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Charging effects in a quantum wire with leads
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We investigate the distribution of the electron density and the potential in a quantum wire coupled to
reservoirs, treating this structure as a unified quantum system and taking into account the Coulomb interaction
of electrons. The chemical potential difference that exists between a decoupled, isolated quantum wire and the
reservoirs gives rise to charge transfer in the coupled system. We show that the quantum wire can be charged
positively or negatively or remain neutral as a whole, depending on such factors as the wire radius and the
background charge density in the wire. The magnitude of the charge and its sign are to a large extent
determined by the exchange interaction of the electrons in the wire. Using a Hartree-Fock approach, we
develop a model of a quantum wire which includes the reservoirs. This model allows us to find the self-
consistent distribution of the electron density and the potential in the wire both at equilibrium and in the
presence of transport. The linear conductance is investigated as a function of the chemical potential. The
nonadiabatic transition from the reservoirs to the wire leads to conductance oscillations caused by multiple
scattering of electron waves. The period of the oscillations depends on the charge acquired by the wire and the
exchange energy. We find that the exchange interaction strongly enhances the Friedel oscillations near the
contacts. However, they do not noticeably suppress the conductance because the wire has a finite length and is
charged. Under far from equilibrium conditions, which appear when the applied voltage exceeds the Fermi
energy in the wire, the system becomes unstable with respect to fluctuations of the electric potential and the
electron density. The instability results in the appearance of multistable electron states.
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I. INTRODUCTION

Electron transport in quantum wires~QWs! now attracts
considerable interest because of the fundamental import
of the electron-electron (e-e) interaction in one-dimensiona
~1D! systems.1,2 In addition, it is expected that thee-e inter-
action may produce important effects in the transport t
would be attractive for applications. However, up to no
there is no clear and unambiguous knowledge of which
fects of e-e interaction are observable under the realis
conditions of a QW with leads and what the reasons are
the deviations from conductance quantization~observed
experimentally3!, and very little is known about the electro
transport under far from equilibrium conditions.

In order to understand the transport properties, it is n
essary to know the spatial distribution of the electric pot
tial and the electron density in the structures under inve
gation. Many arguments and facts4–8 show that the leads pla
an essential role in the conductance, if the transport is inv
tigated by measuring the electric current in an external
cuit and by measuring the voltage drop between the lead
is obvious that the interaction of the QW with the leads is
weak.

In the present paper we investigate this interaction, c
sidering the QW and the leads as a unified system. An
portant problem that arises is how the electric field and
PRB 610163-1829/2000/61~20!/13763~11!/$15.00
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electron density are distributed at equilibrium~i.e., in the
ground state!, and how they are redistributed when an ext
nal voltage is applied. We show that even in the equilibriu
state the QW acquires a charge and a contact potential
ference between the QW and the leads. This phenomeno
similar to the well known contact potential difference in cla
sical conductor systems. The essential difference between
low-dimensional system under consideration and class
conventional 3D conductors is that the contact potentia
not screened over a finite length but spreads over a len
determined by the geometrical size of the structure.9 The
contact potential difference is determined by the differen
in the chemical potentialsDm of electrons in the QW and in
the leads, when these subsystems are considered inde
dently. By analyzing the chemical potentials we find th
three cases are possible, depending on the wire radius
the background charge density:~i! the QW is charged posi
tively, ~ii ! the QW acquires a negative charge, or~iii ! the
QW remains neutral as a whole.

We develop a model of a QW with leads in which th
lead-wire interaction is taken into account. It is based o
Hartree-Fock approach for the electrons in the QW and
representation of leads~which are considered as electron re
ervoirs! in a way that takes into account their 3D nature, b
requires only a 1D calculation. Using this model we inves
gate the distribution of the electron density and the elec
13 763 ©2000 The American Physical Society
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potential at equilibrium, as well as under far from equili
rium conditions. In particular, we emphasize the role of
exchange interaction effect on these quantities. If in the
sence of coupling the chemical potential of the wire exce
that of the reservoir,Dm.0, the coupled system expels ele
trons from the QW into the leads, when equilibrium is esta
lished. As a result a potential well appears in the QW. T
wire acts as a charge donor to the reservoir. IfDm,0, elec-
trons are attracted by the wire, and a potential barrier ar
between the QW and the leads. The wire acts in this cas
an acceptor. In the case whereDm50, the electron density is
redistributed only within the QW and only Friedel oscill
tions arise near the contacts. The Friedel oscillations ap
in all cases; however, they are superimposed on a much m
slowly varying potential created by the acquired charge. T
slowly varying potential has an amplitude that is large co
pared to the Friedel oscillations and thus dominates the s
tering processes. The exchange interaction strongly aff
the potential shape and somewhat enhances the Friede
cillation amplitude.

