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We investigate the distribution of the electron density and the potential in a quantum wire coupled to
reservoirs, treating this structure as a unified quantum system and taking into account the Coulomb interaction
of electrons. The chemical potential difference that exists between a decoupled, isolated quantum wire and the
reservoirs gives rise to charge transfer in the coupled system. We show that the quantum wire can be charged
positively or negatively or remain neutral as a whole, depending on such factors as the wire radius and the
background charge density in the wire. The magnitude of the charge and its sign are to a large extent
determined by the exchange interaction of the electrons in the wire. Using a Hartree-Fock approach, we
develop a model of a quantum wire which includes the reservoirs. This model allows us to find the self-
consistent distribution of the electron density and the potential in the wire both at equilibrium and in the
presence of transport. The linear conductance is investigated as a function of the chemical potential. The
nonadiabatic transition from the reservoirs to the wire leads to conductance oscillations caused by multiple
scattering of electron waves. The period of the oscillations depends on the charge acquired by the wire and the
exchange energy. We find that the exchange interaction strongly enhances the Friedel oscillations near the
contacts. However, they do not noticeably suppress the conductance because the wire has a finite length and is
charged. Under far from equilibrium conditions, which appear when the applied voltage exceeds the Fermi
energy in the wire, the system becomes unstable with respect to fluctuations of the electric potential and the
electron density. The instability results in the appearance of multistable electron states.

[. INTRODUCTION electron density are distributed at equilibriuire., in the
ground statg and how they are redistributed when an exter-
Electron transport in quantum wird®Ws) now attracts nal voltage is applied. We show that even in the equilibrium
considerable interest because of the fundamental importanctate the QW acquires a charge and a contact potential dif-
of the electron-electronefe) interaction in one-dimensional ference between the QW and the leads. This phenomenon is
(1D) systems-? In addition, it is expected that theee inter-  similar to the well known contact potential difference in clas-
action may produce important effects in the transport thasical conductor systems. The essential difference between the
would be attractive for applications. However, up to nowlow-dimensional system under consideration and classical
there is no clear and unambiguous knowledge of which efeonventional 3D conductors is that the contact potential is
fects of e-e interaction are observable under the realisticnot screened over a finite length but spreads over a length
conditions of a QW with leads and what the reasons are fodetermined by the geometrical size of the structufthe
the deviations from conductance quantizatiGmbserved contact potential difference is determined by the difference
experimentally), and very little is known about the electron in the chemical potentials u of electrons in the QW and in
transport under far from equilibrium conditions. the leads, when these subsystems are considered indepen-
In order to understand the transport properties, it is neceently. By analyzing the chemical potentials we find that
essary to know the spatial distribution of the electric potenthree cases are possible, depending on the wire radius and
tial and the electron density in the structures under investithe background charge density} the QW is charged posi-
gation. Many arguments and fatt8show that the leads play tively, (i) the QW acquires a negative charge, (dr) the
an essential role in the conductance, if the transport is inveQW remains neutral as a whole.
tigated by measuring the electric current in an external cir- We develop a model of a QW with leads in which the
cuit and by measuring the voltage drop between the leads. lead-wire interaction is taken into account. It is based on a
is obvious that the interaction of the QW with the leads is notHartree-Fock approach for the electrons in the QW and the
weak. representation of leadgvhich are considered as electron res-
In the present paper we investigate this interaction, conervoirg in a way that takes into account their 3D nature, but
sidering the QW and the leads as a unified system. An imrequires only a 1D calculation. Using this model we investi-
portant problem that arises is how the electric field and theyate the distribution of the electron density and the electric
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potential at equilibrium, as well as under far from equilib- Il. CONTACT POTENTIAL DIFFERENCE

fium COI’]dI.tIOI’]S. m. particular, we empha3|z_e. the rqle of the To be specific we consider a QW connecting two regions
exchange interaction effect on these quantities. If in the ab-

f ling the chemical il of the wi dof a 2D electron gas. We assume that there are no nearby
sence of coupling the chemical potential of the wire exceedq,ieq and that all electric field lines emanate and terminate

that of the reservoird >0, the coupled system expels elec- gjther on the wire or on the 2D electron gas. QW structures
trons from the QW into the leads, when equilibrium is estab-¢ thjs kind are produced by etching of heterostructures with
lished. As a result a potential well appears in the QW. They 2p electron gas. Such structures are widely used in
wire acts as a charge donor to the reservoid fi<0, elec-  experimentd*-18
trons are attracted by the wire, and a potential barrier arises First we investigate such a QW separately from 2D elec-
between the QW and the leads. The wire acts in this case agn reservoirs. The uncoupled wire is charge neutral. The
an acceptor. In the case whekg, =0, the electron density is electron charge is concentrated inside the QW, while the
redistributed only within the QW and only Friedel oscilla- compensating positive charge of the impurities is really lo-
tions arise near the contacts. The Friedel oscillations appe&ated in the immediate vicinity of the QW or at its surface.
in all cases; however, they are superimposed on a much morghe decoupled QW and the electron reservoir have their own
slowly varying potential created by the acquired charge. Thehemical potentialgsip and u,p, which are generally not
slowly varying potential has an amplitude that is large com-equal each other. We are interested in the chemical potential
pared to the Friedel oscillations and thus dominates the scaflifferenceA . between the QW and the reservoir.
tering processes. The exchange interaction strongly affects According to Seitz's theoretfithe chemical potential in
the potential shape and somewhat enhances the Friedel d8€¢ QW is determined by the Fermi energy of noninteracting
cillation amplitude. electror_ls and t_he self-energy(kg) which takes into account
When an external voltage is applied, the chemical potentn€ €-€ interaction,
tials in the electron reservoirs are shifted relative to each
other, disturbing the elec_tron flows in the QW. As this takes wip=¢eo+er+3(Kg). (1)
place, the electron density, the potential, and the exchange
energy are changed self-consistently. The importance of th
electrostatic potential distribution in quantum wires with
leads, especially for the investigation of time-dependen
transport, and for nonlinear transport, has been emphasiz

