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Theory of spin-resolved Auger-electron spectroscopy of ferromagnetic 3d-transition metals

T. Wegner,* M. Potthoff, and W. Nolting
Theoretische Festko¨rperphysik, Institut fu¨r Physik, Humboldt-Universita¨t zu Berlin, Invalidenstraße 110, 10115 Berlin, Germany

~Received 13 April 1999; revised manuscript received 16 September 1999!

Core-valence-valence Auger electron spectra are calculated for a multiband Hubbard model including cor-
relations among valence electrons as well as correlations between core and valence electrons. The interest is
focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle
Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a
diagrammatic approach we can distinguish between the direct correlations among those electrons participating
in the Auger process and the indirect correlations in the rest system. The indirect correlations are treated within
second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-
valence ladder approximation and the first-order perturbation theory with respect to valence-valence and
core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-
resolved quasiparticle band structure and the Auger spectra and investigate the influence of the core hole.
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I. INTRODUCTION

Auger-electron spectroscopy~AES! and the complemen
tary appearance-potential spectroscopy~APS! have become
valuable tools for investigating the electronic structure
solids and solid surfaces.1–8 They represent highly elemen
specific and nondestructive methods with a comparativ
simple experimental setup. The Auger line shape from
core-valence-valence~CVV! process yields information on
the occupied part of the valence band, while APS provi
insight into the unoccupied valence states. However, m
effort has been spent on the detailed interpretation of
spectra.

Lander9 suggested that the spectrum obtained by A
~APS! is given as the self-convolution of the occupied~un-
occupied! valence density of states~DOS!. On the other
hand, Powell10 discovered the CVV Auger line shape of A
to behave ‘‘anomalously’’ in the sense of Lander’s se
convolution model. These anomalous features are by n
well known to be caused by correlation effects dominat
the electronic properties of various solids. Therefore, A
~APS! seems to be a useful technique to study electr
correlation effects, but it is doubtful whether it is able
compete with one-particle spectroscopies, such as ph
emission~inverse photoemission!, in deriving the DOS by
deconvolution.

In the theoretical treatment of the CVV Auger proce
there are mainly two problems. The first one is to take i
account the correlation effects. Here one may distinguish
tweendirect andindirect correlations. The direct correlation
describe the correlations of those electrons which particip
in the Auger process. They are responsible for the m
prominent effects in the Auger line shape as compared to
self-convolution. On the other hand, the indirect correlatio
among the electrons in the rest system manifest themse
in the quasiparticle density of states~QDOS! as a renormal-
ization of the one-particle DOS.

The second problem is the calculation of the transitio
matrix elements for the Auger process as well as the sca
ing of the outgoing Auger electron~cf. Refs. 11 and 12!.
PRB 610163-1829/2000/61~2!/1386~10!/$15.00
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These effects will~slightly! modify the bare line shape an
may become important for a refined interpretation of expe
mental data. Within the present paper, however, we set a
this second problem and concentrate on electron-correla
effects in AES from ferromagnetic 3d-transition metals.

Within the framework of the single-band Hubbard mod
correlation effects can be treated exactly for systems w
completely filled or empty bands, as was first shown by C
and Sawatzky.13–15 The generalization to the case of dege
erate bands was introduced in Ref. 16 and further analyze
Ref. 17, for example. These results may also be extende
include the core-valence interaction.18

Considering the more general case of partially filled ban
introduces several complications concerning indirect as w
as direct correlations. For the indirect valence-valence co
lations there is a number of approximation schemes ap
cable to a multiband Hubbard model. A method which rep
duces the experimentally observed Curie temperature q
well, especially for Ni, is the spectral density approach.19,20

Other approaches are, for example, the generalization of
single-band modified perturbation theory21 to the multiband
model22,23 and quantum Monte Carlo simulations24 in con-
nection with the dynamical mean-field theory.25 However,
these methods suffer from some necessary restrictions
cerning the completeness of the Coulomb matrix. This is
the case for the fluctuation exchange26 and the Hubbard I
approximation,23 for example. For a more detailed discussi
on the indirect valence-valence correlations see Ref. 23.

For the treatment of the direct correlations, one has
exact-diagonalization method27 for small systems and the
equation-of-motion method28,29 with its in general uncon-
trolled termination of the hierarchy of the equations of m
tion. Another approximate solution is the valence-valen
ladder~VV ladder! approximation30–34and its generalization
to include the core-valence interaction35–38~CVV ladder!. In
particular one has to account for the broken translatio
symmetry in the initial state of AES, caused by the prese
of the core hole and its screening due to the valence e
trons. In the final state this interaction is responsible for
sudden response of the valence electrons due to the des
1386 ©2000 The American Physical Society
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tion of the core hole. In the limit of completely filled o
empty bands the ladder approximations recover the ab
mentioned exact solution.

Here the interaction strength is taken as the control
rameter, which is correct in the weak-coupling regime. W
are aware that this method has restrictions for
3d-transition metals. However, in this work we prefer
common treatment of one-particle spectroscopies~photo-
emission and inverse photoemission! and two-particle spec
troscopies like AES. To be concrete, we will use the seco
order perturbation theory around the Hartree-Fo
solution39–41 for the indirect valence-valence correlation
The direct correlations will be treated by applying two d
ferent methods, i.e., the VV ladder approximation and
first-order perturbation theory in the valence-valence a
core-valence interactions.

