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Electrostatic screening near semiconductor surfaces

Maja Krčmar, Wayne M. Saslow, and Michael B. Weimer
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~Received 5 August 1999; revised manuscript received 9 December 1999!

We have developed a semimicroscopic theory for the electrostatic potential due to an isolated charge near a
semiconductor surface whose surface states do not contribute free carriers. It employs the linearized version of
the Debye-Hu¨ckel ~or, equivalently, the Thomas-Fermi! approximation. This includes the screening effects
both of the plasma of free carriers due to bulk donors or acceptors, and of the bound polarizable charge
associated with the bulk dielectric, but does not include free charge from intrinsic or extrinsic surface states.
Results are obtained for a source charge above the semiconductor, within the semiconductor, and on the
semiconductor surface, but we emphasize the last case. Although there is a dipole moment associated with
source charge on the surface, the surface potential at long distances is quadrupolar; at intermediate distances
greater than a characteristic atomic dimension it is a screened exponential, with screening length equal to the
bulk value. The case of intermediate distance provides a rigorous basis for the exponentially screened surface
potential commonly employed to analyze scanning tunneling microscopy images of the depletion or accumu-
lation regions surrounding isolated charges on III-V~110! cleavage surfaces. Certain of these results also apply
to colloids.
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I. INTRODUCTION

Electrostatic screening near semiconductor surfaces
fundamental problem with many ramifications. In the pres
work we develop a comprehensive picture of the screen
of point charges at ideal III-V~110! cleavage surfaces fo
which the intrinsic surface states lie outside the band g1

These states thus are either completely filled or comple
empty, and therefore are insulating. The theory includes
screening effects of the plasma of free carriers due to do
or acceptors in the bulk, and of the bound charge associ
with the dielectric. However, it does not account for the fr
surface charge contributed by a partially filled band of intr
sic or extrinsic surface states. Because of the similarities
tween such ideal semiconductors and colloids, certain of
results for semiconductors also apply to colloids. These
both examples of coupled plasma-dielectric problems, wh
there is a large dielectric constant due to polarizable bo
charge~the atoms for semiconductors, water molecules
colloids! and a significant density of free bulk carriers~elec-
trons and holes for semiconductors, ions for colloids!.

Our analysis is based on the linearized version of Deb
Hückel ~or, equivalently, Thomas-Fermi! theory; restriction
to the linear regime means that the theory applies w
variations in the electrical potential energy are smaller th
kBT. This picture is semimicroscopic, rather than micr
scopic, and makes use of experimental quantities, such a
density of the free carriers and the dielectric constant of
bound electrons; it therefore applies only on length sca
larger than a characteristic atomic lengtha. An entirely mi-
croscopic theory of electrostatic screening in semiconduc
would differ from ours only at short distances. It would giv
a specific value for the dielectric constant appropriate
screening by bound charge at the surface, and it would g
the specific value of the valence associated with any sur
defects. In our work, we take the surface dielectric cons
to equal the bulk dielectric constant~although this could be
PRB 610163-1829/2000/61~20!/13821~12!/$15.00
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modified, if necessary!, and we take the valence of the pe
turbing surface charge to be a fitting parameter determi
from experiment.

We consider the screening of an isolated source chargq
located above the semiconductor, within the semicondu
bulk, or on the semiconductor surface; it is the last case
particular, that calls attention to the need for a compreh
sive theory. It is known empirically that the scanning tunn
microscopy~STM! contours surrounding an individual III
V~110! surface charge exhibit a spatially varying envelo
due to majority carrier depletion~or accumulation, depend
ing on the sign of the perturbing charge! that decays with
distance from the source. This decay is consistent, in the
of dilute surface concentrations, with a screened Coulo
potential whose screening lengthRb is governed by the bulk
carrier density.2 However, there is no rigorousa priori jus-
tification why this functional dependence should hold at
surface. In a more recent STM study involving much high
surface defect concentrations, the interaction energy betw
two surface charges as a function of separation,U(r), was
deduced from the spatial distribution of anion vacancies
the ~110! surface of InP.3 The authors of this study assume
U(r) to be the product of the chargeq of one vacancy and
the surface potentialfs(r) due to the other, withfs(r) a
screened Coulomb interaction parametrized by

fs~r!5
q

4p«0«e f fr
exp~2r/Rs!. ~1!

Here «0 is the dielectric constant of free space,«e f f is an
effective dielectric constant given by«e f f5(«11)/2, andRs
an empirically determined surface screening length. Equa
~1! yielded a satisfactory fit to the data withuqu51e andRs
about a factor of 3 smaller thanRb . Again, as correctly
noted in Ref. 3, there is noa priori theoretical basis for the
assumed form~1!.
13 821 ©2000 The American Physical Society
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The structure of this paper is as follows. Section II giv
an overview of screening in an infinite medium, distinguis
ing between the roles played by the dielectric and by
plasma. Section III describes our geometry: screening
semi-infinite medium. Section IV considers source charge
the vacuum. Section V considers source charge in the s
conductor. Section VI considers source charge on the
face, emphasizing the surface potentialfs at large and inter-
mediate distances; at large distances it is quadrupolar~an
inverse cube potential!, but for intermediate distances it i
indeed well approximated by Eq.~1!. The theory predicts
that Rs is the bulk screening lengthRb , consistent with the
modulation of STM contours by individual defects, but n
with the much shorter screening length inferred in Ref.
We discuss a possible reason for this discrepancy in Sec.
where we apply the theory of Sec. VI to the results of Ref
Section VIII presents a summary.