Fere so~m?h?/(2ma?) is the first subband energy caused
Py transverse confinemena (is the QW radiusm is the
effective mass of electrops (kg) contains the contribu-

i 10 o . ons arising from the exchange and correlation interaction as
previously,” but quantitative calculations have to our know- well as from the electron interaction with the positive back-

edge not been reported thus far. ~ground charge. The exchange and correlation energy was
Under far from equilibrium conditions, when the applied investigated in the recent paper of Calmels and &aiging

voltage exceeds the Fermi energy in the QW, the electrofe self-consistent theory of Singwi, Tosi, Land, and

density is substantially redistributed between the QW and th%j'()lande?l for the case where only the lowest subband is

reservoirs, giving rise to a very strong variation in the potenpccupied. The Hartree energy is easily estimated if we as-

tial landscape. In turn the potential produces a variation irsume that the positive charge is located at the surface of the

the electron density. The connection between the electroQw. These calculations lead to the following expression for

density and the potential is very important for the under-the chemical potentigk,p of the QW in terms of the dimen-

standing of nonlinear transport. The need of a self-consistersionless parameterg= 1/(2agn) andB=ag/a (with ag the

treatment has been emphasized by Land&u®vithin the  effective Bohr radius and the 1D electron densily

scattering approach, in the weakly nonlinear regime, it has

been investigated by Christen and one of the present 5 5

authord? and by Ma, Wang, and GUS.The calculation of BT, T e By @

the present paper allows us to investigate the strongly non- R, 2 16r2 Ry rs '

linear transport in the system under consideration. If the ap-

plied voltage is high enough, the self-consistent connection : : , .

of charge and potential gives rise to an instability of theWhereRy is the effective Rydberg. In Eq2) the f|r:_;t termis

electron density distribution and ultimately leads to multista-the lowest subban_d energy, the second term is the kinetic
energy, and the third term represents the exchange and cor-

bility of the electron states in the QW. This means that S&V1elation energy. There are two expressions for the exchange-

eral stable stgtes with different _spatial distriputions of ,thecorrelation term depending on whethgr<1 orr>1:

electron density and the potential are possible at a given

applied voltage.

The paper is organized as follows. In Sec. Il the chemical DI 557r—48rs
potential difference between the decoupled QW and the 2D RSP if rs<1
. . . y 2

electron reservoir is analyzed. Section Ill describes the

model of the QW with leads. Section IV contains the results

of the numerical calculations of the electron density and poand

tential distribution in the QW with leads. In Sec. VI the

multistability of the electron states is described that appears E_xc _ 1.84[|n2,8rs 40 711% it ro>1
. S1.

for far from equilibrium conditions. Ry re




PRB 61 CHARGING EFFECTS IN A QUANTUM WIRE WITH LEADS 13765

207 8 with respect tqu,p. The ratio of kinetic energy in the QW to
] that in the reservoir igg,/eg,~an. Since the QW is sup-
15 posed to be a 1D system, the prodact must be small.
] Hence the Fermi energyg, in the QW is noticeably smaller
1 r=02 ] than the Fermi energyg, in the reservoir. This results in
lowering uqp relative to u,p. The ratio of the exchange-
correlation energies in the case pf<1 is estimated as
exe1l €xco~ (an) ~ Y2 The exchange-correlation energy in the
QW is seen to be larger than that in the reservoir. Taking into
account that the exchange-correlation energy is negative, we
conclude that it lowerg.,p with respect tou,p.
5] 0.8 (a) b) If the wire is now coupled to the 2D reservoir, we can
00 05 10 15 20 00 05 10 15 20 distinguish three cases. Fau>0, electrons are transferred
a la a. la from the QW to the reservoir, so that the positive back-
B B ground charge dominates the electron charge in the wire. If
FIG. 1. Dependence of the chemical potential differenge ~ Au<<0, the reservoir supplies electrons to the QW produc-
between the decoupled QW and the 2D electron reservoir on th#lg an excess negative charge. Whep =0, the electron
wire radiusa (in units of the Bohr radiusfor various density pa- density is not redistributed between the wire and resefoir.
rametersi(a) rs<1, (b) r¢>1. The calculations were done with the ~ The electron density redistribution continues until an
following parameters of the 2D layed=2a, R;=0.5. equilibrium state is attained in the whole system such that
there exists a uniform electrochemical potential. As this
takes place, a charge and a built-in electric figjgappear in
the QW. If the reservoir conductivity is high, the built-in

factor that depends on the radial distribution of the electrori€!d satisfies the conditiorefodx Eo(x)=Ap. Such a
density. If the electron density is distributed uniformB,, ~ charge transfer is similar to what happens when a contact
~1/3. potential difference appears in classical 3D systems. How-

peeVer, an essential difference is in the distance over which the
contact field is screened. In the 3D case the contact field is
screened over a finite lengtle.g., the Debye length or the
Thomas-Fermi screening lengthn the mesoscopic structure
considered here, the contact field is produced by the charge,
one part of which is situated in the 1D wire and the other on

