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We have developed a semimicroscopic theory for the electrostatic potential due to an isolated charge near a
semiconductor surface whose surface states do not contribute free carriers. It employs the linearized version of
the Debye-Huakel (or, equivalently, the Thomas-Fermapproximation. This includes the screening effects
both of the plasma of free carriers due to bulk donors or acceptors, and of the bound polarizable charge
associated with the bulk dielectric, but does not include free charge from intrinsic or extrinsic surface states.
Results are obtained for a source charge above the semiconductor, within the semiconductor, and on the
semiconductor surface, but we emphasize the last case. Although there is a dipole moment associated with
source charge on the surface, the surface potential at long distances is quadrupolar; at intermediate distances
greater than a characteristic atomic dimension it is a screened exponential, with screening length equal to the
bulk value. The case of intermediate distance provides a rigorous basis for the exponentially screened surface
potential commonly employed to analyze scanning tunneling microscopy images of the depletion or accumu-
lation regions surrounding isolated charges on (10 cleavage surfaces. Certain of these results also apply
to colloids.

[. INTRODUCTION modified, if necessajy and we take the valence of the per-
turbing surface charge to be a fitting parameter determined
Electrostatic screening near semiconductor surfaces is om experiment.
fundamental problem with many ramifications. In the present We consider the screening of an isolated source charge
work we develop a comprehensive picture of the screenindpcated above the semiconductor, within the semiconductor
of point charges at ideal 111-{110) cleavage surfaces for bulk, or on the semiconductor surface; it is the last case, in
which the intrinsic surface states lie outside the band!gapparticular, that calls attention to the need for a comprehen-
These states thus are either completely filled or completelgive theory. It is known empirically that the scanning tunnel
empty, and therefore are insulating. The theory includes th&lcroscopy(STM) contours surrounding an individual I1-
screening effects of the plasma of free carriers due to donoré(110 surface charge exhibit a spatially varying envelope
or acceptors in the bulk, and of the bound charge associatede to majority carrier depletiofor accumulation, depend-
with the dielectric. However, it does not account for the freeing on the sign of the perturbing chajgehat decays with
surface charge contributed by a partially filled band of intrin-distance from the source. This decay is consistent, in the case
sic or extrinsic surface states. Because of the similarities bedf dilute surface concentrations, with a screened Coulomb
tween such ideal semiconductors and colloids, certain of oupotential whose screening leng® is governed by the bulk
results for semiconductors also apply to colloids. These aréarrier density. However, there is no rigorous priori jus-
both examples of coupled plasma-dielectric problems, wher#fication why this functional dependence should hold at the
there is a large dielectric constant due to polarizable boungurface. In a more recent STM study involving much higher
charge(the atoms for semiconductors, water molecules forsurface defect concentrations, the interaction energy between
colloids) and a significant density of free bulk carrigedec-  two surface charges as a function of separatid(y), was
trons and holes for semiconductors, ions for collpids deduced from the spatial distribution of anion vacancies at
Our analysis is based on the linearized version of Debyethe (110 surface of InP. The authors of this study assumed
Huckel (or, equivalently, Thomas-Feriniheory; restriction U(p) to be the product of the chargpof one vacancy and
to the linear regime means that the theory applies whetthe surface potentiaps(p) due to the other, withp(p) a
variations in the electrical potential energy are smaller tharscreened Coulomb interaction parametrized by
kgT. This picture is semimicroscopic, rather than micro-
scopic, and makes use of experimental quantities, such as the
density of the free carriers and the dielectric constant of the d(p)=
bound electrons; it therefore applies only on length scales 4Te e ef P
larger than a characteristic atomic lengthAn entirely mi-
croscopic theory of electrostatic screening in semiconductorklere ¢, is the dielectric constant of free spacgy; is an
would differ from ours only at short distances. It would give effective dielectric constant given lay¢s= (e +1)/2, andRg
a specific value for the dielectric constant appropriate taan empirically determined surface screening length. Equation
screening by bound charge at the surface, and it would givél) yielded a satisfactory fit to the data with|=1e andRg
the specific value of the valence associated with any surfacabout a factor of 3 smaller thaR,. Again, as correctly
defects. In our work, we take the surface dielectric constantoted in Ref. 3, there is na priori theoretical basis for the
to equal the bulk dielectric constadlthough this could be assumed forngl).

exp—p/Ry). (1)
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The structure of this paper is as follows. Section Il gives
an overview of screening in an infinite medium, distinguish- plifisation
ing between the roles played by the dielectric and by the 4(1-1/)
plasma. Section IIl describes our geometry: screening in a
semi-infinite medium. Section IV considers source charge in
the vacuum. Section V considers source charge in the semi-
conductor. Section VI considers source charge on the sur-
face, emphasizing the surface potentlalat large and inter-
mediate distances; at large distances it is quadrup@lar
inverse cube potentiglbut for intermediate distances it is
indeed well approximated by Edl). The theory predicts
that Rg is the bulk screening lengtR,,, consistent with the
modulation of STM contours by individual defects, but not
with the much shorter screening length inferred in Ref. 3. FIG. 1. Semiconductor screening for a source chargéthin a
We discuss a possible reason for this discrepancy in Sec. V|F’pherical sample. The light hatching.represents exponentigl screen-
where we apply the theory of Sec. VI to the results of Ref. 3in9 over_the_lengter; the dark hatching represents screening over
Section VIII presents a summary. an atomic distance.

