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Zero-frequency anomaly in quasiclassical ac transport: Memory effects in a two-dimensional
metal with a long-range random potential or random magnetic field
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We study the low-frequency behavior of the ac conductivifw) of a two-dimensional fermion gas subject
to a smooth random potenti@RP) or random magnetic fiel(RMF). We find a nonanalytiec|w| correction to
Reo, which corresponds to a t®/long-time tail in the velocity correlation function. This contribution is
induced by return processes neglected in Boltzmann transport theory. The prefactof of thisn is positive
and proportional tod/I)? for the RP, while it is of opposite sign and proportionaldth in the weak RMF
case, wheréis the mean free path anmtthe disorder correlation length. This nonanalytic correction also exists
in the strong RMF regime, when the transport is of a percolating nature. The analytical results are supported
and complemented by numerical simulations.

[. INTRODUCTION is scattered by randomly located hard discs of radiwsnd
Within the conventional approach based on the Boltz-densityng, there exists a “long-time tail” of the velocity
mann equation, the ac conductivity of a two-dimensionalcorrelation function, which has the following form in two
electron gag2DEG) is described by the Drude formulas dimensions in the liminga?<1:

oo(@)= 17,57 (V(t)V(0))= - . (@)
4arngt?
2
oo=€%D, D= VET ) This leads to a correction to the Drude conductivity, which is

2’ nonanalytic atw—0,

where 7 is the transport timey the density of states at the 1 a
Fermi level,vg the Fermi velocity, andD the diffusion con- AReo(w)=0gs—3|w|r=0g= ||, |w|r<l, (5)
stant. Equatior(1) corresponds to an exponential falloff of 8ngl 3l

the velocity correlation function in the time representation, _ _
wherel=vg7 is the mean free path, and we substituted

(v(t)v(0))=v2e " t>0. (3)  =3/8nsa, an expression valid for the hard disc model. We
will refer to this type of behavior otr(w) as a “classical

This exponential behavior @f/(t)v(0)) reflects the Markov-  zero-frequency anomaly.” The long-time tdivhich is of
ian character of the Boltzmann equation description, andhe formt~(4*2"2in d dimension$ can be traced back to
leads to the analytical behavior ofy(w) at w—0. It has  processes of return of a particle to a region of extensidn
been known for almost three decades, however, that thesgound the starting point after moving diffusively during the
features result from approximations made in the derivatioriime t>7.* These return processes give rise to non-
of the Boltzmann equation, and are not generally shared biflarkovian kinetics, and are neglected in the Boltzmann
the exact solution of the problem. More specifically, it wasequation.
showrt (see also Ref. 2 for a review and Ref. 3 for numerical ~ After the discovery of weak localization the research in-
simulations that in the Lorentz gas model, where a particleterest has shifted from the aboyeurely classicaleffects to
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guantum corrections to the conductivity. For a noninteractingourity positions are neglected. Experimental data for the
2D Fermi gas the quanturfweak localizatioh correction is  magnetoresistivity around=1/2 are well described by the
given by theory?® with somewhat smallesr=0.2—0.35(the deviation
can be presumably attributed to the Coulomb correlations in
positions of impurities and other possible features related to
technological details of the sample preparation, as well as to
. . .. approximations in the composite-fermion theorywe will
wherekg is the Fermi wave vector. The weak-localization ¢oncentrate in the main part of this paper on the weak RMF
correction is of special interest, in particular, since it is d"case,a<1, when the transport is of conventional diffusive
vergent at zero frequency, indicating a crossover to strong,i,re. The long-time tail in the case>1 (snake-state
localization. However, for weak disordés;|>1, the strong transport will be discussed in Sec. Il C.
localization is of purely academic interest, for its observation  Tpe following historical remark is in order here. After the
would require an exponentially small frequency and tem-yitial papef by Emst and Weyland on the Lorentz gas
perature and exponentially large system size. _model, thet~(¢*2)2 taijl in the velocity correlation function
In recent years, there has been a revival of interest iy 5 gag of particles scattered by static impurities was dis-
semiclassical transport propertles of 2DEG'’s. This is mOtI_CUSSGd in a number of publications; see, in particular, Refs.
vated by the experimental and technological importance 0§ g anq 17. However, since there appear to be neither a clear
high-mobility sem_iconductor heterostructures, where impuri'derivation nor explicit results for the long-time tail in a
ties are located in a layer separated by a large spdcer smooth RP in the literature, we decided to present this ma-
~100 nm from the 2DEG plane. THecreeneflrandom po- ey in a self-contained forrfSecs. 11 A and Il A. In fact,
tential (RP) V(r) produced in the 2DEG plane by the statis- g, Eq. (16) can be obtained from the mode-coupling for-
tically distributed charged impuritieglensityn;) is charac-  majism of Ref. 18; however, the authors of that paper con-
terized by the correlation function Wy(r—r’)  centrated on the critical regime of the metal-insulator transi-
=(V(r)V(r')), which has in momentum space the form  {jon, and did not consider the ac conductivity in the
- conducting phase explicitly. As to the RMF problem, which
Wy(q)=(7#2/m)?n;e” 299, (7)  constitutes the main focus of the present paper, we are not
aware of any treatment of the classical nonanalytic correction