0.4

0.6

The last term in Eq(2) is the Hartree energy of the electron
interaction with the positive backgrounBy, is a numerical

The chemical potential in the 2D reservoir can easily
obtained from the known expressfdrfor the electron en-
ergy as a function of the density parametdRg
= (maiN,p) * (whereN,p is the 2D electron density In
the high density cas&y <2, one obtains

pop [ a2 the _surface of the _reservoir adjacent to the wire. O_ne_ can

B = (T) +2Rs‘2—1,8(Rs‘1—0,38 easily see that, owing to the 3D nature of the electric field,

y any distribution of charges in a QW cannot screen the con-
—0.086R, In Rs+0.51R, (3y  tact field over a finite distance. Thus the question arises of

how the charge density and the electric field are distributed

whered is the thickness of the 2D layer. in the QW and over the reservoir surface. In the case of a

Using Egs.(2) and(3), the chemical potential difference high enough electron density, the interaction effects are not
Ap=pip— mop is calculated as a function of the QW radius strong, and this problem can be solved analytically using the
and the density parameteg. The results of these calcula- Thomas-Fermi approximatidi. In the present paper, we
tions are illustrated in Fig. 1, where tigu dependence on study this problem using a numerical solution of the Sehro
the wire radiusa is shown for various values of . Here we  dinger equation coupled to the Poisson equation within the
considerrg as an independent parameter because the backartree-Fock approximation.
ground charge density depends on external factors, such as
the charge absorbed at the wire surface. Figure 1 shows that
in sufficiently thin wires the chemical potential is higher than
in the reservoir. However, with increasing radius of the QW
the chemical potential in the wire can become lower than in  Finding the self-consistent electron density and the poten-
the reservoir. tial in a QW coupled to electron reservoirs is a rather com-

The chemical potential differencAw is caused by all plicated problem because the electron density redistribution
energy components contributing to the chemical potentials itbetween the QW and the reservoirs produces a strong varia-
the QW and in the reservoir. As an example it is instructivetion of the electron energy in the QW. The energy variation
to consider the estimations for the specific case where thig estimated ad u, which is shown above to be of the order
QW diameter is equal to the 2D layer thickneds;2a, and  of the Fermi energy. In essence, the QW and the reservoirs
the background charge density per unit arBap, is the  should be considered as a unique quantum system. To our
same in the reservoir and in the QW. The latter means tha&knowledge, such a problem has not been studied to date. In
n=2aN,p. In this case the energies contributing to thethe present paper, we investigate it using a simplified model
chemical potentials are estimated as follows. The confinebased on the Hartree-Fock approximation, which allows one
ment energy in the QW is approximately twice that in theto take adequately into account the charge accumulated in
reservoir. Hence the confinement energy cauysgsto rise  the QW both for the equilibrium state and under the far from

IIl. MODEL
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u, The positions ofw, andw_ relative to the conduction band

__injected electron flow I bottom of the corresponding reservoirs are fixed because the
U eV electron gas in the reservoirs is incompressible. However,
I a m. andu_ are shifted relative to each other in the presence
backward electron flow of an applied voltage/, . _ _
oW The following energies contribute to the potential shape

of the structure: the confinement energy in the QW; the po-
tential produced by the external voltage source; the Hartree
and exchange energies in the QW. In the reservoirs
(Ix|>L/2, L being the wire lengththe electron density is
taken to be so high that the-e interaction energy can be
) ignored in comparison with the kinetic energy. Moreover,
the reservoirs are assumed to be ideally conducting and
FIG. 2. Energy diagram of a QW with leads and the electronh€nce can be treated as equipotentials. Inside the Q\&¢he
flows. interaction potential (x,x") is determined by both the di-
rect interaction of electrons with each other and the indirect
interaction via image charges induced by electrons in the
equilibrium conditions appearing when an external voltage igeservoirs. Because of this, the interaction potential depends
applied. This approach allows one also to study the exchang@n the coordinatex,x’ of the interacting electrons sepa-
interaction effect on the charge accumulated and the electri@tely, rather than simply on their difference. In the QW the
potential. However, it does not take into account the electro®ne-electron wave functions, , s(x) are characterized by
correlation energy. The ratio of the correlation energy to thequantum numbers:=+1 (r=+1 indicates electrons inci-
exchange energy depends on the electron density. For 18ent on the QW from the left reservoir amé= —1 corre-
conductors this ratio can be estimated according to Ref. 2Gponds to electrons incident on the QW from the right reser-
The correlation energy is negligible wheg<1. Under this  voir); k, is a wave number in the leftr &+ 1) or right (r
condition the Hartree-Fock approximation is justified. = —1) reservoirsis a spin variable. In this paper we ignore
It is instructive to estimate numerically the number of changes irs and suppose that the states with opposite spins
electrons in a GaAs QW when,=0.5. The Fermi energy are equally occupied. The effects of possible spin polariza-
and the electron density are respectivefy~4 meV andn tion in a QW will be considered elsewhere.
~6x10°cm 1. Our computation procedure works well  The electron transport in the reservoirs, close to the tran-
when the QW length is not too large in comparison with thesition between the reservoir and the QW, is modeled by a 1D
Fermi wavelength. If one puts the QW length equal to 0.3Schralinger equation without interaction. This model allows
um, the total number of electrons in the QW is estimated asne to simulate adequately the transmission probability be-
about 18. Thus the system contains about ten electrons intween the reservoirs and the QW. The value of the transmis-
QW open to reservoirs. The number of electrons really exsion probability calculated in this way as compared with that
isting in the wire and their density distribution is determinedfor a true 2D to 1D transition at the interface of the reservoir
by the QW length, the background charge, the applied voltand the wire has been investigated by direct comparison of
age, and thes-e interaction energy. The parameters of thethe transmission probabilities of these two geomefiighe
QW estimated above are realizable in experiment. difference depends on the energy but does not exceed 15%
In order to investigate specific cases with different rela-even close to the transmission threshold. The physical reason
tive positions of the chemical potentials in the QW and resfor the success of the purely 1D model is that near the chemi-
ervoirs, we introduce a positive background charge densitgal potential level, of all the electron waves in the reservoir,
en, in the QW, which is considered as a parameter of ouronly those couple effectively to the wire that have a wave
model. By varyingen, it is possible to realize any relative vector that is nearly parallel to the wire axisollimation
position of the chemical potentials of the uncoupled systemeffect®). We also emphasize that in the problem under in-
Charges on the QW surface are not taken into account in owestigation the electron density of the 1D Salirmer prob-

