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Theoretical analysis of electron-hole alignment in InAs-GaAs quantum dots
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We present a theoretical analysis of the mean electron and hole positions in self-assembled InAs-GaAs
guantum-dot structures. Because of the asymmetric dot shape, the electron center of mass should be displaced
with respect to the hole center of mass in such dots, giving rise to a built-in dipole moment. Theoretical
calculations on ideal pyramidal dots predict the electron to be localized above the hole, contrary to the results
of recent Stark-effect spectroscopy. We use an efficient plane-wave envelope-function technique to determine
the ground-state electronic structure of a range of dot models. In this technique, the Hamiltonian matrix
elements due to all components of the potential are determined using simple analytical expressions. We
demonstrate that the experimental data are consistent with a truncated dot shape and graded composition
profile, with indium aggregation at the top surface of the dot.

[. INTRODUCTION realistic QD structures. We use a carefully chosen one-band
effective-mass model to investigate how the dipeland the

There is considerable interest in the study of self-polarizability 8 vary with dot shape, height, width, compo-
organized InAs-GaAs quantum-déQD) structures. These sition, and composition gradient. Most structural investiga-
are interesting both from a fundamental physics perspectiveions suggest that SK dots have a broad base, tapering in-
and also because of potential device applications, particuvards toward their top, and also have a large base-to-height
larly in the field of optoelectronics.Despite this, surpris- ratio®®*2'*1%Here we consider ideal and truncated pyra-
ingly little is known about their detailed atomic and elec- mids, and show that if one assumes constant composition in
tronic structure, including, for instance, the form of the any such structure, then the built-in strain fields and large
ground-state electron and hole wave functions. Initial strucheavy-hole mass along the growth direction will lead to the
tural studies of uncapped Stranski-Krastin(®K) dots sug- hole ground state sitting near the dot base, below the elec-
gested a pyramidal shapand several groups therefore con- tron, giving the opposite dipole to that observed experimen-
ducted theoretical investigations into the structure of ideatally. We must therefore modify this simple picture. Because
pyramidal dot$~’ More recent structural investigations the hole mass along the growth direction is considerably
demonstrated that both the dot shape and size can vary withrger than the electron mass, the hole tends to sit in the
growth conditions. In addition to the ideal pyramidal shaperegion with the deepest potential while the electron is more
more recent work has also provided evidence for “trun-widely spread through the structure. In order for the hole to
cated” pyramid$ and for lens-shaped dotsas well as sit above the electron as observed experimentally, the deep-
showing that the indium composition can also vary throughest potential must occur at the top of the dot. This can be
the dot:®1! achieved by increasing the indium composition from the

Figures in most theoretical papers on ideal pyramidal dotéase to the top of the dot, consistent with the conclusions of
show the presence of a permanent dipole in the dot, due tecent grazing-incidence diffraction measurements on un-
the large built-in strain fields which localize the highest en-capped InAs-GaAs QD'¥ We show that there exist a range
ergy hole state near the bottom of the pyramid, so that it sitef graded composition, tapered dot shapes that can give the
underneath the lowest-energy electron state in the dot. Besorrect sign and magnitude far. We also show that the
cause of the built-in dipole, QD structures should exhibit anmagnitude of the polarization tergis determined predomi-
asymmetric Stark shift in the presence of an applied electrigantly by the vertical height of the dot. The calculated values
field. As an electric field- is applied, the transition energy of g are in good agreement with the experimentally deter-
Err between the ground-state electron and hole levels wilmined values when the dot height is assumed to be compa-
vary quadratically astg(F)=E1r(0)—aF— BF?, where rable to that determined from TEM measurements of equiva-
E1r(0) is the zero-field transition energy, depends on the lent uncapped dots. Our calculations, combined with Stark
built-in dipole, andB is a measure of the polarizability of the effect measurements, provide useful information and sen-
electron and hole wave functions. Asymmetry in experimensible constraints on allowed models of QD’s, consistent with
tal measurements of the Stark shift have indeed revealed arange of other experimental data.
built-in dipole both in InAs-GaAs? and also in The calculations were undertaken using separate one-band
Alyln; _ As-Al,Ga ,As quantum dot$ but, surprisingly, Hamiltonian equations for the electrons and holes, the details
the direction of the dipole is opposite to that predicted fromof which are described in Sec. Il. We include anisotropy of
the theoretical calculations, with the hole center of masghe hole mass, and allow for a variation in the parameters and
above the electron center of mass in both cases. potential distribution due to built-in strain and compositional

Here we present a theoretical investigation of the factorwvariation. We show that the wave functions and confinement
influencing the sign and magnitude of the built-in dipole inenergies calculated here for the ground-state electron and
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hole levels are in good agreement with data presented bgcribe here the general method, and then discuss the particu-
other groups who used more sophisticated methods, such &8 form of the strained one-band Hamiltonian equations
eight-bandk - P (Ref. 3 and empirical pseudopotenﬁabch- used.

niques. Although such techniques are necessary for the cor- Using the plane-wave basis, the energy levels and eigen-
rect understanding of excited states in the dots, the linear arfdnctions were found by solving the large Hamiltonian ma-
guadratic contributions to the Stark effect are determined pritrix equation:

marily by the spatial distribution of the ground-state wave

functions and by their potential profiles, each of which is

well described here. The results of our calculations are pre- ) n_ n

sented in Sec. Ill. We first show that the results for conven- ; Hk’k'Ak_E”; A @
tional pyramidal dots are in good agreement with previous

work, and reconfirm that the location of the hole below the

electron in such a structure gives the wrong sign for the — — dr Ly N i

dipole. We then consider truncation of the pyramid, showing Mk = frmexp(—lk -DR)[explik-)].