net screening
charge —q/€

source

q
net screening

polarization
charge ¢/E

—q(1-1/€)

a few timesR,, of the surface there is a screening chagfe,
where —q(1—1/¢) is due to polarization, and is due to
For later purposes of comparison with our results in thefree carriers;(4) within an atomic distance of the surface
presence of a surface, we review screening by an infinitéhere is an induced polarization charge qifLl —1/¢). The
medium within the Debye-Hikel (or, equivalently, the sum of all induced free charge is zero, the sum of all polar-
Thomas-Fermi approximatiorf-®> Consider an infinite con- ization charge within a few screening lengths of the source is
ducting medium of relative dielectric constantiue to elec-  zero, and the sum of all the polarization charge within a few
trons in bound orbitals, and possessing a densitf free ~ screening lengths of distant surfaces is zero.
carriers(of either sign with delocalized orbitals. If the tem-
peratureT is sufficiently high that the free carriers nearly
satisfy the Maxwell-Boltzmann distribution, then Debye-
Huckel theory applies, and the density of states is given by For a semi-infinite semiconductor in contact with vacuum,
anldu~kgT/n, whereu is the chemical potential of these we consider the following geometry: the regian-0 con-
carriers, andg is Boltzmann’s constant. If the temperatdre tains vacuum, with dielectric constast=1 and the region
is sufficiently low that the free carriers nearly satisfy thez<0 contains semiconductor, with dielectric constant
Fermi-Dirac distribution, then Thomas-Fermi theory appliesthus, thez=0 plane defines their interface. The point charge
anddn/du~(3/2)(n/ w). Within Debye-Higkel theory, fora q s on thez axis atr,=(0,07,), as shown in Fig. 2.
point chargeq embedded in such a system, the electrical |n the sections to follow, we consider all three possibili-
potential¢ at distance from the source is given by ties for the source chargg g in the vacuum region 7,
>0), g within the semiconductor zy<0), and q at the

egokgT vacuum-semiconductor interfacey,E0).

exp(—r/Ry), Re=\—(z— @ For a source charge on the surface, we expect a dipole
potential (inverse squapeat large distances. The dipole oc-

If Fermi-Dirac, rather than Maxwell-Boltzmann statistics ap-curs because, although the screening charge is equal and op-
ply, then the ratidkgT/n is replaced byu/dn.*°In Eq.(2)  posite to the source charge, it is spread out within the bulk of
the dielectric constant appears twice for the following rea- the semiconductor. Along the surface, however, this dipole
sons. First, atomic and molecular polarization due to local{otential vanishes, leaving a dominant quadrupole potential
ized states, in response to the presencg gives a factor of (inverse cubg Nevertheless, as shown in E5) below, at
1/e in the potential neag. Second, polarization charge also
screens the free carriers, making their screening less effec-
tive, and thereby increasing the screening length by a factor $ z
Ve. Thus R,=R{" e, where R is the Debye-Huakel
screening length fog=1. It is implicit thatR,>a.

Figure 1 gives a qualitative picture of screening for a (0,0,2)) ER,q
spherical sample with a source chamet its center. The
total charge response near the source has two contributions:
(1) within a of the sourcey, there is an induced polarization -
charge of—q(1—1/e), yielding an effective source charge p
of g/e; (2) within a few R, of the effective source charge
g/e there is a screening chargeg/e, of whichq(1—1/e) is
due to polarization, anet q is due to free carriers. In order to
satisfy charge conservation there are, in addition, two more FIG. 2. Geometry for a souragin vacuum, including the elec-
contributions at thédistan} surface of the samplé3) within trostatic response of the semiconductor.

Il. OVERVIEW OF BULK SCREENING

Ill. GEOMETRY OF THE PROBLEM

¢(r)=

4meger

Vacuum

Semiconductor
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intermediate distances the exponential fd@napplies, with k— & /K24 K2
r replaced byp and the effective charge/e replaced by Cv(k)=¥ exp( —kz) and
2q/s. k+eVk2+ k2
IV. ELECTROSTATIC SCREENING FOR SOURCE 2k
CHARGE IN THE VACUUM Dp(k)= ————=—= exp(—kz). 11
b( ) k+8\/k2Tkk2) F( ZO) ( )

Whenq is in the vacuum region, its volume charge den-

sity, expressed in cylindrical coordinates, is Related expressions were derived in an earlier study that em-

phasized image effects on tunneling through metal-vacuum-
q 8(p) semiconductor junctions.
Pb:q5(r_|'0):§—5(2_20)- ()
P A. Bulk and vacuum potentials
Thus, Poisson’s equatibfor the electrostatic potential in the

vacuuma, is Within the semiconductoD (k) in Eq. (11) determines

the behavior of¢, in Eq. (9). There are two characteristic
q lengths inD (k). One iskg1=Rb, and the other igy.
VZ¢,=——0d(r—ry) (z>0). 4 For R,<z,, corresponding to relatively strong metallic
£o screening, the factor expkz) is already very small before
The electrostatic potentiap, in the semiconductor bulk, the denominator irD,(k) displays any significant depen-

when there is no source charge, must satisfy dence. Hence we can writBy(k)~(2k/egkp)exp(—kz).
Then, forz<0, use of Eq(6.623.2 from Ref. 8 in Eq.(9)
VZde: _ Pfree, (2<0), 5) yields
LX)

q = 2k
where pee IS the charge density due to free carriers. In ¢b:—47780j0 dks_kbexF(_kzo)Jo(kP)eXli_kb|Z|)

Debye-Hickel theory,ps,ec is related tog, by

Piree= —€80Kody, kp=Rp'. (6)

Herek, is the inverse of the bulk screening lendrp, given ) o )
in Eq. (2). From Eq.(6), and a knowledge o, p, can be AS expected in the limit of an ideal metal, fa=0, ¢,

deduced. Employing Ed6) in Eq. (5), we see tha, sat- —0 @sR,—0. Fore=1, Eq.(12) is in agreement with a
isfies recent work that considers only the cd®g<z, ande=1.

