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Theory of spin-resolved Auger-electron spectroscopy of ferromagnetic®transition metals
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Core-valence-valence Auger electron spectra are calculated for a multiband Hubbard model including cor-
relations among valence electrons as well as correlations between core and valence electrons. The interest is
focused on the ferromagneticd3dransition metals. The Auger line shape is calculated from a three-particle
Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a
diagrammatic approach we can distinguish between the direct correlations among those electrons participating
in the Auger process and the indirect correlations in the rest system. The indirect correlations are treated within
second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-
valence ladder approximation and the first-order perturbation theory with respect to valence-valence and
core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-
resolved quasiparticle band structure and the Auger spectra and investigate the influence of the core hole.

[. INTRODUCTION These effects willslightly) modify the bare line shape and
may become important for a refined interpretation of experi-
Auger-electron spectroscogAES) and the complemen- mental data. Within the present paper, however, we set aside
tary appearance-potential spectrosc¢p?S have become this second problem and concentrate on electron-correlation
valuable tools for investigating the electronic structure ofeffects in AES from ferromagneticd3transition metals.
solids and solid surfacés® They represent highly element  Within the framework of the single-band Hubbard model,
specific and nondestructive methods with a comparativelgorrelation effects can be treated exactly for systems with
simple experimental setup. The Auger line shape from aompletely filled or empty bands, as was first shown by Cini
core-valence-valencéCVV) process yields information on and Sawatzky> '° The generalization to the case of degen-
the occupied part of the valence band, while APS providegrate bands was introduced in Ref. 16 and further analyzed in
insight into the unoccupied valence states. However, mucRef. 17, for example. These results may also be extended to
effort has been spent on the detailed interpretation of thénclude the core-valence interactith.
spectra. Considering the more general case of partially filled bands
LandeP suggested that the spectrum obtained by AESntroduces several complications concerning indirect as well
(APS) is given as the self-convolution of the occupiedh-  as direct correlations. For the indirect valence-valence corre-
occupied valence density of state®OS). On the other lations there is a number of approximation schemes appli-
hand, Powelf discovered the CVV Auger line shape of Ag cable to a multiband Hubbard model. A method which repro-
to behave “anomalously” in the sense of Lander's self-duces the experimentally observed Curie temperature quite
convolution model. These anomalous features are by nowell, especially for Ni, is the spectral density approdtf
well known to be caused by correlation effects dominatingOther approaches are, for example, the generalization of the
the electronic properties of various solids. Therefore, AESsingle-band modified perturbation thetryo the multiband
(APS seems to be a useful technique to study electronmodef?? and quantum Monte Carlo simulatidfisn con-
correlation effects, but it is doubtful whether it is able to nection with the dynamical mean-field thedryHowever,
compete with one-particle spectroscopies, such as photthese methods suffer from some necessary restrictions con-
emission(inverse photoemissionin deriving the DOS by cerning the completeness of the Coulomb matrix. This is not
deconvolution. the case for the fluctuation excharand the Hubbard |
In the theoretical treatment of the CVV Auger process,approximatiorf: for example. For a more detailed discussion
there are mainly two problems. The first one is to take intoon the indirect valence-valence correlations see Ref. 23.
account the correlation effects. Here one may distinguish be- For the treatment of the direct correlations, one has the
tweendirect andindirect correlations. The direct correlations exact-diagonalization meth&dfor small systems and the
describe the correlations of those electrons which participatequation-of-motion methdéf?® with its in general uncon-
in the Auger process. They are responsible for the mostrolled termination of the hierarchy of the equations of mo-
prominent effects in the Auger line shape as compared to thgon. Another approximate solution is the valence-valence
self-convolution. On the other hand, the indirect correlationdadder(VV ladden approximatiofi’~**and its generalization
among the electrons in the rest system manifest themselvés include the core-valence interactiore® (CVV ladden. In
in the quasiparticle density of statét@DOS as a renormal- particular one has to account for the broken translational
ization of the one-particle DOS. symmetry in the initial state of AES, caused by the presence
The second problem is the calculation of the transition-of the core hole and its screening due to the valence elec-
matrix elements for the Auger process as well as the scattetrons. In the final state this interaction is responsible for the
ing of the outgoing Auger electrofcf. Refs. 11 and 12  sudden response of the valence electrons due to the destruc-
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tion of the core hole. In the limit of completely filled or : BS|jry # 1\ Ll
empty bands the ladder approximations recover the above- (Lo[n*H L o) =t Oy @
mentioned exact solution. (hBS denotes the Hamiltonian of the tight-binding band-

Here tht?1 _inr;te_raction strengﬂ]th is tall(ken aT_ the chtrOlvli)/astructure calculationare taken from Ref. 42 as well as the
rameter, which is correct in the weak-coupling regime. We . L',
are aware that this method has resltjrict?onsg for theoverlap integralss,, -
3d-transition metals. However, in this work we prefer a
common treatment of one-particle spectroscopigsoto-
emission and inverse photoemissi@nd two-particle spec- - L ,
troscopies like AES. To be concrete, we will use the secondli- @nd S, refer to a nonorthogonal basis seee the
order perturbation theory around the Hartree-FockAPPendix. Contrary to an orthonormal basis sethere the
solutior?®=** for the indirect valence-valence correlations. Overlap matrix is replaced b, 5., /), the basis states under
The direct correlations will be treated by applying two dif- consideration can be characterized by the orbital intex
ferent methods, i.e., the VV ladder approximation and the={l,m}. The construction operators likewise refer to the
first-order perturbation theory in the valence-valence andionorthogonal basis and satisfy the following anticommuta-