how the magnitude of the built-in dipole decreases with in- e 2.2
creasing truncation, but always remains positive so long as '

the dot tapers inwards toward the top. We explain this fea-

ture by using the calculated biaxial strain distribution within  In order to set up the Hamiltonian matrix of EQ.1), we

the dot, which has the effect of making the effective width of st first evaluate the matrix eIemengk, linking plane-

the top of the dot smaller for holes than for electrons, therebyyayve basis states of wave vect&randk’. The lattice con-
maintaining the dipole. The inclusion of a wetting layer for gtant of the guantum dot material (Ba, _,As) differs from
In,G& _,As/GaAs dots tends to make the dipole even largerthat of the surrounding matrisGaAs so that there will be a
by acting to enhance the hole-trapping potential at theon-uniform strain distribution throughout the dot and the
dot base while having relatively little effect on the ground- matrix. Both the electron and hole Hamiltonian equations
state electron. We then consider the case of a dot whosgntain terms depending on this local strain distribution. The
composition increases from base to top, considering botRajculation of the spatial strain distribution in a QD structure
cuboids and truncated pyramids. For both cases this can legdquires the solution of a three-dimensional problem in elas-
to a localization of the hole above the electron, as observegcity theory, for a generally nontrivial quantum dot shape.
experimentally. Looking at the polarizabilitg, we show  Thjs is often achieved by using finite-difference or atomistic
that this is a strong function of the dot height but is relativelytechniqueg;&lﬁ which require considerable computational
unaffected by the base dimension, and so may be used {Gfort. An analytical method was recently presented to calcu-
estimate the vertical dimension of the dots. Finally, we cariate the Fourier transform of the strain distributidnyhich
out a brief error analysis, investigating how variations in keywe use here to directly determine the strain-dependent terms
parameters affect the overall results. We find that changing, the Hamiltonian matrix. We assume for simplicity that the
the band-offset ratio or elastic constants used modifies thgot and matrix elastic constants are equal and isotropic, with
absolute values obtained f&;r(0), o and 3, but does not  the values used given in Table I.
qualitatively affect the overall results. We omit the Coulomb  \we define the characteristic function of the agt) to be
interaction in our calculations but argue, based on analyticahe |ocal indium composition in the supercéll for InAs, 0
expressions presented as the Appendix, that this omissiggy GaAs9, and take the lattice mismatch of the dgtto be
should also not qualitatively affect the overall results. Weg 704 for InAs in GaAs. It can be shown for an isotropic
summarize our conclusions in Sec. IV. elastic medium that the Fourier transform of the real-space
strain tensor componest;(r) is given by k”#0),"

IIl. METHOD

The calculations were undertaken assuming a three-
dimensional superlattice of dots, with superlattice unit cell
size A.,X2L,X2L,. Schralinger's equation for the system
was solved using a plane-wave envelope-function technique.

The normalized envelope function wave functiokg(r) are ~ Wherek”=k—k’, x(k") is the Fourier transform of the dot
determined using a Fourier series expansion characteristic function, an@,, andC,, are the elastic con-

stants. We wish to consider dots with a graded truncated
pyramidal geometry. We define the truncation fadtas the

e (k) =x(K")eg

Cyy+2C1,| KK
&~ =

— |, 2.3
Cll |ku|2‘| ( )

AY . fraction removed from the top of the pyramid to give the
*Pn(r)=2k \/:expmkw), truncated pyramid. A truncated pyramid of heighi,2and
xTy-z truncation factoff is therefore the bottom part of a full pyra-

mid of height 2,/(1—f). We have derived that when such
where k=m(m/L,,n/L,,p/L,) andr=(x,y,z). We chose a truncated pyramid is centered at the origin of the unit cell,
(Im[,In[,|p|)=<(5,5,8) to ensure convergence, and chose thavith base d,, 2b,, truncated height ,, and graded be-
separation between neighboring dots to be equal to the dédiveen an indium fraction of, at the base, and, at the
dimension in order to minimize cross talk, while also ensur-(truncated apex, the characteristic functiop(k”) is given
ing efficient convergence of the Fourier series. We first deby
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TABLE |. Parameters used in this work.

InAs GaAs
M3, (0 K)? 0.023 0.067
y.° 19.67 6.85
¥ ° 8.37 2.10
a.© -5.08 -7.17
a,° 1.00 1.16
eple,x10°3 Cm 2 —-2.97 -12.49
E, (eV)° 22.2 25.7
Ag (V)P 0.386 0.340
V. (0 K) (eV)2© 0.685 1.519
V. (300 K) (eV)2© 0.621 1.428
V, (eV)®© 0.265 0.000
Ve+aceny (0 K) (eV) 1.058 1.519
V¢+aceny (300 K) (eV) 0.994 1.428
V,+a,eny (€V) 0.192 0.000

C1,2=11.9x10% Pa
C,,2=5.38x 10" Pa
C,2=5.95x 10" Pa
ba’=—1.8(eV)

£, (InAs)=15.15

3From Ref. 24.
bFrom Ref. 25.
°From Ref. 27.
dFrom Ref. 26.

4

" _ibz (_1)j . .
X(k)=k;kg ;1 5| f2exmid) Ty exp—id)
(fo—1fy) 6
—Zlesm(cbj) exp{|§J(1+f)
where

0,=Kb,+klb, ,
0,= —Kib,+Klb,,
03=— Kb, —Kiby,

04=K.b,— Kb, ,

(1-1)

¢ =Kib,~ 6 —5—
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He(r)=—z—V V+V(r)+agep(r)
c 2m0 m*(r) c c®hy
+dpr)+eFz (2.9

wherem* (r) is the electron effective mas¥,(r) the un-
strained conduction-band edgeen,(r) the hydrostatic de-
formation of the conduction band edge, aty(r) the piezo-
electric potential. The strain-induced band deformation
causes the effective-mass parameters to vary from their bulk
values. The variation of the electron effective mass with the
(hydrostatically strained band gafgs, is given from three-
bandk- P theory as

12BN E(r)
) 3B T AEMn AT O
259

where Ey(r) is the Kane interband energy parameter, and
S(r) takes into account the contribution of remote bands to
the conduction-band effective mass.