1
AO'W|(w)=O'Om|n|wT|, (6)

where m is the particle mass. Fdtd>1 (which is well h ductivity in the i
satisfied for the high-mobility sampleshe potential varies to theac conductvity in the literature.

smoothly in space, and can be treated in semiclassical terms. For later use, here we recall the transport scattering rate

Such a random potential is different from the Lorentz gaEntering the Drude formulgd) and(2), which, in the case of

. . l
model in an essential way. It is weak everywhere, and show&€ak long-range disorder, is found to be

close-to-Gaussian fluctuatior(since atn;d?>1 potentials

produced by adjacent scatterers strongly overlapereas in 1 1 * ~

the Lorentz gas the potential is zero outside scatterers and T 27rmzv3fo da o*Wy(a) (RP), ©)
infinite inside scatterers. Therefore, the Lorentz gas results F

cannot be directly applied to the 2DEG, and the problem has )

to be reconsidered for a realistic model of the random poten- E: i) 1 fcdq Wa(q) (RMF) (10)
tial. T \mc/ 2mve)o B '

Transport in a smoothly varying random magnetic field

(RMF) is also of major interest. One of the main motivationsLet us note that the Drude result is valid in the quantum
for this comes from the relevance of this problem to theregime as well as in the classical limit. This is not, however,
composite-fermion description of a 2DEG in a strong mag-the case for corrections to the Drude result and we will there-
netic field in the vicinity of half-filling of the lowest Landau fore consider both a quantum theoretical treatment and a
level (v=1/2)® Exactly atv=1/2 the composite fermions purely classical description, for different parameter ranges.
move in an effective magnetic fieB(r) with zero average We recall that the classical description of a quantum par-
and impurity-induced spatial fluctuations characterized by dicle moving in a RP or RMF characterized by a single spa-
correlation functionWg(r—r’)=(B(r)B(r")) of the form tial scale is a good approximation if two conditions are sat-

isfied: (i) the quantum-mechanical wavelength of the particle

Ws(q)=(2hc/e)2n;e 299, (8) should be less than the characteristic lergytf the disorder,

i.e., ked>1; (ii) the particle should move incoherently, i.e.,
A real long-range RMF can also be realized in semiconducthe length over which it is scattered out of its initial quantum
tor heterostructures by attaching superconduéfin@r  state should be less thah v 74<d, whererg is the single-
ferromagneti¢** overlayers or by prepatterning of the particle lifetime. The latter condition requires the random
sample(randomly curving the 2DEG laygt” The strength  field to be sufficiently strong. We will not address the regime
of a RMF can be conveniently characterizétf by a dimen-  |_4s1 andyr.>d in this paper. Our choice of models of
sionless parametex=d/R}, whereR0=vemc/eB, is the  disorder is motivated by actual physical realizations and by
cyclotron radius in a typical fiel,= \(B?) (the magnitude considerations of calculational feasibility. We will consider
of the RMF fluctuations Within the composite-fermion either a long-range RP or RMF governed by Gaussian statis-
theory of Ref. 6 this parameter is found to be equal tf21/ tics. In the quantum-mechanical calculation, we will assume
if the density of ionized impuritieg; is assumed to be equal the transport scattering rate to be dominated by a white-noise
to the electron density and if correlations between the im- RP.
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As discussed above in the context of the Lorentz gas, the

N
fact that a particle may revisit a given region of a RP/RMF , ]
after large timet gives rise to a zero-frequency anomaly of + + ce.
the conductivity. Due to this effect, the velocity correlation

function acquires a power-law behaviet ~? at long times,
leading to Re(w)x|w|. The strength of this anomaly de- FIG. 1. Contribution to the conductivity due to return processes
pends on the probability of return into the region over whichin the presence of a long-range RP. The thin dashed (fioesiing

the RP or RMF is correlated, and may thus be expected to b& diffusion correspond to a white-noise potential, while the thick
proportional to a power ofl/| (the power depends on the dashed line describes the long-range RP.

mechanism of scatteripngFor a short-range potentigkzd

=<1, the role of the effective correlation length is played by e? d?q
the Fermi wavelength. It is worth stressing that the quantum Ao= Zf P
corrections to the conductivity are governed by another pa- (2m)
rameter, namely, kl. It follows that the magnitude of the HereS, are the vertex parts which are represented in Fig. 2,
classical zero-frequency anomaly for the case of smooth disand are given by the expression

order ked>1, which is the limit considered here, may be

much larger than the quantum corrections in a broad fre- d?p p,
quency range. For composite fermions, the paranigiéris  S,= 5 —GZ{F(p)GﬁF(p)[G?F(D—Q)+G/:F(p+ D],

as large as 15. The quantum corrections, being proportional (2m)= M

to Inw (at zero temperatuyethen become important only in (13
the limit of very small(in fact, exponentially smallfre-  \here GR (p) and G2 (p) are the retarded and advanced
guency. Moreover, as we discuss in Sec. IV, inelastic scaté F F
tering at finite temperature destroys the quantum corrections
but does not affect the classical correction. Hence the condi-
tions for the observation of the classical anomaly become?
still more favorable at finitd. We now turn to a calculation
of the low-frequency correction to the Drude law induced by
the return processes.