(iLali'L'o")=S"" 5,0 . 3)

core-valence interactions. tion rules:
Within this approach it is possible to include a realistic
one-particle input taken from tight-binding band-structure [CiLo:CirLror]+ =0,
calculations. We do not only account for the degeneracy of .
the 3d band but also for the hybridization with thes 4nd [CiLosChir g ]s =(STHEE 6,0 (4)

4p states. The theory is formulated and evaluated for a non- ) i
orthogonal basis set where the states can be distinguished ByShould be notethhat the action of the creation operator on
the angular momentum quantum number and the cubic hafle vacuum state; ,[0), in general, does not yielL o)
monic index. This facilitates the interpretation of the result-[see Eq(A5) of the Appendiy.

ing spectra. Furthermore, we do not restrict ourselves to cor- 10 describe the correlations among the valence electrons
relations among the final-state holes only and include coreVV) as well as the correlations between valence and core
hole effects from the very beginning. This implies the electrons(CV) the interaction consists of two parts

necessity for a proper treatment of the initial state where the
core-hole screening breaks the translational symmetry. The

L . =5 2 UL L, CiTL (rCiTL o CiL Lo’ CiL a_Hg?:/
theory is implemented numerically and evaluated for ferro- 2.=, 1m2m4m3 TR ik 3 4

i,o,0",

magnetic Ni. Li,ola
The paper is organized as follows. In the next section we
will introduce the model under consideration. In Sec. Il we + E UfniLaniC(,/—HdCé/- (5)
give the expression for the Auger intensity. Section IV con- i,o,0' L
centrates on the indirect and Sec. V on the direct Correl.aﬂere the occupation number operator for valence electrons is

tions. Finally, Sec. VI concludes the paper. Some details +

o o=cl ¢ ¢ —plp -
concerning the nonorthogonal basis set are given in the Ap-ite” CiLoCiLs and for core electrons;, = bj, by, . Assum
pendix. Ing a strong screening of the Coulomb interaction, the inter-

action part is taken to be purely Ioca\.uLleLAL3 are the

Il. MODEL on-site Coulomb-matrix elements for the valence electrons.
The electronic structure of thed3transition metals may
The HamiltonianH =Hy— uN+H, is decomposed into @ be understood considering mainly two types of electronic
one-particle parH,—uN and an interaction pattl;. Nis  orbitals: the 4 and 4p states which form broad free-
the operator for the particle number. The one-particle parglectron-like bands. They should be well described by the

describes noninteracting valence and core electrons: band-structure calculation. The other group are the well lo-
calized 3 states which in the solid form relatively narrow
Ho—uN= >, (t:-i';' _Iu‘s:_iI;’)CiTLo'Ci’L'O' bands positioned around the Fermi energy. The localized na-
ii'o ture of the 3l electrons gives rise to important dynamic
L 3d-3d correlation effects which are believed to be respon-
sible, e.g., for the magnetic behavior of the &ansition
+i2 (€c—m)b},bi,. (1)  metals. These correlations may not be adequately taken into

account within a mean-field picture. We thus treat them
The indexi refers to lattice sitesg is the spin index §  separately.
=1,1), andL={I,m} is the orbital index with angular mo- Exploiting atomic symmetries, one is able to express all
mentum quantum numbdrand cubic harmonic indexn.  remaining Coulomb-matrix elements for the 8lectrons in
¢l ,(ciL,) denotes the creatiotannihilation operator of a  terms of three effective Slater integr&t§* (F°,F2,F%) only.
valence electron at the lattice sitevith spin o and orbital ~ These integrals are connected to averaged values for direct
index L while bfg(bi(,) creategannihilate$ a core electron. terms
The core states are assumed to be nondegenerate and disper- 1
sionless with the one-particle energy well below the UZZ_SLEL UL =F° (6)

chemical potentiaj. The hopping integralﬁLiE’ ,
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and exchange interaction terms _
’ G2, (E)=((Th s, Taar)e= 2 MEGELE (EIME,
7 1 2 F2+ F4 c Cc C L,L’ (3 Cc c Cc
I=¢ 20,2, Uiin=—p5— 7 . (10)
wit
For 3d elements one has to good accuracy the refitF*
~0.625(Ref. 44, be that of free ion?U andJ are treated  GMLL"(E)=((b ¢, ¢ Loic . c ) b, )e.
as free parameters to be fixed by comparison with experi- ¢’ leog ek lch1o Mgl joigLjoe e/ /E
mental resultgsee Sec. V. (11
The CV interaction part is necessary to describe the corg(-;.))¢ refers to Zubarev Green functiofis*® The AES
hole effects in AESU[ in Eq. (5) are the Coulomb-matrix intensity is then mainly given by the three-particle spectral-
elements between the valence and the core electrons whigfensityA() (E)=—(1/7)ImG), (E):
can be fixed by assuming complete screening of the core ¢ ¢
hole by the valence electrorisee Sec. IV. lkoo (E+€ec— ) SE—E(K)AS) (E). (12)
To avoid a double counting of interactions, we subtract ¢ ¢
the correctiorH Y ¥ which is to a good approximation the Here E(k) is the dispersion of the Auger electron.