II. OVERVIEW OF BULK SCREENING

For later purposes of comparison with our results in
presence of a surface, we review screening by an infi
medium within the Debye-Hu¨ckel ~or, equivalently, the
Thomas-Fermi! approximation.4,5 Consider an infinite con-
ducting medium of relative dielectric constant« due to elec-
trons in bound orbitals, and possessing a densityn of free
carriers~of either sign! with delocalized orbitals. If the tem
peratureT is sufficiently high that the free carriers near
satisfy the Maxwell-Boltzmann distribution, then Deby
Hückel theory applies, and the density of states is given
]n/]m'kBT/n, wherem is the chemical potential of thes
carriers, andkB is Boltzmann’s constant. If the temperatureT
is sufficiently low that the free carriers nearly satisfy t
Fermi-Dirac distribution, then Thomas-Fermi theory appli
and]n/]m'(3/2)(n/m). Within Debye-Hückel theory, for a
point chargeq embedded in such a system, the electri
potentialf at distancer from the source is given by

f~r !5
q

4p«0«r
exp~2r /Rb!, Rb[A««0kBT

ne2 . ~2!

If Fermi-Dirac, rather than Maxwell-Boltzmann statistics a
ply, then the ratiokBT/n is replaced by]m/]n.4,5 In Eq. ~2!
the dielectric constant« appears twice for the following rea
sons. First, atomic and molecular polarization due to loc
ized states, in response to the presence ofq, gives a factor of
1/« in the potential nearq. Second, polarization charge als
screens the free carriers, making their screening less e
tive, and thereby increasing the screening length by a fa
A«. Thus Rb5Rb

(0)A«, where Rb
(0) is the Debye-Hu¨ckel

screening length for«51. It is implicit thatRb.a.
Figure 1 gives a qualitative picture of screening for

spherical sample with a source chargeq at its center. The
total charge response near the source has two contribut
~1! within a of the sourceq, there is an induced polarizatio
charge of2q(121/«), yielding an effective source charg
of q/«; ~2! within a few Rb of the effective source charg
q/« there is a screening charge2q/«, of whichq(121/«) is
due to polarization, and2q is due to free carriers. In order t
satisfy charge conservation there are, in addition, two m
contributions at the~distant! surface of the sample;~3! within
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a few timesRb of the surface there is a screening chargeq/«,
where 2q(121/«) is due to polarization, andq is due to
free carriers;~4! within an atomic distance of the surfac
there is an induced polarization charge ofq(121/«). The
sum of all induced free charge is zero, the sum of all pol
ization charge within a few screening lengths of the sourc
zero, and the sum of all the polarization charge within a f
screening lengths of distant surfaces is zero.

III. GEOMETRY OF THE PROBLEM

For a semi-infinite semiconductor in contact with vacuu
we consider the following geometry: the regionz.0 con-
tains vacuum, with dielectric constant«51 and the region
z,0 contains semiconductor, with dielectric constant«;
thus, thez50 plane defines their interface. The point char
q is on thez axis atr05(0,0,z0), as shown in Fig. 2.

In the sections to follow, we consider all three possib
ties for the source chargeq: q in the vacuum region (z0
.0), q within the semiconductor (z0,0), and q at the
vacuum-semiconductor interface (z050).

For a source charge on the surface, we expect a dip
potential~inverse square! at large distances. The dipole oc
curs because, although the screening charge is equal an
posite to the source charge, it is spread out within the bulk
the semiconductor. Along the surface, however, this dip
potential vanishes, leaving a dominant quadrupole poten
~inverse cube!. Nevertheless, as shown in Eq.~35! below, at

FIG. 1. Semiconductor screening for a source chargeq within a
spherical sample. The light hatching represents exponential scr
ing over the lengthRb ; the dark hatching represents screening o
an atomic distancea.

FIG. 2. Geometry for a sourceq in vacuum, including the elec-
trostatic response of the semiconductor.
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PRB 61 13 823ELECTROSTATIC SCREENING NEAR SEMICONDUCTOR . . .
intermediate distances the exponential form~2! applies, with
r replaced byr and the effective chargeq/« replaced by
2q/«.

IV. ELECTROSTATIC SCREENING FOR SOURCE
CHARGE IN THE VACUUM

Whenq is in the vacuum region, its volume charge de
sity, expressed in cylindrical coordinates, is

rb5qd~r2r0!5
q

2p

d~r!

r
d~z2z0!. ~3!

Thus, Poisson’s equation6 for the electrostatic potential in th
vacuumfv is

¹2fv52
q

«0
d~r2r0! ~z.0!. ~4!

The electrostatic potentialfb in the semiconductor bulk
when there is no source charge, must satisfy

¹2fb52
r f ree

««0
, ~z,0!, ~5!

where r f ree is the charge density due to free carriers.
Debye-Hückel theory,r f ree is related tofb by

r f ree52««0kb
2fb , kb[Rb

21 . ~6!

Herekb is the inverse of the bulk screening lengthRb , given
in Eq. ~2!. From Eq.~6!, and a knowledge offb , rb can be
deduced. Employing Eq.~6! in Eq. ~5!, we see thatfb sat-
isfies

¹2fb2kb
2fb50 ~z,0!. ~7!

The solution forfv is a superposition6 of two terms:
fv

(1) , which satisfies Eq.~4!; and fv
(2) , which satisfies

Laplace’s equation¹2fv
(2)50. Because the system has ax

symmetry, all physical quantities are independent of the
lar anglew. Hence, the solutions of the electrostatic equ
tions can be expanded in terms of the zeroth order Be
function. Thus~see the Appendix!,

fv5
q

4p«0
E

0

`

dk J0~kr!@exp~2kuz2z0u!

1Cv~k!exp~2kz!# ~z.0!. ~8!

The solution forfb similarly can be written as

fb5
q

4p«0
E

0

`

dk Db~k!J0~kr!exp~zAk21kb
2! ~z,0!.

~9!

The unknown functionsC(k) and D(k) are determined by
matching the tangental component ofE and normal compo-
nent ofD at the vacuum-semiconductor interfacez50 where

]fv

]r
5

]fb

]r
and

]fv

]z
5«

]fb

]z
. ~10!

Use of Eq.~10! in Eqs.~8! and ~9! yields
-

l
-
-
el

Cv~k!5
k2«Ak21kb

2

k1«Ak21kb
2

exp~2kz0! and

Db~k!5
2k

k1«Ak21kb
2

exp~2kz0!. ~11!