When an external voltage is applied, the chemical pot
tials in the electron reservoirs are shifted relative to e
other, disturbing the electron flows in the QW. As this tak
place, the electron density, the potential, and the excha
energy are changed self-consistently. The importance of
electrostatic potential distribution in quantum wires w
leads, especially for the investigation of time-depend
transport, and for nonlinear transport, has been emphas
previously,10 but quantitative calculations have to our know
edge not been reported thus far.

Under far from equilibrium conditions, when the applie
voltage exceeds the Fermi energy in the QW, the elec
density is substantially redistributed between the QW and
reservoirs, giving rise to a very strong variation in the pote
tial landscape. In turn the potential produces a variation
the electron density. The connection between the elec
density and the potential is very important for the und
standing of nonlinear transport. The need of a self-consis
treatment has been emphasized by Landauer.11 Within the
scattering approach, in the weakly nonlinear regime, it
been investigated by Christen and one of the pres
authors12 and by Ma, Wang, and Guo.13 The calculation of
the present paper allows us to investigate the strongly n
linear transport in the system under consideration. If the
plied voltage is high enough, the self-consistent connec
of charge and potential gives rise to an instability of t
electron density distribution and ultimately leads to multis
bility of the electron states in the QW. This means that s
eral stable states with different spatial distributions of
electron density and the potential are possible at a gi
applied voltage.

The paper is organized as follows. In Sec. II the chem
potential difference between the decoupled QW and the
electron reservoir is analyzed. Section III describes
model of the QW with leads. Section IV contains the resu
of the numerical calculations of the electron density and
tential distribution in the QW with leads. In Sec. VI th
multistability of the electron states is described that appe
for far from equilibrium conditions.
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II. CONTACT POTENTIAL DIFFERENCE

To be specific we consider a QW connecting two regio
of a 2D electron gas. We assume that there are no ne
gates and that all electric field lines emanate and termin
either on the wire or on the 2D electron gas. QW structu
of this kind are produced by etching of heterostructures w
a 2D electron gas. Such structures are widely used
experiments.14–18

First we investigate such a QW separately from 2D el
tron reservoirs. The uncoupled wire is charge neutral. T
electron charge is concentrated inside the QW, while
compensating positive charge of the impurities is really
cated in the immediate vicinity of the QW or at its surfac
The decoupled QW and the electron reservoir have their o
chemical potentialsm1D and m2D , which are generally not
equal each other. We are interested in the chemical pote
differenceDm between the QW and the reservoir.

According to Seitz’s theorem19 the chemical potential in
the QW is determined by the Fermi energy of noninteract
electrons and the self-energyS(kF) which takes into accoun
the e-e interaction,

m1D5«01«F1S~kF!. ~1!

Here «0'p2\2/(2ma2) is the first subband energy cause
by transverse confinement (a is the QW radius,m is the
effective mass of electrons!. S(kF) contains the contribu-
tions arising from the exchange and correlation interaction
well as from the electron interaction with the positive bac
ground charge. The exchange and correlation energy
investigated in the recent paper of Calmels and Gold20 using
the self-consistent theory of Singwi, Tosi, Land, a
Sjölander21 for the case where only the lowest subband
occupied. The Hartree energy is easily estimated if we
sume that the positive charge is located at the surface of
QW. These calculations lead to the following expression
the chemical potentialm1D of the QW in terms of the dimen
sionless parametersr s51/(2aBn) andb5aB /a ~with aB the
effective Bohr radius andn the 1D electron density!:

m1D

Ry
'

p2

2
b21

p2

16r s
2

1
Sxc

Ry
2

BH

r s
, ~2!

whereRy is the effective Rydberg. In Eq.~2! the first term is
the lowest subband energy, the second term is the kin
energy, and the third term represents the exchange and
relation energy. There are two expressions for the exchan
correlation term depending on whetherr s,1 or r s.1:

Sxc

Ry
'2b

5.57p24br s

2p2
if r s,1

and

Sxc

Ry
'2

1.84

r s
F ln

2br s

p
10.7115G if r s.1.
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The last term in Eq.~2! is the Hartree energy of the electro
interaction with the positive background;BH is a numerical
factor that depends on the radial distribution of the elect
density. If the electron density is distributed uniformly,BH
'1/3.