Within this approach it is possible to include a realis
one-particle input taken from tight-binding band-structu
calculations. We do not only account for the degeneracy
the 3d band but also for the hybridization with the 4s and
4p states. The theory is formulated and evaluated for a n
orthogonal basis set where the states can be distinguishe
the angular momentum quantum number and the cubic
monic index. This facilitates the interpretation of the resu
ing spectra. Furthermore, we do not restrict ourselves to
relations among the final-state holes only and include co
hole effects from the very beginning. This implies th
necessity for a proper treatment of the initial state where
core-hole screening breaks the translational symmetry.
theory is implemented numerically and evaluated for fer
magnetic Ni.

The paper is organized as follows. In the next section
will introduce the model under consideration. In Sec. III w
give the expression for the Auger intensity. Section IV co
centrates on the indirect and Sec. V on the direct corr
tions. Finally, Sec. VI concludes the paper. Some det
concerning the nonorthogonal basis set are given in the
pendix.

II. MODEL

The HamiltonianH5H02mN1HI is decomposed into a
one-particle partH02mN and an interaction partHI . N is
the operator for the particle number. The one-particle p
describes noninteracting valence and core electrons:

H02mN5 (
i ,i 8,s
L,L8

~ t i i 8
LL82mSii 8

LL8!ciLs
† ci 8L8s

1(
i ,s

~ec2m!bis
† bis . ~1!

The index i refers to lattice sites,s is the spin index (s
5↑,↓), andL5$ l ,m% is the orbital index with angular mo
mentum quantum numberl and cubic harmonic indexm.
ciLs

† (ciLs) denotes the creation~annihilation! operator of a
valence electron at the lattice sitei with spin s and orbital
index L while bis

† (bis) creates~annihilates! a core electron.
The core states are assumed to be nondegenerate and d
sionless with the one-particle energyec well below the

chemical potentialm. The hopping integralst i i 8
LL8 ,
e-

-
e
e

-
k
.

e
d

f

n-
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r-

-
r-
e-

e
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-

e

-
a-
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rt

per-

^ iLsuhBSu i 8L8s8&5t i i 8
LL8dss8 ~2!

~hBS denotes the Hamiltonian of the tight-binding ban
structure calculation! are taken from Ref. 42 as well as th

overlap integralsSii 8
LL8 :

^ iLsu i 8L8s8&5Sii 8
LL8dss8 . ~3!

t i i 8
LL8 and Sii 8

LL8 refer to a nonorthogonal basis set~see the
Appendix!. Contrary to an orthonormal basis set~where the
overlap matrix is replaced byd i i 8dLL8!, the basis states unde
consideration can be characterized by the orbital indexL
5$ l ,m%. The construction operators likewise refer to t
nonorthogonal basis and satisfy the following anticommu
tion rules:

@ciLs ,ci 8L8s8#150,

@ciLs ,ci 8L8s8
†

#15~S21! i i 8
LL8dss8 . ~4!

It should be noted that the action of the creation operator
the vacuum stateciLs

† u0&, in general, does not yieldu iLs&
@see Eq.~A5! of the Appendix#.

To describe the correlations among the valence electr
~VV ! as well as the correlations between valence and c
electrons~CV! the interaction consists of two parts

HI5
1

2 (
i ,s,s8,

L1 ,...,L4

UL1L2L4L3
ciL 1s

† ciL 2s8
† ciL 3s8ciL 4s2Hdc

VV

1 (
i ,s,s8,L

UL
cniLsnis8

c
2Hdc

CV . ~5!

Here the occupation number operator for valence electron
niLs5ciLs

† ciLs and for core electronsnis
c 5bis

† bis . Assum-
ing a strong screening of the Coulomb interaction, the int
action part is taken to be purely local.UL1L2L4L3

are the
on-site Coulomb-matrix elements for the valence electron

The electronic structure of the 3d transition metals may
be understood considering mainly two types of electro
orbitals: the 4s and 4p states which form broad free
electron-like bands. They should be well described by
band-structure calculation. The other group are the well
calized 3d states which in the solid form relatively narro
bands positioned around the Fermi energy. The localized
ture of the 3d electrons gives rise to important dynam
3d-3d correlation effects which are believed to be respo
sible, e.g., for the magnetic behavior of the 3d transition
metals. These correlations may not be adequately taken
account within a mean-field picture. We thus treat the
separately.

Exploiting atomic symmetries, one is able to express
remaining Coulomb-matrix elements for the 3d electrons in
terms of three effective Slater integrals43,44(F0,F2,F4) only.
These integrals are connected to averaged values for d
terms

U5
1

25 (
L,L8

ULL8LL85F0 ~6!
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and exchange interaction terms

J5
7

5

1

20 (
LÞL8

ULL8L8L5
F21F4

14
. ~7!

For 3d elements one has to good accuracy the ratioF2/F4

'0.625~Ref. 44!, be that of free ions.43 U andJ are treated
as free parameters to be fixed by comparison with exp
mental results~see Sec. IV!.

The CV interaction part is necessary to describe the c
hole effects in AES.UL

c in Eq. ~5! are the Coulomb-matrix
elements between the valence and the core electrons w
can be fixed by assuming complete screening of the c
hole by the valence electrons~see Sec. IV!.