Related expressions were derived in an earlier study that
phasized image effects on tunneling through metal-vacu
semiconductor junctions.7

A. Bulk and vacuum potentials

Within the semiconductor,Db(k) in Eq. ~11! determines
the behavior offb in Eq. ~9!. There are two characteristi
lengths inDb(k). One iskb

215Rb , and the other isz0.
For Rb!z0, corresponding to relatively strong metall

screening, the factor exp(2kz0) is already very small before
the denominator inDb(k) displays any significantk depen-
dence. Hence we can writeDb(k)'(2k/«0kb)exp(2kz0).
Then, forz,0, use of Eq.~6.623.2! from Ref. 8 in Eq.~9!
yields

fb5
q

4p«0
E

0

`

dk
2k

«kb
exp~2kz0!J0~kr!exp~2kbuzu!

5
qz0Rbexp~2uzuRb!

2p««0~z0
21r2!3/2

~Rb!z0 ,z,0!. ~12!

As expected in the limit of an ideal metal, forz50, fb
→0 asRb→0. For «51, Eq. ~12! is in agreement with a
recent work that considers only the caseRb!z0 and«51.9

We now turn to some numerical results, presented for
sourceq both near (z050.1Rb) and far (z0510Rb) from the
surface, and for the observer both near (uzu50.1Rb) and far
(z0510Rb) from the surface. In all of our calculations, th
distancesr andz are in units ofkb

21[Rb ~the bulk screening
length!, and the potentials are in units of

f0[
q

4p«0Rb
, ~13!

the potential in vacuum at a distanceRb from the bare source
charge. We take«510 as typical of many semiconductor
Rb is nonzero and finite. IfRb were infinite, the semiconduc
tor would behave like a dielectric~no free charge in the
semiconductor bulk!. If Rb were zero, by Eqs.~9! and ~11!
the semiconductor would behave like an ideal metal. F
both of these limits, the electrostatic potentials have w
known, analytical solutions.6

Figures 3–6 give the potentialsfv
V,D,M ,S in vacuum (v)

andfb
V,D,M ,S in bulk ~b! when the lower half-space is occu

pied by vacuum (V), dielectric with«510 (D), ideal metal
(M ), or a semiconductor~S! with «510.

Figure 3 gives the potentials in vacuum for smallz05z
50.1Rb ~source and observer both near the surface!. For
small r, fv

S approachesfv
D . However,fv

S falls rapidly for
large r, due to screening by bulk charge. As expected,fv

S

lies betweenfv
D and the potentialfv

M for the ideal metal.
The drastic difference betweenfv

V and fv
D shows that the

dominant role in screening at smallz0 is due to surface po-
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13 824 PRB 61MAJA KRČMAR, WAYNE M. SASLOW, AND MICHAEL B. WEIMER
larization charge. Bulk charge has an important role
larger radial distances fromq.

Figure 4 shows the potentials in vacuum for largez05z
510Rb ~source and observer both far from the surface!. For
z,0, fv

S approachesfv
M, andfv

0 is slightly greater thanfv
S.

This again indicates that forq far from the surface, the me
tallic properties of the semiconductor dominate the scre
ing.

Similar behavior is seen in Fig. 5 and Fig. 6 for the p
tentials in bulk~the lower half-spacez,0). The ideal metal
potentialfb

M is not shown, being trivially zero in this case
In principle, the value of« at the surface could diffe

from its value in bulk. This easily can be incorporated in

FIG. 3. Electrostatic potential in the vacuum (z.0), for a
source charge in vacuum and source and observer near the su
z05z50.1Rb . The legend isV ~vacuum!, D ~dielectric!, S ~semi-
conductor!, andM ~metal!.

FIG. 4. Electrostatic potential in the vacuum (z.0), for a
source charge in vacuum and source and observer far from
surface;z05z510Rb . The legend isV ~vacuum!, D ~dielectric!, S
~semiconductor!, andM ~metal!.
r

n-

-

the present theory if it appears necessary, by suitably m
fying Eq. ~10!.

B. Surface and bulk charge distribution

We first consider the surface charge distributionss at the
surfacez50. This is found from

ss5«0F2
]fv

]z
1

]fb

]z G
z050

52~«21!«0

]fb

]z U
z050

.

~14!

ce;

he

FIG. 5. Electrostatic potential within the bulk medium (z,0),
for a source chargeq in vacuum and source and observer near
surface;z052z50.1Rb . The legend isV ~vacuum!, D ~dielectric!,
andS ~semiconductor!.

FIG. 6. Electrostatic potential within the bulk medium (z,0),
for a source chargeq in vacuum and source and observer far fro
the surface;z0522z510Rb . The legend isV ~vacuum!, D ~dielec-
tric!, andS ~semiconductor!.
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From the solution forfb , we obtain

ss52
q

2p
~«21!E

0

`

dk J0~kr!
kAk21kb

2

k1«Ak21kb
2

exp~2kz0!.

~15!

It appears that the integral in Eq.~15! cannot be evaluated
analytically,8 so we evaluate it numerically.10

Figures 7 and 8 showss normalized tos0[q/Rb
2 whenq

is near and far from the interface. For smallz0, as shown in
Fig. 7,ss is very similar to the surface charge distribution
the vacuum-dielectric case. Also,ss differs from the distri-
bution on an ideal metal surface only for very smallr (r
,0.5Rb). This is because the entire response is locali
radially. For an ideal metal, where there is no smallest ch

FIG. 7. Surface charge distribution for a source chargeq in
vacuum and near the surface;z050.1Rb . The legend isD ~dielec-
tric!, S ~semiconductor!, andM ~metal!.

FIG. 8. Surface charge distribution for a source chargeq in
vacuum and far from the surface;z0510Rb . The legend isD ~di-
electric!, S ~semiconductor!, andM ~metal!.
d
r-

acteristic dimension, electrostatic induction brings fr
charge literally to the surface. This free charge complet
screens the source chargeq for z,0. For a semiconductor
on the other hand, where the smallest characteristic dim
sion is an atomic dimensiona, the only charge literally on
the surface is the polarization charge associated with the
most atoms. This polarization charge performs only par
screening.

