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Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots

J. A. Barker and E. P. O’Reilly
Department of Physics, University of Surrey, Guildford, Surrey GU2 5XH, United Kingdom

~Received 19 November 1999; revised manuscript received 25 February 2000!

We present a theoretical analysis of the mean electron and hole positions in self-assembled InAs-GaAs
quantum-dot structures. Because of the asymmetric dot shape, the electron center of mass should be displaced
with respect to the hole center of mass in such dots, giving rise to a built-in dipole moment. Theoretical
calculations on ideal pyramidal dots predict the electron to be localized above the hole, contrary to the results
of recent Stark-effect spectroscopy. We use an efficient plane-wave envelope-function technique to determine
the ground-state electronic structure of a range of dot models. In this technique, the Hamiltonian matrix
elements due to all components of the potential are determined using simple analytical expressions. We
demonstrate that the experimental data are consistent with a truncated dot shape and graded composition
profile, with indium aggregation at the top surface of the dot.
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I. INTRODUCTION

There is considerable interest in the study of se
organized InAs-GaAs quantum-dot~QD! structures. These
are interesting both from a fundamental physics perspec
and also because of potential device applications, part
larly in the field of optoelectronics.1 Despite this, surpris-
ingly little is known about their detailed atomic and ele
tronic structure, including, for instance, the form of th
ground-state electron and hole wave functions. Initial str
tural studies of uncapped Stranski-Krastinow~SK! dots sug-
gested a pyramidal shape,2 and several groups therefore co
ducted theoretical investigations into the structure of id
pyramidal dots.2–7 More recent structural investigation
demonstrated that both the dot shape and size can vary
growth conditions. In addition to the ideal pyramidal sha
more recent work has also provided evidence for ‘‘tru
cated’’ pyramids,8 and for lens-shaped dots,9 as well as
showing that the indium composition can also vary throu
the dot.10,11

Figures in most theoretical papers on ideal pyramidal d
show the presence of a permanent dipole in the dot, du
the large built-in strain fields which localize the highest e
ergy hole state near the bottom of the pyramid, so that it
underneath the lowest-energy electron state in the dot.
cause of the built-in dipole, QD structures should exhibit
asymmetric Stark shift in the presence of an applied elec
field. As an electric fieldF is applied, the transition energ
ETR between the ground-state electron and hole levels
vary quadratically asETR(F)5ETR(0)2aF2bF2, where
ETR(0) is the zero-field transition energy,a depends on the
built-in dipole, andb is a measure of the polarizability of th
electron and hole wave functions. Asymmetry in experim
tal measurements of the Stark shift have indeed reveal
built-in dipole both in InAs-GaAs,12 and also in
Al yIn12yAs-AlxGa12xAs quantum dots13 but, surprisingly,
the direction of the dipole is opposite to that predicted fro
the theoretical calculations, with the hole center of m
above the electron center of mass in both cases.

Here we present a theoretical investigation of the fact
influencing the sign and magnitude of the built-in dipole
PRB 610163-1829/2000/61~20!/13840~12!/$15.00
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realistic QD structures. We use a carefully chosen one-b
effective-mass model to investigate how the dipolea and the
polarizability b vary with dot shape, height, width, compo
sition, and composition gradient. Most structural investig
tions suggest that SK dots have a broad base, tapering
wards toward their top, and also have a large base-to-he
ratio.8,9,12,14,15Here we consider ideal and truncated pyr
mids, and show that if one assumes constant compositio
any such structure, then the built-in strain fields and la
heavy-hole mass along the growth direction will lead to t
hole ground state sitting near the dot base, below the e
tron, giving the opposite dipole to that observed experim
tally. We must therefore modify this simple picture. Becau
the hole mass along the growth direction is considera
larger than the electron mass, the hole tends to sit in
region with the deepest potential while the electron is m
widely spread through the structure. In order for the hole
sit above the electron as observed experimentally, the d
est potential must occur at the top of the dot. This can
achieved by increasing the indium composition from t
base to the top of the dot, consistent with the conclusion
recent grazing-incidence diffraction measurements on
capped InAs-GaAs QD’s.10 We show that there exist a rang
of graded composition, tapered dot shapes that can give
correct sign and magnitude fora. We also show that the
magnitude of the polarization termb is determined predomi-
nantly by the vertical height of the dot. The calculated valu
of b are in good agreement with the experimentally det
mined values when the dot height is assumed to be com
rable to that determined from TEM measurements of equ
lent uncapped dots.12 Our calculations, combined with Star
effect measurements, provide useful information and s
sible constraints on allowed models of QD’s, consistent w
a range of other experimental data.

The calculations were undertaken using separate one-b
Hamiltonian equations for the electrons and holes, the de
of which are described in Sec. II. We include anisotropy
the hole mass, and allow for a variation in the parameters
potential distribution due to built-in strain and composition
variation. We show that the wave functions and confinem
energies calculated here for the ground-state electron
13 840 ©2000 The American Physical Society
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hole levels are in good agreement with data presented
other groups who used more sophisticated methods, suc
eight-bandk•P ~Ref. 3! and empirical pseudopotential4 tech-
niques. Although such techniques are necessary for the
rect understanding of excited states in the dots, the linear
quadratic contributions to the Stark effect are determined
marily by the spatial distribution of the ground-state wa
functions and by their potential profiles, each of which
well described here. The results of our calculations are p
sented in Sec. III. We first show that the results for conv
tional pyramidal dots are in good agreement with previo
work, and reconfirm that the location of the hole below t
electron in such a structure gives the wrong sign for
dipole. We then consider truncation of the pyramid, show
how the magnitude of the built-in dipole decreases with
creasing truncation, but always remains positive so long
the dot tapers inwards toward the top. We explain this f
ture by using the calculated biaxial strain distribution with
the dot, which has the effect of making the effective width
the top of the dot smaller for holes than for electrons, ther
maintaining the dipole. The inclusion of a wetting layer f
InxGa12xAs/GaAs dots tends to make the dipole even larg
by acting to enhance the hole-trapping potential at
dot base while having relatively little effect on the groun
state electron. We then consider the case of a dot wh
composition increases from base to top, considering b
cuboids and truncated pyramids. For both cases this can
to a localization of the hole above the electron, as obser
experimentally. Looking at the polarizabilityb, we show
that this is a strong function of the dot height but is relative
unaffected by the base dimension, and so may be use
estimate the vertical dimension of the dots. Finally, we ca
out a brief error analysis, investigating how variations in k
parameters affect the overall results. We find that chang
the band-offset ratio or elastic constants used modifies
absolute values obtained forETR(0), a andb, but does not
qualitatively affect the overall results. We omit the Coulom
interaction in our calculations but argue, based on analyt
expressions presented as the Appendix, that this omis
should also not qualitatively affect the overall results. W
summarize our conclusions in Sec. IV.