To avoid a double counting of interactions, we subtr
the correctionHdc

VV ~CV! which is to a good approximation th
Hartree-Fock part of the respective interaction term.44

III. AUGER INTENSITY

The Auger process can be divided into two subproces
The first one is the creation of a core hole with spinsc at the
lattice sitei c by absorbing an x-ray quantum, for examp
The second subprocess is the radiationless decay of the
hole via ejecting an Auger electron with spins and momen-
tum k. Provided that the lifetime of the core hole is larg
compared to typical relaxation times of the valence electr
in the presence of the core hole, the two subprocesses
come independent from each other3 ~two-step model!. This
implies the absence of any decay term in the Hamiltoni
Consequentlyni csc

c is a good quantum number,@H,ni csc

c #
2

50. We can concentrate on the second subprocess. W
the two-step model the initial state for the Auger transiti
process is the ground state within the subspaceHe of the
Hilbert spaceH that is built up by all many-body states wit
ni csc

c 50. To perform thermodynamic averages in practi

one has to take into account this restriction by introducing
additional Lagrange parameter.

The transition process itself is described by the transit
operator35

Tkssc
5 (

L1 ,L2

Mi ck
L1L2ci cL1s

† ci cL2sc

† bi csc
. ~8!

k ands denote the quantum numbers of the Auger electr
sc the spin of the core state involved. The~intra-atomic!
Auger-matrix elements are given by

Mi ck
L1L25^ i cL1 ,i cL2uHCoulombuk,i c&

}E E d3r 1d3r 2C̄L1
~r12Ri c

!C̄L2
~r22Ri c

!

3
1

ur12r2u
Fk~r1!f~r22Ri c

!, ~9!

whereC is the valence orbital,F the one-particle wave func
tion of the Auger electron, andf the core state. The overba
denotes complex conjugation.

Following Ref. 35 we consider the~retarded! three-
particle Green function, relevant for AES, which is defin
as @with the abbreviationL5(L1 ,L2) andL 85(L18 ,L28)#
i-

re

ich
re

t

s.

.
ore

s
e-

.

in

,

n

n

,

Gkssc

~3! ~E!5^^Tkssc

† ;Tkssc
&&E5 (

L ,L8
M̄ i ck

L Gi cssc

~3!,LL 8~E!Mi ck
L8 ,

~10!

with

Gi cssc

~3!,LL 8~E!5^^bi csc

† ci cL2sc
ci cL1s ;ci cL

18s
†

ci cL
28sc

†
bi csc

&&E .

~11!

^^•;•&&E refers to Zubarev Green functions.45,46 The AES
intensity is then mainly given by the three-particle spectr
densityAkssc

(3) (E)52(1/p)Im Gkssc

(3) (E):

I kssc
~E1ec2m!}d„E2E~k!…Akssc

~3! ~E!. ~12!

HereE(k) is the dispersion of the Auger electron.
In general the three-particle Green function will be

~complicated! functional of one-particle Green functions
This functional represents the direct correlations. In the f
lowing we concentrate on the indirect correlations first, i.
on the determination of the relevant one-particle Green fu
tions.

IV. INDIRECT CORRELATIONS

A. Valence-band interaction

We consider the~retarded! one-particle valence-ban
Green function^^ciLs ;ci 8L8s

† &&E . Using a matrix notation
with respect to the orbital indexL5$ l ,m%,

~X i i 8!
LL85Xii 8

LL8 , ~13!

and defining a lattice-Fourier transformation

Xk5
1

Ns
(
i ,i 8

eik•~Ri2Ri 8!X i i 8 , ~14!

whereNs is the number of lattice sites, we get Dyson’s equ
tion in the form

Gi i 8s~E!5
1

Ns
(

k

eik•~Ri2Ri 8!

~E1m!Sk2tk2Sks~E!
. ~15!

Here the matricestk andSk are the Fourier-transformed hop
ping and overlap integrals of Eqs.~2! and ~3!, respectively.
Sks(E) is the self-energy. The one-particle spectral dens
is given by

A i i 8s~E!52
1

p
Im Gi i 8s~E1 i01!. ~16!

The on-site terms of the spectral density are diagonal in
orbital index as a consequence of lattice symmetries, and
have for the orbital-resolved QDOS

rs
L~E!5Aii s

LL ~E2m!, ~17!

where we dropped the site index. The total QDOS is o
tained via

rs~E!5(
i 8

Tr$Si i 8A i 8 is~E2m!%. ~18!
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To calculate the self-energy, we use a standard approx
tion scheme, the second-order perturbation theory around
Hartree-Fock solution39–41,47,48~SOPT-HF!. It is known from
the single-band Hubbard model that the nonlocal terms of
SOPT-HF self-energy rapidly decrease with increasing nu
ber of shells taken into account.47,48 Furthermore, due to the
band degeneracy, there is a much weakerk dependence o
the SOPT-HF self-energy compared to the single-b
case.41 We may thus employ the local approximation

S i i 8s
LL8 ~E!'S i i s

LL8~E!d i i 85Ss
L~E!dLL8d i i 8 . ~19!

As for the on-site Green function, lattice symmetries requ
the on-site self-energy to be diagonal in the orbital index

The Hartree-Fock contribution to the self-energy reads

Ss
~HF!,L5(

L1

$ULL1LL1
~n

2s
L1 2n

2s
~0!L1!1~ULL1LL1

2ULL1L1L!