The chemical potential in the 2D reservoir can easily
obtained from the known expression25 for the electron en-
ergy as a function of the density parameterRs

5(paB
2N2D)21 ~where N2D is the 2D electron density!. In

the high density case,Rs,A2, one obtains

m2D

Ry
5S paB

d D 2

12Rs
2221.80Rs

2120.38

20.0863Rs ln Rs10.519Rs , ~3!

whered is the thickness of the 2D layer.
Using Eqs.~2! and ~3!, the chemical potential differenc

Dm5m1D2m2D is calculated as a function of the QW radiu
and the density parameterr s . The results of these calcula
tions are illustrated in Fig. 1, where theDm dependence on
the wire radiusa is shown for various values ofr s . Here we
considerr s as an independent parameter because the b
ground charge density depends on external factors, suc
the charge absorbed at the wire surface. Figure 1 shows
in sufficiently thin wires the chemical potential is higher th
in the reservoir. However, with increasing radius of the Q
the chemical potential in the wire can become lower than
the reservoir.

The chemical potential differenceDm is caused by all
energy components contributing to the chemical potential
the QW and in the reservoir. As an example it is instruct
to consider the estimations for the specific case where
QW diameter is equal to the 2D layer thickness,d52a, and
the background charge density per unit area,N2D , is the
same in the reservoir and in the QW. The latter means
n52aN2D . In this case the energies contributing to t
chemical potentials are estimated as follows. The confi
ment energy in the QW is approximately twice that in t
reservoir. Hence the confinement energy causesm1D to rise

FIG. 1. Dependence of the chemical potential differenceDm
between the decoupled QW and the 2D electron reservoir on
wire radiusa ~in units of the Bohr radius! for various density pa-
rameters:~a! r s,1, ~b! r s.1. The calculations were done with th
following parameters of the 2D layer:d52a, Rs50.5.
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with respect tom2D . The ratio of kinetic energy in the QW to
that in the reservoir is«F1 /«F2;an. Since the QW is sup-
posed to be a 1D system, the productan must be small.
Hence the Fermi energy«F1 in the QW is noticeably smalle
than the Fermi energy«F2 in the reservoir. This results in
lowering m1D relative to m2D . The ratio of the exchange
correlation energies in the case ofr s,1 is estimated as
«xc1/«xc2;(an)21/2. The exchange-correlation energy in th
QW is seen to be larger than that in the reservoir. Taking i
account that the exchange-correlation energy is negative
conclude that it lowersm1D with respect tom2D .

If the wire is now coupled to the 2D reservoir, we ca
distinguish three cases. ForDm.0, electrons are transferre
from the QW to the reservoir, so that the positive bac
ground charge dominates the electron charge in the wire
Dm,0, the reservoir supplies electrons to the QW prod
ing an excess negative charge. WhenDm50, the electron
density is not redistributed between the wire and reservo22

The electron density redistribution continues until
equilibrium state is attained in the whole system such t
there exists a uniform electrochemical potential. As t
takes place, a charge and a built-in electric fieldE0 appear in
the QW. If the reservoir conductivity is high, the built-i
field satisfies the conditione*0

`dx E0(x)5Dm. Such a
charge transfer is similar to what happens when a con
potential difference appears in classical 3D systems. H
ever, an essential difference is in the distance over which
contact field is screened. In the 3D case the contact fiel
screened over a finite length~e.g., the Debye length or th
Thomas-Fermi screening length!. In the mesoscopic structur
considered here, the contact field is produced by the cha
one part of which is situated in the 1D wire and the other
the surface of the reservoir adjacent to the wire. One
easily see that, owing to the 3D nature of the electric fie
any distribution of charges in a QW cannot screen the c
tact field over a finite distance. Thus the question arises
how the charge density and the electric field are distribu
in the QW and over the reservoir surface. In the case o
high enough electron density, the interaction effects are
strong, and this problem can be solved analytically using
Thomas-Fermi approximation.26 In the present paper, we
study this problem using a numerical solution of the Sch¨-
dinger equation coupled to the Poisson equation within
Hartree-Fock approximation.

III. MODEL

Finding the self-consistent electron density and the pot
tial in a QW coupled to electron reservoirs is a rather co
plicated problem because the electron density redistribu
between the QW and the reservoirs produces a strong v
tion of the electron energy in the QW. The energy variati
is estimated asDm, which is shown above to be of the orde
of the Fermi energy. In essence, the QW and the reserv
should be considered as a unique quantum system. To
knowledge, such a problem has not been studied to date
the present paper, we investigate it using a simplified mo
based on the Hartree-Fock approximation, which allows o
to take adequately into account the charge accumulate
the QW both for the equilibrium state and under the far fro

he
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equilibrium conditions appearing when an external voltag
applied. This approach allows one also to study the excha
interaction effect on the charge accumulated and the ele
potential. However, it does not take into account the elect
correlation energy. The ratio of the correlation energy to
exchange energy depends on the electron density. For
conductors this ratio can be estimated according to Ref.
The correlation energy is negligible whenr s<1. Under this
condition the Hartree-Fock approximation is justified.