Hartree-Fock part of the respective interaction t&fm. In general the three-particle Green function will be a
(complicated functional of one-particle Green functions.
IIl. AUGER INTENSITY This functional represents the direct correlations. In the fol-

lowing we concentrate on the indirect correlations first, i.e.,

The Auger process can be divided into two subprocessegy the determination of the relevant one-particle Green func-
The first one is the creation of a core hole with spinat the  tjgns.

lattice sitei, by absorbing an x-ray quantum, for example.

The second subprocess is the radiationless decay of the core

hole via ejecting an Auger electron with spinand momen-

tum k. Provided that the lifetime of the core hole is large A. Valence-band interaction

compared to typical relaxation times of the valence electrons \ya consider the(retarded one-particle valence-band

in the presence of the core hole, the two subprocesses b&'reen function((c; of Ve. Usin . :
iLoiCirpro))E - g a matrix notation

come independent from each othéwo-step model This . L _
implies the absence of any decay term in the Hamiltonian‘."”th respect to the orbital index={l,m},

Consequenthyn} , is a good quantum numbeitd,n?, ]

=0. We can concentrate on the second subprocess. Within
the two-step model the initial state for the Auger transitionand defining a lattice-Fourier transformation
process is the ground state within the subspafeof the
Hilbert spaceH that is built up by all many-body states with
ni"cgc=0. To perform thermodynamic averages in practice,

one has to take into account this restriction by introducing an . . .

additional Lagrange parameter. whereNg is the number of lattice sites, we get Dyson’s equa-
The transition process itself is described by the transitiorfion in the form

operator® 1 ok (R—R)

Giiro(E) = — .
BTN, % B St S E)

Here the matricet, andS, are the Fourier-transformed hop-

k and o denote the quantum numbers of the Auger electronping and overlap integrals of Eq&) and (3), respectively.

o, the spin of the core state involved. Tlimtra-atomi¢  2,(E) is the self-energy. The one-particle spectral density

Auger-matrix elements are given by is given by

IV. INDIRECT CORRELATIONS

(Xt =Xt (13)

1 )
= 2 € RIRIXG (14

Si,i’

(15

ickooe~lcoe

_ Lilo t T
TKUUC_L§-2 Mick CicthTC b ot (8)

Lil, . . :
Miclk ?=(icL1,icLalHcouomdK,ic) A (E)=—i|mGii' (E+i0") (16
loa T [oa )

o d3r1d3r2@L (ri—R; )‘?L (ro—Rp) The on-site terms of the spectral density are diagonal in the
1 c 2 c . . . .
orbital index as a consequence of lattice symmetries, and we
have for the orbital-resolved QDOS

po(E)=Af,(E-p), (17)

where we dropped the site index. The total QDOS is ob-
tained via

X———= D (r) d(r,—R; ), 9)
[ri—ry| ¢
whereV is the valence orbitatp the one-particle wave func-
tion of the Auger electron, and the core state. The overbar
denotes complex conjugation.

Following Ref. 35 we consider théretarded three-
particle Green function, relevant for AES, which is defined po(E)=2 THSi /A (E—w)}. (18)
as[with the abbreviatior =(L,,L,) andL’=(L1,L5)] i’
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To calculate the self-energy, we use a standard approximapace?®; see Sec. Il It is responsible for the screening.

tion scheme, the second-order perturbation theory around thehe valence-band self-energy in the presence of the core
Hartree-Fock solutiofi~#4"*4SOPT-HB. It is known from  hole then reads as

the single-band Hubbard model that the nonlocal terms of the

SOPT-HF self-energy rapidly decrease with increasing num- 38 (E)=3WV'9(E)+3Ve, (24)

ber of shells taken into accoutft?® Furthermore, due to the oo _

band degeneracy, there is a much wedketependence of > (E) incorporates the VV-correlation effects and has
the SOPT-HF self-energy compared to the single-bandhe same structure as the self-ene(2g) for the translational

case*! We may thus employ the local approximation invariant system. But in contrast to its translational invariant
counterpart,2\YV'®(E) is defined in terms of the Green
E_L_E'(E)mzhL’(E)b‘“,ZEL(E)gLL,b‘“, ] (199  functions in the presence of the core hole.
"o o o

The valence-band Green functi@ﬁ,U(E) in the pres-

As for the on-site Green functipn, Iattic_e symmet_ries_ requirésnce of the core hole can be obtained by using Dyson'’s equa-
the on-site self-energy to be diagonal in the orbital index. +ion in the form

The Hartree-Fock contribution to the self-energy reads as

G:, (E)=Gji'o(E)+ >, Gji,(E)[28(E)—3,(E
EErHF)'L:LE {ULLlLLl(nI:l(,_n(_O(),Ll)+(ULL1LL1_ULL1L1L) iro(®) & EJ: 1B 2jo(B) = 2,(B)]
1

e
x(ntt=n"), (20 XGiiro(B): =
L _ _ In general®; (E)—X,(E)#0 for a certain number of shells
wheren,=(n; ) denotes the expectation value in the full 5.5, the core-hole site because the VV-correlation effects
model andnf,o)L the expectation value of the band—structuredepend on the occupation numbers, which as a consequence
calculation that stems from the double counting correction inyf the screening locally differ from the translational invariant
Eq. (5). Approximating the self-energy by ™" corre-  ones. In the following we assume complete screening, i.e.,
sponds to the LDA-U approach:* Here we additionally in-  charge neutrality at the site., which is reasonable espe-
clude the next order in the interaction. The second-order corgially for 3d transition metals because the screening time
tribution (SOQ to the self-energy reads as scale is small compared to the lifetime of the core Hdle.
This impliesX{, (E) —X,(E) to be small for all sites except
EETSOQ,L(E):J J JM[f(X)f(_y)f(z) for i=i;. Neglecting the terms for#i. one can solve Eq.