3~ns
L12ns

~0!L1!%, ~20!

wherens
L5^niLs& denotes the expectation value in the fu

model andns
(0)L the expectation value of the band-structu

calculation that stems from the double counting correction
Eq. ~5!. Approximating the self-energy bySs

(HF),L corre-
sponds to the LDA1U approach.44 Here we additionally in-
clude the next order in the interaction. The second-order c
tribution ~SOC! to the self-energy reads as

Ss
~SOC!,L~E!5E E E dxdydz

E2x1y2z
@ f 2~x! f 2~2y! f 2~z!

1 f 2~2x! f 2~y! f 2~2z!#

3 (
L1 ,L2 ,L3

ULL1L3L2
r̃s

L3~x!

3$UL3L2LL1
r̃

2s
L1 ~y!r̃2s

L2 ~z!1~UL3L2LL1

2UL3L2L1L!r̃s
L1~y!r̃s

L2~z!%, ~21!

with the Fermi functionf 2(E)5(ebE11)21 and where the
local HF spectral densityr̃s

L(E)5Aii s
(HF),LL(E) is obtained by

using the HF self-energy~20! in Eq. ~15!. The SOPT-HF
self-energy

Ss~E!5Ss
~HF!1Ss

~SOC!~E! ~22!

determines the full Green function via Eq.~15!.

B. Core-valence interaction

1. Valence-band Green function

Let us now focus on the core hole screening in the ini
state for AES. The CV interaction and the presence of
core hole introduce an additional~Hartree-like! term

S is
~CV,e!,L52d i i c

UL
c ~23!

to the valence-band self-energy which breaks the tran
tional symmetry. This term represents the core-hole poten
at the lattice sitei c where the core hole was created~the
superscript ‘‘e’’ indicates averaging in the restricted Hilber
a-
he

e
-

d

e

s

n

n-

l
e

a-
al

spaceHe; see Sec. III!. It is responsible for the screening
The valence-band self-energy in the presence of the c
hole then reads as

Sis
e ~E!5Sis

~VV, e!~E!1Sis
~CV,e! . ~24!

Ss
(VV, e)(E) incorporates the VV-correlation effects and h

the same structure as the self-energy~22! for the translational
invariant system. But in contrast to its translational invaria
counterpart,Ss

(VV, e)(E) is defined in terms of the Gree
functions in the presence of the core hole.

The valence-band Green functionGi i 8s
e (E) in the pres-

ence of the core hole can be obtained by using Dyson’s eq
tion in the form

Gi i 8s
e

~E!5Gi i 8s~E!1(
j

Gi j s~E!@Sj s
e ~E!2Ss~E!#

3Gj i 8s
e

~E!. ~25!

In generalSis
e (E)2Ss(E)Þ0 for a certain number of shell

around the core-hole site because the VV-correlation effe
depend on the occupation numbers, which as a consequ
of the screening locally differ from the translational invaria
ones. In the following we assume complete screening,
charge neutrality at the sitei c , which is reasonable espe
cially for 3d transition metals because the screening ti
scale is small compared to the lifetime of the core hole27

This impliesSis
e (E)2Ss(E) to be small for all sitesi except

for i 5 i c . Neglecting the terms foriÞ i c one can solve Eq.
~25!:

Gi i 8s
e

~E!5Gi i 8s~E!1Gi i cs~E!$@Si cs
e ~E!2Ss~E!#21

2Gi ci cs~E!%21Gi ci 8s~E!. ~26!

For i 5 i 85 i c one obtains the local screened Green funct
at the core-hole site:

Gi ci cs
e ~E!5

1

Gi ci cs
21 ~E!2@Si cs

e ~E!2Ss~E!#
. ~27!

The assumption of complete screening will be utilized a
condition to fix the CV-interaction parameter, which is tak
to be the same fors, p, andd orbitals (UL

c[Uc).

2. Core Green function

To take into account the CV interaction for the core Gre
function,

gi csc
~E!5^^bi csc

;bi csc

† &&E5
1

E1m2ec2S i csc

c ~E!
,

~28!

one may calculate the core self-energyS i csc

c (E) using, e.g.,

the SOPT-HF in the same way as for the valence-band G
function. On the other hand, it is believed that the core sta
are influenced by other and presumably more important
fects, such as lifetime effects.3 In fact, the core spectral den
sity obtained within SOPT-HF turns out to be dominated
a d peak that is shifted by about 1 eV belowec2m. This
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FIG. 1. Spin-resolved QDOS per atom fors,
p, t2g , and eg states and total QDOS forU
52.47 eV, J50.5 eV, and T50 K. Left: un-
screened QDOS. Thin dotted line: tight-bindin
band-structure calculation~Ref. 42! for paramag-
netic Ni. Right: screened QDOS at the sitei c in
the presence of the core hole,Uc51.81 eV.
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does not affect the Auger line shape. Therefore, we ass
for convenience the core self-energy to be zero. The spe
density becomes

ai csc
~E!52

1

p
Im gi csc

~E1 i01!5d~E1m2ec!.

~29!

C. Results for Ni

Before we discuss the results for fcc Ni, we like to ma
a short remark concerning the numerical evaluation of
theory. Thek sum for the local Green function in Eq.~15!
was performed on a mesh of 240k points within the irreduc-
ible part of the Brillouin zone using the tetrahedron metho49

generalized to complex band structures, similar to that p
sented in Ref. 50. The evaluation of the total QDOS~18! as
well as the QDOS in the presence of the core hole was d
in k space. For the latter, Eq.~25! has to be used to perform
the Fourier transformation.