|
NI-
—
x

present consideration. lem is needed only within the wire. It is unimportant for the
Another simplification is that only the lowest subband inreservoirs because they are treated as equipotentials and
the QW is considered. therefore the calculated electron density distribution in the

A 1D sketch of the energy diagram of a QW with leadsreservoirs does not directly affect tleee interaction in the
and the electron flow&n a far from equilibrium situationis QW. The calculated electron wave functions in the reservoirs
shown in Fig. 2. HerdJ, is the confinement energy in the affect only the transmission probability through the contacts.
QW and . are the chemical potentials in the reservoirs. In the reservoirswrykr's(x) is thus

exdik, (rx+L/2)]+ R, exd —ik,(rx+L/2)] if rx<—L/2

Yri s0Z 7, etk (rx—L12)] if rx>L/2, @
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where k/)?=k?+rx2meV, /42, andV, is the applied volt-  For the reservoir configuration that we consider here, the
age. “external potential” is a linear function ofx: Ugy

In the QW, ¢, s(X) is determined by the equation =eV,(x/L+1/2).
' The energye, (k) in Eq. (5) is expressed in terms of the
wave vectork, and the applied voltag¥,,

ﬁz dz‘pr,kIr .S ~
_ﬁT+[UO(X)_Uext(x)+UH(X)+Hex]l/fr,kr s h2K?
X 8r(kr):m"_evaé)‘r,—lr
:“/‘r(kr)wr,kIr s- (5

where we assume that the energy reference is fixed=at

In Eq. (5) the potential energy has the following components.™ %

Uo(x) is an effective potential that simulates the electron !N addition, we require continuity of the wave functions

confinement in the QW. In the simplest case, we can assunfi€termined by Eqst5) and (4) and their derivatives at the
that U(x) = Uy=const for |x|<L/2 and Uo(x)=0 for || reservoir-wire interfacex==*L/2. The distribution func-

>L/2. Uy is the Hartree energy, tions _f(kr) i_n the .reservoirs are taken in_the_ form of the
Fermi functions with the temperatuiieconsidering the fact
L2 that the Fermi level in the right reservoir is shifted down by
UH(X)=f dx'U(x,x")[n(x")—np], (6) eV, with respect to the left one.
L2 Inside the QW no distribution functions are assigned. The
electron distribution over the energy is determined by the
electron flows from the left and right reservoirs and the in-
teraction processes inside the QW. The external voltage pro-
~dk du<_:es a variation of the _ele<_:tron flows, as a consequence of
nx= >, J z—rf(kr)Wr,k e (7)  Which the electron density is changed. Ultimately, this re-
r==,s Jo 2™ ' sults in the self-consistent variation of both the electron
S o _states and their occupation for both the left and right moving
andf(k,) the electron distribution function in the reservoirs. particles.
In Eq. (6) we assume for simplicity that the radial component’ The wave functions that we consider in this work are
of the background charge density is the same as the electrhgracterized by a continuous quantum numtbef® Hence,
density. , _ _ i should be considered as a function of two variablesid
The e-e interaction potentiall (x,x") that appears in EQ. Equation(5) is an integro-differential equation with re-
(6) depends on the spatial configuration of the leads. In whagpec 1o the variable and an integral equation with respect
follows the numerical calculations are carried out for they, ine variablek, . We develop a numerical scheme for the
case where the leads are represented as two plates perpeiution of this equation on a grid spanning the two vari-
dicular to the QW. This configuration is convenient for fur- ghjes The computation method is described in the Appendix.
ther calculations because in this case a relatively simple ang is worth noting that in the case where the voltage is ap-
lytical expression is obtained fdw (x,x").2>% This form of lied, the wave functions are found without using any expan-
the interaction potential allows one to take into account Nokjon in terms of the undisturbed wave functions.
only the direct Coulomb interaction of electrons but also  The numerical computations were performed using the
their interaction via image charges induced on the lead SUR32_nrocessor computer system Parsytec CC.
faces. The interaction potential is

with n, being the positively charged background density,
n(x) being the electron density,

5 IV. THE EQUILIBRIUM STATE

e” (= dy
U(x,x’)=I

o Sinhy

|)(y|2 First, we consider the equilibrium state that appears in the
absence of an applied voltayg=0. In order to realize the
[sinf{y(ll2+ HlsinHy(1/2—-¢")] if é<¢’, three casesAu>0, A,u<0, andA{LL:O) described in Sec.
) . , , . I, we vary the density of the positive background chamge
sinfly(1/2=&)]sinfy(1/2+£)] if €>&', | doing this it is convenient to compang with the charac-

where&=x/L and y, is the Fourier transform of the radial teristic density

density, which is taken to b;eyzexp:—(ayIZL)Z]. Using the 2
analytical expression fdd (x,x’), instead of directly solving No=—7V2M(1o=Uo), 8)
the 3D Poisson equation, greatly facilitates computations.