E—x+ty—-z (25):
- (=0L-MT(=2)] G}, (E)=Giiro(E)+ Gy (EN[ES (E)~ X, (E)] !
XL1%,L3 ULL1L3L25¢L,3(X) =G i o(E)} 'Gj s o(E). (26)
X{ULSLZLLlﬁL_lU(Y)TJL_ZU(Z)+(UL3L2LL1 Z:){ri;éé)z_chglr;es(i)gains the local screened Green function
~ UL U (PAD)) (2D) . 1
with the Fermi functionf _(E) = (e?t+1)~! and where the Giaer(B)= Gi i o(E)—[25 J(E) =2, (E)]’ @9

local HF spectral densify-(E) =AHPLL(E) is obtained by

o

. 3 - 3 The assumption of complete screening will be utilized as a
g::ggntgz]yHF self-energ20) in Eq. (19). The SOPT-HF condition to fix the CV-interaction parameter, which is taken

to be the same fog, p andd orbitals Uf=Uy,).
3,(E)=3 7+ 359%(E) (22

determines the full Green function via E{.5).

2. Core Green function

To take into account the CV interaction for the core Green

. ) function,
B. Core-valence interaction
1. Valence-band Green function . 1
. . Lo giCUC(E):<<bica'cabiTC¢TC>>E: E-u—ce _2_0 (E)a
Let us now focus on the core hole screening in the initial M €™ S,
state for AES. The CV interaction and the presence of the (28)

core hole introduce an addition@fartree-like term one may calculate the core seIf—ene@Sch(E) using, e.g.,

Ei(nge%L: -8 U (23)  the SOPT-HF in the same way as for the valence-band Green
¢ function. On the other hand, it is believed that the core states
to the valence-band self-energy which breaks the translaare influenced by other and presumably more important ef-
tional symmetry. This term represents the core-hole potentigects, such as lifetime effectdn fact, the core spectral den-
at the lattice sitei, where the core hole was creatéitie  sity obtained within SOPT-HF turns out to be dominated by
superscript ‘€” indicates averaging in the restricted Hilbert- a & peak that is shifted by about 1 eV belosy— u. This
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FIG. 1. Spin-resolved QDOS per atom fer
p, tg, and ey states and total QDOS fou
=2.47eV, J=05eV, andT=0K. Left: un-
screened QDOS. Thin dotted line: tight-binding
band-structure calculatiofiRef. 42 for paramag-
netic Ni. Right: screened QDOS at the sitein
the presence of the core holé,=1.81eV.
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does not affect the Auger line shape. Therefore, we assumg described above(charge neutrality leads to U,

for convenience the core self-energy to be zero. The spectral 1.81 eV. The corresponding “screened” QDOS is plotted

density becomes on the right-hand sidéRHS) of Fig. 1. The structure has
changed remarkably. Spectral weight of thelectrons from
the upper band edge is transferred to lower energiess the
andp states are more p pulated, too. The screened magnetic

(29  moment at the sité; (M =0.1ug atT=0 K) is considerably
decreased since the local occupation is incredsed also

C. Results for Ni Fig. 3.

The left side of Fig. 2 shows the self-energy;(E).

Before we discuss th(_a results for fcc_: Ni, we I|ke_ to makeWithin an energy range of about 1 eV above and beow
a short remark concerning the numerical evaluation of the

> L 2 _Aafi
theory. Thek sum for the local Green function in E¢L5) =0 e_V otr_1e| hast tlrr:i,,l(:E)mljZ - Thus W% Phav_e wgllh?eflned
was performed on a mesh of 2&@oints within the irreduc- dUasiParticies at the =ermi energy and their weig

1
aic(,c(E)z - ;Im gic(rc(E-i-iOJr): O(E+u—e).

ible part of the Brillouin zone using the tetrahedron meffod Lip— -1

. . JRe> (E=0)
generalized to complex band structures, similar to that pre- Zzl}: 1— (30)
sented in Ref. 50. The evaluation of the total QD(Q8) as JE

well as the QDOS in the presence of the core hole was dong ¢ 887 for thet,, 1 states and 0.893 fdg, | states. Foe,

in k space. For the latter, E(R5) has to be used to perform states we find 0.878 and 0.883, respectively. For energies

the Fourier transformation. _ above—2 eV, where one finds clearly distinguishable struc-
The effective Slater integrals or, equivalently, the averres, a significant band narrowing caused by the real part of

aged direct and exchange interaction parameters are Chosg{y self-energy is observed, while the imaginary part of the

magnetic moment per atom af=0.56ug atT=0K which  (Fig. 1, LHS for energies below—2 eV. About —6 eV
is the same as the measured montéMith the ratioJ/U