It is instructive to estimate numerically the number
electrons in a GaAs QW whenr s50.5. The Fermi energy
and the electron density are respectively«F'4 meV andn
'63105 cm21. Our computation procedure works we
when the QW length is not too large in comparison with t
Fermi wavelength. If one puts the QW length equal to
mm, the total number of electrons in the QW is estimated
about 18. Thus the system contains about ten electrons
QW open to reservoirs. The number of electrons really
isting in the wire and their density distribution is determin
by the QW length, the background charge, the applied v
age, and thee-e interaction energy. The parameters of t
QW estimated above are realizable in experiment.

In order to investigate specific cases with different re
tive positions of the chemical potentials in the QW and r
ervoirs, we introduce a positive background charge den
enb in the QW, which is considered as a parameter of
model. By varyingenb it is possible to realize any relativ
position of the chemical potentials of the uncoupled syste
Charges on the QW surface are not taken into account in
present consideration.

Another simplification is that only the lowest subband
the QW is considered.

A 1D sketch of the energy diagram of a QW with lea
and the electron flows~in a far from equilibrium situation! is
shown in Fig. 2. HereU0 is the confinement energy in th
QW and m6 are the chemical potentials in the reservoi

FIG. 2. Energy diagram of a QW with leads and the elect
flows.
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The positions ofm1 andm2 relative to the conduction ban
bottom of the corresponding reservoirs are fixed because
electron gas in the reservoirs is incompressible. Howe
m1 andm2 are shifted relative to each other in the presen
of an applied voltageVa .

The following energies contribute to the potential sha
of the structure: the confinement energy in the QW; the
tential produced by the external voltage source; the Har
and exchange energies in the QW. In the reservo
(uxu.L/2, L being the wire length! the electron density is
taken to be so high that thee-e interaction energy can be
ignored in comparison with the kinetic energy. Moreov
the reservoirs are assumed to be ideally conducting
hence can be treated as equipotentials. Inside the QW thee-e
interaction potentialU(x,x8) is determined by both the di
rect interaction of electrons with each other and the indir
interaction via image charges induced by electrons in
reservoirs. Because of this, the interaction potential depe
on the coordinatesx,x8 of the interacting electrons sepa
rately, rather than simply on their difference. In the QW t
one-electron wave functionsc r ,kr ,s(x) are characterized by

quantum numbers:r 561 (r 511 indicates electrons inci
dent on the QW from the left reservoir andr 521 corre-
sponds to electrons incident on the QW from the right res
voir!; kr is a wave number in the left (r 511) or right (r
521) reservoir;s is a spin variable. In this paper we ignor
changes ins and suppose that the states with opposite sp
are equally occupied. The effects of possible spin polari
tion in a QW will be considered elsewhere.

The electron transport in the reservoirs, close to the tr
sition between the reservoir and the QW, is modeled by a
Schrödinger equation without interaction. This model allow
one to simulate adequately the transmission probability
tween the reservoirs and the QW. The value of the transm
sion probability calculated in this way as compared with th
for a true 2D to 1D transition at the interface of the reserv
and the wire has been investigated by direct comparison
the transmission probabilities of these two geometries.27 The
difference depends on the energy but does not exceed
even close to the transmission threshold. The physical rea
for the success of the purely 1D model is that near the che
cal potential level, of all the electron waves in the reservo
only those couple effectively to the wire that have a wa
vector that is nearly parallel to the wire axis~collimation
effect28!. We also emphasize that in the problem under
vestigation the electron density of the 1D Schro¨dinger prob-
lem is needed only within the wire. It is unimportant for th
reservoirs because they are treated as equipotentials
therefore the calculated electron density distribution in
reservoirs does not directly affect thee-e interaction in the
QW. The calculated electron wave functions in the reservo
affect only the transmission probability through the contac

In the reservoirs,c r ,kr ,s(x) is thus

n

c r ,kr ,s~x!5H exp@ ikr~rx1L/2!#1Rr exp@2 ikr~rx1L/2!# if rx,2L/2

Tr exp@ ikr8~rx2L/2!# if rx.L/2,
~4!
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where (kr8)
25kr

21r 32meVa /\2, andVa is the applied volt-
age.

In the QW,c r ,kr ,s(x) is determined by the equation

2
\2

2m

d2c r ,kr ,s

dx2
1@U0~x!2Uext~x!1UH~x!1Ĥex#c r ,kr ,s

5« r~kr !c r ,kr ,s . ~5!

In Eq. ~5! the potential energy has the following componen
U0(x) is an effective potential that simulates the electr
confinement in the QW. In the simplest case, we can ass
that U0(x)5U05const for uxu,L/2 and U0(x)50 for uxu
.L/2. UH is the Hartree energy,

UH~x!5E
2L/2

L/2

dx8U~x,x8!@n~x8!2nb#, ~6!

with nb being the positively charged background dens
n(x) being the electron density,

n~x!5 (
r 56,s

E
0

`dkr

2p
f ~kr !uc r ,kr ,su2, ~7!

and f (kr) the electron distribution function in the reservoir
In Eq. ~6! we assume for simplicity that the radial compone
of the background charge density is the same as the elec
density.