" wherepu is the equilibrium level of the chemical potential in

Hex is the exchange energy operator, the system. This quantity has a simple physical meaning in
L2 the case where the exchange and correlation interaction is
I:|eg(x)<//r,kr &= f dX"U (XX ) Nex(X,X") iy i s(X), absent. It is the background density that determines which of
—L2 the three cases is realized in the Hartree casey# ng,

electrons are not redistributed between the QW and the leads

in the equilibration process, ifi,>ng, electrons flow from

~dk the QW to the reservoirs, andtiif,<n,, electrons are trans-

"= b ' ferred from the reservoir to the QW. Of course, turning on

Mex(XX") r:E: fo 27 LV SO i SO K. the exchange and correlation interaction shifts the vaI?Je of

where
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FIG. 3. (a) The electron density distribution attl) the potential FIG. 4. The same as in Fig. 3 but fag=0.5n,.

energy shape in the QW far,=1.5n,. The dashed lines represent
the case without exchange interaction. The solid lines are obtained
by taking the exchange interaction into account. The calculations
were done for the parameteas=5x10"7 cm, L/a=30, Uy=20
meV, uo—Uy=4 meV,T=0, andV,=0.
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the background density at which electrons are not redistrib-
uted. Nevertheless, as a reference, the vajuemains con-
venient.

The electron density distributiom(x) for the three cases
is illustrated in Figs. 3, 4, and 5. Shown here are also the
graphs of the potential enerdy(x) that includes the con-
finement energy and the Hartree energy,
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included inU(x) because it is a functional af rather than a normalized distance /.

direct function ofx. It is useful to note thaly essentially

coincides with the electric potential. 251
Let us consider first the case where the exchange interac- ]
tion is not taken into account. It is illustrated by the dashed 20':
lines in Figs. 3-5. In this cas®(x) gives the full single- % 15_:
particle potential shape in the QW. if,>n, (this corre- g ]
sponds taA u>0), Fig. 3 shows that the potential shape lies : 103
. . . (% ]
below theU, energy and hence the interaction energy is - ]
negative. This means that a positive charge is accumulated in D 5_:
the QW. It is responsible for the appearance of a potential ] (b)
well. o+t
The caseA u<<0 is realized whem,<<ny. The electron -050 -0.25 000 025 050
density distribution and the potential shape are shown in Fig. normalized distance x/L

4. The interaction energy is seen to be positive and the po-
tential shape in the QW lies abovg,. This means that a FIG. 5. The same as in Fig. 3 but fap=1.0n,,.



PRB 61 CHARGING EFFECTS IN A QUANTUM WIRE WITH LEADS 13769

1.0
54 1t
E =
" = osdl
S |
o~
> 0 ~ 1 exchange
QE) o 064 interaction
£ 2 1 included
<
g |
5 .5 0.4+
S _§ ]
. Eex @] {:
I © oz
-10 I
0'0 - LANNLEL L R R L AL AL A LA AL LR R R L A B AL L AL A B L L
0 5 10 15 20 o ! 2 8 4 5 8
¢ (meV) Ae,=p-U, (meV)

FIG. 6. Average exchange and Hartree energies of electrons FIG. 7. Linear conductance as a function of the chemical poten-
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parametersa=5x10"" c¢m, L/a=30, Uy=20 meV, uo—U,=4 approximation for several background densiting/ny=1.5, 0.5,
meV, n,=1.0ny, T=0, andV,=0. 1.0, respectively. Line 4 is obtained by including the exchange in-

teraction forn,=ny. The parameters used in the calculation are
negative charge is accumulated in the QW. It produces g5%10° " cm, L/a=20, Uy=10 meV,T=0, andV,=0.01 mV.
potential barrier that hinders electrons in passing through the
QW. Another effect produced by the exchange interaction is

If n,=n,, the electron density is essentially not redistrib-also seen from Figs. 3—5. The exchange interaction strongly
uted between the QW and the reservoirs. However, Fried@nhances the Friedel oscillation amplitude. This result agrees
oscillations of the electron density appear near the Contactgyualitatively with the analytical calculation of the interaction
Fig. 5. The Friedel oscillations are also observed if there i€ffect on the transmission through a barrier in 1D syst&ms.
carrier transfer, but they are superimposed on the much our case the Friedel oscillations are generated at the con-
stronger variation of the potential due to the charging of thdacts of the QW with the reservoirs. Their amplitude in the
QW. potential energy is quite pronounced but smaller than the