Figure 8 considers largez0. As q moves further from the
surface, the dielectric, ideal metal, and semiconductor cur
become more distinct and more smooth. In that case,q af-
fects a much greater area, and the induced charge is sme
out along the surface.

The total induced surface chargeqs is given by

qs52pE
0

`

dr rss~r!. ~16!

Placing Eq.~16! into Eq. ~15! yields an expression that ca
be evaluated analytically in the two limitsz0!Rb and z0
@Rb ~see the Appendix!.

For z0!Rb , Eq. ~A22! yields

qs52q
«21

«11
~z0!Rb!. ~17!

This qs equals the induced charge for the vacuum-dielec
case,6 supporting the conclusion that, for smallz0, the dielec-
tric properties of the semiconductor dominate. In fact,
find numerically that, asz0 decreases,fv and fb shift to-
ward the corresponding potentials for the vacuum-dielec
case. Thus the curves for semiconductor and dielectric ne
coincide in Fig. 5.

For z0@Rb, Eq. ~A24! yields

qs52q
«21

«
52qS 12

1

« D ~z0@Rb!. ~18!

Here the metallic properties of the semiconductor ag
dominate~for an ideal metalRb→0, so we havez0@Rb for
all finite z0). The value forqs , and the form ofss , can be
obtained in this case by the following physical argument
the electric field lines are orthogonal to thez50 plane, then
the boundary condition for the dielectric displacementD
gives Dv5«0Ev5Db5«0«Eb . The boundary condition for
the electric fieldE at z50 then becomes

ss5«0~Ev2Eb!•ez5«0

«21

«
Ev•ez , ~19!

whereez is a unit vector in thez direction. Applying Gauss’s
law and Gauss’s theorem, withdS52dSez , we obtain

qs5 R sSdS52«0

«21

« R Ev•dS

52«0

«21

« E “•EvdV52qS 12
1

« D , ~188!

as in Eq.~18! above.
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13 826 PRB 61MAJA KRČMAR, WAYNE M. SASLOW, AND MICHAEL B. WEIMER
We now consider the bulk charge distributionrb . Within
the semiconductor (z,0), following Eq. ~6!, both the free
charge distributionr f ree and the polarization charge distribu
tion rpol5r f ree(211«21) vary linearly with fb . It turns
out that the bulk charge densities are localized within a f
Rb of the surface, for both large and smallz0. For smallz0,
the charge distribution is also localized radially, whereas
largez0, the charge distribution is extended radially.

From qs for both small and largez0, we see thatq is not
immediately screened at the surface. The effective sou
chargeQ seen by the bulk is

Q5q1qs.0, ~20!

and this is screened by the bulk. Charge conservation app
to the entire system@zP(2`,`)# implies that there is also
charge near and on the boundary at infinity.

For z0!Rb , by Eqs.~20! and ~17! Q is given by

Q5q2q
«21

«11
5

2q

11«
~z0!Rb!. ~21!

Therefore, the total screening chargeqb in the semiconduc-
tor, within a few Rb of the surface, isqb52Q522q/(1
1«). Using

qb5qf ree1qpol ,
qb

«
5qf ree , ~z0!Rb! ~22!

the total free and polarization charge in the semicondu
are

qf ree52«Q522q
«

11«
, qpol52Q2qf ree52q

«21

11«
.

~23!

For z0@Rb , by Eqs.~20! and ~18! Q is given by

Q5q2q
«21

«
5

q

«
~z0@Rb!. ~24!

Therefore

qf ree52«Q52q, qpol52Q2qf ree5q
«21

«
.

~25!

For z0!Rb , the free charge at infinity is 2q«/(11«),
and the polarization charge isq(«21)/(«11). However, for
z0@Rb , there is at infinity a deficiency1q of free charge
and no residual polarization charge.

V. ELECTROSTATIC SCREENING FOR SOURCE
CHARGE WITHIN THE SEMICONDUCTOR

When the source chargeq is within the semiconducto
~Fig. 9!, the physical picture differs significantly from tha
for a source charge in the vacuum~Fig. 2!. For q positive, a
negative polarization charge is induced nearq in the bulk.
Further fromq are both free and polarization charge dist
butions. The semiconductor surface now has a positive
larization charge, in contrast to the negative surface polar
tion charge for the source in vacuum. This is because in
limit kb→0, where the semiconductor behaves like a diel
r

ce

ed

r

o-
a-
e
-

tric ~with no polarization volume charge density!, negative
charge induced nearq leaves a positively charged interfac
~Fig. 9!.

The potential in vacuum now satisfies Laplace’s equat
¹2fv50, whereasfb now satisfies

¹2fb2kb
2fb52

1

««0
qd~r2r0!

52
1

««0

q

2p

d~r!

r
d~z2z0! ~z,0!.

~26!

Solving these equations~see the Appendix!, one obtains

fv5
q

4p«0
E

0

`

dk Cv~k!J0~kr!exp~2kz! ~z.0!,

~27!

fb5
q

4p«0
E

0

`

dk J0~kr!S k

«Ak21kb
2

exp~2Ak21kb
2uz2z0u!

1Db~k!exp~zAk21kb
2!D . ~28!

From the boundary conditions onD and E at the z50
plane,C(k) andD(k) are given by

Cv~k!5
2k

k1«Ak21kb
2

exp~2Ak21kb
2uz0u!, ~29!

Db~k!5S 2k

k1«Ak21kb
2

2
k

«Ak21kb
2D exp~2Ak21kb

2uz0u!.

~30!

Applying Eq. ~14! to the solution given by Eqs.~28! and
~30!, the surface charge distribution is

ss5
q

2p

«21

«
qE

0

`

dk J0~kr!
k2

k1«Ak21kb
2

3exp~2uz0uAk21kb
2!. ~31!