The e-e interaction potentialU(x,x8) that appears in Eq
~6! depends on the spatial configuration of the leads. In w
follows the numerical calculations are carried out for t
case where the leads are represented as two plates pe
dicular to the QW. This configuration is convenient for fu
ther calculations because in this case a relatively simple
lytical expression is obtained forU(x,x8).23,24 This form of
the interaction potential allows one to take into account
only the direct Coulomb interaction of electrons but a
their interaction via image charges induced on the lead
faces. The interaction potential is

U~x,x8!5
e2

eLE0

` dy

sinhy
uxyu2

3H sinh@y~1/21j!#sinh@y~1/22j8!# if j,j8,

sinh@y~1/22j!#sinh@y~1/21j8!# if j.j8,

wherej5x/L and xy is the Fourier transform of the radia
density, which is taken to bexy5exp@2(ay/2L)2#. Using the
analytical expression forU(x,x8), instead of directly solving
the 3D Poisson equation, greatly facilitates computations

Ĥex is the exchange energy operator,

Ĥex~x!c r ,kr ,s5E
2L/2

L/2

dx8U~x,x8!nex~x,x8!c r ,kr ,s~x8!,

where

nex~x,x8!5 (
r 56

E
0

`dkr

2p
@c r ,kr ,s* ~x8!c r ,kr ,s~x!# f ~kr !.
.
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For the reservoir configuration that we consider here,
‘‘external potential’’ is a linear function of x: Uext
5eVa(x/L11/2).

The energy« r(kr) in Eq. ~5! is expressed in terms of th
wave vectorkr and the applied voltageVa ,

« r~kr !5
\2kr

2

2m
1eVad r ,21 ,

where we assume that the energy reference is fixed atx5
2`.

In addition, we require continuity of the wave function
determined by Eqs.~5! and ~4! and their derivatives at the
reservoir-wire interfacesx56L/2. The distribution func-
tions f (kr) in the reservoirs are taken in the form of th
Fermi functions with the temperatureT considering the fact
that the Fermi level in the right reservoir is shifted down
eVa with respect to the left one.

Inside the QW no distribution functions are assigned. T
electron distribution over the energy is determined by
electron flows from the left and right reservoirs and the
teraction processes inside the QW. The external voltage
duces a variation of the electron flows, as a consequenc
which the electron density is changed. Ultimately, this
sults in the self-consistent variation of both the electr
states and their occupation for both the left and right mov
particles.

The wave functions that we consider in this work a
characterized by a continuous quantum numberkr .29 Hence,
c should be considered as a function of two variablesx and
kr . Equation~5! is an integro-differential equation with re
spect to the variablex and an integral equation with respe
to the variablekr . We develop a numerical scheme for th
solution of this equation on a grid spanning the two va
ables. The computation method is described in the Appen
It is worth noting that in the case where the voltage is a
plied, the wave functions are found without using any exp
sion in terms of the undisturbed wave functions.

The numerical computations were performed using
32-processor computer system Parsytec CC.

IV. THE EQUILIBRIUM STATE

First, we consider the equilibrium state that appears in
absence of an applied voltageVa50. In order to realize the
three cases (Dm.0, Dm,0, andDm50) described in Sec
II, we vary the density of the positive background chargenb .
In doing this it is convenient to comparenb with the charac-
teristic density

n05
2

p\
A2m~m02U0!, ~8!

wherem0 is the equilibrium level of the chemical potential i
the system. This quantity has a simple physical meaning
the case where the exchange and correlation interactio
absent. It is the background density that determines whic
the three cases is realized in the Hartree case. Ifnb5n0,
electrons are not redistributed between the QW and the le
in the equilibration process, ifnb.n0, electrons flow from
the QW to the reservoirs, and ifnb,n0, electrons are trans
ferred from the reservoir to the QW. Of course, turning
the exchange and correlation interaction shifts the value
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13 768 PRB 61V. A. SABLIKOV, S. V. POLYAKOV, AND M. BÜTTIKER
the background density at which electrons are not redist
uted. Nevertheless, as a reference, the valuen0 remains con-
venient.

The electron density distributionn(x) for the three cases
is illustrated in Figs. 3, 4, and 5. Shown here are also
graphs of the potential energyU(x) that includes the con
finement energy and the Hartree energy,

U~x!5U01UH ,

but not the exchange energy. The exchange energy is
included inU(x) because it is a functional ofc rather than a
direct function ofx. It is useful to note thatUH essentially
coincides with the electric potential.