II. METHOD

The calculations were undertaken assuming a th
dimensional superlattice of dots, with superlattice unit c
size 2Lx32Ly32Lz . Schrödinger’s equation for the system
was solved using a plane-wave envelope-function techniq
The normalized envelope function wave functionsCn(r ) are
determined using a Fourier series expansion

Cn~r !5(
k

Ak
n

A8LxLyLz

exp~ ik•r !,

where k5p(m/Lx ,n/Ly ,p/Lz) and r5(x,y,z). We chose
(umu,unu,upu)<(5,5,8) to ensure convergence, and chose
separation between neighboring dots to be equal to the
dimension in order to minimize cross talk, while also ens
ing efficient convergence of the Fourier series. We first
by
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scribe here the general method, and then discuss the par
lar form of the strained one-band Hamiltonian equatio
used.

Using the plane-wave basis, the energy levels and eig
functions were found by solving the large Hamiltonian m
trix equation:

(
k

H̄k,k8Ak
n5En(

k
Ak

n , ~2.1!

H̄k,k85E
r

dr

8LxLyLz
exp~2 ik8•r !Ĥ~r !@exp~ ik•r !#.

~2.2!

In order to set up the Hamiltonian matrix of Eq.~2.1!, we
must first evaluate the matrix elementsH̄k,k8 linking plane-
wave basis states of wave vectorsk andk8. The lattice con-
stant of the quantum dot material (InxGa12xAs) differs from
that of the surrounding matrix~GaAs! so that there will be a
non-uniform strain distribution throughout the dot and t
matrix. Both the electron and hole Hamiltonian equatio
contain terms depending on this local strain distribution. T
calculation of the spatial strain distribution in a QD structu
requires the solution of a three-dimensional problem in e
ticity theory, for a generally nontrivial quantum dot shap
This is often achieved by using finite-difference or atomis
techniques,2,6,16 which require considerable computation
effort. An analytical method was recently presented to cal
late the Fourier transform of the strain distribution,17 which
we use here to directly determine the strain-dependent te
in the Hamiltonian matrix. We assume for simplicity that th
dot and matrix elastic constants are equal and isotropic, w
the values used given in Table I.

We define the characteristic function of the dotx(r ) to be
the local indium composition in the supercell~1 for InAs, 0
for GaAs!, and take the lattice mismatch of the dot«0 to be
6.7% for InAs in GaAs. It can be shown for an isotrop
elastic medium that the Fourier transform of the real-sp
strain tensor component« i j (r ) is given by (k9Þ0),17

«̃ i j ~k9!5x~k9!«0F d i j 2S C1112C12

C11
D ki9kj9

uk9u2
G , ~2.3!

wherek95k2k8, x(k9) is the Fourier transform of the do
characteristic function, andC11 andC12 are the elastic con-
stants. We wish to consider dots with a graded trunca
pyramidal geometry. We define the truncation factorf as the
fraction removed from the top of the pyramid to give th
truncated pyramid. A truncated pyramid of height 2bz and
truncation factorf is therefore the bottom part of a full pyra
mid of height 2bz /(12 f ). We have derived that when suc
a truncated pyramid is centered at the origin of the unit c
with base 2bx , 2by , truncated height 2bz , and graded be-
tween an indium fraction off 1 at the base, andf 2 at the
~truncated! apex, the characteristic functionx(k9) is given
by
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x~k9!5
2 ibz

kx9ky9
(
j 51

4
~21! j

f j
F f 2 exp~ if j !2 f 1 exp~2 if j !

2
~ f 22 f 1!

f j
sin~f j !GexpF i

u j

2
~11 f !G ,

where

u15kx9bx1ky9by ,

u252kx9bx1ky9by ,

u352kx9bx2ky9by ,

u45kx9bx2ky9by ,

f j5kz9bz2u j

~12 f !

2
.

We assume that energy gaps, band offsets, and ca
inverse effective masses vary linearly with In composition
strained InxGa12xAs inclusions in GaAs. The Fourier trans
forms of all terms in the electron and heavy-hole Ham
tonian equations can then be determined analytically,
abling a straightforward evaluation of each of the mat
elements in Eq.~2.1!.

We derive the electron and hole envelope function Ham
tonian equations from three-bandk•P theory.18,19 The elec-
tron Hamiltonian is given as

TABLE I. Parameters used in this work.

InAs GaAs

mexp* ~0 K!a 0.023 0.067
g1

b 19.67 6.85
g2

b 8.37 2.10
ac

c 25.08 27.17
av

c 1.00 1.16
e14/« r31023 C m22 d 22.97 212.49
Ep ~eV!b 22.2 25.7
D0 ~eV!b 0.386 0.340
Vc ~0 K! ~eV!a,c 0.685 1.519
Vc ~300 K! ~eV!a,c 0.621 1.428
Vv ~eV!a,c 0.265 0.000
Vc1ac«hy ~0 K! ~eV! 1.058 1.519
Vc1ac«hy ~300 K! ~eV! 0.994 1.428
Vv1av«hy ~eV! 0.192 0.000

C11
a511.931010 Pa

C12
a55.3831010 Pa

C44
a55.9531010 Pa

bax
a521.8 ~eV!

« r
a ~InAs!515.15

aFrom Ref. 24.
bFrom Ref. 25.
cFrom Ref. 27.
dFrom Ref. 26.
ier

-
n-

l-

Ĥc~r !52
\2

2m0
¹

1

m* ~r !
¹1Vc~r !1ac«hy~r !

1dpz~r !1eFz ~2.4!

wherem* (r ) is the electron effective mass,Vc(r ) the un-
strained conduction-band edge,ac«hy(r ) the hydrostatic de-
formation of the conduction band edge, anddpz(r ) the piezo-
electric potential. The strain-induced band deformat
causes the effective-mass parameters to vary from their
values. The variation of the electron effective mass with
~hydrostatically! strained band gap,Egs , is given from three-
bandk•P theory as

1

m* ~r !
511

2Ep~r !

3Egs~r !
1

Ep~r !

3@Egs~r !1n0~r !#
1d~r !,

~2.5!

where Ep(r ) is the Kane interband energy parameter, a
d(r ) takes into account the contribution of remote bands
the conduction-band effective mass.