If Rb→`, Eq. ~31! reduces to the surface charge distributi
due toq in a semi-infinite dielectric6

FIG. 9. Electrostatic response of a semiconductor to a sou
chargeq within it.
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sd5
q

2p

«21

«~«11!

uz0u

Ar21uz0u2
3 .0 ~z0,0,Rb→`!.

~32!

Note that Eq.~31! cannot give the surface charge dist
bution ~due to polarization! for z050 in the limit z0→02.
This is because as soon asq is moved into the semiconduc
tor, negative polarization charge is induced nearq, leaving
positive polarization charge on the surface.~This apparent
discontinuity is a consequence of the theory not depend
explicitly on atomic size.! On the other hand, as we shall s
below, the surface charge distribution forz0→01, from Eq.
~14!, approaches the corresponding distribution forz050,
due to the absence of an intrinsic charge distribution in
vacuum. As shown following Eq.~A22!, Eq. ~31! can be
integrated exactly, yielding the total surface charge in
vacuum-dielectric case (Rb→`)6

qs5q
«21

«~«11!
~z0,0, Rb /uz0u→`!. ~33!

This charge is due solely to polarization. We conclude t
the dielectric properties of the semiconductor dominate
small z0 even when the source is within the semiconduct
The free and polarization charges in the bulk are, in t
limit, the same as forz0.0.

We now turn to the bulk charge. Within an atomic di
tance a of q itself is a polarization charge2q(121/«),
yielding a net charge ofq/«. Since the system will be locally
neutral within a fewRb of q, the total nearby bulk chargeqb
is given by qb52(q/«1qs)522q/(11«). Of this,
22q/«(11«) is free charge and22q(«21)/«(11«) is
polarization charge. Near and on the boundary at infin
there is a net chargeq. Of this, 2q/«(11«) is free charge
equal to the negative of the free charge near the sourceq, and
there is an associated bulk polarization charge given
2q(«21)/«(11«); there is also a surface polarizatio
charge ofq(«21)/(«11). The sum of the free charge
zero, as is the sum of the polarization charge~both bulk and
volume!. Although the detailed distribution of surface pola
ization charges is different in the two cases, here the sum
the surface polarization charges at the interface and at in
ity is q(121/«), the same as for the spherical geometry
Fig. 1.

For the source far inside the semiconductor (z0
,0,uz0u@Rb), Eq. ~31! implies thatqs approaches zero s
the system behaves as if there is no vacuum-semicondu
interface. Thus, in this limitfv→0 whereasfb approaches
Eq. ~2!, the solution for the infinite semiconductor case, w
r replaced byAr21uz2z0u2.

VI. ELECTROSTATIC SCREENING FOR SOURCE
CHARGE ON THE SURFACE

When q is at the vacuum-semiconductor interface (z0
501), the electrostatic potentialsfv andfb can be obtained
from Eqs.~8!, ~9!, and~11!, in the limit z0→01. Their func-
tional behavior is similar to those forz0.0 with z0!Rb : for
smallr ~up to 1.0Rb) and close to the interface, bothfv and
fb behave like the corresponding potentialsfv

D and fb
D in

the vacuum-dielectric case. However, asr increases, the po
g

e

e

t
r

r.
s

,

y

of
n-
f

tor

tentials decrease more rapidly due to the induced bulk cha
localized near the surface. Whenz is large, the difference
betweenfv andfv

D , and betweenfb andfb
D , is significant

for all r. The potentialfb becomes negligible compare
with fb

D , due to plasma screening by the semiconductor. T
potentialfv is also suppressed compared withfv

D , due to its
dependence onz1z0. ~Its behavior for largez andz0501 is
similar to the behavior for finitez and largez0, where, as
discussed earlier, the semiconductor’s metallic proper
dominate.!

The induced surface charge density forz0501 is singular
at r50, and zero for allr.0. It is similar to that in the
vacuum-dielectric case,6 wheresd(z0501);1/r3. The total
chargeQ on the surface is the sum ofq and the polarization
chargeqs of Eq. ~17!, soQ52q/(11«), as in Eq.~21!. Thus
the total bulk charge near the surface is22q/(11«). A
schematic picture of the charge induced in the semicondu
is shown in Fig. 10. Negative polarization charge is induc
at the surface, in response to positiveq. The sourceq is
partially screened by this surface polarization charge, and
remainder is completely screened by free charge in the b
This bulk charge is localized near thez axis, extending a few
Rb into the semiconductor.

The potential on the surfacefs(r) is relevant to the in-
teraction between charged surface defects. Settingz50 and
z050 in Eqs.~8! and ~11! gives

fs5
q

4p«0
E

0

`

dk J0~kr!
2k

k1«Ak21kb
2

. ~34!

Although Eq.~34! has no general analytical solution, it ca
be approximated in the two limits of small and larger. The
smallr limit may be obtained analytically only for dielectri
constant«>10. The larger limit may be obtained analyti-
cally for all «.

If «>10, the integrand of Eq.~34! can be approximated
by J0(kr)(2k/«Ak21kb

2), which can be integrated
analytically8 to give

fs>
q

4p«0
E

0

`

dk J0~kr!
2k

«Ak21kb
2

5
2q

4p«0«

exp~2kbr!

r

5
2q

4p«0«

exp~2kb0
A«r!

r
~«@1,r<4Rb!, ~35!

FIG. 10. Forz050, the total charge distribution has a dipole a
a quadrupole moment. At large distances along the surface,
dipole potential is zero, and the quadrupole potential domina
The arrow indicates the centroid of the induced bulk charge.
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wherekb0

215Rb
(0) . By Eq. ~35!, for small radial separations

fs(r) is similar to the potentialf(r ) in Eq. ~2! for an infi-
nite semiconductor. The only difference is in the effecti
charge, which for the semi-infinite case is twice as large

Let us now consider the larger limit, for any «. From Eq.
~A18! of the Appendix, the surface potentialfs5f(z
50,r) for larger has the form

fs~r!5
1

4p«0

2Rb
2

«2

q

r3
~r>8Rb!. ~36!