Let us consider first the case where the exchange inte
tion is not taken into account. It is illustrated by the dash
lines in Figs. 3–5. In this caseU(x) gives the full single-
particle potential shape in the QW. Ifnb.n0 ~this corre-
sponds toDm.0), Fig. 3 shows that the potential shape li
below the U0 energy and hence the interaction energy
negative. This means that a positive charge is accumulate
the QW. It is responsible for the appearance of a poten
well.

The caseDm,0 is realized whennb,n0. The electron
density distribution and the potential shape are shown in
4. The interaction energy is seen to be positive and the
tential shape in the QW lies aboveU0. This means that a

FIG. 3. ~a! The electron density distribution and~b! the potential
energy shape in the QW fornb51.5n0. The dashed lines represe
the case without exchange interaction. The solid lines are obta
by taking the exchange interaction into account. The calculati
were done for the parametersa5531027 cm, L/a530, U0520
meV, m02U054 meV,T50, andVa50.
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FIG. 4. The same as in Fig. 3 but fornb50.5n0.

FIG. 5. The same as in Fig. 3 but fornb51.0n0.
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negative charge is accumulated in the QW. It produce
potential barrier that hinders electrons in passing through
QW.

If nb5n0, the electron density is essentially not redistr
uted between the QW and the reservoirs. However, Frie
oscillations of the electron density appear near the conta
Fig. 5. The Friedel oscillations are also observed if there
carrier transfer, but they are superimposed on the m
stronger variation of the potential due to the charging of
QW.

Let us now consider the exchange interaction effect. T
electron density distribution and the potential shape, ca
lated by taking into account the exchange interaction,
shown in Figs. 3–5 as solid lines. The exchange interac
is seen to result in an increase of the electron density. Th
a consequence of the fact mentioned in Sec. II that the
change interaction decreases the chemical potential in a
That is why more electrons come into the QW when
equilibrium state is established. Correspondingly, the ne
tive charge in the QW increases, which results in the gro
of the energyU(x). However, this does not yet mean that t
electron states with energy lower thanU(x) are necessarily
states decaying in the QW, since the exchange interac
lowers the effective barrier between the QW and the re
voir.

Since it would be incorrect to consider the exchange
ergy as a function ofx, we calculate an average value of th
exchange energy per particle incident on the QW with
energy«(k1) from the left reservoir,

Eex5
^cuĤexuc&

^cuc&
,

~here ^•••& denotes averaging over the QW length!. The
average exchange energyEex is shown in Fig. 6 as a function
of «(k1). The average Hartree energyEH is also given in
this figure. It is seen thatEex exceedsEH for all energies.
Hence the joint effect of the exchange interaction and
Hartree interaction consists in an effective lowering of t
barrier, so that electrons with energy below the confinem
energyU0 can transit through the QW without decay.

FIG. 6. Average exchange and Hartree energies of elect
incident on the QW with the energy«. The calculations are for the
parametersa5531027 cm, L/a530, U0520 meV, m02U054
meV, nb51.0n0 , T50, andVa50.
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Another effect produced by the exchange interaction
also seen from Figs. 3–5. The exchange interaction stron
enhances the Friedel oscillation amplitude. This result agr
qualitatively with the analytical calculation of the interactio
effect on the transmission through a barrier in 1D system30

In our case the Friedel oscillations are generated at the
tacts of the QW with the reservoirs. Their amplitude in t
potential energy is quite pronounced but smaller than
Fermi energym02U0 in the QW. For the discussion whic
follows it is important to remark that the Friedel oscillation
are superimposed on the smooth variation of the poten
produced by the charge accumulated in the QW. Even if
exchange interaction is fully taken into account, this smo
component has an amplitude that is larger than that of
Friedel oscillations. Due to the smooth variation of the p
tential the QW becomes nonuniform.

V. LINEAR CONDUCTANCE

The model that we have developed above allows us
find the electric current arising when an external voltage
applied. The current is calculated as the sum of the pa
currents of the statesc r ,kr ,s , taking into account their occu

pation. The linear regime is realized wheneVa!(m02U0).
In this case we have obtained the dc conductance as a f
tion of the chemical potentialm0. The results of these calcu
lations for zero temperature and for several densities of
background chargenb are given in Fig. 7.