For the case of isotropic elastic constants, finding the a
lytic form of H̄k•k8 is a trivial matter for all but the piezo
electric term inĤc(r ). In order to evaluate this term, using
similar technique to that employed in Ref. 17 we Four
transform the Green’s function for the piezoelectric poten
presented in Ref. 20 and apply convolution theory, to obt
an analytic expression for the Fourier transform of the pie
electric potential (k9Þ0)

d̃pz~k9!5
218i«0

e0A2p
S C1112C12

C11
D Fe14

bar

e r
bar

x~k9!
kx9ky9kz9

uk9u4

1S e14
dot

e r
dot

2
e14

bar

e r
barD(

k-
x~k-2k9!x~k9!

kx9ky9kz9

uk9u4 G ,

wheree0 , e r
dot , and e r

bar are the permittivity of free space
and relative permittivity of the dot and barrier material, a
e14

dot ande14
bar are the piezoelectric constants. In the diago

~one-band! approximation used here, heavy holes have
large effective mass in the growth direction and a small
fective mass in the growth plane,21 so that the dominant con
tribution to the heavy-hole kinetic energy is directed para
to the x-y plane. This contrasts with the light holes, whe
the dominant kinetic-energy term is directed parallel to thz
axis. From experiment, Stranski-Krastanow quantum d
have a large base-to-height ratio, i.e,Lx5Ly@Lz . The ki-
netic energy in thex-y plane is thus reduced relative to th
in the growth direction, leading to stronger heavy-hole co
finement and weaker light-hole confinement. In additio
axial strain tends to reduce the light-hole confinement pot
tial through most of the dot.5,17The one-band valence Hami
tonian we use for the hole ground state is then given as

Ĥv~r !5
\2

2m0
$¹ i@g1~r !1g2~r !#¹ i

1¹z@g1~r !22g2~r !#¹z%

1Vv~r !1av«hy~r !2bax«ax~r !

1dpz~r !1eFz ~2.6!
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FIG. 1. Ground-state electron~a! and hole~b!
confinement energies~0 K! as a function of dot
size for InAs quantum pyramids of base:heig
ratio 2:1, on a 1-ml InAs wetting layer~left!.
Probability density~arbitrary units! for a ground-
state electron~c! and hole~d! in a pyramid of
base 12 nm and height 6 nm on 1-ML wettin
layer ~right!.
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where Vv(r ) is the unstrained valence band-edge ener
av«hy(r ) the hydrostatic deformation of the valence-ba
edge, and2bax«ax(r ) the axial-strain-induced shift in th
heavy-hole band edge. In order to correctly describe the o
band Luttinger parametersg i(r ), we first relate them to thei
eight-band counterparts,g i8(r ). In the full eight-band Hamil-
tonian, the interactions between the conduction-band m
mum and valence-band maximum are considered explic
with g i8(r ) then due to interactions with remote bands, a
assumed to be independent of the built-in strain and
lowest-energy gap. The eight-bandg i8(r ) values are related
to the one-band values by22,23

g18~r !5g1~r !2
EP~r !

3Eg~r !
, g28~r !5g2~r !2

EP~r !

6Eg~r !
,

~2.7!

where Eg is the unstrained band gap. The energy g
changes in a strained material, so that the one-band Lutti
parametersg i will also change in a strained inclusion, as

g1~r !5g18~r !1
EP~r !

3Egs~r !
, g2~r !5g28~r !1

EP~r !

6Egs~r !
.

~2.8!

The parameters used are taken from Refs. 24–26 and
band offsets from Krijn.27 These are tabulated in Table I. W
calculated the parameter values for InAs in a GaAs mat
and for unstrained GaAs, and then assumed a linear varia
of all parameters with alloy composition. This assumption
consistent with the parameters compiled by Krijn27. Al-
though the~unstrained! band gap of InxGa12xAs has a mod-
erately large bowing parameter, the strain contribution to
band gap introduces a bandgap bowing in the opposite d
tion which almost exactly counteracts this.27 The calculations
presented below were carried out assuming roo
temperature energy gaps and effective masses. The effe
mass and Luttinger parameters quoted from Ref. 25 are
values. These were related to the 300-K values by us
y,

e-

i-
y,
d
e

p
er

he

,
on
s

e
c-

-
ive
-K
g

room-temperature values for the strained energy gap in E
~2.5! and ~2.8!. Finally, we assume the GaAs values for t
elastic constants in the dot and surrounding matrix. We h
justified this choice previously,17,28 based on Keyes’ scaling
rule for elastic constants.29,30

III. RESULTS

Figures 1~a! and 1~b! show the variation of the ground
state electron and hole confinement energies, calculated
function of dot size for InAs pyramids of base to height ra
2:1 on a 1-ML InAs wetting layer. The results are in goo
agreement with previous calculations. Using the effecti
mass renormalization procedure, we find several bou
electron states. For the dot shape considered in Figs. 1~c! and
1~d!, we find four distinct electron bound states within th
dot. In Table II, we compare our calculated ground st
confinement energies for a dot of base 12 nm and heig
nm, with previous calculations.3,6 The calculated electron
confinement energies are in good agreement with prev
eight-bandk"P calculations,3 sitting midway between the

TABLE II. Ground-state electron and hole confinement energ
~eV! at 0 K, for a dot of base 12 nm and height 6 nm. Numbers
italics were taken from graphs in the relevant references.