We now turn to some numerical results, presented for the
V2h,— k§¢b:o (z<0). (7) sourceq both near g,=0.1R;,) and far ¢o=10R;) from the
surface, and for the observer both nef £ 0.1R;) and far
The solution for¢, is a superpositichof two terms:  (z,=10R;) from the surface. In all of our calculations, the
#M, which satisfies Eq.(4); and ¢{?), which satisfies distanceg andzare in units ok, ‘=R, (the bulk screening
Laplace’s equatiolV2¢{?)=0. Because the system has axial length, and the potentials are in units of
symmetry, all physical quantities are independent of the po-
lar angle ¢. Hence, the solutions of the electrostatic equa- bo= q (13)
tions can be expanded in terms of the zeroth order Bessel 4megRy,’
function. Thus(see the Appendijx

_ qzoRpexp(— |z|Rp)
a 2312

> (Ry<<29,2<0). (12
2meeg(zptp

the potential in vacuum at a distanRg from the bare source
charge. We take =10 as typical of many semiconductors.

¢U=LJ'mdk Jo(kp)[exp( —k|z—zo)) Ry, is nonzero and finite. IR, were infinite, the semiconduc-
4meg)o tor would behave like a dielectriéno free charge in the
_ semiconductor bulk If R, were zero, by Eqs(9) and (11)
TC(exp—ka)]  (z=0). ® the semiconductor would behave like an ideal metal. For
The solution forg,, similarly can be written as both of these limits, the electrostatic potentials have well-

known, analytical solution$. o
* 5 Figures 3—6 give the potentiats, "~ in vacuum ¢)
fo dk Dp(k)Jo(kp)expzyk™+ky)  (2<0). and ¢y '"°"™S in bulk (b) when the lower half-space is occu-
(9)  pied by vacuumY), dielectric withe =10 (D), ideal metal
(M), or a semiconductofS) with £=10.

Figure 3 gives the potentials in vacuum for smzj=z
=0.1R,, (source and observer both near the sunfa¢®r
small p, qbf approachesp” . However,cpvS falls rapidly for
ab, Iy ad, Iy large p, due to screening by bulk charge. As expectﬁﬁ,

= an =e——. 10 [ D iapM i
p  ap 27 €7 (100 lies betweeng, and the potentialy, for the ideal metal.

q

4meg

bp=

The unknown function€C(k) and D(k) are determined by
matching the tangental component®fand normal compo-
nent ofD at the vacuum-semiconductor interface 0 where

The drastic difference betweep, and ¢° shows that the
Use of Eq.(10) in Egs.(8) and(9) yields dominant role in screening at sma} is due to surface po-
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3.5 3.5
37 2p=2=0.1R, 37 2o=-z= 0.1R,
source and observer
source and observer
2.5 ( near surface ) 2.5 ( near surface )
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FIG. 3. Electrostatic potential in the vacuuna>0), for a FIG. 5. Electrostatic potential within the bulk medium<(0),

source charge in vacuum and source and observer near the surfaéer a source chargg in vacuum and source and observer near the
2o=z=0.1R,,. The legend isV (vacuun), D (dielectrig, S (semi-  surfacejz,=—z=0.1R,,. The legend i&/ (vacuun), D (dielectrig,
conductoy, andM (meta). and S (semiconductor

larization charge. Bulk charge has an important role forthe present theory if it appears necessary, by suitably modi-
larger radial distances from fying Eq. (10).
Figure 4 shows the potentials in vacuum for lamye-z
=10R, (source and observer both far from the surjaé®r
z<0, d)vs approachesﬁzﬂ, and¢8 is slightly greater thamﬁvs_ B. Surface and bulk charge distribution
This again indicates that fag far from the surface, the me-  \we first consider the surface charge distributinnat the
tallic properties of the semiconductor dominate the screens facez=0. This is found from
ing.
Similar behavior is seen in Fig. 5 and Fig. 6 for the po-

tentials in bulk(the lower half-space<0). The ideal metal dp, ddy Iy
potential ¢y is not shown, being trivially zero in this case. Os=80| ~ T =—(e=Dseo 9z
In principle, the value ofe at the surface could differ %=0 2,=0
from its value in bulk. This easily can be incorporated into (14
1 0.08
ZO=Z=1ORb ZO=_22=1ORb
source and observer) 0.071 v (source and observer)
0.954 far from surface far from surface
0.06
i 0.057
0.9
o, Op
- —  0.047
% | %
0.85 0.05-
0.02
0.87 D
0.01
0.75 I 1 1 I G IS 1 1 1 1 1 1 1
0.9 1 1.1 1.2 1.3 1.4 1 2 3 4 5 6 7 8 9 10
PRy p/Ry,
FIG. 4. Electrostatic potential in the vacuura>0), for a FIG. 6. Electrostatic potential within the bulk mediumn<(0),

source charge in vacuum and source and observer far from thier a source chargg in vacuum and source and observer far from
surface;z,=z=10R, . The legend i3/ (vacuum, D (dielectrig, S the surfacezy= —2z=10R,. The legend i&/ (vacuum, D (dielec-
(semiconductgr andM (meta). tric), and S (semiconductor
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0 acteristic dimension, electrostatic induction brings free
T charge literally to the surface. This free charge completely

0=% b screens the source chargdor z<0. For a semiconductor,

(source near surtace) on the other hand, where the smallest characteristic dimen-
D,S sion is an atomic dimensioa, the only charge literally on
-5 the surface is the polarization charge associated with the top-
most atoms. This polarization charge performs only partial
Cg screening.
6o Figure 8 considers largm,. As g moves further from the
surface, the dielectric, ideal metal, and semiconductor curves
-101 become more distinct and more smooth. In that cqsaf-
fects a much greater area, and the induced charge is smeared
out along the surface.
The total induced surface charggis given by