Equations~34!–~36! are plotted in Fig. 11, for«510.
Equation~36! has a natural interpretation in terms of

multipole expansion of the potential, since all of the cha
lies within a few screening lengths of the source chargeq.
An inverse cube in the potential corresponds to a quadru
potential.6 The inverse first power is absent because
source charge is completely screened by charge in the s
conductor. The inverse second power is absent becaus
dipole momentp lies along thez axis, and thus is normal to
a radius vectorr from the source chargeq at the origin to an
observer elsewhere along the surface. That is, the dipole
tential

fdipole~r !5
1

4p«0

p•r

r 3
, ~37!

gives zero for r5rW . The next term is the quadrupol
potential,6

fquadrupole~r !5
1

4p«0
(
i j

Qi j xixj

2r 5
, ~38!

wherexi is the i component ofr , and the quadrupole tenso
is

FIG. 11. Surface potential for a source charge on the sur
(z050), and its two limits for small and larger. Note the logarith-
mic scales along both axes.
e

le
e

i-
the

o-

Qi j 5E dr 8r~r 8!~3xi8xj82r 82d i j !. ~39!

For a system with axial symmetry about thez axis, Qi j
has no off-diagonal elements, andQxx5Qyy . Also, by the
traceless nature ofQi j , Qzz522Qxx . Hence there is only
one independent term inQi j . We find Qxx for the present
system by comparing Eq.~36! with Eq. ~38!. This yields

Qxx5Qyy52
1

2
Qzz5

4

«2 qRb
2 . ~40!

In the present case, where there is a nonzero dipole mom
p ~to be determined shortly!, the definition of the quadrupole
tensor depends upon the choice of origin.6 Here p points
upward for positiveq; we take it to have magnitudep. If we
were to choose as our origin another point at a distancd
below the surface, the dipole potential on the surface wo
be pd/4p«0r3. However, on using the redefined quadrupo
moments (Qxx→Qxx22pd), the overall potential would still
satisfy Eq.~36!.

To evaluate the dipole moment we find the potential
z@Rb and r50, where Eq.~8! applies. Settingz050 and
J(0)51 in Eq. ~8!, and using Eq.~11!, we find that

fv5
q

4p«0
E

0

`

dk
2k

k1«Ak21kb
2

exp~2kz! ~z.0!.

~41!

In the limit wherekbz@1, this becomes

fv5
q

4p«0
E

0

`

dk
2k

«kb
exp~2kz!5

1

4p«0

2qRb

«z2 ~kbz@1!,

~42!

Comparison with Eq.~37! evaluated forr50 leads to a di-
pole moment of magnitude

p5
2qRb

«
. ~43!

There are two ways to interpret this dipole moment
terms of a charge and a length. On the one hand, the di
in Eq. ~43! can be thought of as being due toq at the origin
and2q at a distancel 5p/q52Rb /« below the origin. On
the other hand, it also can be thought of as due toq1qs
52q/(«11), whereqs is due to surface polarization charg
around the sourceq and 2(q1qs) at a distancel 85p/(q
1qs)5Rb(«11)/« below the origin. This latter definition
includes only the effects of free charge and of bulk polari
tion charge. Forz0Þ0, there is an additional dipole momen
2qz0, due to the source charge atz0 and its classical image
2q at 2z0, as can be shown explicitly from Eqs.~8! and
~11!. ~Becausez@Rb , metallic screening dominates.!

It is worth mentioning in passing that these results
also relevant to the interaction of two colloidal particles on
surface. This situation recently has been studied in Ref.
There the authors treat the system as if the background
~typically water, with dielectric constant near 80! can be
treated by working out the results for dielectric consta
unity and then scaling to include the dielectric constant.
particular, although they employ Eq.~26!, they do not em-
ploy Eqs.~10! or ~14!. As a consequence, their elegant res
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for the surface potential due to a colloid on the surface
valid only for «51. Because our focus is on the semico
ductor case, we do not develop, here, the implications of
~34! for colloids.

VII. COMPARISON WITH EXPERIMENT

Equation~35! shows that the exactfs of Eq. ~34! is well
approximated by a screened exponential with a surf
screening length equal to the bulk screening lengthRb . This
result provides a rigorous basis for the ansatz of an expo
tially decaying envelope, with characteristic lengthRb , com-
monly employed to analyze STM images of the depletion
accumulation regions surrounding isolated charges~i.e., the
dilute limit! on III–V~110! cleavage surfaces.2

We turn now to the more detailed and explicit results
Ref. 3, which concern the potential itself, not merely
dominant spatial variation.~These results are obtained for
surface-charge concentration that is much larger than in
2.!

Reference 3 describes a room-temperature STM dete
nation of the pair correlation function for positively charg
phosphorous vacancies at the~110! surface ofp-type InP.
The vacancies were created byin vacuo thermal anneals a
100–200 °C. The interaction energyU(r), between two va-
cancies a distancer apart, was obtained from the logarith
of the pair correlation function and scaled to the annea
temperature. As noted in the Introduction, the results w
satisfactorily fit by Eq.~1! with uqu5(1)e, «e f f5(«11)/2,
andRs51.1 nm.

To compare the present linearized theory with the exp
ments of Ref. 3, we first note that in the linear regime
electrostatic interaction between two surface chargesq and
q0 is U5q0fs(r), wherefs(r) is the surface potential a
separationr due to the chargeq at the origin.12 Equation
~35! shows this interaction is well approximated by the fun
tional form~1! used to parametrize the data, where the the
assumes a uniform free-carrier density throughout the
tem. The expected screening length is thenRs5Rb , which,
for the samples described in Ref. 3~free hole concentration
of 1.322.131018 cm23!, is between 3.0 and 3.8 nm. T
obtain a surface screening length of 1.1 nm, as seen in
experiments, requires a hole concentration of 231019 cm23,
an order of magnitude greater than the highest achiev
free-carrier density inp-type InP.13 This is inconsistent with
the short local bulk screening length needed to explain
results of Ref. 3.