~0.2 we assume a typical value for the latd Bansition 1

{ _e-TAl

metals. The values given in the literature, for instarde, Re\ . E_I
=3.7eV,J=0.27eV(Ref. 4) andU=2.97eV,J=0.8eV A 0
(Ref. 52 are of the same order of magnitude but slightly Nzsoome oo
overestimate the magnetic moment within the present theory _ t R X/ "~ Im BT~

The “free” DOS, used as starting point for our theory, is % 2
shown on the left of Fig. 1thin dotted line and corresponds :,b 1 F O Re B 17}00
to tight-binding band-structure calculatidfdor paramag- “ N - W
netic fcc Ni. 0 Ay 0

The left-hand sidéLHS) of Fig. 1 shows the QDOS per <] I- Nalebintedels
atom for the model parameters given above. As is known _jp ([ TIm ==X T i 10
from the experiment, Ni is a strong ferromagnet; i.e., the N N P P
majority-spin states are fully occupied. The renormalization 0 -10E (2V) 1020 20 —10E (2V) 1020

effects of thea priori uncorrelateds andp states seen in Fig.
1 can be traced back to the hybridization with thetates. FIG. 2. Real and imaginary parts of the self-energy. Left: for the

Taking into account the presence of the core hole andranslationally invariant systefi®5(E)]. Right: for the system in
following the procedure to fix the CV interaction parameterthe presence of the core hc[IEiecb(E)].
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j:f I ‘e—omtall 5 |I |I X |I X
t
£ 04 L T 04 %, —— o ————
< oy 2
g &= sx10 B A AN AN
o 02 %
2 P N L e e o %0 § FIG. 4. Typical diagram of the VV ladder. Solid line: renormal-
§a S R R A T k: ized valence-band propagator. Wiggly line: core propagator.
= : : p e e —~ Dashed line: VV interaction.
025500 1000 1500 0 500 1000 1500
Temperature (K) Temperature (K)

V. DIRECT CORRELATIONS

FIG. 3. Left: magnetization as a function of temperature. Right: To express the Auder intensity as a functional of the one-
local moment as a function of temperature in the presence of the . P _g y . . .
core hole particle Green functions we consider the diagrammatic ex-

. _ pansion of the three-particle Green functiaf®)::" '(E) [L
below the Fermi energy where one expects the “Ni 6-eV__ . e .
satellite” 5>-%we find the largest damping effects. However =(L,4,L5)]. Here we can restrict ourselves to the direct dia-

we do not find the correlation-induced 6 eV satellite. This is‘g‘;rgms,?nd ianorpoLrlaL\tze the e“xchange d'i,agrams by ihtroducing

not surprising by applying the SOPT-HF or any other finite- direct” ( Dj =M, ) and “exchange” Auger matrix ele-

order perturbational approaéh>>*’For different interaction ents E-,=M"2") The Auger intensity then reads as

parameters(larger U, smallerJ) a small shoulder in the c 'c

QDOS of thed states is visible as was also mentioned in

Ref. 40. oo (E+ec— ) S(E—E(k DLy~ 8,0 Er
On the right-hand side of Fig. 2 the self-energy in the oo ( B+ €cp) o ( ))E, (Dige™ Goo Eigd

presence of the core ho&ec'f,( E) is plotted. Again there are

3),LL’ L'
well-defined quasiparticles, but with an enhanced weight XA (E)Diy. (31

. t
compared tto the case where the core hole is absqut ( The Auger matrix elements are taken to be constant. Follow-
=0.940, 7z%=0.934, 7z9=0.937, 79=0936) The ing Ref. 12 we set
c

icl ol
screened case behaves less correlated than the unscreened
case since here one is closer to the limit of completely filled MLtz 1 for Ly<L,, (32)
bands. ick -1 for Li>Ly

a function of temperature in Fig. 3. The magnetization curved /€ thereby account for the singlet contributions, i.e., the
(Fig. 3, LHS have a Brillouin-function-like form, except for Noles in the final state have opposite spin<(— o), as well

the e, magnetization which shows up a maximum &t S for the triplet contributions= o) to the Auger inten-
~1100K. This can be traced back to a transfer of chargé'ty- _The triplet contributions would be |gnoreq |f.the Auge_r-
carriers from thee, orbitals to thet,, orbitals with increas- Matrix elements were chosen to be symmetric in the orbital
ing temperature. Because Ni is a strong ferromagnet, thidex (M} ?=M,{™) because the transition operator then
charge-carrier transfer leads to an increase ofefhmagne- vanishes, as can be seen from ).

tization. Contrarily, thet,; magnetization is decreased in ad-
dition to the usual temperature-induced depolarization. This
leads to a temperature-dependent increase of the ratio . ] o
m. /(M. +m,) as is known from polarized neutron- ~ We consider two different approximation schemes for the
scgtterir?a exp?arimenf§:59 For T=0 K this ratio is 0.20 and treatment of the direct correlations. In the first approach_, fol-
in good agreement with the measured value of G*f8 As lowing Refs. 3Q—34 we neglect _the direct CV correlations
: . . and treat the direct VV correlations by means of the VV
is observed experimentally, tiseandp states couple antifer- o ; . e
romagnetically to thed states®°® The Curie temperature ladder approximation, which becomes exact in the limit of
turns out to beT.=1655K and is thereby about a factor of completely filled or empty bands. A typical diagram contrib-