Band-structure parameters Elastic model W.L.Eelec Ehole

From Table I plane-wave None 0.179 0.15
From Table I plane-wave 1 ml 0.206 0.17
From Stieret al. ~Ref. 3! plane-wave 1 ml 0.211 0.175
Stier et al. ~Ref. 3! CM 1 ml 0.203 0.155
Stier et al. ~Ref. 3! VFF 1 ml 0.220 0.161
From Table I plane-wave 1.5 ml 0.219 0.19
From Cusacket al. ~Ref. 6! plane-wave 1.5 ml 0.217 0.214
Cusacket al. ~Ref. 6! VFF 1.5 ml 0.165 0.250
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values calculated using two different force-field models
determine the strain distribution. Our values lie about
meV above the electron energies calculated using the val
force-field model, and about 10 meV below those calcula
using a continuum mechanical method. The hole grou
state energy in Fig. 1~b! is consistently about 10% furthe
from the valence-band edge than that calculated in Ref. 3
investigate the cause of this difference, we have calcula
the hole confinement energy using our model and the ba
structure parameters from Ref. 3. The resulting confin
state energy is within 4 meV of that obtained using our
rameters. Most of the observed difference must therefore
due to factors other than band-structure parameters, of w
the most important is likely to be the different force-fie
parameters used, and consequent differences in the bi
strain distribution. The difference is unlikely to be due to t
use of a one-band rather than eight-band Hamiltonian her
we were to include mixing between heavy- and light-ho
bands in our Hamiltonian, these should tend to increase
ground-state hole confinement, pushing the ground-state
lence level further away from the GaAs valence-band ed
thereby increasing the difference between the two sets
results. Reference 5 found a significantly larger hole confi
ment energy, and smaller electron confinement energy
Ref. 3. This is almost certainly due in part to a differin
treatment of the band offset. There are other important
ferences between the two calculations, including the cho
of a 1.5-ML wetting layer in Ref. 5, as opposed to the 1-M
wetting layer assumed in Ref. 3. This results in a 15-m
shift in hole confinement for the pyramid~Table II!. Refer-
ence 5 also employed a different treatment of the elec
and hole effective masses of strained InAs, taking an ave
of the results of empirical pseudopotential andab initio
local-density calculations, and finding values ofg158.201,
g253.253, andm* 50.04. These compare to the strai
renormalized one-band effective masses ofg1510.601,g2
53.836, andm* 50.042 used for the present work. Whi
there is good agreement between the calculated electro
fective masses, the differences ing1 andg2 lead to different
hole effective masses. The largest difference is seen for
hole effective mass in the growth direction, which is es
mated from the strain-renormalizedk•P parameters to be
0.341, whereas Ref. 5 estimated a significantly larger va
of 0.590. The different choice of effective mass results i
20-meV shift in the hole confinement energy~Table II!. The
comparisons in Table II indicate the range of envelope fu
tion parameters currently used to model strained InAs/G
quantum-dot structures. This range was considered in fur
detail in Ref. 3, where it was concluded that the grea
uncertainty in the calculated confined-state energies is a
ciated with the assumed band-offset values, with differ
assumptions concerning the elastic constants used also
ing a role. We shall present most of our results here ass
ing the band-structure parameters listed in Table I. Calc
tions are presented in Sec. IV, which show that reason
variations in the assumed band offsets or strain distribu
do not qualitatively affect the main conclusions of our wo

Figures 1~c! and 1~d! show contours of constant probab
ity density, calculated for the ground-state electron and h
wave functions for a pyramidal dot of base 12 nm and hei
6 nm on a 1-ML wetting layer. The electron wave function
0
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distributed relatively evenly throughout the pyramid, wh
the hole wave function is predominantly localized near
dot base as a result of the variation in the biaxial stra
«ax5«zz2(«xx1«yy)/2, through the dot. Because the ba
of the dot is wider than the top, it has been shown2,6,17 that
the base experiences a positive biaxial strain («ax.0), while
the top is under negative biaxial strain («ax,0). This then
leads through the term2bax«ax to a deeper well for heavy
holes at the base than at the top of the pyramid. The com
nation of the deeper well and large heavy-hole mass expl
why the hole wave function is predominantly localized ne
the dot base. In contrast, the electron Hamiltonian@Eq. ~2.4!#
depends on strain only through the hydrostatic compon
«hy , whose magnitude is relatively constant through the d
The hydrostatic strain«hy is exactly constant in the mode
used here, where we assume isotropic elastic constan
equal magnitude in the dot and barrier.«hy is no longer
exactly constant when we use anisotropic elastic constan17

or different values of the elastic constants in the dot a
barrier.3 Nevertheless, we expect, based on the above an
sis, that the hole will lie below the ground state electron
any quantum dot of uniform composition whose shape tap
from a broad base to a narrow top. Figure 2 shows the
culated difference between the electron and hole ground s
energies for the dot structure considered in Fig. 1 when
electric field is applied along the pyramid axis. For t
present work, we follow the same convention as in Ref.
and have defined the applied field to be positive when
results in the conduction- and valence-band edges movin
higher energy above the dot and to lower energy below
dot, as illustrated in the inset to Fig. 2. Here, and for t
remainder of this section, we use 300-K parameters ra

FIG. 2. Ground-state transition energy~300 K! as a function of
applied field for pyramidal dots of base 12 nm and height 6 nm
a 1-ML wetting layer, using the piezoelectric potential of both d
and barrier material~solid line!, not including the piezoelectric de
formation~long-dashed line!, and setting the piezoelectric deforma
tion to that of the dot everywhere~short-dashed line! and that of the
barrier everywhere~dotted line!. Inset: variation of the band edg
with position forF.0.
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than 0-K parameters as the room-temperature behavio
quantum-dot-based devices is of most practical long-term
terest. Use of 300-K parameters, rather than 0-K parame
reduces the value ofETR(0), but haslittle effect on the cal-
culated values ofa andb. The solid line in Fig. 2 shows the
transition including the piezoelectric potential; the lon
dashed line shows the transition with the piezoelectric po
tial set to zero, and the short-dashed and dotted lines s
the transition using the dot and barrier parameters, res
tively, for the piezoelectric potential everywhere. The clo
agreement between all of the above calculations occurs
two reasons: first, the piezoelectric potential is only sign
cant near the corners of the pyramid,20 away from the re-
gions in which the electron and hole wave functions are c
centrated. Second, the piezoelectric potential has
symmetry about the~100! and ~010! planes through the do
center, while the ground-state wave functions have e
symmetry about these planes, so that the piezoelectric
does not shift the ground-state electron and hole energie
first-order perturbation theory. These two factors expl
why the piezoelectric potential has little effect on t
ground-state transition energy in~001!-grown, zinc-blende
pyramidal dots. Setting the piezoelectric potential to the b
rier value everywhere provides a good approximation of
full piezoelectric potential calculation. While this would
first seem surprising given the factor of 4 difference betwe
e14/« r for the two materials, one should note that piezoel
tric deformation occurs predominantly outside of the dot,
that most of the overlap between the piezoelectric fields
the charge-carrier wave functions will occur in the barr
material. For dots whose composition is graded fro
InxGa12xAs at the base to InAs at the top surface, there w
be a smaller lattice mismatch between the dot and ba
material at the base of the dot, reducing the atomic displa
ment caused by the inclusion and hence weakening the
zoelectric field. As the pyramidal dot shape is truncated,
piezoelectric field becomes more concentrated at the cor
of the dot while the electron and hole wave functions b
come more strongly localized toward the center of the dot
both cases the piezoelectric shift in ground-state carrier c
finement should be smaller than that seen for the pyram
Test calculations have shown that the piezoelectric-indu
shift in the ground-state transition energy is negligible in
graded, truncated pyramids considered below.