SSWy(9)T'(q,w). (12)

reen’s functions at the Fermi energy .

The behavior of the correctioNo(w) at low w is gov-
red by small momenta~(w/D)*? in integral (12).
herefore, we can make a smgllexpansion of the vertex
part [Eq. (13)]. Expanding the integrand of E¢13) up to
terms linear ing,“~ we obtain

Sd(@)=—idmy - (14
IIl. RETURN PROCESSES IN THE QUANTUM-
MECHANICAL DIAGRAM TECHNIQUE Note that a naive estimate of the linearegrierm would give
. Sx(q)~qxe,:rfv, but the two diagrams of Fig. 2 cancel each

%ther in this order, and one has to go to the next order in

contribution to the transport scattering rate is given by P ;
white-noise RP, while an additional weak long-range RP oillEFT""' Substituting Egs(14), (11), and(7) into Eq. (12),

RMF induces correlations determining the long-time tail. In_approxmatlrllg the ((:jorrelalltlorj funﬁ‘taldﬁ\é(q) fo(; smallq by
this situation, a quantum-mechanical treatment of the prob'-tS zerog value, and neglecting the-independent part, we

lem is appropriate. Apart from the theoretical convenience!Ind the following w-dependent contribution to the conduc-
such a model with two types of disorder is also of experi-t'v'ty:
mental relevance. Indeed, in essentially all realizations of
real RMF (as opposed to the fictitious RMF in the
composite-fermion modglthe transport scattering rate is
dominated by a random potential with a relatively short cor-
relation length(much shorter than that of the RNF The correction to the real part of the conductivity therefore
A white-noise RP is characterized by the correlation func-has the form

tion W(q)=(2mvr,) %, where 1f, is the corresponding

Wy(0) o7y
Ao(w)=0g— —In(iwr,), |o|7,<1. (15
degly, '

scattering ratéhere we puti=1). We keep the notation 4/ _ Wy(0) _
for the scattering rate related to a long-range RP or RMF: ARes(w)=a0 e2l2 |@l7w, |o|r<1. (16
1/7<1/7,,. The diffusion process is described by a sum of
the ladder diagram& diffuson), The condition of validity| | 7,<<1 given above corresponds
to the casal=<l,,. In the opposite regimed>1,,, formulas
1 (15) and (16) still hold, but the condition of their validity
I'Qe)=—7F—5—, (11 changes t¢w|<D/d?. The same is valid for all the formulas
27vr, DQ°—iw for the nonanalytic correction that are given below.
whereD=0v27,/2. -
SE = +

A. Long-range random potential

The contribution to the conductivity induced by return
processes is given by the sum of the diagrams shown in Fig. FIG. 2. Vertex parts of the diagrams shown in Fig. 1. The wavy
1, yielding line denotes the diffuson.
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We first consider the situation with only the white-noise Do
potential present, so thak,(q)=W,(0). In this case, Eq. -
(16) yields S0 = v, o
A Reo(w) 1 o a -
= W Ty -
oo 2(kel,)® " o
L . '
We see that the correction is small as:I(,) 3, i.e., much ]
smaller than the weak-localization correctigf), and is S&) = s5dea <:>W

therefore of minor interest. This conclusion changes, how-
ever, when we return to the problem with the long-range
potential(7) present. EquatioliL6) then gives

3 Substituting this expression into E(L9) and neglecting an
|| 7. (18) w-independent part, we find

FIG. 3. Vertex parts of diagrams in a random magnetic field.

A Reo(w) 4 TW( d

=47 —
T

(0] lw
. . 2\W(0)
Now the correction does not contain the quantum small pa- B

A Reo(w) e
_—=—— lo|7y, |o|T<1. (22

rameter kel,,) 1, which is replaced by the classical quantity 0o mc/  gy2

d/l,,. This prompts the expectation that the| anomaly in . . . .

o(w) should be essentially a classical phenomenon. We wilpst'n.g the explicit form of the correlation functiof®), we

demonstrate this explicity in Sec. 1l by calculating obtain

AReo(w) in the classical limit, where a long-range RP con- A Red(w) o d

stitutes the only type of disorder in the system. Note that the — Y — 3% |—|w| Tw (23
0

classical limit requires two conditions to be mkgd>1 for
all relevant types of scatterers, and alg(0)> (%ivg)? (the ~ wherel=v7 is the mean free path characterizing the RMF.
latter condition means smallness of the diffraction smearingVe see that the nonanalytic conductivity correctiand cor-

of a typical scattering angle; otherwise, it can be rewritten agespondingly the long-time tail of the velocity correlation
veTs<d, where 74 is the single-particle lifetime whereas function has the opposite sign as compared to the RP case
Eq. (18) is obtained in the perturbativé@orn) limit W,,(0) [Eq. (18)]. This is a general feature of the corrections in-
<(hvg)? under the condition that the diffusion is due to duced by a weak long-range RMF, as will be confirmed in
short-range scatterers. It is also worth mentioning here thap€¢- Il B by a classical calculation for the case when such a
in view of 757, and vpr>d, correction (18) is always RMF constitutes the only source of disorder.

small, A Reo(w)/op<1, in the range of its validityspeci-
fied below Eq.(16)]. Ill. PURELY LONG-RANGE DISORDER: CLASSICAL