2.6 larger than the measured value of 624%The large uting to the VV ladder is shown in F_ig. 4. The solid lines
value for T is probably due to the mean-field character Ofrepresent the renormalized one-particle propagators of the

. valence band while the wiggly line is the one-particle core
the SOPT'HF' Note, however, that a S|mpl_e LB (HF) propagator. The dashed line corresponds to the VV interac-
calculation for the same parametéysandJ yields aT=0

L ) . tion. Summing up all diagrams of this kind yields the VV
magnetization 0.515 and a Curie temperature of approxi- ladder approximation. The three-particle spectral density is
mately 2500 K. :

. . given by

The local moment at the sitg as function of temperature
is shown on the right-hand side of Fig. 3. ttgontribution is
strongly reduced compared to the unscreened case while tlﬂé%),g,LL'(E):f dE'AZL (B4 E'a , (E')f (E+E’)
s andp moments are increased. The strong reduction of the o o
total magnetic moment will influence the spin polarization of (29 2L’
AES, since the “screened” QDOS enters the Auger Green = Ao, (Ete—pw)f (Etec—p), (33
function (10). Note that the total magnetization has to be oE o i
calculated using Eq(18), incorporating hybridization witn Wheref. (E)=(e”=—1)"" is the Bose function. The two-
delocalized states. particle valence-band spectral density?::“'(E) is ob-

c%¢

Finally, we show the local magnetic moment per atom a¥

A. VV ladder approximation
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T 20
1 : ° 1 | 2 20 r (d)
—————— - ———
: 2 : 2 M 10
¥V VAWV ¥ .V VW VoV W VLWV W LV .V V] F
10 All
FIG. 5. Typical diagram in the CVV ladder approximation. The 0
notation is the same as in Fig. 4. The additional CV interaction is o0 | © 20
represented by the dotted line. = 1038
g 10} <
tained from the corresponding two-particle Green function. ‘E \'\/‘\ 0 ‘ag
Using a matrix notation with respect to={L,,L,} andL’, s 0 e ————— 1 £
the two-particle Green function reads as £ 207 (b) /\ 2
5 108
G, (E)=G%) (E)[1-UGZ (E)]Y, (34 g 107 0
</
i — 2,0)LL’ . . 0 . . . . .
with Uy /= ULleLiLé' Gi(cggc (E) is the two-particle o0 | @ 20
Green function that has to be calculated from the self- 10
convolution of the partial QDOS, 10 | .
A'(Z'O)'LL’(E):‘S)‘LL’J' dE'p"t (E—E")p"2 (E') =75 -0 =5 0 -5 40 5 o
'c7% e e%c E (eV) E (V)
X[f_(E'-B)f_(-E") FIG. 7. Left: total intensities,(E)+1,(E). Right: spin asym-
_ e , metry [1:(E)—1,(E))/[I,(E)+1,(E)]. (@ Self-convolution with-
F(E-EDNT_(ED], (35 out screening of the core hole in the initial statb) VV ladder
using the spectral representation without core hole screeninge) screened VV ladderd) direct VV
and CV correlations included up to first ordgiig. 6).
ey [ g ) | |
Gicgm'c (E)zf dE’ E_E . (36) assumed to be unpolarizédonresonafit process The in-

tensities for core spim. and — o are added incoherently:
In Eq. (34) we have applied the local approximation; i.e., | -(E)=[l,, (E)+1,-, (E)]/2. However, the Auger inten-
only the on-site elements for=i. are assumed to be non- sity is still spin dependent due to the ferromagnetic order in
zero. This approximation is analogous to the local approxiNi. In Fig. 7 we plotted the total Auger intensity;(E)

mation for the one-particle Green function in Sec. IV. +1,(E) on the left and the spin asymmetryl,(E)
=1 (E))/(1,(E)+1,(E)] on the right. Part(@ shows the
B. VV and CV correlations result of the self-convolution mod¢@Egs. (33) and (35) in-

serted in Eq(31)], i.e., the self-convolution of the occupied
QDOS in Fig. 1(LHS). Direct correlations and core-hole
screening are neglected altogether. Rbjtcorresponds to

A straightforward way to include the direct CV correla-
tion on the same level as the direct VV correlations has bee

discussed in Refs. 35-38. This leads to tighree- the VV ladder approximation starting from tlienscreened

particle””) CVV ladder approximation. For the limiting case ) S . :
' _QDOS. Taking additionally into account the screening ef-
of completely filled or empty bands the CVV ladder repre fects introduced by the presence of the core hole in the initial

sents the exact solution and recovers the VV ladder but : . )
shifted energetically by @, due to the CV interactiot A State results irfc). The spectrum obtained by the first order

typical diagram is shown in Fig. 5 where the dotted line"" the direct VV and CV correlationsee Fig. §and by the

. . - screened QDOS is plotted in pad).
represents the CV interaction. The CVV ladder approxima: As one can see in the plots on the left-hand side, the VV

tion leads to a coupled set of Fredholm integral equattns. interaction is too weak to produce bound states, no sharp