It can be seen from Fig. 2 that for moderate fields
transition energy varies quadratically with applied field,
that ETR(F)5ETR(0)2aF2bF2. The linear coefficienta
depends directly on the initial separation of the electron
hole mean positions, i.e, on the built-in ground-state dip
moment of the dot. This is confirmed using second-or
perturbation theory. The electron and hole Hamilton
equations may be written in the presence of an applied fi
as

Ĥ5Ĥ01Ĥ8,

whereĤ0 is the unperturbed Hamiltonian of Eq.~2.4! or Eq.
~2.6!, and Ĥ85eFz. The ground-state electron~hole! wave
functionsCe(h) are given to first order in the applied electr
field F as

Ce(h)5ce(h)
0 1Fce(h)8 ,
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wherece(h)
0 is the ground-state wave function in zero fiel

and the first-order correctionFce(h)8 is written so as to em-
phasize that its magnitude varies linearly withF. From
second-order perturbation theory, the ground-state elec
energyEe then varies with applied field as

Ee~F !5Ee~0!1eF^ze&1eF2^ce
0uzuce8&,

where ^ze&5^ce
0uzuce

0& is the mean electron position alon
the pyramid axis. Using an equivalent expression for the h
energy we see that the transition energy,ETR , varies to sec-
ond order as

ETR~F !5ETR~0!2eF~^zh&2^ze&!

2eF2~^ch
0uzuch8&2^ce

0uzuce8&!. ~3.1!

The linear coefficienta is therefore identically equal to
the ground-state dipole moment,a5e(^zh&2^ze&), while
the quadratic termb depends only on the polarizability o
the ground-state electron wave function,2be /e
5^ce

0uzuce8& , and of the ground-state hole wave functio
bh /e5^ch

0uzuch8&.
The peak transition energy is seen at positive field in F

2, consistent with a negative dipoled5a/e, with d528.8
Å . By contrast, experimental Stark shift measurements b
on InAs/GaAs~Ref. 12! and InxGa12xAs/AlxGa12xAs QD
structures13 show the peak transition energy at negative fie
in the notation used here. The experimentally obser
built-in dipole is therefore of opposite sign to that predict
from Fig. 2 and Eq.~3.1!, with the hole-electron separatio
d54.061 Å in Ref. 12. We therefore conclude that th
structure of these buried Stranski-Krastinow-grown d
must be markedly different from an ideal constant compo
tion pyramid, and now turn to consider what dot structu
are consistent with the experimentally observed dipole
polarizability.

Figure 3 shows the calculated dipole in a truncated In

FIG. 3. Dipole~300 K! as a function of truncation factorf, at a
constant dot height.@ f 50 for an ideal pyramid#. The solid line
shows a truncated pyramid with base 18 nm and height 5.5 nm.
dashed line shows a truncated pyramid with base 18 nm and he
4.935 nm, sitting on a 1 ml wetting layer so that the total height o
dot plus wetting layer is 5.5 nm.
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pyramid of base widthB518 nm and heightH55.5 nm as a
function of truncation factor,f. The value assumed forH is
similar to the value estimated from a TEM analysis of u
capped dots, and also to that inferred from the value ob
measured for capped dots.12 f represents the fraction of th
total pyramid height removed so that, for example, a tr
cated pyramid withf 50.75 andH55.5 nm is formed by
decapitating a full pyramid of height 22 nm. The dashed l
in the figure shows the dipole when a 1-ML InAs wettin
layer is included, while the solid line shows the dipole w
no wetting layer. The wetting layer deepens the hole pot
tial near the base of the dot. The hole is always localiz
below the electron in this case, withd51 Å even for a
cuboidal dot (f 51) sitting on the wetting layer. Moving
from a cuboidal to a pyramidal geometry, the increasing
isotropy of the dot shape modifies the axial strain fie
present in the dot to move the heavy holes away from the
surface of the dot and toward the dot base, so that
ground-state hole moves more rapidly toward the dot b
than the ground-state electron, and the magnitude of
electron-hole separation increases. For the dot dimens
considered, the electron-hole separation reaches a maxi
at f ;0.35, and then decreases again for smallerf. At f
;0.35, the hole is already predominantly localized at
base of the dot. For smallerf, the increasingly pyramida
shape pushes the electron downwards more rapidly than
hole, so that the electron starts to ‘‘catch up’’ with the ho
It is clear that, regardless of the level of truncation, the m
electron position will always remain above that of the ho
up to the limit of a cuboidal dot (f 51). When we setf 51,
and assume no wetting layer, the electron and hole w
functions are both symmetric about the cuboid central pla
so that in this cased50.

If the hole is to sit in the upper part of the dot, above t
electron, we require a deeper heavy-hole potential at the
of the dot than at the base. Experimental studies gene
indicate a dot shape tapering from the base to the top.
heavy-hole potential can nevertheless be deeper at the
than at the base if the dot is formed of an InxGa12xAs alloy,
with the indium composition,x, increasing from the base t
the top. We have assumed a linear composition gradient
note that recent work11 suggests that the true compositio
profile may possibly be more complicated. Figure 4~a! shows
the calculated electron-hole separationd for dots with di-
mension 1835.5 nm2. The solid line shows a linearly grade
cuboid, for whichd50 whenx51 at the base of the pyra
mid, with d increasing to a maximum value of order 7 Å near
x;0.3 at the base. A similar trend is observed for the tr
cated pyramid withf 50.75 ~dashed line!. The electron ini-
tially sits above the hole here, but the positions reverse w
increasing grading. Figure 4~b! shows the calculated separ
tions when the cuboid and truncated pyramid are sitting o
one monolayer InxGa12xAs wetting layer, withx constant in
the wetting layer and equal to the value at the dot base.
intermediate values ofx, the wetting layer leads to a sligh
increase ind, as the electron is pulled down toward the we
ting layer, but the hole remains pinned by the stronger ax
strain induced deformation at the base of the dot. Moving
largex, the heavy-hole confining potential becomes stron
in the well than the dot, so that the hole is pulled mo
-
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strongly toward the wetting layer than the electron, shifti
the dipole toward more negative values.

A fit to the experimentally observed electron-hole sepa
tion of d54 Å can then be obtained for a variety of differe
dot geometries. We see from Fig. 4 that such a separa
can be obtained, e.g., for graded composition cuboids
truncated pyramids both with and without a wetting lay
although the grading must be stronger in the presence of
wetting layer. Indeed a fit to the experimental separation m
be obtained for disklike dots, dome-shaped dots, etc.
Stark shift data do not determine the precise detail of the
shape, but do require severe compositional grading.
electron-hole separation will vary in graded truncated py
mids, both as a function of the dot grading~x! and the trun-
cation factorf. This is illustrated in Fig. 5, which plots con
tours of constant electron-hole separation as a function
grading~horizontal axis! and truncation factor~vertical axis!
for dots with a base width of 18 nm and height 5.5 n
without a wetting layer. Interestingly, the data in Fig. 5 e
clude pyramidal dots. Even with 100% linear grading fro
base to apex and no wetting layer, the electron still rema
above the hole, giving a dipole of the wrong sign.