CALCULATION OF THE LONG-TIME TAILS

B. Long-range random magnetic field Having understood the nature of the| anomaly at the
We now consider the same problem but with the long-€vel of the quantum-mechanical diagram technique in the
range RP replaced by a long-range RMF. Similarly to Eqparticular limit where the transport scattering rate is domi-

(12), we have a return-induced correction to the conductivityhated by a white-noise potential, we turn to the case of
purely long-range disordefRP or RMB. In this situation,

e? d%q the quantum-mechanical calculation is complicated, and a
Ao=—— > S (S +SE) (S +S7) classical evaluation of the nonanalytic correction is more ap-
T ap J (2m) propriate; this will also allow us to demonstrate explicitly
@ that the correction is of classical origin. We will employ a
X{(A*(q)AP(—))T'(q,w), 19 NG : .
(A(@A%(=a)T(q.@) (19 formalism similar to the one used in Ref. 21 for a calculation
where of the magnetoresistivity. At the quasiclassical level, the fer-

mion gas is characterized by a distribution functfgnr, ¢),

WB(Q) o . N where ¢ is the polar angle of the velocity. The equilibrium
(ANQAP(— )= ——5(Sap—Ualp), 9a=Tq[ distribution function isf,= 6(e-— €), where 6 is the step
q (20) function. The deviationéf(t,r,¢), from the equilibrium

induced by an (infinitesimally small external electric
is the vector potential correlation function. The vertex partfield Ee™'®, has the form of(t,r,¢)=eEve(dfo/

s+ is now given by the sum of the three diagramsde)e™“'g(w,r,¢), with g(w,r,$) obeying the Liouville
shown in Fig. 3. equation

Evaluating the vertex part at smail we find that the
diagramsS{Y) andS{>) cancel each other in the ordg?, and (Lot dL)g(w.r,¢)=Cos b= de), (24)
i 2.
the result is of the order af: Lo= —iw+veny. (25

Here ¢g is the polar angle of the electric field am
=(cosg¢,sing) the unit vector determining the velocity di-

a

e
S+ 5= — O Tadxa (21)
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a) —= p —m— p whereni=2><n=(—sin¢,cos¢), and dv(r)=uv(r)—uvg is
the deviation of the local velocityv(r)={(2/m)[er
—V(r)]}¥2 from its average value. The leading-order

b) SL(r) m=== §L(r) contribution(28) to the memory function reads
. ey 2 (90 99 Gy sins-b)
A ‘ = =——| 5= ——=singsin(¢—
) M= £ + Lpipdpt + .. 0 p2) 27 (2m)? q
- 201
e S q WV(q) . .
/ P, S —
d) AM, = ’\rvwlz/vv\\.a XUFqcos(ﬁ_(ﬁq)_w_iO In(ﬁSIr(d) d)q)'
e (30
’ “\ i mTITT . . .
o AM= A o SR N NN reproducing the transport scattering rate defined by(8q.

M= 1/7. The first-order diagram describing the return pro-
FIG. 4. Classical diagram techniqu&) Free propagatorth) ~ C€SS IS rep'_'esemed n F'Q(dsz- The corresponding expres-

Disorder correlation functionc) Diagrammatic expansion for the SION IS obtalned l?y replacing the free propagatapin Eq.

memory functionM. (d) First-order diagram for the memory func- (30) by the diffusion propagator

tion representing a return process; the wavy line corresponds to the

diffusion propagatoPp, [Eq. (31)]. (e) Second-order diagrams de- . v(a,¢)v(q,¢")
scribing return processes, which give the leading contribution to the Po(a,¢,¢')= T
; . . . g~ lw
return-induced correction thl in the random-potential case. (31)
rection. The ternlq in the Liouville operator corresponds to v(q,¢)=1—iql cog d— &), ql<L1.
the free motion, whileSL describes the disordgiRP or . _q .
RMF). The current density is given by | The replacement yields the return-induced first-order correc-
= —ef[d?p/(27h)%]vsf, yielding the longitudinal conduc- tion to the memory function:
tivity
Ny _2jd¢d¢' d?q
-, zf d¢ 1 o6 l_p'2: om 2w (277)25|n¢5|r(¢ ¢q)
o(w)=e"vvg o cos¢|_0+ 5Lcos¢ . (26 - | |
X g Wy(Q)Pp(a, ¢, ¢")sing’ sin(¢’ — ).
Expanding Eq(26) in L, averaging over the RP or RMF 32
(which is implicit in 6L), and resumming the series, we ob-
tain the ac conductivity in the form Evaluating thew-dependent part of Eq32) at w7<1, and
approximating(as in the quantum-mechanical calculajion
ool T A i = i
(@)= — 0 27) Wy(q) by its value atg=0, we find
o+ M _
AM (o) Wy(0) o7 .
Here M is the self-energythe so-called memory function My 16212 - inliwr), (33
which can be conveniently represented within a classical dia- 0 €F
grammatic techniquésimilar to the one used in Ref. 17 which gives
(Fig. 4). To leading orderM is given by the first diagram of
Fig. 4(c), AReM;(w d\®
g M—l():—ﬂ<l—) |w|T (34)
do 1 ° 3
Mo= _Zf 5C0sé 5L|__05L cos¢, (28 for the specific forn{Eq. (7)] of the correlatofV,, .