For a multiband model, however, the numerical evaluation is . .
) - satellite appears, and the spectra appear to be bandlike. Com-
beyond our present computational capacities. We therefore

) . ! ) . gared to the self-convolutiofa), however, a considerable
discuss a simpler approximation where only diagrams up t hif I ies is ob 4. This shift I
first order in the direct correlations are retairisde Fig. 6. Shift to OWET energies IS observe ib). This Shitt resu ts
e from the direct correlations between the two final-state holes

) in the valence band. Ifc) the main peak is shifted to still
C. Results for Ni lower energies. This is an effect of the core-hole screening in
The calculated Auger spectra for Ni resulting from differ- the initial state and can be traced back to the redistribution of
ent approximations are shown in Fig. 7. The core hole isspectral weight in the screened QD@3g. 1). Compared to
(a) and(b), the total AES intensity is clearly increased(@).
— - e ——- Again this is a consequence of the core-hole screening since
-+ ————— + ————t— + —a——t the number of occupied states available for the Auger pro-
b cess is increase(Fig. 1, RHS. The spectrum shown ifd)
not only includes the initial-state core-hole screening but
FIG. 6. Diagrams up to first order in the VV and CV interactions also the final-state effects due to the destruction of the core
(notation as in Fig. b hole. Compared t¢c), where the initial state is described in

oaoooo{

|
|
§°
|
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t there are essentially the same trends in the partial intensities
10 % as for the total intensities, and the discussion is the same as
(d) above. The line shape in ca&d, however, shows up some

St ‘///V\\ fine structure, especially in thgy partial intensity, which is

0 . not that pronounced in the total intensity. The shoulder at the
low-energy tail of(d) is due to direct VV correlations and

5| © ; may be interpreted as a hint at the formation of a bound state

of the final holes. Except for this shoulder, a surprising simi-

Partial Intensity (arb. u.)

0 = larity between(d) and (a) is noticed, even for the orbital-
51 (b ] resolved spectra. This might also be due to the small number
0 o~ of diagrams ta_ken into account. How_ever, the cancellation of
effects according to different interactiofgV and CV) was
5| (a) ] also pointed out in Ref. 27.
0 _/\\ N . _/\.
-10 0 -10 0 -10 0 VI. SUMMARY
E (eV)

In this paper we have investigated electron-correlation ef-
FIG. 8. Contributions to the total Auger intensitfig. 7) of  fects on the Auger line shape of Ni as an example of a
processes involving,, electrons only(left), e, electrons only ~ferromagnetic @ transition metal. The starting point is a
(right), and both kinds ofi electrons(middle). realistic set of hopping and overlap parameters taken from
tight-binding band-structure calculations. We additionally
the same way, these effects result in a strong shift of theonsider a strongly screened on-site Coulomb interaction be-
main peak to higher energies. This shift almost exactly comtween the rather localized d3 electrons. The respective
pensates for the shifts to lower energies that are due to dire@oulomb-matrix elements are expressed in terms of effective
VV correlations(b) and the core-hole screenirig). How-  Slater integrals. Choosing a nonorthogonal basis, a distinc-
ever, a weak shoulder at abobt= —8.5eV remains in the tion between the different angular momentum characters of
spectrum(d). the valence orbitals is possible. This is necessary for the
In all cases there is a high spin asymmeup to —50%) precise definition of the Coulomb-interaction part in the
for energies between approximatehp.8 eV and 0. Thisisa (multiband HubbardHamiltonian and also facilitates the in-
consequence of the fact that Ni is a strong ferromagneterpretation of the Auger spectra. Furthermore, we account
There are almost n¢ electrons above about0.4 eV (see for the core-valence interaction which is responsible for the
Fig. 1 that can participate in the Auger process. The mairscreening of the core hole in the initial state of AES and for
contribution to the intensity is therefore due to triplet con-the sudden response of the valence electrons due to the de-
figurations where the two final-state holes or, equivalentlystruction of the core hole in the final state.
core-hole and Auger electron have sginHowever, the in- Within a diagrammatic approach, the indirect and the di-
tensity is very small in this energy region. By taking into rect correlations can be studied separately. The indirect cor-
account the screening of the core hole in the initial stateelations have been treated by second-order perturbation
[compareg(b) and(c)] the spin asymmetry is reduced over the theory around the Hartree-Fock solutig8OPT-HB. The
whole energy range which essentially is the same effect a8V interaction parameters are fixed by assuming a ratio
the reduction of the local magnetic moment ataused by J/U~0.2 and by fitting the experimentally observed mag-
the presence of the core hol&ig. 3). The total spin- netic moment forT=0K, leading toU=2.47eV andJ
polarization =0.5eV. This is equivalent to an intraorbital interaction of
U .=3.04eV L={2m,}). The resulting Curie tempera-
JdEI(E)—fdEI(E) ture within the theory presented here is by a factor of 2.6
- JAEI(E)+ [dEI,(E) (37) larger than the experimentally observed one but considerably
lower than the LDA-U (Hartree-Fock value.
in case(d) is 2.6% and 1.6% fofc). Both values are close to The core-valence interaction leads to a breakdown of the
the experimental val3é of 2% for theM ;M 4sM 45 process. translational invariance in the initial state for AES. The in-
Cases(a) and (b) with a polarization of 8.7% and 9.3%, teraction parameted . =1.81¢eV is fixed by requiring charge
respectively, overestimate the total spin polarization comneutrality at the sité, where the core hole is created. The
pared with the experimental value. screening of the additional core-hole potential causes a trans-
For calculation of the orbitally resolved contributions to fer of spectral weight below the Fermi energy and thus a
the Auger intensity we may restrict the summation in Eq.considerable reduction of the local magnetic moment. How-
(31) to orbital indices [,,L,,L},L5) belonging tot,4(ey) ever, the local magnetic moment is finite since thandp
character only. The resulting contributions are shown on thelectrons also contribute to the screening.
left (right) of Fig. 8. The contributions due to the remaining  To study the direct correlations we have used two differ-
3d terms are plotted in the middle. ent approaches. The first is the VV ladder approximation,
In all caseqa)—(d) thet,4 contributions are clearly stron- which results in a bandlike Auger spectrum with a single
ger compared with the, contributions. The ratio between maximum. In a second approach we have summed up the
thet,y ande, partial intensities corresponds to the different first-order diagrams with respect to the VV and CV interac-
degeneracies. Comparing the casas-(d), we notice that tions. The resulting spectrum shows up a shoulder at the
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lower tail due to the VV interaction. Otherwise the line shapeThe overlap matrixS is Hermitian:{|@)} indeed represents
is very similar to that obtained by the self-convolution of thean orthonormal and complete basis set. The completeness
unscreened QDOS. relation can be written as