-154/M

T T T T qSZZWj dp PO'S(P) (16)
0 02 0.4 0.6 0.8 1 0

PRy, Placing Eq.(16) into Eq. (15) yields an expression that can

be evaluated analytically in the two limitgy<R, and z,

FIG. 7. Surface charge distribution for a source chaggm
g g >R, (see the Appendix

vacuum and near the surfacg;=0.1R,,. The legend iD (dielec-

tric), S (semiconductdr andM (meta). Forzy<Ry, Eq. (A22) yields
From the solution forp,,, we obtain e—1
i 0=~ 077 (Z0=<Ry). (a7

q - kVk?+ k2
o= — E(S_ 1) fo dk JO(kp)H—W exp(—kzp). Th|s(§qS equals the induced charge for the vacuum-dielectric
€ b case, supporting the conclusion that, for small the dielec-
(159  tric properties of the semiconductor dominate. In fact, we
It appears that the integral in E€L5) cannot be evaluated find numerically that, ag, decreases¢, and ¢y shift to-
analytically® so we evaluate it numericall. ward the corresponding potentials for the vacuum-dielectric
Figures 7 and 8 show normalized tar,=q/R2 whenq  ¢@se. Thus the curves for semiconductor and dielectric nearly

is near and far from the interface. For smgj] as shown in ~ cincide in Fig. S. _
Fig. 7, 0 is very similar to the surface charge distribution in 70" 20> Ro, EQ. (A24) yields
the vacuum-dielectric case. Alsoy differs from the distri-

bution on an ideal metal surface only for very small(p _ e—1
<0.5Rp). This is because the entire response is localized Gs= A7

radially. For an ideal metal, where there is no smallest char-
Here the metallic properties of the semiconductor again

1
_ _q(l_ ;) (2>Ry). (18

0 dominate(for an ideal metaR,—0, so we havey,>R,, for
all finite zy). The value forgs, and the form ofog, can be
zo=10R, obtained in this case by the following physical argument. If
0.0005 (source far from surface) the electric field lines are orthogonal to the 0 plane, then

the boundary condition for the dielectric displacem&nt
givesD,=¢oE,=Dy,=¢¢cE,. The boundary condition for
the electric fieldE at z=0 then becomes

s 0011
Gy e—1
D os=eo(E,—Ep)-&=gg o Ev- e, (19
-0.0015 S whereg, is a unit vector in the direction. Applying Gauss’s
M law and Gauss’s theorem, wittl5= —dSe,, we obtain
e—1
-0.002 T T T T qS: é O'SdS: —&p % EVdS
0 2 4 6 8 10 €
/R
T - 8_1JVEdV— - as
FIG. 8. Surface charge distribution for a source chaggm — %o € ERAVETal LT g’ (18)

vacuum and far from the surface;=10R,. The legend iD (di-
electrig, S (semiconductor andM (meta). as in Eq.(18) above.
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We now consider the bulk charge distributipf. Within bz
the semiconductorz<0), following Eqg. (6), both the free i
charge distribution,e and the polarization charge distribu- PR
tion ppo|=pf,ee(—1+s‘1) vary linearly with ¢, . It turns
out that the bulk charge densities are localized within a few N I’}
(0.0.2) 6@
Ry, of the surface, for both large and smajl For smallz, W2o) (- _
the charge distribution is also localized radially, whereas for |- Semiconductor
large zy, the charge distribution is extended radially.

From g, for both small and large,, we see that] is not
immediately screened at the surface. The effective source

chargeQ seen by the bulk is FIG. 9. Electrostatic response of a semiconductor to a source

Q=q+qs>0 (20) chargeq within it.
S )

and this is screened by the bulk. Charge conservation appliegic (with no polarization volume charge dengityegative

to the entire systerfize (—,>)] implies that there is also charge induced near leaves a positively charged interface
charge near and on the boundary at infinity. (Fig. 9.

For zy<Ry, by Egs.(20) and(17) Q is given by The potential in vacuum now satisfies Laplace’s equation
L V2¢,=0, whereasp, now satisfies
e—

Q:q_qs-l—l:m

(Zo<Ry). (21)

1
V2hp—kip=——0q8(r—ro)
Therefore, the total screening chamggin the semiconduc- beTe €€g 0
tor, within a few R, of the surface, iq,=—Q=—2qg/(1

. S
+¢). Using =————68(z—25) (z<0).

Ab
b= treet dpol ?:qfreev (z2o<Rp) (22 (26)

o _ ) Solving these equatiorisee the Appendijx one obtains
the total free and polarization charge in the semiconductor

e a dekC kK)Jo(kp) kz) 0)
= exp—kz) (z>0),
. o1 &, dreglo »(K)Jo(kp)exp( (
qfree:_SQ:_zqma qpoI:_Q_qfreezzqm- (27)
(23 ‘

o __a [ K v B

For zo>R,, by Egs.(20) and(18) Q is given by ¢b_47T80f0 dk Jo(kp) Smexﬂ k*+kplz—2o|)
—q-qi 1.1 R 24
Q=a-a——= (2>Ru). (24) +Dy(K)expzykZ+KD) | (28)
Therefore
1 From the boundary conditions db and E at thez=0
e—

plane,C(k) andD(k) are given by

Ofree= —€Q=—0, Apol= —Q—dfree=0
(25

C, (k) 2 H—Vke+Kz)),  (29)
o(K)= ———=——=exp(— Zo|),
For z;<R,, the free charge at infinity isd/(1+¢), k+ek?+ kﬁ b0

and the polarization chargedge —1)/(e + 1). However, for

zo>Ry, there is at infinity a deficiency- g of free charge 2k Kk
and no residual polarization charge. Dy(k)= - exp(— VK2+k2|zg)).
p g b(K) PRSP SN R o blZol)
V. ELECTROSTATIC SCREENING FOR SOURCE (30

CHARGE WITHIN THE SEMICONDUCTOR Applying Eq. (14) to the solution given by Eq$28) and

When the source chargg is within the semiconductor (30), the surface charge distribution is