Now let us show that, in actual fact, the leading contribu-
reproducing result$9) and (10) for the transport scattering tion to the non-Markovian correction to R&(w) comes
rate (see below and, correspondingly, the Drude formula from second-order processes described by the two diagrams
(1). Corrections to the memory functidv (w), which cor-  in Fig. 4(e), whereas that given by E¢33) can be neglected
respond to the return processes, are evaluated in Secs. llliA the first approximation. Specifically, the second-order
and Il B for the cases of RP and RMF, respectively. term A ReM, /My~ (d/)?|w|r scales with a smaller, as
compared tAAM 4, power of the parameteat/| <1, despite
having one more impurity line. This, at first glance, counter-
) o o intuitive feature is related to the anomalous smallness of

The fluc_tuatlng contribution to the Liouville operator due AM in the otherwise “regular” expansion in powers ofl
to the RP is found to be (third- and higher-order terms iAM can be shown to be
negligible compared taAM,). We first explain this feature
by using the following power-counting argument. The|
anomaly inAM comes from the integration over smgllof

A. Long-range random potential

5LV=5v(r)nV+[V5v(r)]nL%, (29
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the form [d?q g%/(Dg?—iw), where the numerator of the B. Long-range random magnetic field
integrand tends to zero as atq—0. In Eq.(32), the factor The fluctuating contribution to the Liouville operator in-
of g° is related to the vanishing of the correlator duced by the RMF has the form

J d?rexp(—igr)(Vév(0)V du(r))=q®Wy(q) oLg B(r) 4’ (40)

in the limit g— 0, since the correlator carries the small mo- The lowest-order contributio(28) to the memory function
mentumg, the same as the diffuson, according to Figd)4

2 2
On the other hand, in second order\TVy, the large mo- MOZ_Zi(i) Jd_d’ dq
menta flowing through impurity lines are “disentangled” me) J 27 (2m)?
from the small momentung carried by the diffuson. The ~
leadingg? term now comes from th@©(ql) corrections to X sine Ws(9)
the diffusion propagator given by the factoyéq, ¢) in Eq. UEQ COS b — obg) —

(31). Let us count powers of two factors y(q,$) yield again reproduces the corresponding transport scattering rate

2|2, whereas one loses only * when going to second or- . :
ger which explains the tota)I/ gain of gonegpowerldxﬂ as [Eq. (10)], My= 1/7. The first-order correction due to return
' processe$Fig. 4(d)] reads

compared to Eq(34).
The expression foAM, at w—0 obtained from the sum

= 0sin ¢ (41

2
of the two diagrams in Fig.(4) readqwe neglect the depen- AM,=2 ) f do d¢ d’q ———sinWx(q)
dence o everywhere but irPp(q, ¢, ¢’)] mc 27 27 (2m)?
de X PD(q1¢1¢,)Sin¢’1 (42)

4i [ dg dg’ dg -
2:P_J 27 27 2m? 2m? " WK where the factors y(g,¢) should be included in
Po(d,¢,¢'), which gives
X cospA(K,p)Pp(a, ¢, ¢' ) ImA(K,¢')cose’,

(35 ARea(w):_AReM(w):_(i)2W5(0)|w|T
(o6} MO mc 80'2: ’
where (43)
P Sif(d— by) P Not'e that, in contrast_ to the case of RP, thg leading contri-
Ak, p)=— (36)  bution to the return-induced correctichM in the RMF
I$ vek cotp— ) —i0 ‘?‘ﬁ comes from the first-order processes. This is because the

RMF scattering operatofL g (in contrast to its RP counter-
part 5Ly) does not involve spatial gradients. Using the RMF
correlation function{Eq. (8)], we finally obtain

We thus obtain

A ReM,(w) lo|7 [ d?k .
== KCWE (). (37)

M 326k ) (2 AReo(w 7 d
° e (2m ARedlo) -2 Tlolr=—ma?alr, |o|r<l.
. (0] 2
Since (44)
A Reo(w) AReM(w) ARep(w) We have found, therefore, in agreement with the

(39 guantum-mechanical resylEg. (23)], a negative sign of the
|w| contribution to the conductivity. Analyzing the calcula-
wherep(w) =0 L(w) is the ac resistivity, we finally obtain, tion, one can trace the difference in sigrs compared to the
using Eq.(7) for W. Lorentz gas resulf5) and the RP. result€l 8) ano_|(39)] ba_ck
Vo to the fact that the RMF scattering operat40) is odd with
respect to time reversal.
ARes(w) 3_77( d) 0|7, |o|r<1 (39) To check the above analytic findings, we have performed
o 8 ' numerical simulations of the classical motion of a particle in
a RMF. The results obtained for the memory functfoat
The prefactor of th¢w| correction to Rer(w) is positive, as  4=0.5 are shown in Fig. 5. We find a positilee| correction
in the quantum-mechanical res{iq. (18)] and in the Lor-  to the real part of the memory functiofr, equivalently,
entz gas formul§Eqg. (5)]. Note that the correctiofEq. (39)]  resistivity), which corresponds to a negative correction to
matches that for the Lorentz géEqg. (5)] at n{d°~1, as  Regq, in agreement with the theoretical resiii. (44)]. The
expected—since this condition separates two extremes Qﬁagnltude of the correction is, however, considerably
strongly non-Gaussia(Lorentz gag and GaussiafEg. (7)]  smaller than Eq(44) would predict. We attribute this dis-
disorder. On the other hand, the crossover between(Bfk. crepancy to the fact that E¢4) was derived forz<1 and,
and (18) occurs when the two following conditions are ful- apparently, the numerical value of the coefficient in this for-
filled: ked~1 andW,,(0)~ (Zvg)? [cf. the definition of the mula cannot be trusted far as large as 0.8 Unfortunately,
classical limit for Gaussian disorder after Eq8)]. at smaller values ofr=0.2, the effect becomes so weak that

