)? s
1, p=1 (ng=ny)
1, p=2a (ng=ny=n/2)
—4{ 1 p=3 (Ng=ng =np;=n/3)
172, p=2b (ng=n, =n¢/2)
1/2, p=4 (Ny =Ny =Ny =Ny =n7/4).
(A26)

Empirically, we find that within the MFA, the spins in
subbandsa and b are either completely unpolarize@t
higher densitigsor fully polarized(at sufficiently low den-
sities) Therefore the only possible MFA configurations of
spin and pseudospin that would not satisfy the inequality in
Eqg. (A23) and that might therefore havE>1 would be
three-componentp= 3) states in which subbaral(the ma-
jority subbandl is spin-unpolarized and subbaid(the mi-
nority subbanglis spin-unpolarized:

naT:nal,na>an>nbl:0. (AZ?)
b. Pseudospin-unpolarizel
It is useful to define and evaluate
Ip= Iim T, (A28)
na—>nb

We begin our calculation df y by noting that
Iaas(Q)+|bbs(Q)_2|abs(q)
1
= 2 [0(Kas— [K+0/2]) = O (kos— K +0/2])]
LxLy K
X[0 (kas— |K—a/2[) = O (kps— |[K—a/2])]

(keAn/ng)?

> S(ke—|K+a/2])8(ke— K —q/2])
LXLy K

(A29)

( ke An)2®(1—x)
2m nr) x\1-x2'
whereAn=(ny—ny)—0, ke=4mn+/p is the Fermi wave

vector per layer for the state with components §=2,4),
andx=q/2kg . Using Eqg.(A29), we obtain

r 2 2= Jl [V11(2k,:x)—V12(2k,:X)]
=— X
" pe2di2elo V1—x2
2 2 2 (1_e—ZSin¢9)
=== -, (A30)
p7z)o siné
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wherez=2kgd, and the second line is obtained by the sub-

stitution of variablex=sin é. It is straightforward to obtain
I'y(2) for smallz— 0 by expanding the last line of EGA30)
in powers ofz,

1 1
1——z+—z

" (A31)

2
ImTy(z)=— [

z—0

up to second order ia.
Obtainingl’y for z— is more cumbersome. One way to
proceed is to define a cutoé that satisfies

1

so that sig~0 for 6<e andzsin>1 for 6> €. Then

e (1-e %)
[fan— s

The first integral in Eq(A33) may be carried out using the
identity*:4

_at
[falioe
0 t

wherey~0.5772 is Euler’s constant, aitl=ze— o, so that
the last term of Eq(A34) can be dropped for largR. The
second integral in EqA33) is well known#?

r 2 2
g

2 1
f dﬁ—} (A33)

€

© e7t
In(R) + 7+f dtT, (A34)
R

1
J de— In[tan(6/2)]. (A35)
Now, tan(e/2)~ e/2 for e<1, so that the logarithmically di-
vergent (-1n €) parts of the two integrals in EGA33) cancel
each other, leaving

) 2 2
ZIT:CFO—E E[In(22)+ v]. (A36)
c. Pseudospin-polarize®
We now compute
I'=IlimT. (A37)
Ng—nNTt

When the double-layer system is pseudospin polarized so

thatn,=ny, thenl,,(q)=1,,49) =0, and it follows from
Egs.(Al14) and(A16) that
116
Fl:EE dx(l e~ ?)[arcco$x) —xy1—x?]

—S(2)], (A38)

“p 3wt
wherez=2kgd, and

S(z)= gfoldx e ?{arccogx) —xy1—x?]

37
-5 [1——[ll<z> Li(2)]
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1—(37/32)z+ (11522 — (w/256)°, z—0
| 34z, 7
(A39)
so that
. 1(1—(32/457)z+ (1124 7%, z—0
D=5 (3213m)12— 812, 700,
(A40)

Here I, and L; are modified Bessel and modified Struve
functions of the first kind, respectivefy:**

In(2)=1""y(i2), Ln(2)=i"""DH(iz), (A4D)
whereJ, is the ordinary Bessel function of orderandH,, is
the Hankel function of orden.

Obtaining Eq.(A39) is somewhat involved. The first part
of the integral in the first line of EQA39) can be obtained
by writing

1 1 ar
f dx e **arccosgx) = f dx e 2 5 —arcsinx) |,

0 0
(A42)

and using the identif§y

jldx e Zarcsir(x) = 21[|0(z)— Lo(2)—e7],
0 z
(A43)

which corrects a misprint in Eq4.551.1 of Ref. 40. One
then obtains

fldx & Parcco$x) = 2—772[1+ Lo(2)—1o(2)]. (A4
0

The second part of the integral in the first line of E439)
can be obtained by writing

fdxeZX 1-x%=—
0

J 1
—f dx e 21— x?
0

0z

ZX

a 1 Jld ze
—|1- | dx
oz 0o V1-x?