Let us now consider the exchange interaction effect. Théermi energyuo— Uy in the QW. For the discussion which
electron density distribution and the potential shape, calcufollows it is important to remark that the Friedel oscillations
lated by taking into account the exchange interaction, ar@re superimposed on the smooth variation of the potential
shown in Figs. 3-5 as solid lines. The exchange interactiofroduced by the charge accumulated in the QW. Even if the
is seen to result in an increase of the electron density. This igxchange interaction is fully taken into account, this smooth
a consequence of the fact mentioned in Sec. Il that the excomponent has an amplitude that is larger than that of the
change interaction decreases the chemical potential in a QVffriedel oscillations. Due to the smooth variation of the po-
That is why more electrons come into the QW when thetential the QW becomes nonuniform.
equilibrium state is established. Correspondingly, the nega-
tive charge in the QW increases, which results in the growth
of the energyJ (x). However, this does not yet mean that the
electron states with energy lower thal{x) are necessarily The model that we have developed above allows us to
states decaying in the QW, since the exchange interactiofind the electric current arising when an external voltage is
lowers the effective barrier between the QW and the reserapplied. The current is calculated as the sum of the partial
Voir. currents of the states; ¢ s, taking into account their occu-

Since it would be incorrect to consider the exchange enpation. The linear regime is realized wheN,<(uo—Uy).
ergy as a function ok, we calculate an average value of the |n this case we have obtained the dc conductance as a func-
exchange energy per particle incident on the QW with thejon of the chemical potentigk,. The results of these calcu-

V. LINEAR CONDUCTANCE

energye(k,) from the left reservoir, lations for zero temperature and for several densities of the
. background charga, are given in Fig. 7.
(Y[Hed ) The conductance oscillations with varying chemical po-
EeX:W* tential are a consequence of the nonadiabatic reservoir-wire

interface. The rapid variation of the potential at this interface
(here(---) denotes averaging over the QW lengtifhe leads to backscattering and, if the electron wave is coherent
average exchange enerBy, is shown in Fig. 6 as a function over the entire wire length, to resonances. The oscillations
of e(ky). The average Hartree ener@y, is also given in  have the same origin as the resonances observed in over the
this figure. It is seen thakE,, exceedsEy for all energies. barrier transmission of noninteracting particles. A similar ef-
Hence the joint effect of the exchange interaction and thdect also appears in the transport of noninteracting electrons
Hartree interaction consists in an effective lowering of thethrough a narrow, ballistic, nonadiabatic constriction in a 2D
barrier, so that electrons with energy below the confinemenglectron gas? Our calculations show that theee interaction
energyU, can transit through the QW without decay. changes the effective potential barrier that electrons have to
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potential level and the Friedel oscillation period become de-
] pendent on the position in the QW. This is why the resonant
80 interaction of electrons at the chemical potential level with
] 1 2 the Friedel oscillations is destroyed and the electron passage
] is not suppressed.
20
] VI. NONLINEAR TRANSPORT AND MULTISTABILITY

A significant redistribution of the electron density be-
tween the QW and the reservoirs occurs under far from equi-
J librium conditions when the applied voltage exceeds the

<php> (arb. units)

Fermi energy. Electrons are injected from the left reservoir
: . (cathode while the electrons entering the QW from the posi-
0 tive reservoir(anode are scattered back inside the QW. As a
consequence, the electron density decreases in the QW
FIG. 8. Exchange interaction effect on the spectrum of the elec{roughly speaking to one-half of the equilibrium dengity
tron density( | ). Line 1 presents the spectral density obtainedthough the positive background charge is unchanged. Be-
by including the exchange interaction; line 2 is the spectral densitgause the positive charge is dominant, a potential well ap-
without the exchange interaction. The calculations are dor pears in the QW, with the potential shape being distorted by
=5x10"" cm, L/a=30, Uy=20 meV, uo—Uy=4 meV, n, the external potential, as illustrated in Fig. 2. Therefore the

15 21
Energy (meV)

=1.0ny, T=0, andV,=0. kinetic and potential energies are greatly changed. The
_ change in the potential energy produces variations in the
overcome in passing from one reservoir to another. wave functions(including even a possibility for resonant

First, we discuss the results obtained within the Hartresstates to appegaand the electron density distribution. In this
approximation, when exchange interaction is neglectedway feedback arises between the electron density and the
These results are represented by the lines 1-3 in Fig. 7 fgsotential in the QW, which is an important mechanism in
several different background densitieg. With increasing nonlinear transport. It is that mechanism which is realized in
N, the oscillations become more frequent, which means thahe model proposed.
the effective wave number of the electrons is increased. Ex- A complete numerical analysis of the nonlinear transport
actly the same behavior is demonstrated in Figs. 3—5properties in the wide range of applied voltages within the
namely, with increasing, the potential in the QW is shifted Hartree-Fock approximation meets some difficulties caused
downward, causing the kinetic energy to increase. by the long computation time. In this paper we restrict our

A similar effect occurs when the exchange interaction isconsideration to the Hartree approximation, which is reason-
turned on. It is demonstrated in Fig. 7 by curvéddtained able at high enough voltage because the exchange energy
by ignoring the exchange interactioand by line 4(obtained  decreases when the kinetic energy of electrons is incrédsed.
by including exchange interactipnthe background charge The calculations were carried out using the method of
being the same in both cases. The exchange interaction jgseudotime evolution to the steady soluffbdescribed in
seen to make the conductance oscillations more frequenthe Appendix. It turns out that in some range of applied
The reason for this effect is that the exchange interactiooltage an instability of the evolution process appears. The
results in an effective lowering of the potential energy of theinstability origin is not connected with the computation pro-
electrons and consequently in an increase of their kineticess but is caused by real behavior of the system.
energy. In order to assess the exchange interaction effect on The mechanism of the instability is as follows. When the
the effective potential, it is instructive to see how the ex-applied voltage is high enougltompared to the Fermi en-
change interaction affects the spectral density of electronsgrgy), the electron flow injected from the negatively charged
i.e., | /? integrated over the QW length. This is illustrated reservoir is the only flow in the QW. Let a velocity fluctua-
in Fig. 8. The exchange interaction allows the electrons withtion appear in some portion of the wire. To be definite, let us
energy below the confinement enengdy to pass through the assume that the velocity is increased above its stationary
QwW. value. Since the total electron flow is limited by the contact,