Op My B Po ’
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FIG. 5. Real part of the ac resistivity in the RMF, wigéh=0.5 - -
normalized to itsv=0 value. The dashed line is a guide for the eye, \ 3 [} 4 |
A Rep(w)/p(0)=|w|. The positive prefactor of tha| correction ! Y 5 Y ]
to Rep corresponds to a negative prefactor fordre -t - -t >

it is swamped by the statistical noise. A smaller value of the FIG. 6. Chiral network modelta) Regular network{b) defect
coefficient ata=0.5 [as compared to the formul@4)] is  ©on the lattice.
further consistent with the fact that at=1 the coefficient
changes sign and the correction to the conductivity becomeBelow we demonstrate how this result comes about in a net-
positive (see below. Let us also note that the range of va- Work model due to fluctuations in the geometry of the net-
lidity of the |w| correction found numerically is in full agree- work.
ment with the theoretical expectatiom{<1). Indeed, as Let us start with a regular square netw@Fig. 6] with
seen in F|g 5’ the linear increase of R@) holds up to all links characterized by the same diStar&,d)etWeen the
w7=0.65 where it transformgather abruptlyinto a falloff ~ end points and by the same “flight time¥;. We also as-
(related to the ballistic motion on time scales 7). sume that the probability of turning in either of two allowed
directions at each node is 1/2. The classical diffusion con-
stant is therD = £2/47,. It is straightforward to see that there
C. Strong random magnetic field: Long-time tail in transport  js no memory effect in classical transport on the regular net-
on a percolating network work: the velocity correlation function is exactly zero for
In a Strong RMF @> 1) the character of the transport >Tg. Let us now Study the effect of fluctuations in the net-
changes drastically. In this regime, diffusion takes place in avork geometry, i.e., in vectors connecting the beginning and
restricted space and is determined by a small fraction o€nd of individual links. Since to describe such fluctuations
trajectories—so-called “snake staté§”>—which wind quantitatively in a real percolating network is hardly pos-
around theB(r)=0 contours. Since the snake states can g&ible, we consider the following model. We imagine the
over from on$(r) =0 line to another at saddle points of the regular lattice considered above perturbed by a small fraction
RMF (where the two contours come sufficiently close tong<<1 of “defects” of the type shown in Fig. ®) (a defect
each other they propagate effectively on a percolating can have any of four possible direction¥Ve assume the
network®4for which such saddle points serve as nodesflight times of all links to be equdlve will discuss the effect
This network is characteriz&tby a typical length of a link,  of fluctuations in the flight times later
L~da'*® and a typical distance between two neighboring For each lattice sitg, we label adjacent links asj &),
saddle pointg(size of an elementary cgllé~da®®. The Wwith x=1 and 2 for incoming links ange=3 and 4 for
different scaling ofL and & with « is due to the fact that outgoing links. The velocity-velocity correlation function for
the structure of the links of the network is fractal. The net-& timet=nrg (with an integem) can be written as
work is chiral, i.e., the links are directed; each node has two L
incoming and two outgoing links. Since the snake-state ve-
locity is of the order of the Fermi velocity, a characteristic (V(n7v(0))= 25 ; M:ELZ ,,:2314 VinVirPil(n=1) 7],

time of traversal of a link isrs~Lg/vg . The quasiclassical (46)
dc conductivity in this regime was calculated in Refs. 14 and
15, the result being~ de/a1/2|n1/4a_ whereN is the normalization factoftotal number of sites

In Ref. 15 we argued, on phenomenological grounds, thaPjj(t) is the probability of moving from a siteto a sitej in
for such a percolation-type transport problem there should bg timet, andv; ,= &,/ < is the velocity at the linki(x). The
a nonanalytic contribution to the ac conductivity of the form majority of the sites andj will give zero contribution to Eq.
(46) after the summation ovex and v, since the velocities
of the two outgoing(or two incoming links are exactly op-
(45) ppsitg to egch other for the regul_ar Iattige. A .nor_1trivial con-
tribution will come from terms with both andj lying at a

A Reo(w)
o(0)

~|w|7‘s, |w|7‘s<1.
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defect. Indeed, consider the term with 1, j =2 [Fig. 6(b)]. 12 - - - - .
The corresponding contribution to E@L6) is
g 2

”dplz(t_Ts)(f) .