The effective Slater integrals or, equivalently, the av
aged direct and exchange interaction parameters are ch
as U52.47 eV andJ50.5 eV. This leads to a calculate
magnetic moment per atom ofm50.56mB at T50 K which
is the same as the measured moment.51 With the ratioJ/U
'0.2 we assume a typical value for the late 3d transition
metals. The values given in the literature, for instance,U
53.7 eV, J50.27 eV ~Ref. 41! and U52.97 eV, J50.8 eV
~Ref. 52! are of the same order of magnitude but sligh
overestimate the magnetic moment within the present the

The ‘‘free’’ DOS, used as starting point for our theory,
shown on the left of Fig. 1~thin dotted line! and corresponds
to tight-binding band-structure calculations42 for paramag-
netic fcc Ni.

The left-hand side~LHS! of Fig. 1 shows the QDOS pe
atom for the model parameters given above. As is kno
from the experiment, Ni is a strong ferromagnet; i.e.,
majority-spin states are fully occupied. The renormalizat
effects of thea priori uncorrelateds andp states seen in Fig
1 can be traced back to the hybridization with thed states.

Taking into account the presence of the core hole
following the procedure to fix the CV interaction parame
e
ral

e

e-

ne

-
sen

y.

n
e
n

d
r

as described above~charge neutrality! leads to Uc
51.81 eV. The corresponding ‘‘screened’’ QDOS is plott
on the right-hand side~RHS! of Fig. 1. The structure has
changed remarkably. Spectral weight of thed electrons from
the upper band edge is transferred to lower energies; ts
andp states are more populated, too. The screened mag
moment at the sitei c ~mi c

e 50.1mB at T50 K! is considerably

decreased since the local occupation is increased~see also
Fig. 3!.

The left side of Fig. 2 shows the self-energySs
L(E).

Within an energy range of about 1 eV above and belowE
50 eV one has ImSs

L(E)}E2. Thus we have well-defined
quasiparticles at the Fermi energy and their weight

zs
L5U12

] ReSs
L~E50!

]E
U21

~30!

is 0.887 for thet2g ↑ states and 0.893 fort2g ↓ states. Foreg
states we find 0.878 and 0.883, respectively. For ener
above22 eV, where one finds clearly distinguishable stru
tures, a significant band narrowing caused by the real pa
the self-energy is observed, while the imaginary part of
self-energy leads to strong damping effects in the QD
~Fig. 1, LHS! for energies below22 eV. About 26 eV

FIG. 2. Real and imaginary parts of the self-energy. Left: for t
translationally invariant system@Ss

L(E)#. Right: for the system in
the presence of the core hole@S i cs

eL (E)#.
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below the Fermi energy where one expects the ‘‘Ni 6-
satellite’’ 53–55we find the largest damping effects. Howeve
we do not find the correlation-induced 6 eV satellite. This
not surprising by applying the SOPT-HF or any other fini
order perturbational approach.30,56,57For different interaction
parameters~larger U, smaller J! a small shoulder in the
QDOS of thed states is visible as was also mentioned
Ref. 40.

On the right-hand side of Fig. 2 the self-energy in t
presence of the core holeS i cs

e,L(E) is plotted. Again there are
well-defined quasiparticles, but with an enhanced wei
compared to the case where the core hole is absentzi c↑

t2g

50.940, zi c↓
t2g50.934, zi c↑

eg 50.937, zi c↓
eg 50.936.! The

screened case behaves less correlated than the unscr
case since here one is closer to the limit of completely fil
bands.

Finally, we show the local magnetic moment per atom
a function of temperature in Fig. 3. The magnetization cur
~Fig. 3, LHS! have a Brillouin-function-like form, except fo
the eg magnetization which shows up a maximum atT
'1100 K. This can be traced back to a transfer of cha
carriers from theeg orbitals to thet2g orbitals with increas-
ing temperature. Because Ni is a strong ferromagnet,
charge-carrier transfer leads to an increase of theeg magne-
tization. Contrarily, thet2g magnetization is decreased in a
dition to the usual temperature-induced depolarization. T
leads to a temperature-dependent increase of the
meg

/(mt2g
1meg

) as is known from polarized neutron

scattering experiments.58,59 For T50 K this ratio is 0.20 and
in good agreement with the measured value of 0.19.58,59 As
is observed experimentally, thes andp states couple antifer
romagnetically to thed states.58,59 The Curie temperature
turns out to beTC51655 K and is thereby about a factor
2.6 larger than the measured value of 624 K.60 The large
value for TC is probably due to the mean-field character
the SOPT-HF. Note, however, that a simple LDA1U ~HF!
calculation for the same parametersU and J yields aT50
magnetization 0.57mB and a Curie temperature of approx
mately 2500 K.

The local moment at the sitei c as function of temperature
is shown on the right-hand side of Fig. 3. Itsd contribution is
strongly reduced compared to the unscreened case while
s andp moments are increased. The strong reduction of
total magnetic moment will influence the spin polarization
AES, since the ‘‘screened’’ QDOS enters the Auger Gre
function ~10!. Note that the total magnetization has to
calculated using Eq.~18!, incorporating hybridization with
delocalized states.