It is interesting to note that, despite the fact that Friedeit is not disturbed by this fluctuation. Hence, the continuity
oscillations are present in the QW, no noticeable suppressioof the current requires that the electron density decreases.
of the conductance is observed. The effect of conductancehis leads to a growth of the positiveed charge, because
suppression by a periodic potential associated with Friedetlectrons cannot completely neutralize the background
oscillations was considered for infinite 1D systems with a charge. The excess positive charge causes the potential en-
potential in Refs. 31 and 30. This phenomenon is connectedrgy of the electrons to decrease. Under the condition of
with the fact that a periodic component of the potential sup-ballistic transport, this results in a new increase of the veloc-
presses the transmission of the electrons with energy near tlitg, and so on until some nonlinear process stabilizes this
Fermi level across the QW& gap appears at the Fermi level instability. In our model this is achieved by a redistribution
The absence of this effect in our system is a consequence of the overall electron density and a reshaping of the poten-
two facts. First, the QW has a finite length. Secd¢add no tial distribution in the QW. In such a way the potential shape
less essentigl the QW becomes inhomogeneous owing tois switched from one state to the other under the condition
the electron density redistribution between the QW and thehat both states are characterized by the same potential dif-
leads. As a consequence the kinetic energy at the chemictdrence across the QW ends.
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20 VII. CONCLUSIONS

E’ 1 / In this paper a QW of a finite length coupled to reservoirs
~ 15 is considered as a unified system. We have found that the
5 / electron density is substantially redistributed between the
& ] wire and the electron reservoirs when this system is formed.
> 10 As a consequence of this process, a QW can acquire a net
%0 % charge. The charging of the wire is caused by the chemical
5 potential difference between the wire and the leads which
2 5 § exists if these two subsystems are decoupled. This phenom-
& ] | enon is similar to the contact potential difference in a clas-
v, 0 | sical multiconductor system. The structures of the charge
0 "5 10 15 20 25 density and the electric potential distributions differ accord-
Voltage V. (mV) ing to the chemical potential differenc@) a positive charge

is accumulated in the wire and a potential well is developed

FIG. 9. Dependence of the average kinetic energy of electrong"ere; _(") the_ wire 1S Charged ne_gatlvely giving rise to a
on the applied voltage. The calculations are for the following pa-POtential barrier(iii) the wire remains uncharged as a whole.
rameters:a=5x10"" cm, L/a=20, U,=10 meV, uo—U,=3 In all cases, Friedel oscillations are present which are gener-

meV, n,/ny=1.0, andT=0. ated at the nonadiabatic contacts of the QW with reservoirs.
They are superimposed on the relatively smooth profile of
In order to describe the transition from one shape to thdh€ potential produced by the charge accumulated in the
other as a continuous process it is necessarily to characteriyd'e- This smooth potential has a large amplitude. The Frie-
the nonequilibrium state of the system by a parameter othef€! oscillation amplitude is strongly enhanced if the ex-
than the applied voltage. This parameter should distinguisn@nge interaction is included.
states with different potential shapes and the same potential Variation of the electron density in a QW due to electron

difference across the ends. As such a parameter, the mekgdistribution between the wire and the reservoirs produces a
kinetic energyE,, of electrons in the QW can be used significant effect on dc conductance. This effect is connected

with the change of the kinetic energy of the electrons due to
two factors:(i) the variation of the accumulated charge and
> | dk(k | T|k the potential variation associated with this chargsg; the
(ke TlKr) P
r==+ variation of the exchange energy. The exchange energy sub-

Exin= J'LIZ ' stantially lowers the effective potential barrier that electrons

dx n(x) have to overcome when passing from one reservoir to an-
other.

. The Friedel oscillation potential does not suppress the
whereT is the kinetic energy operator. conductance because the QW becomes inhomogeneous as a
This conclusion is similar to what is known in the theory consequence of the electron density redistribution between
of hot electron instabilities in semiconductors. The electron:he QW and the leads. The electron density variation due to
heating by the electric field results in S- and N-shapedhe voltage applied across the leads and the change of the
current-voltage characteristics. Under these conditions, thgffective potential shape, associated with this variation, in

electron temperature uniquely determines the state of thge wire is an important mechanism for nonlinear transport.
systent®® In our case the kinetic energy of the electrons is a The most interesting consequence of the charging effect
direct analog of the electron temperature. in the wire is the instability that arises under a high enough

We have developed the algorithm that allows one to solvgypplied voltage. The instability shows itself as a spontaneous
our problem in the case where the mean kinetic energy ifncrease of the kinetic energy of the injected electrons at a
fixed rather than the applled V0|tage. This algorithm is de-given app“ed Vo|tage' Ina QW with a nonadiabatic connec-
scribed in the Appendix. In this computation scheme allion to the reservoirs, the development of instabilities results
quantities(including V,) are determined by,;,. We have in the appearance of multistable states, i.e., in the existence
found that this algorithm gives stable results and the nonpf several stable states at a given voltage.
equilibrium state of the system under investigation is we conclude by emphasizing that the charging effect ana-
uniquely determined by, . In particular, the dependence |yzed here is a general phenomenon that might be important
of E,i, on the applied voltage is shown in Fig. 9. The kinetic in many mesoscopic systems containing electronically differ-
energy is seen to have several values for a given vokgge ent compounds. Examples of current interest are carbon
while V, is uniquely defined b¥,;,. Correspondingly, sev- nanotubes! hybrid normal-superconducting systems, and
eral nonequilibrium states, with different distributions of the atomic quantum point contacts.
electron density and the potential, are possible at a given
voltage. It is obvious that the states are not all stable with
respect to time-dependent fluctuations.