Independent experimental evidence suggests that it is
appropriate to assume a spatially uniform free-carrier den
in the case of Ref. 3. Photoemission measurements ind
surface core level shifts of up to 0.5–0.6 eV following ev
very brief in vacuo anneals (200 °C) of freshly cleave
p-type InP~110! ~free hole concentration 231018 cm23); the
midgap pinning level is attributed to phosphorous surfa
vacancies.14,15 Straightforward calculations show that muc
smaller surface potential shifts of 3 –4kBT (;0.1 eV) are
sufficient to deplete the near-surface region of enough
jority carriers that the surface screening length will increa
tenfold over that inferred in Ref. 3. In short, depletion of t
near-surface region means that bulk plasma properties
s
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irrelevant to the interaction between surface charges in s
a case.

One possible explanation for the unusually short scre
ing length observed in Ref. 3 is free surface charge from
partially filled band of extrinsic surface states associated w
the vacancies themselves. As noted in the Introduction, s
free surface charge is not included in the present work.

VIII. SUMMARY

We have studied the electrostatic screening of po
charges by an ideal semi-infinite semiconductor whose
face states do not contribute to the density of free carri
applying Debye-Hu¨ckel theory to a system that is homog
neous in the bulk. This theory offers a quantitatively reliab
picture of the electrostatic potential due to source cha
above, within, and on the surface of a such a semiconduc
which is valid for length scales greater than a characteri
atomic dimensiona. The theory also provides a number
important qualitative insights that contribute to our physic
understanding of the more general coupled plasma-diele
problem, including the following.

~1! If the source chargeq is in vacuumand far from the
surface~so that z0.0 and z0@Rb), then for an observer
within a few Rb of the surface the metallic~plasma! proper-
ties of the semiconductor dominate. The electric field lin
are orthogonal to the semiconductor surface, and the fie
screened withinRb of the surface~Fig. 4!. The surface
charge distribution is extended radially, as for classical el
trostatics.

~2! If the source chargeq is in vacuumandnear the sur-
face~so thatz0.0 andz0!Rb), then for an observer within
a few z0 of the surface the dielectric properties of the sem
conductor dominate; the induced surface charge is as in
vacuum-dielectric case. Free and polarization charge wi
the semiconductor bulk causes screening for larger ra
separations.

~3! If the source chargeq is in the semiconductorand
near the surface~so thatz0,0 and uz0u!Rb), then for an
observer within the bulk and near the surface, the semic
ductor behaves like a dielectric. On going a fewRb further
into the bulk, induced bulk charge~both free and polariza-
tion! completely screensq.

~4! If the source chargeq is in thesemiconductorand far
from the surface~so thatz0,0 anduz0u@Rb), the vacuum-
semiconductor boundary plays no role; the system beha
like an infinite medium.

~5! If the source chargeq describes asemiconductor sur-
face defect, the electrostatic potentialfs along the surface
has two limiting behaviors. Whenr is small (r,4Rb), fs
falls off exponentially, with characteristic lengthRb

5Rb
(0)A« and effective charge 2q/«. When r is large (r

.8Rb), the sourceq is screened by induced surface charg
and together with induced bulk charge this generates a di
potential that is zero on the surface, and a quadrupole po
tial that is nonzero. The dipole moment has strengthp
52qRb /«, and the one independent quadrupole moment
strengthQxx54qRb

2/«2.
The theory applies to ideal III-V~110! surfaces in the di-

lute defect limit, where it predicts a surface screening len
equal to the bulk screening length. This is consistent w
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well-established STM contour measurements.2 The theory
also provides a rigorous basis for the exponentially decay
interaction between two surface charges used to fit the
correlation data in Ref. 3, but the screening length given
the theory is much longer than the experimentally obser
one. Since the surface-charge density in these experimen
undoubtedly sufficient to cause free-carrier depletion, o
might have expected the inequality to be reversed—that
surface screening length much longer than the bulk one.
additional source of screening charge is therefore neede
explain the results of Ref. 3. Because the intrinsic surf
states associated with III-V~110! surfaces are insulating, the
cannot provide this additional screening charge. Free ch
in extrinsic surface states, on the other hand, may accoun
the unexpectedly short screening length. Generalization
the theory to include such free surface charge is prese
underway.16
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APPENDIX

1. Potentials for source above surface

Equation ~4! is satisfied by the potentialfv
(1) due to q

localized atr0, which can be expanded in terms of the zero
order Bessel function as6

fv
(1)5

q

4p«0

1

Ar21~z2z0!2

5
q

4p«0
E

0

`

dk J0~kr!exp~2kuz2z0u!. ~A1!

However, the potentialfv must be a sum offv
(1) and an

additional termfv
(2) that satisfies Laplace’s equation, due

semiconductor in the regionz,0. To expandfv
(2) in terms

of J0(kr), we separate the variablesr and z in fv
(2) as

fv
(2)5*0

`dk Cv(k)R(k,r)Z(k,z). By well-known methods,6

we obtain the equations forR(k,r) andZ(k,z). Their solu-
tions are R(k,r)5J0(kr) and Z(k,z);exp(2kuzu). Thus,
fv

(2) must be expanded as

fv
(2)5

q

4p«0
E

0

`

dk Cv~k!J0~kr!exp~2kuzu!. ~A2!

From fv
(1) andfv

(2) , by linear superposition,fv is

fv5
q

4p«0
E

0

`

dkJ0~kr!@exp~2kuz2z0u!

1Cv~k!exp~2kz!# ~z.0!. ~A3!

The solution of Eq.~7!, for fb , is obtained similarly. We
now write fb as

fb5E
0

`

dk Db~k!R~k,r!Z~k,z!, ~A4!
g
ir
y
d
is

e
a
n
to
e

ge
or
of
tly

-
-

whereZ andR satisfy

d2Z

dz2 2~k21kb
2!Z50 and

d2R

dr2 1
1

r

dR

dr
1k2R50.

~A5!