FIG. 3. Left: magnetization as a function of temperature. Rig
local moment as a function of temperature in the presence of
core hole.
,
s
-

t

ned
d

s
s

e

e

is
tio

f

the
e
f
n

V. DIRECT CORRELATIONS

To express the Auger intensity as a functional of the o
particle Green functions we consider the diagrammatic

pansion of the three-particle Green functionGi cssc

(3),LL 8(E) @L

5(L1 ,L2)#. Here we can restrict ourselves to the direct d
grams and incorporate the exchange diagrams by introdu
‘‘direct’’ ( Di ck

L 5Mi ck
L1L2) and ‘‘exchange’’ Auger matrix ele-

ments (Ei ck
L 5Mi ck

L2L1). The Auger intensity then reads as

I kssc
~E1ec2m!}d„E2E~k!…(

L,L 8
~D̄ i ck

L 2dssc
Ēi ck

L !

3Ai cssc

~3!,LL 8~E!D ick
L8 . ~31!

The Auger matrix elements are taken to be constant. Foll
ing Ref. 12 we set

Mi ck
L1L25 H 1 for L1<L2 ,

21 for L1.L2
. ~32!

We thereby account for the singlet contributions, i.e.,
holes in the final state have opposite spin (s52sc), as well
as for the triplet contributions (s5sc) to the Auger inten-
sity. The triplet contributions would be ignored if the Auge
matrix elements were chosen to be symmetric in the orb
index (Mi ck

L1L25Mi ck
L2L1) because the transition operator th

vanishes, as can be seen from Eq.~8!.

A. VV ladder approximation

We consider two different approximation schemes for
treatment of the direct correlations. In the first approach,
lowing Refs. 30–34 we neglect the direct CV correlatio
and treat the direct VV correlations by means of the V
ladder approximation, which becomes exact in the limit
completely filled or empty bands. A typical diagram contri
uting to the VV ladder is shown in Fig. 4. The solid line
represent the renormalized one-particle propagators of
valence band while the wiggly line is the one-particle co
propagator. The dashed line corresponds to the VV inte
tion. Summing up all diagrams of this kind yields the V
ladder approximation. The three-particle spectral density
given by

Ai cssc

~3!,LL 8~E!5E dE8Ai cssc

~2!,LL 8~E1E8!ai csc
~E8! f 1~E1E8!

5
~29!

Ai cssc

~2!,LL 8~E1ec2m! f 1~E1ec2m!, ~33!

where f 1(E)5(ebE21)21 is the Bose function. The two

particle valence-band spectral densityAi cssc

(2),LL 8(E) is ob-

:
e

FIG. 4. Typical diagram of the VV ladder. Solid line: renorma
ized valence-band propagator. Wiggly line: core propaga
Dashed line: VV interaction.
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tained from the corresponding two-particle Green functi
Using a matrix notation with respect toL5$L1 ,L2% andL 8,
the two-particle Green function reads as

Gi cssc

~2! ~E!5Gi cssc

~2,0! ~E!@12UGi cssc

~2,0! ~E!#21, ~34!

with ULL 85UL1L2L
18L

28
. Gi cssc

(2,0),LL 8(E) is the two-particle

Green function that has to be calculated from the s
convolution of the partial QDOS,

Ai cssc

~2,0!,LL 8~E!5dLL 8E dE8r i cs
L1 ~E2E8!r i csc

L2 ~E8!

3@ f 2~E82E! f 2~2E8!

2 f 2~E2E8! f 2~E8!#, ~35!

using the spectral representation

Gi cssc

~2,0!,LL 8~E!5E dE8
Ai cssc

~2,0!,LL 8~E8!

E2E8
. ~36!

In Eq. ~34! we have applied the local approximation; i.e
only the on-site elements fori 5 i c are assumed to be non
zero. This approximation is analogous to the local appro
mation for the one-particle Green function in Sec. IV.

B. VV and CV correlations

A straightforward way to include the direct CV correl
tion on the same level as the direct VV correlations has b
discussed in Refs. 35–38. This leads to the~‘‘three-
particle’’! CVV ladder approximation. For the limiting cas
of completely filled or empty bands the CVV ladder repr
sents the exact solution and recovers the VV ladder
shifted energetically by 2Uc due to the CV interaction.18 A
typical diagram is shown in Fig. 5 where the dotted li
represents the CV interaction. The CVV ladder approxim
tion leads to a coupled set of Fredholm integral equation18

For a multiband model, however, the numerical evaluatio
beyond our present computational capacities. We there
discuss a simpler approximation where only diagrams up
first order in the direct correlations are retained~see Fig. 6!.

C. Results for Ni

The calculated Auger spectra for Ni resulting from diffe
ent approximations are shown in Fig. 7. The core hole

FIG. 5. Typical diagram in the CVV ladder approximation. Th
notation is the same as in Fig. 4. The additional CV interaction
represented by the dotted line.

FIG. 6. Diagrams up to first order in the VV and CV interactio
~notation as in Fig. 5!.
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assumed to be unpolarized~nonresonant61 process!. The in-
tensities for core spinsc and 2sc are added incoherently
I s(E)5@ I ssc

(E)1I s2sc
(E)#/2. However, the Auger inten

sity is still spin dependent due to the ferromagnetic orde
Ni. In Fig. 7 we plotted the total Auger intensityI ↑(E)
1I ↓(E) on the left and the spin asymmetry@ I ↑(E)
2I ↓(E))/(I ↑(E)1I ↓(E)# on the right. Part~a! shows the
result of the self-convolution model@Eqs. ~33! and ~35! in-
serted in Eq.~31!#, i.e., the self-convolution of the occupie
QDOS in Fig. 1 ~LHS!. Direct correlations and core-hol
screening are neglected altogether. Part~b! corresponds to
the VV ladder approximation starting from the~unscreened!
QDOS. Taking additionally into account the screening
fects introduced by the presence of the core hole in the in
state results in~c!. The spectrum obtained by the first ord
in the direct VV and CV correlations~see Fig. 6! and by the
screened QDOS is plotted in part~d!.