The multistability, and in particular bistability, phenom-  The present work has been supported by INT@Bant
enon described above may be useful for understanding thdo. 96-072). V.A.S. and S.V.P acknowledge the Russian
negative differential conductance observed in quantuniund for Basic ReseardiGrant No. 99-02-18192the Rus-
wires3® sian Program “Physics of Solid-State Nanostructures”
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APPENDIX: THE COMPUTATION METHOD where\ min and\ .« are the lowest and highest eigenvalues

o , of M®). The iteration process is ended when the following
The problem of finding the wave functions for a QW .gndition is fulfilled:

coupled to reservoirs can be reduced to the solution of Eq.
(5) in the inner region—L/2<x=<L/2 and matchingy, \ s mi(jl+1)_mi(jl)
and its derivative at the boundarigs= =L/2 to the wave max ——~——
functions(4) in the outer regions. Combining the matching

equations fory s and ¢y s, one can exclude the coeffi- \wherem()) is an element of the1 ) matrix. In the present
cientsR, and T, to get finally the following nonuniform  paper,s was chosen to be 16.

<96,

|
m{}

boundary conditions foy; y s: The above method is successful when the system under
iK (2= &) rx=—LJ2 investigation has a unique solution. Howevv_ar, at some fix_ed

W =1 e (A1) valu_e_s of the applied voltage the computation shows an in-

ke s Ikr’i,/fr,kr s rx=L/2, stability. In the course of the pseudotime evolution process

the calculated quantitiesuch as the potential, the electron
density, the kinetic energyare randomly switched between

. ) i several values. This is connected with the fact that the state
two continlious variables: the space coordinagad the en-  f the system is not uniquely determined by the calculation
ergy e, =h°kp/l2m. Thusy . s= 4t s(X,&;), wherexands,  scheme where the applied voltage is fixed.

are varied respectively in the regionsL/2<x=<L/2 and 0 A unique description of the system is achieved by using
<g,<egy, with the upper boundary,, being equal tou,  the mean kinetic energl,;, of the electrons as the param-
+3kgT (kg is the Bolzmann constari, is the temperatuje  eter that defines the nonequilibrium state of the system. We
In this region the uniform gridX;,e}i—on,:j=on, IS cON-  have developed a computation algorithm that allows one to
structed. vary Ey;, continuously; in other words, we solve the problem

The equation fory, , <(x;,&;) on the grid is obtained usingE,;, as the fixed parameter instead of the applied volt-
from Eq.(5) with use of the integro-interpolative method for a9€. . . o o
the node presentation o and the trapezium formula when  An essential question appearing in this algorithm is how
calculating the integrals ok, for the nodes ons;. This  the applied voltag®/, should be defined whefy, is given.
results in a set of nonlinear finite-difference equations thafl Ne equation definin/, is obtained from Eq(5). Multiply-

wherek, andk; are defined in Eq(4)
The wave functiong); \ s are considered as functions of

can be symbolically presented in the form ing this equation by s, integrating it ovek; and overx,
- and summing over one gets an equation of the following
M[W¥]¥=F, (A2)  form:

whereW is the wave function vector to be found akj V]
is the nonlinear operator. The matrix equati@®) is inho- Eiin—eVaA[W]=B[V], (A4)
mogeneous as a consequence of the boundary conditiomhereA[ W] andB[W] are functionals of the electron wave
(Ad). functions. Solving this equation with respect\fg one gets
The equationgA2) are solved by the iteration method. V, as a functional of¥", with E;, being a parameter,
However, the commonly used successive approximation
scheme RI[ ¥ ]w(+D=F with | being the iteration num-
ben turns out to be badly convergent. We use the method of
pseudotime evolution to the steady solutfiMore specifi- When solving the problem witk,;, as a parameter, Eq.
cally, we use the two-layer iteration scheme of this method(AS5) should be taken into account together with EA3).
In this scheme the approximating matt&( is introduced, This system of equations is solved using the above

which is calculated with the use of the iteration process pseudotime evo(lll;tlon m_etho_d an_d tW_o—Iayer lteration
scheme. The saf;’ approximatingV, is defined as

V=g, [W]. (A5)

VIGE v IO N A
——=M[YO]-MO, 1=012..., v{TH—yD
7 = =@ [vO1-VD | 1=012....
(AS) 7| kin

wherer is a pseudotime parameter. The choicerofllows  As the starting value of the!) set, the arbitrary value of,,
one to attain the best convergence of the iteration process. Ag the stability region close to the instability threshold can be
the starting value oM(® we useM[¥'=0], i.e., theM used. In this generalized procedure the pseudotine cho-
matrix for noninteracting electrons. During the iteration pro-sen taking into account the spectral properties of the total
cess, W (") is calculated with the use of the equation matrix M@ V().
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