7 [Li@-h®
25 z | ®®
and by using the identitié%
2[1(2] 1x2)
gzl z |  z
Li(2)| Lo(2) 2
Jz| z |z 37’ (A46)
to obtain
1 1 =
fdxe’zxxxll x2=§+Z[L2(z)—I2(z)]. (A47)
0

Combining Eqs(A44) and (A47) and using the identitiés



PRB 61 DOUBLE-LAYER SYSTEMS AT ZERO MAGNETIC FIELD 13911

_ 214(2) A& (An)? 1 € (An)? e?d{An\?
IO(Z)_IZ(Z)_ ’ = —tAn___ + — 1“0
z LiLy  pro Jmp 4me n;  2e 2
(A48)
B 2L4(z) 2z (AS0)
Lo(2)=Lo(2)= z T3 Minimizing A&, /L,L, with respect toAn to solve forAn
_ _ o and using the definition, E@55), of the Stoner enhancement
gives the second line of EqA39). The third line of Eq. gives
(A39) follows from power series(for small z) and
asymptotic(for largez) expansions of ;(z) andL(z).*® 16€2
We note that for the same value pfI'1(z)<I'y(2) for = Treke (1 p— deFO)
F

all z. This may be seen by the subsitution of variabes

=singin Eq. (A38): 0 1 [V11(2Kex) = VA 2KeX) ]

=—13 2V11(2kg)— | dx > ,
0 V1—x

(1 e ZSInt‘))
T(2)=7 _f ©zsing (ASD)

) ) which is just the first line of Eq(56). Equation(A51) is
X{sin(20)[(7—26)—sin(20)]}<Io(2), equal to thet—0 limit of the Stoner interaction parameter
(A49)  calculated in the GRPA, given in E¢l4) of Ref. 23.

wherel’ is expressed as an integral ovkin the last line of 6. Intersubband gap
Eq. (A30). However, for differing values op, I'1(p=1)
>I'o(p=2) for 0<z<z,~44.09. Both I'y(p=1) and
I'o(p=2) are plotted in Fig. 19. Foe>z. (not shown,

The subband transfer energy,, for the pseudospin-
polarized f,=nt) p=1 or p=2b phase is defined as the
MFA energy required to move a particle from the occummed

[y(p=1)<I'o(p=2). subband to théotherwise emptyb subband:
5. Stoner enhancement factor 5| &

We now outline our calculation of the Stoner interaction Aab:%( L,L ) (A52)
parameter fot— 0. Consider a two- or four-component state
with equal subband densitiggseudospin unpolarizgdn,  where 6, denotes the change 6f under
=ny=n{/2. For smalt— 0, imagine moving a small amount
of chargeAn/2 from subbandb to subbanda, n,—n+/2 Na;— (1/p)(Ny—6N), np—an,
+An/2, n,—n4/2—An/2, so that fi,—ny)=An, and cal-
culate the change in the total enerdyg. (22)] as An—0. Na —(1—1/p)(ny—6n), ny =0, (A53)

The effect of the change of densities on the last term of Eq.

(22) may be calculated by using EGA30). The change in  wheredn<n+, andn, =0 reflects the fact that at low den-
the energy per unit area due Am asAn—0 is then given sities (h,= 6n—0), subband will be spin-polarized. In or-
by der to calculate\ ,, we first compute

5
= 2;‘ [laad(@) + () =21 4ps(d) ]

)
= o T 2 [0(Kas K+ 072]) ~ O (Kps— |K + 2] 10 (Kas~ [K ~ 6/2) ~ © (kos— [K ~ /2]
xty K
6 2
~ o T 2 ©(Kas~ [K+0/2)) [ 5kasd(Kas— |K —/2)) = O Skns— [K —0/2))]
xby Ks
5 1 ,
5_2_25 5kasfd K(kas_|K+q|)5(kas_|K|)_®(5kbs_|K|)
5 1 ,
5_ 2_ Es [Zkasgkasarcco$q/2kas)(Zkas_ Q)_ 77( 5kbs) ®(kas_Q)]
2

(A54)

p —0O(1—x)arcco$x)+20(1/2—x) |,
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FIG. 19.T1(p=1) (solid curvg andT'o(p=2) (dashed curve

as a function ofz=2kgd. For 0<z<z ~

=2).

wherek,s= V4 mn, S0 that

SKas= — (27/kg) SNy,

44.09,T1(p=1)>T(p

Sky; =—\JAmon, (A55)

PRB 61

and kg=\J4mnt/p. In order to obtain the last line of Eq.
(A54), we expanded the bracketed terms to first order with
respect toon, and definedk=q/2k .

The subband transfer gap is then given by

J_/p

2n+
Aab:—p—v+2tsm0+ \/_4

e?dn

2€
B Sirf 0 e’k { [e?2—(1-2/2)]

Tcosé’(cosﬁ— 0)

4 2me z/2

2 ! —ZX
+ ;fo dx(1—e **arccosx) ;, (A56)

where!=(pg—pg)/nt andz=2kgd. Equation(A56) is ex-
pressed in dimensionless form in H405).
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