For the case of isotropic elastic constants, finding the ana-

lytic form of ﬁk.k, is a trivial matter for all but the piezo-

electric term inl:lc(r). In order to evaluate this term, using a
similar technique to that employed in Ref. 17 we Fourier
transform the Green'’s function for the piezoelectric potential
presented in Ref. 20 and apply convolution theory, to obtain
an analytic expression for the Fourier transform of the piezo-
electric potential K"+ 0)

- —18eg(Cy+2Cy,|| €7 KKK,
dpz(k )= C barX(k ) - uy4z
€o\2m 11 € |K”|
dot bar nmy
€14 €14 kxkykz
- (k///_k//) (k//) ,
( ?ot GEar)% X X |k”|4
dot bar

whereeg, €, ande, ® are the permittivity of free space
and relative permittivity of the dot and barrier material, and
et andeb2" are the piezoelectric constants. In the diagonal
(one-bangl approximation used here, heavy holes have a
large effective mass in the growth direction and a small ef-
fective mass in the growth plaéso that the dominant con-
tribution to the heavy-hole kinetic energy is directed parallel
to thex-y plane. This contrasts with the light holes, where
the dominant kinetic-energy term is directed parallel tozhe
axis. From experiment, Stranski-Krastanow quantum dots
have a large base-to-height ratio, ilg,=L,>L,. The ki-
netic energy in the-y plane is thus reduced relative to that
in the growth direction, leading to stronger heavy-hole con-
finement and weaker light-hole confinement. In addition,
axial strain tends to reduce the light-hole confinement poten-

We assume that energy gaps, band offsets, and carrigial through most of the dot!’ The one-band valence Hamil-
inverse effective masses vary linearly with In composition intonian we use for the hole ground state is then given as

strained IRGa, _,As inclusions in GaAs. The Fourier trans-

forms of all terms in the electron and heavy-hole Hamil-
tonian equations can then be determined analytically, en-
abling a straightforward evaluation of each of the matrix

elements in Eq(2.1).

We derive the electron and hole envelope function Hamil-
tonian equations from three-bakdP theory*®° The elec-

tron Hamiltonian is given as

,\ h?

Hv(r)zz_mo{vll[ y1(r)+v2(r)]V)
FV L yi(r) =2y,(r) ]V}
+Vv(r)+avshy(r)_baxsax(r)

+dpr)+eFz (2.6
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where V,(r) is the unstrained valence band-edge energyyoom.temperature values for the strained energy gap in Egs.
a,eny(r) the hydrostatic deformation of the valence-band(; 5) and(2.9). Finally, we assume the GaAs values for the
edge, and—D,,e4(r) the axial-strain-induced shift in the gagtic constants in the dot and surrounding matrix. We have

heavy-hol_e band edge. In order to (_:orrectly describe the ONéystified this choice previousl;2 based on Keyes’ scaling
band Luttinger parameteng(r), we first relate them to their je for elastic constanf:3°

eight-band counterpartg; (r). In the full eight-band Hamil-
tonian, the interactions between the conduction-band mini-
mum and valence-band maximum are considered explicitly, . RESULTS
with v{(r) then due to interactions with remote bands, and
assumed to be independent of the built-in strain and the Figures 1a) and Xb) show the variation of the ground-
lowest-energy gap. The eight-bangl(r) values are related state electron and hole confinement energies, calculated as a
to the one-band values function of dot size for InAs pyramids of base to height ratio
2:1 on a 1-ML InAs wetting layer. The results are in good
V()= y4(1) = p(r) Y4(1) = yo(F) — Ep(r) agreement with previous calculations. Using the effective-
! 1 3E4(r)’ 2 2 6E4(r)’ mass renormalization procedure, we find several bound-
(2.7 electron states. For the dot shape considered in Figsahd

where E, is the unstrained band gap. The energy gaLpl(d), we find four distinct electron bound states within the

changes in a strained material, so that the one-band Lutting&°t: In Table 1l, we compare our calculated ground state
parametersy, will also change in a strained inclusion, as  confinement energies for a dot of base 12 nm and height 6
nm, with previous calculations® The calculated electron

. Ep(r) , Ep(r) confinement energies are in good agreement with previous
71(f)=71(f)+m, Vz(f)=72(f)+m- eight-bandk-P calculations, sitting midway between the

(2.9
TABLE Il. Ground-state electron and hole confinement energies
The parameters Uslgg are taken from Ref;. 24-26 and tQ@V) at 0 K, for a dot of base 12 nm and height 6 nm. Numbers in
band offsets from Krijrf” These are tabulated in Table I. We jijics were taken from graphs in the relevant references.

calculated the parameter values for InAs in a GaAs matrix,

and for unstrained GaAs, and then a;sumeq a linear folfiat_i%nd-structure parameters  Elastic model W.lEgjec Enore

of all parameters with alloy composition. This assumption is

consistent with the parameters compiled by K&jjnAl- ~ From Table | plane-wave ~ None 0.179 0.154
though the(unstrained band gap of 1pGa, _,As has a mod- From Table | plane-wave 1 ml 0.206 0.179
erately large bowing parameter, the strain contribution to thérom Stieret al. (Ref. 3 plane-wave 1 ml 0.211 0.175
band gap introduces a bandgap bowing in the opposite direStieret al. (Ref. 3 CM 1ml 0.203 0.155
tion which almost exactly counteracts thisThe calculations ~ Stieret al. (Ref. 3 VFF 1ml 0.220 0.161
presented below were carried out assuming roomFrom Table | plane-wave 1.5 ml 0.219 0.196
temperature energy gaps and effective masses. The effecti¥eom Cusaclet al. (Ref. § plane-wave 1.5ml 0.217 0.214
mass and Luttinger parameters quoted from Ref. 25 are 0-I€usacket al. (Ref. 6 VFF 1.5ml 0.165 0.250