As far as concerns the line shape, we conclude that the
different correlation effects, VV and CV correlations in the
initial and the final state, nearly cancel. However, a strong 1— W = ~12g-1/2/ | 13l
effect of electron correlations has been found in the orbitally ! ; @)@ 0%7 1B)SpecSay XA azﬁ AT
resolved partial intensities and particularly for the spin asym- (A3)
metry.

The calculated spin polarization is in good agreemen#nnihilation (and creatiohoperators referring to the nonor-
with the measured one of thel;M4M,5 proces$! This  thogonal basis may be defined as
process corresponds to the excitation of a not too deep lying
core level, i.e., the two-step model should be applicable. The
reduced but finite spin polarization of thé ;M 45M 45 pro- Effz 1
cess(as compared to the band polarizajican be explained Ca™ 7 Sap C (A4)
by effects of core-hole screening rather than by a core-hole
polarization, caused by a resonant excitation of the core ele
tron into the valence barfd.Future work will show whether
these findings also apply to othed 3ransition metals.

{t is instructive to see how the creation operator acts on the
vacuum state:
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edged. The numerical calculations were performed on the :2 |B>Sﬁa' (A5)

CrayT3E at the Konrad-Zuse-Zentrunr fnformationstech- p

nik Berlin (ZIB).
Furthermore, one gets from the transformatigA®) and

APPENDIX: NONORTHOGONAL BASIS SET (Ad):

There are several advantages for using the nonorthogonal
basis set{|iLo)}. The Slater-Koster paramet&sfor the > laye,=2> 18)S;
two-center approximatiofused hergare much more accu- @ aBy
rate for a nonorthogonal basis set compared to an orthonor-
mal one?*? Second, the nonorthogonal bafiisear combina-  Thus, an operator in second quantization has the same struc-
tion of atomic orbitals(LCAO) basig is built up from ture for both the orthonormal and the nonorthogonal basis
guasiatomic orbitals. One therefore knows the behavior ofets. A one-particle operat@, for example, reads as
the basis states under symmetry operations belonging to the
Oy, group which eventually results in the fact that local quan- (A6)
tities, e.g., the on-site Green function, are diagonal in the o= §Z<a|o|a/>ﬁa, = > cl(alola’)c, . (A7)
orbital index. Furthermore, the Coulomb matrix elements can a,a’
be calculated in a highly symmetric way by using $ym-
bols in combination with a transformation from spheric to The nonorthogonal Green functions are defined as in the or-
cubic harmonics. The unknown radial parts of the basis arghonormal case, e'g'Gaa’(E):<<Ca;cl’>> for the one-

V2st2c, =2 |a)c,.  (A6)

a Say“y

’
a,a

i ; i 2 -4
parametrized by the effective Slater mtegra_l-'so,q: 'F%). " particle Green function. For example, using the nonorthogo-
Finally, one can ensure that the Coulomb interaction act§; version of the fundamental anticommutation rules
between @ electrons only. (c, ,CZ,]+ =S;j,; see also Eq4)) and the equation of mo-

For the formalism of second quantization, for the many-
body and Green-function theory, for the proof of Wick’s
theorem and thus the development of the diagram technique,
however, the use of an orthonormal set of one-particle basis GYE)=[(E+u)S—t] 1, (A8)
states is necessary. Therefore, it is convenient to derive all

expressions that refer to the nonorthogonal basis, where we used the matrix notatios),,,, =G, , etc. For
the interacting Green function one hgmompare with Eqg.

tion, the noninteracting Green function turns out to be

(alB)=S,p, (Al (15)]
by a(nonunitary Lowdin transformatiof? from a related set
of orthogonal one-particle basis states: G(E)=[(E+ un)S—t—3(E)] L. (A9)
f
|a>D:eE |B>S_1/2- (A2) In the same way as for the examples given, one may use
B Ba Wick’s theorem, develop the diagram technique, etc.
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