(Fig. 9), the physical picture differs significantly from that ,

for a source charge in the vacuuifig. 2). For q positive, a qe—1 (»

negative polarization charge is induced ngan the bulk. Os=5 "¢ qfo koo(kp)m
Further fromq are both free and polarization charge distri- b
butions. The semiconductor surface now has a positive po- X exp —| 2o VK2 +K32). (31

larization charge, in contrast to the negative surface polariza-
tion charge for the source in vacuum. This is because in th&# R,— o, Eq.(31) reduces to the surface charge distribution
limit k,—0, where the semiconductor behaves like a dielecdue toq in a semi-infinite dielectrit
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qg e-1 |Zo|

oq==—
T 2me(e+l) /p2+|20|23

>0

Vacuum

(32

Note that Eq.(31) cannot give the surface charge distri-
bution (due to polarizationfor zo=0 in the limit z,—0".
This is because as soon @ss moved into the semiconduc-
tor, negative polarization charge is induced ngafleaving
positive polarization charge on the surfa¢&his apparent
discontinuity is a consequence of the theory not depending g 10. Forzo=0, the total charge distribution has a dipole and
explicitly on atomic size.On the other hand, as we shall see 3 quadrupole moment. At large distances along the surface, the
below, the surface charge distribution fIr—0", from Eq.  dipole potential is zero, and the quadrupole potential dominates.
(14), approaches the corresponding distribution Zg=0,  The arrow indicates the centroid of the induced bulk charge.
due to the absence of an intrinsic charge distribution in the
vacuum. As shown following Eq(A22), Eq. (31) can be tentials decrease more rapidly due to the induced bulk charge
integrated exactly, yielding the total surface charge in th@ocalized near the surface. Whenis large, the difference

Semiconductor

vacuum-dielectric caseR,—)®

e—1

qs=qM (33

(Zo<0, Rb/|ZO|*>Oc).

betweeng, and ¢, and betweenp, and ¢p , is significant

for all p. The potential¢, becomes negligible compared
with ¢bD , due to plasma screening by the semiconductor. The
potential¢, is also suppressed compared vwiﬁ , due to its

This charge is due solely to polarization. We conclude thatlependence on+ z,. (Its behavior for large andz,=0" is

the dielectric properties of the semiconductor dominate fosimilar to the behavior for finite and largez,, where, as
small z, even when the source is within the semiconductordiscussed earlier, the semiconductor’'s metallic properties
The free and polarization charges in the bulk are, in thiglominate).

limit, the same as fogy>0. The induced surface charge density #g&=0" is singular

We now turn to the bulk charge. Within an atomic dis- at p=0, and zero for allp>0. It is similar to that in the
tancea of q itself is a polarization charge-q(1—1/), vacuum-dielectric casewhereoy(zo=0")~1/p>. The total
yielding a net charge ai/e. Since the system will be locally chargeQ on the surface is the sum gfand the polarization
neutral within a fewR,, of g, the total nearby bulk chargg,  chargegs of Eq.(17), soQ=2q/(1+¢), asin Eq(21). Thus
is given by g,=—(g/e+qy)=-2qg/(1+e). Of this, the total bulk charge near the surface-i22q/(1+¢). A
—2g/e(1+¢) is free charge and-2q(s—1)/s(1+¢) is  schematic picture of the charge induced in the semiconductor
polarization charge. Near and on the boundary at infinityjs shown in Fig. 10. Negative polarization charge is induced
there is a net chargg. Of this, 2g/e(1+¢) is free charge at the surface, in response to positige The sourceq is
equal to the negative of the free charge near the sayraed ~ partially screened by this surface polarization charge, and the
there is an associated bulk polarization charge given byemainder is completely screened by free charge in the bulk.
2q(e—1)/e(1+¢); there is also a surface polarization This bulk charge is localized near th@xis, extending a few
charge ofq(e—1)/(e+1). The sum of the free charge is Ry into the semiconductor.
zero, as is the sum of the polarization chafgeth bulk and The potential on the surfacgs(p) is relevant to the in-
volume). Although the detailed distribution of surface polar- teraction between charged surface defects. Se#tin@ and
ization charges is different in the two cases, here the sum ¢f=0 in Egs.(8) and(11) gives
the surface polarization charges at the interface and at infin-
ity is q(1—1/e), the same as for the spherical geometry of
Fig. 1.

For the source far inside the semiconductoz, (
<0,|zo|>Ry), Eqg. (31) implies thatqs approaches zero so _ o
the system behaves as if there is no vacuum-semiconductéythough Eq.(34) has no general analytical solution, it can
interface. Thus, in this limits,—0 whereasp,, approaches be appr(_m_mated in the two limits of small and IargeThe.
Eq. (2), the solution for the infinite semiconductor case, with smallp limit may be Obtamed qnalyucally 0”|¥ for d|electr.|c
r replaced byyp?+[z— zo[2. constante=10. The largep limit may be obtained analyti-

cally for all .
V. ELECTROSTATIC SCREENING FOR SOURCE If £=10, the integrand of Eq.34) can be approximated
CHARGE ON THE SURFACE

by Jo(kp)(Zk/s\/k2+kb2), which can be integrated
analytically’ to give

q Jw 2k
=——| dk Jy(kp) ———. 34
Ps drmeg)o o( p)k+8\/k2Tk§ (34)

When q is at the vacuum-semiconductor interfaca, (
=0"), the electrostatic potentials, and ¢, can be obtained
from Egs.(8), (9), and(11), in the limit z,—0*. Their func-
tional behavior is similar to those fap>0 with zy<R,,: for
smallp (up to 1.0R,,) and close to the interface, both, and
¢, behave like the corresponding potentig8 and ¢ in
the vacuum-dielectric case. However,@mcreases, the po-

_ 29 exp(—kpp)
eK2+kZ Amege  p

2q exp— kbo\/gp)