values. These were related to the 300-K values by using
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values calculated using two different force-field models to 1.10
determine the strain distribution. Our values lie about 10
meV above the electron energies calculated using the valence 1.09 -
force-field model, and about 10 meV below those calculated
using a continuum mechanical method. The hole ground-
state energy in Fig. (b) is consistently about 10% further
from the valence-band edge than that calculated in Ref. 3. To
investigate the cause of this difference, we have calculated
the hole confinement energy using our model and the band-
structure parameters from Ref. 3. The resulting confined
state energy is within 4 meV of that obtained using our pa-
rameters. Most of the observed difference must therefore be
due to factors other than band-structure parameters, of which
the most important is likely to be the different force-field
parameters used, and consequent differences in the biaxial
strain distribution. The difference is unlikely to be due to the 4
use of a one-band rather than eight-band Hamiltonian here. If 1.8 +————T 71
we were to include mixing between heavy- and light-hole -300 -200 -100 0 100 200 300
bands in our Hamiltonian, these should tend to increase the : :
ground-state hole confinement, pushing the ground-state va- Applied Field [kV/cm]
lence level further away from the GaAs valence-band edge, FiG. 2. Ground-state transition ener800 K) as a function of
thereby increasing the difference between the two sets afpplied field for pyramidal dots of base 12 nm and height 6 nm on
results. Reference 5 found a significantly larger hole confinea 1-ML wetting layer, using the piezoelectric potential of both dot
ment energy, and smaller electron confinement energy thaand barrier materialsolid line), not including the piezoelectric de-
Ref. 3. This is almost certainly due in part to a differing formation(long-dashed ling and setting the piezoelectric deforma-
treatment of the band offset. There are other important diftion to that of the dot everywhefshort-dashed lineand that of the
ferences between the two calculations, including the choicéarrier everywherddotted ling. Inset: variation of the band edge
of a 1.5-ML wetting layer in Ref. 5, as opposed to the 1-ML with position forF>0.
wetting layer assumed in Ref. 3. This results in a 15-meV
shift in hole confinement for the pyramid@able 1. Refer-  distributed relatively evenly throughout the pyramid, while
ence 5 also employed a different treatment of the electrothe hole wave function is predominantly localized near the
and hole effective masses of strained InAs, taking an averag#ot base as a result of the variation in the biaxial strain,
of the results of empirical pseudopotential aal initio  e,=¢,,— (exxt&yy)/2, through the dot. Because the base
local-density calculations, and finding valuesyf=8.201,  of the dot is wider than the top, it has been shéWH that
v,=3.253, andm* =0.04. These compare to the strain- the base experiences a positive biaxial straigt0), while
renormalized one-band effective massesypf10.601, y,  the top is under negative biaxial strain,(<0). This then
=3.836, andm* =0.042 used for the present work. While leads through the term-b,,c,4 to a deeper well for heavy
there is good agreement between the calculated electron dioles at the base than at the top of the pyramid. The combi-
fective masses, the differencesyn and y, lead to different  nation of the deeper well and large heavy-hole mass explains
hole effective masses. The largest difference is seen for thehy the hole wave function is predominantly localized near
hole effective mass in the growth direction, which is esti-the dot base. In contrast, the electron Hamiltoriag. (2.4)]
mated from the strain-renormalizdd P parameters to be depends on strain only through the hydrostatic component
0.341, whereas Ref. 5 estimated a significantly larger valuep,, whose magnitude is relatively constant through the dot.
of 0.590. The different choice of effective mass results in alhe hydrostatic strair,, is exactly constant in the model
20-meV shift in the hole confinement ener@hable 1). The  used here, where we assume isotropic elastic constants of
comparisons in Table Il indicate the range of envelope funcequal magnitude in the dot and barries,, is no longer
tion parameters currently used to model strained InAs/GaAsxactly constant when we use anisotropic elastic consfants
guantum-dot structures. This range was considered in furtherr different values of the elastic constants in the dot and
detail in Ref. 3, where it was concluded that the greatesbarrier’ Nevertheless, we expect, based on the above analy-
uncertainty in the calculated confined-state energies is asseis, that the hole will lie below the ground state electron in
ciated with the assumed band-offset values, with differingany quantum dot of uniform composition whose shape tapers
assumptions concerning the elastic constants used also pladyem a broad base to a narrow top. Figure 2 shows the cal-
ing a role. We shall present most of our results here assuntulated difference between the electron and hole ground state
ing the band-structure parameters listed in Table I. Calculaenergies for the dot structure considered in Fig. 1 when an
tions are presented in Sec. IV, which show that reasonablelectric field is applied along the pyramid axis. For the
variations in the assumed band offsets or strain distributiopresent work, we follow the same convention as in Ref. 12,
do not qualitatively affect the main conclusions of our work.and have defined the applied field to be positive when it
Figures 1c) and Xd) show contours of constant probabil- results in the conduction- and valence-band edges moving to
ity density, calculated for the ground-state electron and hol@igher energy above the dot and to lower energy below the
wave functions for a pyramidal dot of base 12 nm and heightot, as illustrated in the inset to Fig. 2. Here, and for the
6 nm on a 1-ML wetting layer. The electron wave function isremainder of this section, we use 300-K parameters rather

1.08 A

1.07 A

1.06

1.05 A

Ground-State Transition [eV]

1.04 4/
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than 0-K parameters as the room-temperature behavior of
guantum-dot-based devices is of most practical long-term in-
terest. Use of 300-K parameters, rather than 0-K parameters
reduces the value ditg(0), but hadittle effect on the cal-
culated values ofr and 8. The solid line in Fig. 2 shows the
transition including the piezoelectric potential; the long-
dashed line shows the transition with the piezoelectric poten-
tial set to zero, and the short-dashed and dotted lines show
the transition using the dot and barrier parameters, respec-
tively, for the piezoelectric potential everywhere. The close
agreement between all of the above calculations occurs for
two reasons: first, the piezoelectric potential is only signifi-
cant near the corners of the pyramidaway from the re-
gions in which the electron and hole wave functions are con-
centrated. Second, the piezoelectric potential has odd
symmetry about th€¢100) and (010) planes through the dot
center, while the ground-state wave functions have even
symmetry about these planes, so that the piezoelectric term
does not shift the ground-state electron and hole energies
first-order perturbation theory. These two factors explains
why the piezoelectric potential has little effect on the
ground-state transition energy {901)-grown, zinc-blende
pyramidal dots. Setting the piezoelectric potential to the bar-
rier value everywhere provides a good approximation of the
; ‘ : 4 ) . w
full piezoelectric potential calculation. While this would at
first seem surprising given the factor of 4 difference betweerf
e14/ e, for the two materials, one should note that piezoelec
tric deformation occurs predominantly outside of the dot, so

that most of the overlap between the piezoelectric fields an§"

the charge-carrier wave functions will occur in the barrier
material. For dots whose composition is graded from
In,Ga _,As at the base to InAs at the top surface, there will
be a smaller lattice mismatch between the dot and barri
material at the base of the dot, reducing the atomic displace-e

i
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FIG. 3. Dipole(300 K) as a function of truncation factdy at a

nstant dot height.f=0 for an ideal pyramifl The solid line

ows a truncated pyramid with base 18 nm and height 5.5 nm. The
dashed line shows a truncated pyramid with base 18 nm and height
4.935 nm, sitting 0 a 1 ml wetting layer so that the total height of
dot plus wetting layer is 5.5 nm.