As one can see in the plots on the left-hand side, the
interaction is too weak to produce bound states, no sh
satellite appears, and the spectra appear to be bandlike. C
pared to the self-convolution~a!, however, a considerabl
shift to lower energies is observed in~b!. This shift results
from the direct correlations between the two final-state ho
in the valence band. In~c! the main peak is shifted to stil
lower energies. This is an effect of the core-hole screenin
the initial state and can be traced back to the redistribution
spectral weight in the screened QDOS~Fig. 1!. Compared to
~a! and~b!, the total AES intensity is clearly increased in~c!.
Again this is a consequence of the core-hole screening s
the number of occupied states available for the Auger p
cess is increased~Fig. 1, RHS!. The spectrum shown in~d!
not only includes the initial-state core-hole screening
also the final-state effects due to the destruction of the c
hole. Compared to~c!, where the initial state is described i

s

FIG. 7. Left: total intensitiesI ↑(E)1I ↓(E). Right: spin asym-
metry @ I ↑(E)2I ↓(E)#/@ I ↑(E)1I ↓(E)#. ~a! Self-convolution with-
out screening of the core hole in the initial state;~b! VV ladder
without core hole screening;~c! screened VV ladder;~d! direct VV
and CV correlations included up to first order~Fig. 6!.
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the same way, these effects result in a strong shift of
main peak to higher energies. This shift almost exactly co
pensates for the shifts to lower energies that are due to d
VV correlations~b! and the core-hole screening~c!. How-
ever, a weak shoulder at aboutE528.5 eV remains in the
spectrum~d!.

In all cases there is a high spin asymmetry~up to 250%!
for energies between approximately20.8 eV and 0. This is a
consequence of the fact that Ni is a strong ferromag
There are almost no↑ electrons above about20.4 eV ~see
Fig. 1! that can participate in the Auger process. The m
contribution to the intensity is therefore due to triplet co
figurations where the two final-state holes or, equivalen
core-hole and Auger electron have spin↓. However, the in-
tensity is very small in this energy region. By taking in
account the screening of the core hole in the initial st
@compare~b! and~c!# the spin asymmetry is reduced over t
whole energy range which essentially is the same effec
the reduction of the local magnetic moment ati c caused by
the presence of the core hole~Fig. 3!. The total spin-
polarization

P5
*dEI↑~E!2*dEI↓~E!

*dEI↑~E!1*dEI↓~E!
~37!

in case~d! is 2.6% and 1.6% for~c!. Both values are close to
the experimental value61 of 2% for theM1M45M45 process.
Cases~a! and ~b! with a polarization of 8.7% and 9.3%
respectively, overestimate the total spin polarization co
pared with the experimental value.

For calculation of the orbitally resolved contributions
the Auger intensity we may restrict the summation in E
~31! to orbital indices (L1 ,L2 ,L18 ,L28) belonging tot2g(eg)
character only. The resulting contributions are shown on
left ~right! of Fig. 8. The contributions due to the remainin
3d terms are plotted in the middle.

In all cases~a!–~d! the t2g contributions are clearly stron
ger compared with theeg contributions. The ratio betwee
the t2g andeg partial intensities corresponds to the differe
degeneracies. Comparing the cases~a!–~d!, we notice that

FIG. 8. Contributions to the total Auger intensity~Fig. 7! of
processes involvingt2g electrons only~left!, eg electrons only
~right!, and both kinds ofd electrons~middle!.
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there are essentially the same trends in the partial intens
as for the total intensities, and the discussion is the sam
above. The line shape in case~d!, however, shows up som
fine structure, especially in thet2g partial intensity, which is
not that pronounced in the total intensity. The shoulder at
low-energy tail of~d! is due to direct VV correlations and
may be interpreted as a hint at the formation of a bound s
of the final holes. Except for this shoulder, a surprising sim
larity between~d! and ~a! is noticed, even for the orbital
resolved spectra. This might also be due to the small num
of diagrams taken into account. However, the cancellation
effects according to different interactions~VV and CV! was
also pointed out in Ref. 27.

VI. SUMMARY

In this paper we have investigated electron-correlation
fects on the Auger line shape of Ni as an example o
ferromagnetic 3d transition metal. The starting point is
realistic set of hopping and overlap parameters taken fr
tight-binding band-structure calculations. We additiona
consider a strongly screened on-site Coulomb interaction
tween the rather localized 3d electrons. The respectiv
Coulomb-matrix elements are expressed in terms of effec
Slater integrals. Choosing a nonorthogonal basis, a dist
tion between the different angular momentum characters
the valence orbitals is possible. This is necessary for
precise definition of the Coulomb-interaction part in t
~multiband Hubbard! Hamiltonian and also facilitates the in
terpretation of the Auger spectra. Furthermore, we acco
for the core-valence interaction which is responsible for
screening of the core hole in the initial state of AES and
the sudden response of the valence electrons due to the
struction of the core hole in the final state.