S

(47)

The probability density in a continuum model for a diffusing
particle to move a distanaein a timet is

P(t,r)= g rHDt (48)

47Dt

Therefore, the probability5(t) for t> 7 is

Ts
t
This return process yields a contribution to the velocity cor-
relation function of the form

-3 -2 - 0 1 2 3
) (49) od 4/gd/vF

Ts

Po(t)= o 1+0

FIG. 7. Real part of the ac conductivity in the RMF at
=4.04. A nonanalytic dip around=0 is clearly seen. The low-
frequency increase of the conductivity is restricted to the region
) |o|Ls/vp=<1 (whereL~da'*®is the length of a link of the per-
(55) s 1 colating networlk, in agreement with theory.

wherev;,=§, /7, and 7s=(7,). Since the fluctuations of
the flight times of different links are uncorrelated, a nonzero
contribution to Eq(52) comes only from neighboring sités
andj connected by a link going fromto i [in other words,
one of the links («) should be identical to one of the links

Piot—79) = Pig(t—79) = Pgyt—79)  (j»)]. We thus find

1 55 71 ks 1
. (50) <V(t)V(O)>:§ndT_s{<fo deOZdT’TlTZ

However, this 1t/ contribution is canceled if we take into
account the terms with=3 and 4 and =5 and 6 as well.
The total contribution reads

fs)z

Ts

<V(t)V(0)>=nd<

1 1
+§P35(t_7's)+ §P3e(t_7's)

Since all of the relevant return probabiliti¢y; have the
form of Eq. (49), the 1t terms cancel. It is easy to see that XPjj(t—7—17")

this cancellation has a general character, i.e., is independent 1Ty
of the particular structure of the defect. We thus conclude 1
that the result is of the next order in/t: _< JfldeTldT,jpij(t— . T,)> } _
0 0 T1
&s 2 Ts 2 L
(V(OV(0)~—ng =] | T - (51) (53)

While we do not calculate the numerical coefficient in Eq. EXPandingP;; (t—7— T')lew(t_g_ 7') in 7 and 7', we
(51),2 we see no reason which would require it to be zero, s that the terms of thetldand 1f“ orders cancel, and the
that we believe that it is generically nonzero. Setting now/€ading nonvanishing contribution is of thetALbrder, so that

ng~ 1 for a realistic(strongly fluctuating network results in ~ the corresponding contribution to R¢w) shows a weak

.. 2 .
a nonanalytic correction to the conductivity of the form of nonanalyucnyoc@ Injw| only. I_\lote _that f_or a nondwected
Eq. (45). As to the sign of the effect, we have to resort to network, fluctuations of the flight time yield a still weaker

numerical simulationgsee below. nonanalyticity A Reo(w)x|w|®, or, equivalently, a 1
Let us now consider the effect of fluctuations in flight 1ong-time tail: . . _
time. We return to the regular square lattiéth the lattice Since a real percolating network exhibits all possible sorts

constanit,), but now allow for a variation of the flight times  ©f fluctuations, the fact that we find thet3ail in the model

+ from one link to another. We will show that in this model With fluctuatingé,,’s is sufficient to conclude that such a tail
the 1£2 tail does not exist. Equatiof6) for the velocity- should be_present in the problem of the transport in strong
velocity correlation function is now modified as RMF. In Fig. 7 we show the results of the numerical simu-

lations of the problem forw=4. A pronounced dip in the ac
conductivity aroundo=0 in the expected range of frequen-
N PRI cies |w|<1/rs~ve/dat® nicely confirms our analytical
Tsij pu=12v=34 . . . .
conclusions. The sign of the nonanalytic correction corre-
Tin Ty sponds to a decrease of Reas|w|—0.
><< J de d7'vi,V;,Pij(t—7—17") ), It is worth mentioning that the problem of a random walk
0 0 on such a percolating network is a close relative of the
(52 advection-diffusion problem in a spatially random velocity

(M(Hv(0))=
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field v(r) (“steady flow”) with V-v=0 (“incompressible _ Ifo\ v(a, ) ver(q,¢") [ o
liquid” ) characterized by the correlation function PD(Q;6,¢;6’,¢’)=((9—0) > _?
€ th —lw &E
f dzrexp(—iqr)(va(O)vB(r))=Vvv(q)(5aﬁq2—qaqﬁ), + (regular termg, (58

(54 whereD,=vZr/2 with 7; *= 71+ 7. is the total diffusion
This model was studied in a series of pagdrét with an ~ constant including elastic and inelastic scattering processes,
emphasis on the case of long-range correlations, namelfiNd ve(d,#)=[1—iqu(e) ricosp— )], with v(e)=(2¢/

~ 1/2 : . . )
W, (q)>q~2 for q—0 [which corresponds 60,(0)0 4(r)) m)~'“. As expected, the diffusion propagator shows a diffu

A i / . _sion pole even in the presence of inelastic processes, due to
«r~2]. In contrast, we have considered a percolation lattice P P b

) ) . particle number conservation. The scattering “out” of par-
with short-scale distortiong\W, (q)—const atq—0]. One icjes with given energy into other energy states is exactly

can check(see trlez Appendixthat the advection-diffusion compensated for by a corresponding scattering-in contribu-
problem yields &~ < tail in this case, in agreement with our {jq.

consideration above. Let us define the functioA M (e,€’) in the same way as

in Egs. (35 and (42), with the only changePp(q,¢,¢’)
—Pp(g;e,¢:€',¢'). The correction to the memory function