here ¢g(h) is the ground-state wave function in zero field,
nd the first-order correctioRi ¢, is written so as to em-
phasize that its magnitude varies linearly with From
second-order perturbation theory, the ground-state electron
ergyE, then varies with applied field as

Eo(F)=Ee(0) +eF(ze) +eFX(ydlz|yl),

ment caused by the inclusion and hence weakening the pie. 4 Jrqer as

zoelectric field. As the pyramidal dot shape is truncated, the

piezoelectric field becomes more concentrated at the corners

of the dot while the electron and hole wave functions be-
come more strongly localized toward the center of the dot. In
both cases the piezoelectric shift in ground-state carrier con-

Etrr(F)=E1r(0) —eF((z,) —(Ze))
—eF2((ynlzl ) —(welzl i)

where (z.)=(2|z|y2) is the mean electron position along
&he pyramid axis. Using an equivalent expression for the hole
2nergy we see that the transition energyg, varies to sec-

(3.1

finement should be smaller than that seen for the pyramid. The linear coefficient is therefore identically equal to
Test calculations have shown that the piezoelectric-inducethe ground-state dipole moment,=e({z,)—(z)), while

shift in the ground-state transition energy is negligible in thethe quadratic tern depends only on the polarizability of

graded, truncated pyramids considered below.

the

ground-state

electron

wave

function;- B./e

It can be seen from Fig. 2 that for moderate fields the— #8lz]w.) , and of the ground-state hole wave function,
transition energy varies quadratically with applied field, S0, le=(y2|z| ).

that E+r(F) =E+1r(0)— aF — BF2. The linear coefficientr

The peak transition energy is seen at positive field in Fig.

depends directly on the initial separation of the electron ang qgnsistent with a negative dipote=a/e, with d=—8.8
hole mean positions, i.e, on the built-in ground-state dipolex gy contrast, experimental Stark shift measurements both
moment of the dot. This is confirmed using second-ordeg), InAs/GaAs(Ref. 12 and InGa_,As/AlL,Ga_,As QD
perturbation theory. The electron and hole Hamiltoniangi.ctured® show the peak transition energy at negative fields
equations may be written in the presence of an applied fielg), the notation used here. The experimentally observed

as

A=Fo+HA",
wherel:|0 is the unperturbed Hamiltonian of E@.4) or Eq.
(2.6), andH’'=eFz The ground-state electrdimole) wave

functions¥ ¢,y are given to first order in the applied electric
field F as

0
Wy = Yecny + F ey »

built-in dipole is therefore of opposite sign to that predicted
from Fig. 2 and Eq(3.1), with the hole-electron separation

d=4.0+1 A in Ref. 12. We therefore conclude that the

structure of these buried Stranski-Krastinow-grown dots
must be markedly different from an ideal constant composi-
tion pyramid, and now turn to consider what dot structures
are consistent with the experimentally observed dipole and
polarizability.

Figure 3 shows the calculated dipole in a truncated InAs
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pyramid of base widtB= 18 nm and heighti=5.5 nm as a
function of truncation factorf. The value assumed fdt is
similar to the value estimated from a TEM analysis of un-
capped dots, and also to that inferred from the valugs of
measured for capped ddfsf represents the fraction of the
total pyramid height removed so that, for example, a trun-
cated pyramid withf=0.75 andH=5.5 nm is formed by
decapitating a full pyramid of height 22 nm. The dashed line
in the figure shows the dipole when a 1-ML InAs wetting
layer is included, while the solid line shows the dipole with
no wetting layer. The wetting layer deepens the hole poten-
tial near the base of the dot. The hole is always localized
below the electron in this case, wii=1 A even for a
cuboidal dot §=1) sitting on the wetting layer. Moving 03 s : s
. . . . .0 0.2 0.4 06 0.8 1.0
from a cuboidal to a pyramidal geometry, the increasing an- Indium Mole Fraction at Dot Base
isotropy of the dot shape modifies the axial strain fields
present in the dot to move the heavy holes away from the top 07|
surface of the dot and toward the dot base, so that the
ground-state hole moves more rapidly toward the dot base 05 |
than the ground-state electron, and the magnitude of the
electron-hole separation increases. For the dot dimensions 03|
considered, the electron-hole separation reaches a maximum
at f~0.35, and then decreases again for smalleAt f
~0.35, the hole is already predominantly localized at the
base of the dot. For smalldy the increasingly pyramidal
shape pushes the electron downwards more rapidly than the 03|
hole, so that the electron starts to “catch up” with the hole.
It is clear that, regardless of the level of truncation, the mean 05 |
electron position will always remain above that of the hole,
up to the limit of a cuboidal dotf(=1). When we sef=1, 0T o7 o1 o8 o5 1o
and assume no wetting layer, the electron and hole wave Indium Mole Fraction at Dot Base
functions are both symmetric about the cuboid central plane,
so that in this casd=0. .
If the hole is to sit in the upper part of the dot, above the?hms of base 18 nm and height 5.5 nm, graded fr_o;ﬁ;b@,xAs at
. ' e base to InAs at the top surfade) for dots with no wetting
electron, we require a deeper heavy-hole pOtenF'al atthe toIE;’lyer, and(b) for dots sitting on a 1-ML wetting layer. The solid
,Of t_he dot than at the basg. Experimental studies generall nes are results for dots with a cuboidal geometfy(), and the
indicate a dot shape tapering from the base to the top. Thg,ghed fines are results for truncated dots \itD.75.
heavy-hole potential can nevertheless be deeper at the top
than at the base if the dot is formed of anGa _,As alloy,  strongly toward the wetting layer than the electron, shifting
with the indium compositionx, increasing from the base to the dipole toward more negative values.
the top. We have assumed a linear composition gradient, but A fit to the experimentally observed electron-hole separa-
note that recent work suggests that the true composition tion of d=4 A can then be obtained for a variety of different
profile may possibly be more complicated. Figute)4hows  dot geometries. We see from Fig. 4 that such a separation
the calculated electron-hole separatidrfor dots with di-  can be obtained, e.g., for graded composition cuboids and
mension 1& 5.5 nnt. The solid line shows a linearly graded truncated pyramids both with and without a wetting layer,
cuboid, for whichd=0 whenx=1 at the base of the pyra- although the grading must be stronger in the presence of the
mid, with d increasing to a maximum value of ordeA near  wetting layer. Indeed a fit to the experimental separation may
x~0.3 at the base. A similar trend is observed for the trunbe obtained for disklike dots, dome-shaped dots, etc. The
cated pyramid withf =0.75 (dashed ling The electron ini-  Stark shift data do not determine the precise detail of the dot
tially sits above the hole here, but the positions reverse witlshape, but do require severe compositional grading. The
increasing grading. Figure(l) shows the calculated separa- electron-hole separation will vary in graded truncated pyra-
tions when the cuboid and truncated pyramid are sitting on anids, both as a function of the dot gradifig and the trun-
one monolayer lfGa, _,As wetting layer, withx constant in  cation factorf. This is illustrated in Fig. 5, which plots con-
the wetting layer and equal to the value at the dot base. Fapburs of constant electron-hole separation as a function of
intermediate values of, the wetting layer leads to a slight grading(horizontal axig and truncation factofvertical axis
increase ind, as the electron is pulled down toward the wet-for dots with a base width of 18 nm and height 5.5 nm,
ting layer, but the hole remains pinned by the stronger axialwithout a wetting layer. Interestingly, the data in Fig. 5 ex-
strain induced deformation at the base of the dot. Moving talude pyramidal dots. Even with 100% linear grading from
largex, the heavy-hole confining potential becomes strongebase to apex and no wetting layer, the electron still remains
in the well than the dot, so that the hole is pulled moreabove the hole, giving a dipole of the wrong sign.