FIG. 4. Dipole~300 K! as a function of composition gradient fo
dots of base 18 nm and height 5.5 nm, graded from InxGa12xAs at
the base to InAs at the top surface,~a! for dots with no wetting
layer, and~b! for dots sitting on a 1-ML wetting layer. The solid
lines are results for dots with a cuboidal geometry (f 51), and the
dashed lines are results for truncated dots withf 50.75.
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The measured polarizabilityb of self-organized quantum
dots12 also provides information regarding their structu
and in particular their estimated heightH. The polarizability
of electrons and holes was widely studied in quantum-w

FIG. 5. Relative vertical position~in nm! of holes and electrons
~300 K! as a function of truncation and composition gradient,
dots of base 18 nm and~truncated! height 5.5 nm.
,

ll

structures.19,31 It can be shown for a particle of massm* in
an infinitely deep quantum well of widthH that the polariz-
ability b}m* H4, which can also be written asb}H2/(E1
2E0), whereE12E0 is the energy separation between t
first excited and ground-state levels. The polarizability the
fore increases strongly with the quantum-well width. Mo
quantum-well studies have focused on wider quantum w
(H.;7 nm!, for which the heavy-hole contribution is con
siderably larger than the electron contribution to the to
polarizability, becausemhh* @mc* .

Figure 6~a! shows the calculated electron and hole pol
izabilities be and2bh as functions of heightH for a range
of different test structures. These include a graded trunca
pyramid with base 18 nm,x50.5 andf 50.75~solid line!, an
InAs cuboid with base 18 nm~dashed line!, and an InAs
quantum well~dotted line!, each embedded in a GaAs m
trix. The calculated polarizabilities follow the broad tren
predicted by the infinite well analysis, with bothbe andbh
increasing withH in all cases, and withbh about three times
larger thanbe in the widest~7 nm! quantum well and cuboid
The magnitudes ofbe and bh become comparable in nar
rower structures, and the calculated values ofbe exceed
those ofbh for H;3 nm. This occurs because the sm
vertical dimension of the well restricts the motion of ele
trons and holes within the well, so that the effects of barr
penetration become significant. This is confirmed by F
6~b!, which plotsuc(z)u2, the integral of the probability den
sity function over thex-y plane, for several model structure
where

r

lid
for a
f

are
ots.
FIG. 6. ~a! Polarizability~300 K!, for electrons~top left! and holes~bottom left!, as a function of height for dots of base 18 nm. The so
lines are results for a graded truncated pyramid, withf 50.75 andx50.5; the dashed lines are for a cuboid; and the dotted lines are
quantum well.~b! uc(z)u25*

2Lx

Lx dx*
2Ly

Ly dyuc(r )u2, the integral of the probability density function over thex-y plane, for quantum dots o

base 18 nm, with heights of 3 nm~top right! and height 7 nm~bottom right!. The thick lines are results for electrons, and the thin lines
results for holes. The solid lines are results for graded truncated dots withx50.5 and 0.75, and the dashed lines are results for cuboidal d
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uc~z!u25E
2Lx

Lx
dxE

2Ly

Ly
dyuc~r !u2.

We consider a graded truncated pyramid with base 18
x50.5 and f 50.25 ~solid line!, and an InAs cuboid with
base 18 nm~dashed line!. The thick lines show the electro
probability density, and the thin lines show the hole pro
ability density. It can be seen forH53 nm that the small
electron effective mass leads to a greater penetration of
electron than the hole into the GaAs barrier, increasing
effective sizeHe f f of the electron state, and hence increas
the electron polarizability relative to the hole polarizabilit
This also explains why the electron polarizability is largest
the graded truncated pyramid, where the lower confinem
energy leads to increased barrier penetration compared t
cuboid, and hence larger,be . By contrast, the hole polariz
ability bh is reduced in the graded truncated pyramid co
pared to the constant composition cuboid and the quan
well, reflecting the increased vertical localization of the ho
wave function due to the variation in the zero-field heav
hole potential along the axis of the dot.

Finally we note that based on the above analysis we
obtain a very good fit to the experimentally observed St
shift in InAs/GaAs quantum-dot structures~Fig. 7, solid
line!.12 The fit is obtained assuming a truncated pyramid w
base 18 nm, heightH55.5 nm, and truncation factorf
50.81, and the dot graded linearly fromx50.6 at the base to
x51.0 at the top. This is slightly different to the dot sha
which we presented previously,12 where x50.5 at the dot
base. This is due to minor changes in the way we treat
valence effective mass and elastic parameters here. Whil
dot structure chosen is by no means a unique fit to the d

FIG. 7. Solid line: Fit to experimentally measured transiti
energy~300 K!, for a graded truncated pyramid with base 18 n
height 5.5 nm, andf 50.81, and graded linearly fromx50.6 at the
base tox51.0 at the top. The fit to experiment differs slightly fro
that quoted by the authors in Ref. 8, due to a slightly differ
treatment of the valence effective mass and elastic parameters.
shown are the calculated transition energies for: a 100-meV upw
shift of the InAs conduction and valence-band edges~dotted line!; a
100-meV downward shift in these band edges~dashed line!; and
leaving band offsets unchanged, but using anisotropic elastic
stants~double-dot-dashed line!.
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its overall dimensions (B andH) are in good agreement with
a structural analysis of uncapped dots formed under iden
growth conditions.12 For this geometry, we observe electro
states at five energy levels bound within the dot, two
which are singly degenerate, and three of which are~nomi-
nally! doubly degenerate. The calculated energy levels
fairly evenly spaced, with a separation between the gro
state and first excited state of 62 meV.

IV. UNCERTAINTY ANALYSIS

The one-band electron and hole Hamiltonian equati
used here involve several parameters whose absolute va
are still uncertain. It was shown in Ref. 3 that the valu
assumed for the conduction- and valence-band offsets
perhaps the most significant factor affecting the calcula
electron and hole confined-state energies. We have there
recalculated the variation of transition energy with elect
field, ETR(F), for the dot structure of Fig. 7, including rigid
upward and downward shifts of 0.1 eV in the InAs ban
edge energies. The results are indicated by the dotted
dashed lines, respectively, in Fig. 7. For an upward shift
the electron and hole band offsets~dotted line!, we see a
greater asymmetry in the Stark shift of the transition ener
This is because the shift in the band offset leads to a de
potential well for holes and a shallower well for electron
increasing the effects of the confining potential on the sh
of the hole wave function, and reducing the asymmetry in
shape of the electron wave function. This would indicate t
either a weaker compositional grading within the dot, o
more tapered dot geometry, would be required to obtain
improved fit in this case. The converse effect is seen fo
downward shift in the electron and hole band offsets~dashed
line!, which would then require either stronger composition
grading, or a less tapered geometry to fit experiment.