The conductance oscillations with varying chemical p
tential are a consequence of the nonadiabatic reservoir-
interface. The rapid variation of the potential at this interfa
leads to backscattering and, if the electron wave is cohe
over the entire wire length, to resonances. The oscillati
have the same origin as the resonances observed in ove
barrier transmission of noninteracting particles. A similar
fect also appears in the transport of noninteracting electr
through a narrow, ballistic, nonadiabatic constriction in a
electron gas.32 Our calculations show that thee-e interaction
changes the effective potential barrier that electrons hav

ns FIG. 7. Linear conductance as a function of the chemical pot
tial m0. Lines 1, 2, and 3 present the calculations within the Hart
approximation for several background densities:nb /n051.5, 0.5,
1.0, respectively. Line 4 is obtained by including the exchange
teraction fornb5n0. The parameters used in the calculation area
5531027 cm, L/a520, U0510 meV,T50, andVa50.01 mV.
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overcome in passing from one reservoir to another.
First, we discuss the results obtained within the Hart

approximation, when exchange interaction is neglec
These results are represented by the lines 1–3 in Fig. 7
several different background densitiesnb . With increasing
nb the oscillations become more frequent, which means
the effective wave number of the electrons is increased.
actly the same behavior is demonstrated in Figs. 3
namely, with increasingnb the potential in the QW is shifted
downward, causing the kinetic energy to increase.

A similar effect occurs when the exchange interaction
turned on. It is demonstrated in Fig. 7 by curve 3~obtained
by ignoring the exchange interaction! and by line 4~obtained
by including exchange interaction!, the background charg
being the same in both cases. The exchange interactio
seen to make the conductance oscillations more frequ
The reason for this effect is that the exchange interac
results in an effective lowering of the potential energy of t
electrons and consequently in an increase of their kin
energy. In order to assess the exchange interaction effec
the effective potential, it is instructive to see how the e
change interaction affects the spectral density of electro
i.e., ucku2 integrated over the QW length. This is illustrate
in Fig. 8. The exchange interaction allows the electrons w
energy below the confinement energyU0 to pass through the
QW.

It is interesting to note that, despite the fact that Frie
oscillations are present in the QW, no noticeable suppres
of the conductance is observed. The effect of conducta
suppression by a periodic potential associated with Frie
oscillations was considered for infinite 1D systems with ad
potential in Refs. 31 and 30. This phenomenon is conne
with the fact that a periodic component of the potential s
presses the transmission of the electrons with energy nea
Fermi level across the QW~a gap appears at the Fermi leve!.
The absence of this effect in our system is a consequenc
two facts. First, the QW has a finite length. Second~and no
less essential!, the QW becomes inhomogeneous owing
the electron density redistribution between the QW and
leads. As a consequence the kinetic energy at the chem

FIG. 8. Exchange interaction effect on the spectrum of the e
tron density^ckuck&. Line 1 presents the spectral density obtain
by including the exchange interaction; line 2 is the spectral den
without the exchange interaction. The calculations are fora
5531027 cm, L/a530, U0520 meV, m02U054 meV, nb

51.0n0 , T50, andVa50.
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potential level and the Friedel oscillation period become
pendent on the position in the QW. This is why the reson
interaction of electrons at the chemical potential level w
the Friedel oscillations is destroyed and the electron pass
is not suppressed.

VI. NONLINEAR TRANSPORT AND MULTISTABILITY

A significant redistribution of the electron density b
tween the QW and the reservoirs occurs under far from e
librium conditions when the applied voltage exceeds
Fermi energy. Electrons are injected from the left reserv
~cathode! while the electrons entering the QW from the po
tive reservoir~anode! are scattered back inside the QW. As
consequence, the electron density decreases in the
~roughly speaking to one-half of the equilibrium densit!
though the positive background charge is unchanged.
cause the positive charge is dominant, a potential well
pears in the QW, with the potential shape being distorted
the external potential, as illustrated in Fig. 2. Therefore
kinetic and potential energies are greatly changed. T
change in the potential energy produces variations in
wave functions~including even a possibility for resonan
states to appear! and the electron density distribution. In th
way feedback arises between the electron density and
potential in the QW, which is an important mechanism
nonlinear transport. It is that mechanism which is realized
the model proposed.

A complete numerical analysis of the nonlinear transp
properties in the wide range of applied voltages within t
Hartree-Fock approximation meets some difficulties cau
by the long computation time. In this paper we restrict o
consideration to the Hartree approximation, which is reas
able at high enough voltage because the exchange en
decreases when the kinetic energy of electrons is increas33

The calculations were carried out using the method
pseudotime evolution to the steady solution34 described in
the Appendix. It turns out that in some range of appli
voltage an instability of the evolution process appears. T
instability origin is not connected with the computation pr
cess but is caused by real behavior of the system.