Dipole [nm]

(=]

01

Dipole [nm]

01

FIG. 4. Dipole(300 K) as a function of composition gradient for
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structures23! |t can be shown for a particle of mass* in
an infinitely deep quantum well of widtH that the polariz-
ability Bom*H*, which can also be written g8x<H?/(E,
—Eg), whereE;—Ej, is the energy separation between the
first excited and ground-state levels. The polarizability there-
fore increases strongly with the quantum-well width. Most
guantum-well studies have focused on wider quantum wells
(H>~7 nm), for which the heavy-hole contribution is con-
siderably larger than the electron contribution to the total
polarizability, becauseng,>m? .

Figure Ga) shows the calculated electron and hole polar-
izabilities B, and — B}, as functions of heighil for a range
of different test structures. These include a graded truncated
pyramid with base 18 nnx=0.5 andf =0.75(solid line), an
InAs cuboid with base 18 nnidashed ling and an InAs

08,

0.6 -

04

Truncation Factor, f

0.2 4

00 S . guantum well(dotted ling, each embedded in a GaAs ma-
i / ( trix. The calculated polarizabilities follow the broad trend
A o e e predicted by the infinite well analysis, with bog, and g,
Indium Fraction at Dot Base increasing withH in all cases, and witlB,, about three times
A A larger thangB, in the widest(7 nm) quantum well and cuboid.

The magnitudes of3, and B, become comparable in nar-
FIG. 5. Relative vertical positiofin nm) of holes and electrons rower structures, and the calculated valuesgf exceed
(300 K) as a function of truncation and composition gradient, forthose of 8, for H~3 nm. This occurs because the small
dots of base 18 nm andruncated height 5.5 nm. vertical dimension of the well restricts the motion of elec-
trons and holes within the well, so that the effects of barrier
The measured polarizabilitg of self-organized quantum penetration become significant. This is confirmed by Fig.
dots also provides information regarding their structure,6(b), which plots|#(z)|?, the integral of the probability den-
and in particular their estimated heigHt The polarizability  sity function over thex-y plane, for several model structures,
of electrons and holes was widely studied in quantum-wellvhere

Height H = 3nm

0.50

0.40

.——nr-l‘"“‘"'"r‘ 030 |

0.20

Probability Density, |¥(z)’

0.00
-5.0 -25

0.0
Position [nm]

050 | Height H = 7nm

Polarisability [nm®/V]

0.40

0.30

Probability Density, |¥(z)I°

6 7 50 25 00 25 5.0
Position [nm]

5
Dot Height [nm]

FIG. 6. (a) Polarizability(300 K), for electrongtop left) and holegbottom lef}, as a function of height for dots of base 18 nm. The solid
lines are results for a graded truncated pyramid, wit0.75 andx=0.5; the dashed lines are for a cuboid; and the dotted lines are for a
quantum well.(b) |¢(z)|2=ijL dxnyL dy| ¢(r)|% the integral of the probability density function over the plane, for quantum dots of

X Y
base 18 nm, with heights of 3 nftop right and height 7 nnibottom righy. The thick lines are results for electrons, and the thin lines are
results for holes. The solid lines are results for graded truncated dotgwidtb and 0.75, and the dashed lines are results for cuboidal dots.
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its overall dimensionsg andH) are in good agreement with

a structural analysis of uncapped dots formed under identical
growth conditions? For this geometry, we observe electron
states at five energy levels bound within the dot, two of
which are singly degenerate, and three of which (a@ni-
nally) doubly degenerate. The calculated energy levels are
fairly evenly spaced, with a separation between the ground
state and first excited state of 62 meV.