So far our considerations have not included inelastic scatdue to return processesM, is then given by
tering processes which change the energy of a particle. The
guestion f'irises whether the z_ero-frequency anomaly AM = f dede’ AM(e,e). (59)
A Reo(w) is cut off at low frequencies~ 1/7,, wherer;,
is a relaxation time for the inelastic processes. This questio
is studied most conveniently within the Liouville-Boltzmann
approach of Sec. Ill. To this end, we consider the linearize

distribution functionsf (w,r,€,¢) of particles with energy respectively; andii) additional factors of £/7)2 and ./

and velocity direction specified by the polar anglesubject : . . :
to a smooth RP or RMF and inelastic collision processesare included in Eqsi39) and(44), respectively, which stem

IV. EFFECT OF INELASTIC SCATTERING

Rs a result, expression&7) and (39) and (43) and (44)
emain valid, providedi) = and| are replaced by the full
omentum relaxation time; and mean free path=vg7,

obeying the Liouville-Boltzmann equation from the explicit factors ofV in the definition ofAM(e,€").
Thus the classical zero-frequency anomaly is not cut off
(—iw+VV+6L)Sf—1,,(8f)=S, (55  at finite temperature. This should be contrasted with the

_ ) ~quantum zero-frequency anomaly induced by the weak-
with the source terns=evE(df,/de). Heref, is the Fermi  |ocalization and Altshuler-Arono\interplay of interaction
distribution function corresponding to a temperatufe and disorder effects. It follows that increasing temperature

(which we will assume to be lowl <Eg). A simple model  favors the experimental observation of the classical anomaly.
form of the collision integrall;,, which respects particle

number conservation, is sufficient for our purposes: V. CONCLUSIONS

1
lin(8F) =~ —
n

Sf(e,d)+ O"_fof dE’j %&(e’,(ﬁ’)}. In this paper, we haye studied memory effects _in the low-
de 2 frequency ac conductivity of a 2D fermion gas in a long-
(56) range random potential or random magnetic field. We have
calculated the long-time tail in the velocity correlation func-
tion induced by diffusive returns of a particle, and leading to
a nonanalytid w| behavior of the real part of the conductiv-
ity (zero-frequency anomalyWhile in a random potential
f db 1 the|w| contribution is positiveéas in the Lorentz gas, Ref) 1
U(w):ezng de( _ _0) f _< cos¢~—cos¢> ' and is proportional tod/1)?2, whered/| <1 is the ratio of the
de 2m Lo correlation length to the mean free path, a smooth weak
(57 RMF induces a much larger<d/l) correction of opposite

herel = —i 1 vV E ding insL . sign. The sign difference can be traced back to the RMF
whereLo=—lw+ 7"+ venV. Expanding oL, averaging  gcaering being odd with respect to time reversal.

over the long-range disorder and resumming the series, one We have also demonstrated how | contribution to
finds o(w) in the form of Eq.(27). The memory functioM o () arises in the regime of strong random magnetic

is now given in lowest order for the cases of RP and RMF byie|4 “\yhere the transport is determined by percolation of the
Egs. 1(30) and (41), respectively, withw replaced byw  gnaxe states. In this case, spatial fluctuations in the geometry
T of the percolating network are responsible for the memory
In order to calculate the effect of return processes, oN@gfects.
needs to know the diffusion propagatBip(q;e,¢;€e’, ") Our numerical simulations confirm the existence of these
for particles starting with energy and velocity anglep and  nonanalytic contributions at low frequency, as well as the
returning with energy’ and angle¢’. This obeys Eq(55) unconventional sign of the correction in the weak random
with the source term replaced bpy=6(¢p— @) (e magnetic field. With increasing strength of the RMF, when
—€')(—afylde). After averaging ovebL, one finds the system crosses over into the regime of the percolating

(For simplicity we adopt the model of isotropic, energy in-
dependent inelastic scatteriing.
The conductivity is obtained as
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transport, the sign of the effect changes. Assuming the random field to be weak, we can expand the
The experimental observation of the nonanalytic low-Green’s function

frequency behavior of the ac conductivity of composite fer-

mions would be of considerable interest. In particular, we G(r,r")=({r|(—iw—DV?=V-v) Yr")

predict that thdw| term in Reo is negative at=1/2 in the

high-mobility samplegwhere the strength of the effective

RMF is'® a~0.3), but should change sign if the system is

driven toward the percolation regime by adding more long- G()=————

range scatterer®.qg., antidot¥). A sign change is also found —ilo+Dq

with increasing effective magnetic fieldhoving away from

in v(r), which yields, for the Fourier transform,

half-filing), as will be demonstrated analytically + .—<(V-V).—(V~V)
elsewheré® in agreement with our earlier numerical (—iw+Dg%)? —iw—DV? q
results®
-
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Consider a particle moving in a diffusive medium with a Hence this continuous model predictsta® tail in the
diffusion coefficientD, subject to a spatially random velocity yelocity-velocity correlation function, with a positive coeffi-
field v(r). Let the velocity field be incompressiblév(v  cient. Note, however, that in a lattice model the sign depends
=0) and determined by correlat@4) with a finite W,(0).  on the microscopic structure of disorder.
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