We have omitted the influence of the exciton binding e
ergy when calculating the interband transition energy. T
questions need to be addressed concerning this omis
first, what is the typical magnitude of this binding energ
and second, how does it vary with electric field, and there
modify the calculateda andb values? The ground-state ex
citon binding energy is determined by the Coulomb inter
tion between the ground-state electron and hole states
described in the Appendix, and can be determined num
cally by carrying out an appropriate sum over the plane-w
coefficients for the wave functions, and the Fourier transfo
of the Coulomb interaction.34 We choose instead to take a
analytical approach here, in order to derive general con
sions regarding the influence of the exciton binding ener
Jeh . We see from Fig. 6 that the electron and hole proba
ity density distributions are close to Gaussians. The bind
energyJeh can then be determined analytically for seve
cases, as described in the Appendix. For the electron,
estimate thatLe52.86 nm in thegrowth direction andBe
55.55 nm in thegrowth plane. For the hole,Lh51.58 nm
and Bh55.17 nm. For simplicity, we take the relative pe
mittivity to be the InAs value here. When the electron a
hole sit on top of each other, with no built-in dipole, th
exciton binding energy is then estimated from Eq.~A5! as
17.7 meV. This value is comparable to previous calculatio
of the exciton binding energy in dots of simila
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dimension,32,33 and with that obtained for pyramidal dots o
similar base dimension.3 When the electron and hole are di
placed vertically to create a dipole of lengthd, the binding
energy initially decreases quadratically withd, as confirmed
in Fig. 2 of Ref. 33. We estimate from Eq.~A9! that, for
small d, Jeh varies asJeh(d)5(17.7– 0.324d2)(nm2) meV
for theB andL values listed above. For the dot shape of F
7, the built-in dipoled5^zh&2^ze& changes by approxi
mately 1 Å for every 24-kV/cm change in applied electr
field F. Based on this analysis, inclusion of the exciton bin
ing energy and its field dependence would therefore shift
calculated curve in Fig. 7 downward by;20 meV, and re-
duce the calculated polarizability by about 3%. Prelimina
numerical calculations indicate that this analytical model
derestimates the variation ofJeh(d) but that, nevertheless
the effects of the exciton binding energy can be accoun
for by slightly increasing the dot height, and decreasing
radius of the dot compared to the value of the fit in Fig.

The one-band model should be appropriate to describe
electron confinement energies and wave functions, but m
introduce a systematic error into the calculated valence-b
ground-state energies and wave functions, as we ignore
ing effects with the light-hole bands. The ground-state wa
function in the pyramidal dot of base width 13.6 nm cons
ered in Ref. 3 had less than 10% light-hole character,35 so
that a considerable vertical displacement of the light-h
center of mass with respect to the heavy-hole center of m
would be required to significantly modify the avera
ground-state hole position. This is not the case. Both hea
and light-hole components of the ground-state hole leve
toward the base of the dot for this dot shape.35 We thus
expect that use of a full valence-band Hamiltonian mig
alter the precise detail of the calculated dipole moments
polarizabilities, but should not significantly change the ov
all conclusions of this work.

The other approximation made here which needs furt
consideration is the assumption of isotropic elastic consta
It has been shown17 that, since the QD shape has a low
symmetry than that of the elastic parameters, the asymm
of the dot shape dominates in determining the strain dis
bution, so that the isotropic and anisotropic models sho
give similar results. However, whereas«hy is exactly con-
stant within the dot for the case of isotropic elastic consta
«hy is observed to vary with position when anisotropic cub
elastic constants are used, with«hy increasing approximately
linearly along the central axis of a constant composit
pyramid.3,17 This will give an additional linear variation o
the conduction- and valence-band edge energies along
dot axis. We have therefore calculated the electron and
wave functions for the anisotropic case, replacing the iso
pic strain tensor of Eq.~2.3! with the anisotropic, cubic
strain tensor from Ref. 17. For the pyramidal dot struct
considered in Fig. 1~b!, the position of the hole wave func
tion is predominantly determined by the axial strain distrib
tion, which maintains the same shape for both isotropic
anisotropic models, so that the position of the hole is un
fected by the introduction of cubic anisotropy. The electr
wave function experiences a shift of 1 Å toward the base
the dot, as hydrostatic strain introduces a potential grad
toward the dot base. This shift in electron position is an or
of magnitude too small to reverse the sign of the zero-fi
.
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dipole. Considering the graded truncated dot shape of Fig
the shift in the hole position is again relatively small, and t
electron position shifts;0.3 Å toward the base of the do
The Stark shift calculated using anisotropic elastic consta
is plotted as the double-dot dashed line in Fig. 7. There
blueshift of about 20 meV compared to the isotropic ca
and the peak position is not significantly different from t
results for the isotropic model. In this case, a better fit
experiment could be obtained with a slightly larger dot ba
dimension. We conclude that the use of anisotropic ela
constants would also not significantly modify our results.

V. CONCLUSION

We have used one-band electron and hole Hamilton
equations to investigate the different factors influencing
magnitude and sign of the built-in dipole in straine
InxGa12xAs quantum-dot structures, and also investiga
the polarizability of the dots. We have demonstrated that
built-in strain will always lead to the hole center of ma
lying below the electron center of mass in a constant co
position dot whose cross-sectional area tapers from the
to the top. The inclusion of an InAs wetting layer furth
increases the magnitude of the electron-hole dipole. The
culated dipole moment is of opposite sign to that determin
from recent quantum-confined Stark effect experimen
measurements.12,13 We show that the correct sign and ma
nitude of dipole can be obtained if we include compositi
grading, with the indium composition increasing from th
base to the top of the tapered dot. This conclusion is a
consistent with the results of recent grazing-incidence
fraction measurements on uncapped dots.10 The theoretical
analysis presented here, combined with relevant experim
tal data, has provided microstructural information whi
must be taken into account in future studies of self-organi
quantum-dot structures. Our results demonstrate con
sively that the measured Stark effect in self-organiz
quantum-dot structures cannot be explained by assumin
pyramidal dot shape.
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APPENDIX: EXCITON BINDING ENERGY

When the ground-state electron and hole levels in a qu
tum dot are sufficiently localized that their extent is shor
than the bulk exciton effective Bohr radius, the ground-st
exciton binding energy is then given to a good approxim
tion by
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Jeh5
e2

4p«0« r
E

2`

`

dreE
2`

`

drh

uCe~re!u2uCh~rh!u2

urh2reu
.

~A1!