109 -

107 -

105 -

IV. UNCERTAINTY ANALYSIS

Transition Energy [eV]

103 - .
The one-band electron and hole Hamiltonian equations

used here involve several parameters whose absolute values
are still uncertain. It was shown in Ref. 3 that the values
300 assumed for the conduction- and valence-band offsets are
perhaps the most significant factor affecting the calculated
FIG. 7. Solid line: Fit to experimentally measured transition €/€Ctron and hole confined-state energies. We have therefore

energy(300 K), for a graded truncated pyramid with base 18 nm, "ecalculated the variation of transition energy with electric
height 5.5 nm, and=0.81, and graded linearly from=0.6 atthe  field, Err(F), for the dot structure of Fig. 7, including rigid
base tax=1.0 at the top. The fit to experiment differs slightly from upward and downward shifts of 0.1 eV in the InAs band-
that quoted by the authors in Ref. 8, due to a slightly differentedge energies. The results are indicated by the dotted and
treatment of the valence effective mass and elastic parameters. Alstashed lines, respectively, in Fig. 7. For an upward shift in
shown are the calculated transition energies for: a 100-meV upwarthe electron and hole band offsegidotted ling, we see a
shift of the InAs conduction and valence-band edgledted ling; a  greater asymmetry in the Stark shift of the transition energy.
100-meV downward shift in these band edddashed ling and  This is because the shift in the band offset leads to a deeper
leaving band offsets unchanged, but using anisotropic elastic corpotential well for holes and a shallower well for electrons,
stants(double-dot-dashed line increasing the effects of the confining potential on the shape
of the hole wave function, and reducing the asymmetry in the
Ly Ly shape of the electron wave function. This would indicate that
|¢(Z)|2=J dxf dylg(r)|?. either a weaker compositional grading within the dot, or a
b Ly more tapered dot geometry, would be required to obtain an
improved fit in this case. The converse effect is seen for a
We consider a graded truncated pyramid with base 18 nnjownward shift in the electron and hole band off4emshed
x=0.5 andf=0.25 (solid line), and an InAs cuboid with line), which would then require either stronger compositional
base 18 nnidashed ling The thick lines show the electron grading, or a less tapered geometry to fit experiment.
probability density, and the thin lines show the hole prob- We have omitted the influence of the exciton binding en-
ability density. It can be seen fdi =3 nm that the small ergy when calculating the interband transition energy. Two
electron effective mass leads to a greater penetration of thguestions need to be addressed concerning this omission:
electron than the hole into the GaAs barrier, increasing théirst, what is the typical magnitude of this binding energy;
effective sizeHq¢¢ of the electron state, and hence increasingand second, how does it vary with electric field, and thereby
the electron polarizability relative to the hole polarizability. modify the calculatedv and 8 values? The ground-state ex-
This also explains why the electron polarizability is largest inciton binding energy is determined by the Coulomb interac-
the graded truncated pyramid, where the lower confinementon between the ground-state electron and hole states, as
energy leads to increased barrier penetration compared to thiescribed in the Appendix, and can be determined numeri-
cuboid, and hence largeB.. By contrast, the hole polariz- cally by carrying out an appropriate sum over the plane-wave
ability B, is reduced in the graded truncated pyramid com-coefficients for the wave functions, and the Fourier transform
pared to the constant composition cuboid and the quanturof the Coulomb interactioff! We choose instead to take an
well, reflecting the increased vertical localization of the holeanalytical approach here, in order to derive general conclu-
wave function due to the variation in the zero-field heavy-sions regarding the influence of the exciton binding energy,
hole potential along the axis of the dot. Jen- We see from Fig. 6 that the electron and hole probabil-
Finally we note that based on the above analysis we caity density distributions are close to Gaussians. The binding
obtain a very good fit to the experimentally observed StarlenergyJ.,, can then be determined analytically for several
shift in InAs/GaAs quantum-dot structurd&ig. 7, solid cases, as described in the Appendix. For the electron, we
line).X2 The fit is obtained assuming a truncated pyramid withestimate that .=2.86 nm in thegrowth direction andB,
base 18 nm, heighH=5.5 nm, and truncation factof =5.55 nm in thegrowth plane. For the hold,,=1.58 nm
=0.81, and the dot graded linearly froms 0.6 at the base to and B,=5.17 nm. For simplicity, we take the relative per-
x=1.0 at the top. This is slightly different to the dot shapemittivity to be the InAs value here. When the electron and
which we presented previously,where x=0.5 at the dot hole sit on top of each other, with no built-in dipole, the
base. This is due to minor changes in the way we treat thexciton binding energy is then estimated from E&5) as
valence effective mass and elastic parameters here. While tl&.7 meV. This value is comparable to previous calculations
dot structure chosen is by no means a unique fit to the dataf the exciton binding energy in dots of similar

1.01 .
-300 -200

000 100 200
Applied Field [kV/cm]
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dimensior??33 and with that obtained for pyramidal dots of dipole. Considering the graded truncated dot shape of Fig. 7,
similar base dimensiohWhen the electron and hole are dis- the shift in the hole position is again relatively small, and the
placed vertically to create a dipole of lengihthe binding  electron position shifts-0.3 A toward the base of the dot.
energy initially decreases quadratically withas confirmed The Stark shift calculated using anisotropic elastic constants
in Fig. 2 of Ref. 33. We estimate from E@A9) that, for is plotted as the double-dot dashed line in Fig. 7. There is a
small d, Jop, varies aslgp(d) =(17.7—0.324d%) (nn?) meV  blueshift of about 20 meV compared to the isotropic case,
for the B andL values listed above. For the dot shape of Fig.and the peak position is not significantly different from the
7, the built-in dipoled=(z,)—(zs) changes by approxi- 'esults for the isotropic model. In this case, a better fit to
mately 1 A for every 24-kV/icm change in applied electric €XxPeriment could be obtained with a slightly larger dot base
field F. Based on this analysis, inclusion of the exciton bind-dimension. We conclude that the use of anisotropic elastic
ing energy and its field dependence would therefore shift th€onstants would also not significantly modify our results.
calculated curve in Fig. 7 downward by20 meV, and re-

duce the calculated polarizability by about 3%. Preliminary

numerical calculations indicate that this analytical model un- V. CONCLUSION

derestimates the variation df(d) but that, nevertheless,
the effects of the exciton binding energy can be accounte

for by slightly increasing the dot height, and decreasing thefnagnitude and sign of the built-in dipole in strained

radius of the dot compared to the value of the fit in Fig. 7. . :
i . - In,Ga _,As quantum-dot structures, and also investigated
The one b_and model shogld be appropriate to describe ﬂ}%e polarizability of the dots. We have demonstrated that the
electron confinement energies and wave functions, but m

. . ) uilt-in strain will always lead to the hole center of mass
introduce a systematic error into the calculated valence—banld. bel he el f .