Within a diagrammatic approach, the indirect and the
rect correlations can be studied separately. The indirect
relations have been treated by second-order perturba
theory around the Hartree-Fock solution~SOPT-HF!. The
VV interaction parameters are fixed by assuming a ra
J/U'0.2 and by fitting the experimentally observed ma
netic moment forT50 K, leading to U52.47 eV andJ
50.5 eV. This is equivalent to an intraorbital interaction
ULLLL53.04 eV (L5$2,m2%). The resulting Curie tempera
ture within the theory presented here is by a factor of
larger than the experimentally observed one but consider
lower than the LDA1U ~Hartree-Fock! value.

The core-valence interaction leads to a breakdown of
translational invariance in the initial state for AES. The i
teraction parameterUc51.81 eV is fixed by requiring charge
neutrality at the sitei c where the core hole is created. Th
screening of the additional core-hole potential causes a tr
fer of spectral weight below the Fermi energy and thus
considerable reduction of the local magnetic moment. Ho
ever, the local magnetic moment is finite since thes and p
electrons also contribute to the screening.

To study the direct correlations we have used two diff
ent approaches. The first is the VV ladder approximati
which results in a bandlike Auger spectrum with a sing
maximum. In a second approach we have summed up
first-order diagrams with respect to the VV and CV intera
tions. The resulting spectrum shows up a shoulder at
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1394 PRB 61T. WEGNER, M. POTTHOFF, AND W. NOLTING
lower tail due to the VV interaction. Otherwise the line sha
is very similar to that obtained by the self-convolution of t
unscreened QDOS.

As far as concerns the line shape, we conclude that
different correlation effects, VV and CV correlations in th
initial and the final state, nearly cancel. However, a stro
effect of electron correlations has been found in the orbita
resolved partial intensities and particularly for the spin asy
metry.

The calculated spin polarization is in good agreem
with the measured one of theM1M45M45 process.61 This
process corresponds to the excitation of a not too deep l
core level, i.e., the two-step model should be applicable.
reduced but finite spin polarization of theM1M45M45 pro-
cess~as compared to the band polarization! can be explained
by effects of core-hole screening rather than by a core-h
polarization, caused by a resonant excitation of the core e
tron into the valence band.61 Future work will show whether
these findings also apply to other 3d transition metals.
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APPENDIX: NONORTHOGONAL BASIS SET

There are several advantages for using the nonorthog
basis set$u iLs&%. The Slater-Koster parameters62 for the
two-center approximation~used here! are much more accu
rate for a nonorthogonal basis set compared to an ortho
mal one.42 Second, the nonorthogonal basis@linear combina-
tion of atomic orbitals~LCAO! basis# is built up from
quasiatomic orbitals. One therefore knows the behavior
the basis states under symmetry operations belonging to
Oh group which eventually results in the fact that local qua
tities, e.g., the on-site Green function, are diagonal in
orbital index. Furthermore, the Coulomb matrix elements
be calculated in a highly symmetric way by using 3j sym-
bols in combination with a transformation from spheric
cubic harmonics. The unknown radial parts of the basis
parametrized by the effective Slater integrals (F0,F2,F4).
Finally, one can ensure that the Coulomb interaction a
between 3d electrons only.

For the formalism of second quantization, for the man
body and Green-function theory, for the proof of Wick
theorem and thus the development of the diagram techni
however, the use of an orthonormal set of one-particle b
states is necessary. Therefore, it is convenient to derive
expressions that refer to the nonorthogonal basis,

^aub&5Sab , ~A1!

by a ~nonunitary! Löwdin transformation63 from a related set
of orthogonal one-particle basis states:

uã& 5
Def

(
b

ub&Sba
21/2. ~A2!
e
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The overlap matrixS is Hermitian:$uã&% indeed represents
an orthonormal and complete basis set. The complete
relation can be written as

15(
a

uã&^ãu5 (
abg

ub&Sba
21/2Sag

21/2^gu5(
ab

ua&Sab
21^bu.

~A3!

Annihilation ~and creation! operators referring to the nonor
thogonal basis may be defined as

ca 5
Def

(
b

Sab
21/2c̃b. ~A4!

It is instructive to see how the creation operator acts on
vacuum state:

ca
† u0&5(

b
c̃b

†Sba
21/2u0&5(

b
ub̃&Sba

21/25(
bg

ug&Sgb
21/2Sba

21/2

5(
b

ub&Sba
21. ~A5!

Furthermore, one gets from the transformations~A2! and
~A4!:

(
a

uã& c̃a5 (
abg

ub&Sba
21/2Sag

1/2cg5(
a

ua&ca . ~A6!

Thus, an operator in second quantization has the same s
ture for both the orthonormal and the nonorthogonal ba
sets. A one-particle operatorO, for example, reads as

O5 (
a,a8

c̃a
†^ãuouã8& c̃a8 5

~A6 !

(
a,a8

ca
†^auoua8&ca8 . ~A7!

The nonorthogonal Green functions are defined as in the
thonormal case, e.g.,Gaa8(E)5^^ca ;ca8

† && for the one-
particle Green function. For example, using the nonortho
nal version of the fundamental anticommutation ru
„@ca ,ca8

†
#15Saa8

21 ; see also Eq.~4!… and the equation of mo
tion, the noninteracting Green function turns out to be

G0~E!5@~E1m!S2t#21, ~A8!

where we used the matrix notation (G)aa85Gaa8 , etc. For
the interacting Green function one has@compare with Eq.
~15!#

G~E!5@~E1m!S2t2S~E!#21. ~A9!

In the same way as for the examples given, one may
Wick’s theorem, develop the diagram technique, etc.
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