The six-dimensional integral in Eq.~A1! must, in general,
be solved numerically in order to determine the value ofJeh .
For the plane-wave basis functions used in this paper,
involves carrying out an appropriate sum over the pla
wave coefficients and the Fourier transform of the Coulo
interaction.34 Instead, we choose here to analyze the va
tion of Jeh with dot size and applied electric field by approx
mating the electron and hole probability density functions
Gaussian functions, for which case integral~A1! can be
solved analytically.36 This approximation is shown in Fig. 6
to be a reasonable assumption. In this case, the electron
hole probability densities are given, respectively, by

uCe~re!u25
1

p3/2LeBe
2

expF2
~ze1d/2!2

Le
2

2
re

2

Be
2G , ~A2!

uCh~rh!u25
1

p3/2LhBh
2

expF2
~zh2d/2!2

Lh
2

2
rh

2

Bh
2G , ~A3!

whereLe andLh describe the extent of the electron and ho
localization along the growth (z) direction, Be and Bh de-
scribe their in-plane extent, and the electron and hole
centered a distanced apart. It can be shown that the value
the integral~A1! is unchanged when we replaceLe and Lh
andBe andBh by

L5ALe
21Lh

2

2
, B5ABe

21Bh
2

2
,

respectively. We solve Eq.~A1! by making the change o
variablesu5(re2rh) and v5(re1rh). We can then find
analytical expressions forJeh in several limiting cases.

~i! L5B,d50:
d-
.
.
.
v.
is
e
b
-

y

nd

re

Jeh5
e2

~2p!3/2«0« r

1

L
. ~A4!

~ii ! LÞB,d50:

Jeh5
e2

~2p!3/2«0« r

1

AB22L2
tan21FAB22L2

L G . ~A5!

This reduces to Eq.~A4! whenL5B, and to the value pre-
viously derived by Warburtonet al.36 for the two-
dimensional (L50) case.

~iii ! L5B,dÞ0:

Jeh5
e2

~2p!3/2«0« r

Ap

dA2
erfF d

LA2
G , ~A6!

which, for smalld/L, reduces to

Jeh5
e2

~2p!3/2«0« r

1

L F12
d2

6L2G . ~A7!

~iv! L50,dÞ0:

Jeh5
e2

~2p!3/2«0« r

p

2B
expF d2

2B2G erfcF d

2BG . ~A8!

~v! LÞB,dÞ0. We find for smalld/L that

Jeh5E02
d2

2 FE0

L2
2

e2

~2p!3/2«0« r

1

L2~B22L2!

3S B2

AB22L2
tan21FAB22L2

L G2L D G , ~A9!

whereE0 is equivalent toJeh in Eq. ~A5!
ia,

.

.

.
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terr, J. Böhrer, O. Schmidt, D. Bimberg, V. M. Ustinov, A. Yu
Egorov, A. E. Zhukov, P. S. Kop’ev, S. V. Zaitsev, N. Yu
Gordeev, Zh. I. Alferov, A. I. Borokov, A. O. Kosogov, S. S
Ruvimov, P. Werner, U. Go¨sele, and J. Heydenreich, Phys. Re
B 54, 8743~1996!.

9J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. Andre´, and
O. Vatel, Appl. Phys. Lett.64, 196 ~1994!.
10I. Kegel, T. H. Metzger, P. Fratzl, J. Peisl, A. Lorke, J. M. Garc

and P. M. Petroff, Europhys. Lett.45, 222 ~1999!.
11N. Liu, J. Tersoff, O. Baklenov, A. L. Holmes, Jr., and C. K

Shih, Phys. Rev. Lett.84, 334 ~2000!.
12P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. A

Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A.
Maksym, M. Hopkinson, M. Al-Khafaji, J. P. R. David, A. G
Cullis, G. Hill, and J. C. Clark, Phys. Rev. Lett.84, 733~2000!.

13S. Raymond, J. P. Reynolds, J. L. Merz, S. Fafard, Y. Feng,
S. Charbonneau, Phys. Rev. B58, R13 415~1998!.

14B. Wang, Y. Peng, F. Zhao, W. Chen, S. Liu, and C. Gao,
Cryst. Growth186, 43 ~1998!.

15S. Raymond, S. Fafard, P. J. Poole, A. Wojs, P. Hawrylak,
Charbonneau, D. Leonard, R. Leon, P. M. Petroff, and J.
Merz, Phys. Rev. B54, 11 548~1996!.

16T. Benabbas, P. Francois, Y. Androussi, and A. Lefebvre, J. A
Phys.80, 2763~1996!.

17A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly,
Appl. Phys.86, 297 ~1999!.



ro

n

-

-

,

S.

PRB 61 13 851THEORETICAL ANALYSIS OF ELECTRON-HOLE . . .
18J. A. Barker and E. P. O’Reilly, Physica E4, 231 ~1999!.
19G. Bastard,Wave Mechanics Applied to Semiconductor Hete

structures~Halstead, New York, 1988!.
20J. H. Davies, J. Appl. Phys.84, 1358~1998!.
21E. P. O’Reilly and A. Ghiti, inQuantum Well Lasers, edited by P.

S. Zory ~Academic Press, New York, 1993!, p. 329.
22C. R. Pidgeon and R. N. Brown, Phys. Rev.146, 575 ~1966!.
23A. T. Meney, B. Gonul, and E. P. O’Reilly, Phys. Rev. B50,

10 893~1994!.
24Numerical Data and Functional Relationships in Science a

Technology, edited by O. Madelung, Landolt-Bo¨rnstein New Se-
ries, Group III, Vol. 17a~Springer-Verlag, Berlin, 1982!.

25P. Lawaetz, Phys. Rev. B4, 3460~1971!.
26S. Adachi, Physical Properties of III/V Semiconductor Com

pounds~Wiley, New York, 1992!.
27M. P. M. C. Krijn, Semicond. Sci. Technol.6, 27 ~1991!.
28J. R. Downes, D. A. Faux, and E. P. O’Reilly, J. Appl. Phys.81,

6700 ~1997!.
-

d

29R. W. Keyes, J. Appl. Phys.33, 3371~1962!.
30A. D. Prins and D. J. Dunstan, Philos. Mag. B58, 37 ~1988!.
31M. Silver, P. D. Greene, and A. R. Adams, Appl. Phys. Lett.67,

2904 ~1995!.
32Ph. Lelong and G. Bastard, inProceedings of the 23rd Interna

tional Conference on the Physics of Semiconductors, edited by
M. Scheffler and R. Zimmerman~World Scientific, Singapore,
1996!, p. 1377.

33N. Susa, IEEE J. Quantum Electron.32, 1760~1996!.
34A. D. Andreev and E. P. O’Reilly, inExcitonic Processes in

Condensed Matter, edited by R. T. Williams and W. M. Yen
Electrochemical Society Proceedings Series, Vol. 98-25~Pen-
nington, NJ, 1998!, p. 271.

35O. Stier~private communication!.
36R. J. Warburton, B. T. Miller, C. S. Du¨rr, C. Bödefeld, K. Karrai,
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