Herekb5Rb
21 , andRb is defined in Eq.~2!. Z must again be

an exponentially decreasing function ofz, so Z(k,z)
;exp(2Ak21kb

2)uzu. The equation forR is again the differ-
ential equation forJ0(kr).

From Eq.~A4!, fb can be expanded as

fb5
q

4p«0
E

0

`

dk Db~k!J0~kr!exp~zAk21kb
2! ~z,0!.

~A6!

2. Potentials for source within semiconductor

If the sourceq is within the semiconductor, then¹2fv
50. Thus, from Eq.~A2!,

fv5
q

4p«0
E

0

`

dk Cv~k!J0~kr!exp~2kz! ~z.0!.

~A7!

For z,0, the potentialfb is obtained by linear superpo
sition fb5fb

(1)1fb
(2) , where fb

(1) satisfies Eq. ~26!,
whereasfb

(2) satisfies Eq.~7!. The solution to Eq.~7! has the
same form as Eq.~9!, so we can expressfb

(2) as

fb
(2)5

q

4p«0
E

0

`

dk Db~k!J0~kr!exp~zAk21kb
2! ~z,0!.

~A8!

To obtainfb
(1) by solving Eq.~26!, we expand the radiald

function in terms of the zeroth-order Bessel function,
obtain6

2
1

««0
rb52

1

««0

q

2pE0

`

dk kJ0~kr!d~z2z0!. ~A9!

We now expandfb
(1) as

fb
(1)5E

0

`

dk kJ0~kr!Z~z,z0 ;k! ~z,0!. ~A10!

From Eqs.~26! and ~A10!, the functionZ must satisfy

d2Z

dz2 2~k21kb
2!Z52

1

««0

q

2p
d~z2z0!. ~A11!

Using methods in Ref. 6, we find that

Z~z,z0 ;k!5
q

4p«0

1

«Ak21kb
2

exp~2Ak21kb
2uz2z0u!.

~A12!

Thus, combining Eqs.~A8!, ~A10!, and~A12!, we find that

fb5
q

4p«0
E

0

`

dk J0~kr!S k

«Ak21kb
2

exp~2Ak21kb
2uz2z0u!

1Db~k!exp~zAk21kb
2!D . ~A13!
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3. Surface potential at large radial distances

To obtain the larger limiting behavior, we substitute
kr5x in Eq. ~34!. Then

fs5
q

4p«0

2

rE0

`

dx J0~x!
x

x1«Ax21~kbr!2
. ~A14!

To the ratio term of the integrand in Eq.~A14!, we add and
subtract its limit asx→`, 1/(«11). This gives

fs5
q

4p«0

2

«11

1

rE0

`

dx J0~x!

1
q

4p«0

2«

«11

1

rE0

`

dx J0~x!
x2Ax21~kbr!2

x1«Ax21~kbr!2
.

~A15!

The first term in Eq.~A15! is integrable analytically, yielding

fs5
q

4p«0

2

«11

1

r

3F 11«E
0

`

dx J0~x!

x2~kbr!F11S x

kbr D 2G1/2

x1«~kbr!F11S x

kbr D 2G1/2G .

~A16!

We now divide the numerator and the denominator of
integrand of the second term in Eq.~A16! by kbr, and then
expand both up to the second order inx/kbr. Also, to enable
further expansion, we multiply the integrand by exp(2dx),
and take the limitd→0. This gives

fs5
q

4p«0

2

«11

1

rS 12 lim
d→0

E
0

`

dx J0~x!

3exp~2dx!

12
x

kbr
1

1

2 S x

kbr D 2

11
1

«

x

kbr
1

1

2 S x

kbr D 2D . ~A17!

Further expansion in Eq.~A17! gives

fs5
q

4p«0

2

«11

1

rF12 lim
d→0

E
0

`

dx J0~x!exp~2dx!

3S 11
1

«
x1

«11

«2

1

~kbr!2
x2D G . ~A18!

In Eq. ~A18!, the first integral cancels the 1, the second
tegral is zero, and the third integral gives Eq.~36!.
e

-

4. Total surface charge forz0kb™1 and z0kbš1

We now determine, analytically, the total surface cha
qs from the surface charge densityss in the limits z0kb!1
and z0kb@1. Our result, derived forz.0, is also valid for
z0,0.

From Eqs.~15! and ~16!, the total surface chargeqs is
given by

qs52q~«21!E
0

`

dr rE
0

`

dk J0~kr!
kAk21kb

2

k1«Ak21kb
2

3exp~2kz0!. ~A19!

In order to reverse the order of integration in Eq.~A19!, we
multiply the integrand by exp(2dr), and take the limitd
→0. Further, changing the variables tox5kz0 and d8
5z0d, we obtain

qs52q~«21! lim
d8→0

d8

3E
0

`

dx
xAx21~kbz0!2

x1«Ax21~kbz0!2

exp~2x!

Ax21d82 3 . ~A20!

For z0kb!1, we neglect termsz0kb in the integrand
~which remains finite even forx50), and obtain

qs52q~«21! lim
d8→0

d8E
0

`

dx
x

«11

exp~2x!

Ax21d82 3 .

~A21!

Finally, we setx5yd8 in Eq. ~A21! to obtain

qs52q
«21

«11
lim

d8→0

E
0

`

dy
y

Ay211
3 exp~2yd8!

52q
«21

«11
~z0kb!1!. ~A22!

If z0kb@1, thenz0kb is much larger than anyx value that
contributes significantly to Eq.~A20!, since the integrand
falls off as exp(2x). Thus, we can neglectx in the term
Ax21(z0kb)2 of Eq. ~A20!, which gives

qs52q~«21! lim
d8→0

E
0

`

dx
xkbz0

x1«kbz0

exp~2x!

Ax21d82 3 .

~A23!

In the first term of the integrand, we neglectx in the denomi-
nator. This gives an integrand proportional to that in E
~A21!, resulting in

qs52q~«21! lim
d8→0

d8E
0

`

dx
x

«

exp~2x!

Ax21d82 3

52q
«21

«
~kbz0@1!. ~A24!
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