_477808 p

BCE
b o |kt

(e>1p<4R,), (35)
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100
. 2q=0 Qij=f dr'p(r')(3x/x] =1 'B;). (39
101
. For a system with axial symmetry about thexis, Q;;
has no off-diagonal elements, a@},=Q,,. Also, by the
0.1 traceless nature d@;;, Q,,= —2Q,y. Hence there is only
0.01- one independent term iQ;; . We find Q,, for the present
& system by comparing E36) with Eq. (38). This yields
—  0.0017
1 4
0.00017 Qux= ny: - Esz:?qu . (40)
1077 In the present case, where there is a nonzero dipole moment
10764 p (to be determined shortlythe definition of the quadrupole
. tensor depends upon the choice of origiklere p points
107 upward for positiveg; we take it to have magnitude If we
1078 . . . were to choose as our origin another point at a distahce
0.01 0.1 1 10 100 below the surface, the dipole potential on the surface would

p/Ry, be pd/dmeqp®. However, on using the redefined quadrupole
moments Q,,— Q,— 2pd), the overall potential would still
FIG. 11. Surface potential for a source charge on the surfacsatisfy Eq.(36).
(zo=0), and its two limits for small and large. Note the logarith- To evaluate the dipole moment we find the potential for
mic scales along both axes. z>R, and p=0, where Eq.(8) applies. Settingzp=0 and
J(0)=1 in Eq.(8), and using Eq(11), we find that
wherekg()l:RE,O). By Eq. (35), for small radial separations,

¢<(p) is similar to the potentiatp(r) in Eqg. (2) for an infi- _ q fmdk 2k exp(—kz) (z>0).
nite semiconductor. The only difference is in the effective * dmeglo ke K2+ k2
charge, which for the semi-infinite case is twice as large. (41)

Let us now consider the largelimit, for any . From Eq. o ]
(A18) of the Appendix, the surface potentiab=(z N the limit wherek,z>1, this becomes

=0,p) for largep has the form q (= 2k 1 2qR,
, ¢U:47T80 o dks—kbexq—kZ)ZF&\O?(ka>l),
B 2Ry q (42)
¢s(p)=7-——5 5 (P=8Ry). (36) o _
Teo €% p Comparison with Eq(37) evaluated fopp=0 leads to a di-
) o pole moment of magnitude
Equations(34)—(36) are plotted in Fig. 11, foe=10.
Equation(36) has a natural interpretation in terms of a _20Ry, 43)
multipole expansion of the potential, since all of the charge P= s (

lies within a few screening lengths of the source chaige ) o .
An inverse cube in the potential corresponds to a quadrupole There are two ways to interpret this dipole moment in
potential® The inverse first power is absent because thderms of a charge and a length. On the one hand, the dipole
source charge is completely screened by charge in the senift E. (43) can be thought of as being duedat the origin
conductor. The inverse second power is absent because tA8d —d at a distancé=p/q=2R,/e below the origin. On
dipole momenp lies along thez axis, and thus is normal to the other hand, it also can be thought of as dug toqs

a radius vector from the source charggat the originto an  =20/(e+1), whereqs is due to surface polarization charge

observer elsewhere along the surface. That is, the dipole pground the source and —(q+qs) at a distancd’=p/(q
tential +0qs)=Ry(e+1)/e below the origin. This latter definition
includes only the effects of free charge and of bulk polariza-
tion charge. Fogy# 0, there is an additional dipole moment
(37) 2qz,, due to the source charge &t and its classical image
—q at —z,, as can be shown explicitly from Eq€) and
(11). (Becausez>R,,, metallic screening dominates.
gives zero forrzﬁ, The next term is the quadrupole It is worth mentioning in passing that these results are
potential‘? also relevant to the interaction of two colloidal particles on a
surface. This situation recently has been studied in Ref. 11.
There the authors treat the system as if the background fluid
> QijxiX (typically water, with dielectric constant near )86an be
, (39 ypically )
Ameq 7T 2r° treated by working out the results for dielectric constant
unity and then scaling to include the dielectric constant. In
wherex; is thei component of, and the quadrupole tensor particular, although they employ EQ6), they do not em-
is ploy Egs.(10) or (14). As a consequence, their elegant result

1 pr
4dmeg 3

¢dipo|e(r) =

d’quadrupolér) =
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for the surface potential due to a colloid on the surface idrrelevant to the interaction between surface charges in such
valid only for e=1. Because our focus is on the semicon-a case.
ductor case, we do not develop, here, the implications of Eq. One possible explanation for the unusually short screen-
(34) for colloids. ing length observed in Ref. 3 is free surface charge from a
partially filled band of extrinsic surface states associated with
the vacancies themselves. As noted in the Introduction, such
VIl. COMPARISON WITH EXPERIMENT free surface charge is not included in the present work.

Equation(35) shows that the exaebg of Eq. (34) is well
approximated by a screened exponential with a surface
screening length equal to the bulk screening leriRyh This We have studied the electrostatic screening of point
result provides a rigorous basis for the ansatz of an exponeigharges by an ideal semi-infinite semiconductor whose sur-
tially decaying envelope, with characteristic lengh, com-  face states do not contribute to the density of free carriers,
monly employed to analyze STM images of the depletion o@Pplying Debye-Hakel theory to a system that is homoge-
accumulation regions surrounding isolated Char@_es, the neous in the bulk. This theory offers a quantitatively reliable
dilute limit) on 111-V(110) cleavage surfacés. picture of the electrostatic potential due to source charge

We turn now to the more detailed and explicit results ofabove, within, and on the surface of a such a semiconductor,
Ref. 3, which concern the potential itself, not merely its Which is valid for length scales greater than a characteristic
dominant spatial variatio(These results are obtained for a atomic dimensiora. The theory also provides a number of
surface-charge concentration that is much larger than in Refinportant qualitative insights that contribute to our physical
2) understanding of the more general coupled plasma-dielectric