round-state energies and wave functions, as we ignore mixy g DElowW the electron center of mass in a constant com-
9 . X ' osition dot whose cross-sectional area tapers from the base
ing effects with the light-hole bands. The ground-state wav

function in the pyramidal dot of base width 13.6 nm consid- the top.hThe |ncllus(|jon ?fhan :nAS Wehttlpgdllay?r f_t_’rr]ther |
ered in Ref. 3 had less than 10% light-hole charatteo mcrease;t € magnitu €o the ee.c”f’.”' o'€ dipo’e. 1he cal-
that a considerable vertical displacement of the light-hol culated dipole moment is of opposite sign to that determined

center of mass with respect to the heavy-hole center of masg recent guantum-confined Stark effect experimental
. pect to y-h Measurement$® We show that the correct sign and mag-
would be required to significantly modify the average

. g nitude of dipole can be obtained if we include composition
ground-state hole position. This is not the case. Both heavy-rading WitF;1 the indium composition increasing frgm the

and light-hole components of the ground-state hole level li ase to the top of the tapered dot. This conclusion is also

toward the base of the dot for this dot shdpaVve thus . : CUE .
L . _consistent with the results of recent grazing-incidence dif-
expect that use of a full valence-band Hamiltonian might

alter the precise detail of the calculated dipole moments anféaction measurements on uncapped dotShe theoretical
the pre - P nalysis presented here, combined with relevant experimen-
polarizabilities, but should not significantly change the over-

. . tal data, has provided microstructural information which
all conclusions of this work. ; . . .
o . must be taken into account in future studies of self-organized
The other approximation made here which needs further

. A . : : : guantum-dot structures. Our results demonstrate conclu-
consideration is the assumption of isotropic elastic constants

; Sively that the measured Stark effect in self-organized
It has been shown that, since _the QD shape has a IOWerquan)'ium—dot structures cannot be explained by assguming a
symmetry than that of the elastic parameters, the asymmetrB/ ramidal dot shape
of the dot shape dominates in determining the strain distri* y pe.
bution, so that the isotropic and anisotropic models should
give similar results. However, whereag, is exactly con-

stant within the dot for the case of isotropic elastic constants,

eny is Observed to vary with position when anisotropic cubic  The authors would like to thank Igor Itskevich, Maurice
elastic constants are used, with, increasing approximately - skolnick, David Mowbray, and Paul Fry for much useful
linearly along the central axis of a constant compositiongiscussion on Stark shifts, and also James Downes, Gary
pyramid=>'” This will give an additional linear variation of pearson, and Aleksey Andreev for useful discussions on
the conduction- and valence-band edge energies along thgrain. We are grateful to Oliver Stier for kindly providing
dot axis. We have therefore calculated the electron and holgand-mixing data for the dot shape considered in Ref. 3, and
wave functions for the anisotropic case, replacing the isotroacknowledge the Engineering and Physical Sciences Re-

pic strain tensor of Eq(2.3 with the anisotropic, cubic, search Council(U.K.) for providing financial support to
strain tensor from Ref. 17. For the pyramidal dot structurej o g.

considered in Fig. (b), the position of the hole wave func-
tion is predominantly determined by the axial strain distribu-
tion, which maintains the same shape for both isotropic and
anisotropic models, so that the position of the hole is unaf-
fected by the introduction of cubic anisotropy. The electron When the ground-state electron and hole levels in a quan-
wave function experiences a shift of 1 A toward the base otum dot are sufficiently localized that their extent is shorter
the dot, as hydrostatic strain introduces a potential gradierthan the bulk exciton effective Bohr radius, the ground-state
toward the dot base. This shift in electron position is an ordeexciton binding energy is then given to a good approxima-
of magnitude too small to reverse the sign of the zero-fieldion by

We have used one-band electron and hole Hamiltonian
gquations to investigate the different factors influencing the
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_ 92 fw dr Jw dr |\Pe(re)|2|lph(rh)|2 ez 1 Ad
T [rh=rel .(Al) Jeh_(ZTr)g/zsosr L (A4)
The six-dimensional integral in E¢A1) must, in general, (i) L#B,d=0:
be solved numerically in order to determine the valué Hf. 2 1 522
For the plane-wave basis functions used in this paper, this b= e tan ! (A5)
involves carrying out an appropriate sum over the plane T (2m)¥2% e, BE-L2 L

wave coefficients and the Fourier transform of the Coulomb_
interaction®* Instead, we choose here to analyze the variaJ NS reduces to EqA4) whenL =B, and to the value pre-

tion of J,, with dot size and applied electric field by approxi- Viously derived by Warburtonet al® for the two-
mating the electron and hole probability density functions bydimensional £ =0) case.

Gaussian functions, for which case integf@ll) can be (iii) L=B,d#0:
solved analytically’® This approximation is shown in Fig. 6 ,
to be a reasonable assumption. In this case, the electron and Jo— € \r orf d (A6)
hole probability densities are given, respectively, by eh (2m)3¥2%0e, dv2 | LV2)
5 [ (zo+d/2)? pg- which, for smalld/L, reduces to
Ve(re)|*=—pex ————— —=5|, (A2
7L Be Le Bel S g2 1 . g2 a7
- h:— T - — |-
, 1 (zy—d/2)2  p? T (2m)¥%ee, LT 6L2
[Wn(r)|*=—5—& ————— 3|, (A3
T LnBh Lk B (iv) L=0d+#0:
wherel, andL, describe the extent of the electron and hole 5 5
localization along the growthzj direction, B, and B}, de- 3= e lex d_ erf i (A8)
scribe their in-plane extent, and the electron and hole are eh (2m)%% e, 2B 2 2B
centered a distanakapart. It can be shown that the value of
the integral(Al) is unchanged when we replatg andL, (v) L#B,d+#0. We find for smalld/L that

and B, and By, by
d2
L2+L B2+Bj Jen=Eo— =
L: 2 ’ B: 2 ’ 2

Eo e? 1
L2 (2m)%%qe, LA(B?—L?)

respectively. We solve EqA1l) by making the change of x( B? tarr ! VB2—L2}_L” (A9)
variablesu=(r.—ry) and v=(r.+r,). We can then find JBZ—L2 L '
analytical expressions fal,, in several limiting cases.
(i) L=B,d=0: whereE, is equivalent tal,y, in Eq. (A5)
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