Reference 3 describes a room-temperature STM determproblem, including the following.
nation of the pair correlation function for positively charged (1) If the source charge is in vacuumandfar from the
phosphorous vacancies at thel0) surface ofp-type InP.  surface(so thatzy>0 and z;>Ry), then for an observer
The vacancies were created Inyvacuothermal anneals at Within a fewR,, of the surface the metalligplasma proper-
100—200 °C. The interaction energy(p), between two va- ties of the semiconductor dominate. The electric field lines
cancies a distance apart, was obtained from the logarithm are orthogonal to the semiconductor surface, and the field is
of the pair correlation function and scaled to the annealingcreened withinR, of the surface(Fig. 4). The surface
temperature. As noted in the Introduction, the results wergharge distribution is extended radially, as for classical elec-
satisfactorily fit by Eq.(1) with |q|=(1)e, ser=(e+1)/2, trostatics.
andRs=1.1 nm. (2) If the source chargg is in vacuumand near the sur-

To compare the present linearized theory with the experiface(so thatzo>0 andz,<Ry), then for an observer within
ments of Ref. 3, we first note that in the linear regime the2 few z, of the surface the dielectric properties of the semi-
electrostatic interaction between two surface chagesd conductor dominate; the induced surface charge is as in the
0o is U=0ods(p), Where ¢(p) is the surface potential at vacuum-dielectric case. Free and polarization charge within
separationp due to the charge at the origin*?> Equation the serr_liconductor bulk causes screening for larger radial
(35) shows this interaction is well approximated by the func-Separations.
tional form (1) used to parametrize the data, where the theory (3) If the source charge is in the semiconductorand
assumes a uniform free-carrier density throughout the sydi€ar the surface(so thatzy<<0 and|z|<Ry), then for an
tem. The expected screening length is ties R, , which,  observer within the bulk and near the surface, the semicon-
for the samples described in Ref(f8ee hole concentrations ductor behaves like a dielectric. On going a f&y further
of 1.3-2.1x10"® cm 3), is between 3.0 and 3.8 nm. To into the bulk, induced bulk chargdoth free and polariza-
obtain a surface screening length of 1.1 nm, as seen in tHéON) completely screeng. _
experiments, requires a hole concentration fI8'° cm™2, (4) If the source chargg is in the semiconductoandfar
an order of magnitude greater than the highest achievabfsom the surface(so thatz;<0 and|z|>R},), the vacuum-
free-carrier density ip-type InP3 This is inconsistent with Semiconductor boundary plays no role; the system behaves
the short local bulk screening length needed to explain théke an infinite medium.
results of Ref. 3. (5) If the source chargg describes aemiconductor sur-

Independent experimental evidence suggests that it is ifface defectthe electrostatic potentiabs along the surface
appropriate to assume a spatially uniform free-carrier densitfas two limiting behaviors. Whep is small (p<4Ry,), ¢
in the case of Ref. 3. Photoemission measurements indicafalls off exponentially, with characteristic lengtiR,
surface core level shifts of up to 0.5-0.6 eV following even=R{”\e and effective charge ®e. When p is large (
very brief in vacuo anneals (200°C) of freshly cleaved >8Ry), the sourcey is screened by induced surface charge,
p-type INR110) (free hole concentration’210'® cm™3); the ~ and together with induced bulk charge this generates a dipole
midgap pinning level is attributed to phosphorous surfacegpotential that is zero on the surface, and a quadrupole poten-
vacancies®!® Straightforward calculations show that much tial that is nonzero. The dipole moment has strength
smaller surface potential shifts of 3kgT (~0.1 eV) are =2qR,/e, and the one independent quadrupole moment has
sufficient to deplete the near-surface region of enough mastrengthQ,,=4qR2/s>.
jority carriers that the surface screening length will increase The theory applies to ideal 11I-410 surfaces in the di-
tenfold over that inferred in Ref. 3. In short, depletion of thelute defect limit, where it predicts a surface screening length
near-surface region means that bulk plasma properties aemual to the bulk screening length. This is consistent with

VIIl. SUMMARY
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well-established STM contour measureméntBhe theory whereZ andR satisfy
also provides a rigorous basis for the exponentially decaying

2
interaction between two surface charges used to fit the pair z 2. 12\ d°R R 2m_
. - . . —(k“+ = + - —+k°R=0.
correlation data in Ref. 3, but the screening length given by ~ dZ (k*+k;)2=0 and dp? " pdp K'R=0

the theory is much longer than the experimentally observed (A5)

one. Since the surface-charge density in these experimentsﬂﬁarek =R:L, andR, is defined in Eq(2). Z must again be
undoubtedly sufficient to cause free-carrier depletion, one, . exbponebntially dbecreasing function. & so Z(k.2)

might have expected the inequality to be reversed—that is, a a2 . . . )
surface screening length much longer than the bulk one. An e_xp( K + ky)|2|. The equation foR is again the differ-
tial equation fody(kp).

additional source of screening charge is therefore needed ! b ded
explain the results of Ref. 3. Because the intrinsic surface From Eq.(A4), ¢, can be expanded as
states associated with I11{¢10) surfaces are insulating, they

cannot p(ovide this additional screening charge. Free charge¢>b:4 a J' dk Dy(K)Jo(kp)exp(zyk?+ kzb) (z<0).
in extrinsic surface states, on the other hand, may account for TEoJo

the unexpectedly short screening length. Generalization of (A6)
the theory to include such free surface charge is presently

underway*® 2. Potentials for source within semiconductor

If the sourceq is within the semiconductor, the¥i?¢,
ACKNOWLEDGMENTS =0. Thus, from Eq(A2),
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. L . TEQJO
tion, Division of Materials Research.

(A7)
APPENDIX For z<0, the potentiakp, is obtained by linear superpo-
sition ¢p= U+ (2, where ¢V satisfies Eq. (26),
_ R W whereasp(?) satisfies Eq(7). The solution to Eq(7) has the

Equation (4) is satisfied by the potentiah,”’ due toq  same form as Eq9), so we can express?) as
localized atr g, which can be expanded in terms of the zeroth
order Bessel function &s

1. Potentials for source above surface

¢g2>:%80f0 dk Dy(k)Jo(kp)expzyk?+k2)  (z<0).

pw-_9 ! (A8)
v 2 2
4meo \p?+(z-20) To obtain (" by solving Eq.(26), we expand the radiaf

q (= function in terms of the zeroth-order Bessel function, to
z—f dk Jo(kp)exp(—k|z—z5|). (A1)  obtair
4meg)o

. 1 1 »
However, the potentialy, must be a sum of{") and an - pp=— —if dk kd(kp)8(z—2p). (A9)
additional term¢(?) that satisfies Laplace’s equation, due to &80 eeg 27 Jo
semiconductor in the region<0. To expandqsff) in terms e now expandp{? as
of Jo(kp), we separate the variablgs and z in ¢52> as
#P=[5dk C,(k)R(k,p)Z(k,z). By well-known methods§, (1_ f ” _ _
we obtain the equations f&(k,p) andZ(k,z). Their solu- & 0 dkkb(kp)2(2.20k)  (2<0).  (A10)
tions are R(k,p)=Jy(kp) and Z(k,z)~exp(—k|z]). Thus,

@ must be expanded as From Egs.(26) and (A10), the functionZ must satisfy
a [~ &'z @ridz= - — d s A1l
#O o " dk C03(kprexp—Kizl). (A2 gz~ [rkZ=- o). (AL

Using methods in Ref. 6, we find that
From ¢{") and ¢, by linear superpositiong, is

q 1 >
® 2(2,29:k)= —— ———=exp(— Vk®+ k| z— 75|).
¢v=4if dkJo(kp)[exp( — k|z— Zo]) O Tmeg eyier il ez
T&oJ0 (A12)

+C,(k)exp(—kz)] (z>0). (A3)  Thus, combining Eq9A8), (A10), and(A12), we find that
k

——exp(— k2 +kz—z
8\/|(2Tk§ F( bl O|)

+Dp(k)expzyk?+k3)

The solution of Eq(7), for ¢y, is obtained similarly. We q (=
now write ¢, as ‘/’bszo dk Jy(kp)
0

b= j:dk Dy(k)R(k,p)Z(k,2), (A4) (A13)
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3. Surface potential at large radial distances 4. Total surface charge forzgk,<1 and zgk,>1
To obtain the largep limiting behavior, we substitute We now determine, analytically, the total surface charge
kp=x in Eq. (34). Then gs from the surface charge density in the limits zpk,<1
and zpk,>1. Our result, derived for>0, is also valid for
a2z X “ o (15) and (16), the total surface ch
b= —f dx Jo(x) . (A19) From Egs.(15) and (16), the total surface charggs is
S 47T80 pPJo X+8\/X2+(kbp)2 g|ven by s
To the ratio term of the integrand in EGA14), we add and kK2 + K2
subtract its limit asx—o, 1/(e+1). This gives — ate—1) | d dk J-(K b
ds=—0d(e—1)| dpp b(kp) =
0 0 k+eVk3+kg
. q 2 1 J'w
¢S_47T80 e+1plo dx Jo(x) xexp(—kz). (A19)
In order to reverse the order of integration in E419), we
qQ 281 * dx 3 X— X"+ (kpp)* multiply the integrand by exp{dp), and take the limits
Amege+1lplo X O(X)X+8‘/_2—ZX +(Kpp)2 —0. Further, changing the variables to=kz, and &'

=27y, we obtain
(A15)

gs=—q(e—1) lim ¢’
8'—0

qg 2 1 xfwd xVx%2+(kpzg)?  exp(—X)

The first term in Eq(A15) is integrable analytically, yielding

= - X . (A20)
s dmege+lp 0 X+8\/X2+(kb20)2 VX2 + 5’23
21172
} x—(kpp)| 1+ ki) For zokb<<_1, we neglect termsgk, in th_e integrand
% 1+8J dx Jo(X) b)I(J S (which remains finite even fax=0), and obtain
0
x+e(kpp)| 1+ @) . ([ X exp(—X)
gs=—q(e—1) lim §" | dx r———
(A16) soo 10 L+ s
(A21)
We now divide the numerator and the denominator of the_ R ,
integrand of the second term in E@\16) by kyp, and then T inally, we sex=y4" in Eq. (A21) to obtain
expand both up to the second ordexitk,p. Also, to enable 1
further expansion, we multiply the integrand by exi&), _ B f‘” y Y
and take the limito— 0. This gives ds q.9+15I,|m0 0 dy /_y2+13exp( yo')
e—1

__ 2 1 1—1i f ood J
¢S_47780 e+lp ;Lno 0 X Jo(X) _

If zok,>1, thenzyk, is much larger than any value that
contributes significantly to Eq(A20), since the integrand

X 1( X )2 falls off as expfx). Thus, we can neglect in the term

-+ 5 WG+ (zokp)? of Eq. (A20), which gives
Kop 2\ kpp
X exp( — 8X) 5 (A17)
1x 1/X o xkyz exp—X)
L ko T2\ kep g=—a(e-1) i [“ax 00 ZEE
& kpp bP s 2 o P eknzo NPT
Further expansion in EA17) gives (A23)
In the first term of the integrand, we negledn the denomi-
q 2 ) o nator. This gives an integrand proportional to that in Eq.
¢S:47TSO e+1 ; 1_,|slinofo dx Jo(x)exp( — 6x) (A21), resulting in
1 e+l 1 ] (X expl—Xx)
X | 14+ —x+ x2]. A18 9s=—q(e—1) lim & f dx= ———=3
e 8? (kop)? )l - S R
In Eq. (A18), the first integral cancels the 1, the second in- _ _qs_l (kyZo>1). (A24)

tegral is zero, and the third integral gives E§6).
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