The mechanism of the instability is as follows. When t
applied voltage is high enough~compared to the Fermi en
ergy!, the electron flow injected from the negatively charg
reservoir is the only flow in the QW. Let a velocity fluctua
tion appear in some portion of the wire. To be definite, let
assume that the velocity is increased above its station
value. Since the total electron flow is limited by the conta
it is not disturbed by this fluctuation. Hence, the continu
of the current requires that the electron density decrea
This leads to a growth of the positive~net! charge, because
electrons cannot completely neutralize the backgrou
charge. The excess positive charge causes the potentia
ergy of the electrons to decrease. Under the condition
ballistic transport, this results in a new increase of the vel
ity, and so on until some nonlinear process stabilizes
instability. In our model this is achieved by a redistributio
of the overall electron density and a reshaping of the pot
tial distribution in the QW. In such a way the potential sha
is switched from one state to the other under the condit
that both states are characterized by the same potential
ference across the QW ends.
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In order to describe the transition from one shape to
other as a continuous process it is necessarily to charact
the nonequilibrium state of the system by a parameter o
than the applied voltage. This parameter should distingu
states with different potential shapes and the same pote
difference across the ends. As such a parameter, the m
kinetic energyEkin of electrons in the QW can be used,

Ekin5

(
r 56

E dkr^kr uT̂ukr&

E
2L/2

L/2

dx n~x!

,

whereT̂ is the kinetic energy operator.
This conclusion is similar to what is known in the theo

of hot electron instabilities in semiconductors. The elect
heating by the electric field results in S- and N-shap
current-voltage characteristics. Under these conditions,
electron temperature uniquely determines the state of
system.35 In our case the kinetic energy of the electrons i
direct analog of the electron temperature.

We have developed the algorithm that allows one to so
our problem in the case where the mean kinetic energ
fixed rather than the applied voltage. This algorithm is d
scribed in the Appendix. In this computation scheme
quantities~including Va) are determined byEkin . We have
found that this algorithm gives stable results and the n
equilibrium state of the system under investigation
uniquely determined byEkin . In particular, the dependenc
of Ekin on the applied voltage is shown in Fig. 9. The kine
energy is seen to have several values for a given voltageVa ,
while Va is uniquely defined byEkin . Correspondingly, sev
eral nonequilibrium states, with different distributions of t
electron density and the potential, are possible at a gi
voltage. It is obvious that the states are not all stable w
respect to time-dependent fluctuations.

The multistability, and in particular bistability, phenom
enon described above may be useful for understanding
negative differential conductance observed in quant
wires.36

FIG. 9. Dependence of the average kinetic energy of electr
on the applied voltage. The calculations are for the following
rameters:a5531027 cm, L/a520, U0510 meV, m02U053
meV, nb /n051.0, andT50.
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VII. CONCLUSIONS

In this paper a QW of a finite length coupled to reservo
is considered as a unified system. We have found that
electron density is substantially redistributed between
wire and the electron reservoirs when this system is form
As a consequence of this process, a QW can acquire a
charge. The charging of the wire is caused by the chem
potential difference between the wire and the leads wh
exists if these two subsystems are decoupled. This phen
enon is similar to the contact potential difference in a cl
sical multiconductor system. The structures of the cha
density and the electric potential distributions differ acco
ing to the chemical potential difference:~i! a positive charge
is accumulated in the wire and a potential well is develop
there; ~ii ! the wire is charged negatively giving rise to
potential barrier;~iii ! the wire remains uncharged as a who
In all cases, Friedel oscillations are present which are ge
ated at the nonadiabatic contacts of the QW with reservo
They are superimposed on the relatively smooth profile
the potential produced by the charge accumulated in
wire. This smooth potential has a large amplitude. The F
del oscillation amplitude is strongly enhanced if the e
change interaction is included.

Variation of the electron density in a QW due to electr
redistribution between the wire and the reservoirs produc
significant effect on dc conductance. This effect is connec
with the change of the kinetic energy of the electrons due
two factors:~i! the variation of the accumulated charge a
the potential variation associated with this charge;~ii ! the
variation of the exchange energy. The exchange energy
stantially lowers the effective potential barrier that electro
have to overcome when passing from one reservoir to
other.

The Friedel oscillation potential does not suppress
conductance because the QW becomes inhomogeneous
consequence of the electron density redistribution betw
the QW and the leads. The electron density variation due
the voltage applied across the leads and the change o
effective potential shape, associated with this variation,
the wire is an important mechanism for nonlinear transpo

The most interesting consequence of the charging ef
in the wire is the instability that arises under a high enou
applied voltage. The instability shows itself as a spontane
increase of the kinetic energy of the injected electrons a
given applied voltage. In a QW with a nonadiabatic conn
tion to the reservoirs, the development of instabilities resu
in the appearance of multistable states, i.e., in the existe
of several stable states at a given voltage.

We conclude by emphasizing that the charging effect a
lyzed here is a general phenomenon that might be impor
in many mesoscopic systems containing electronically diff
ent compounds. Examples of current interest are car
nanotubes,37 hybrid normal-superconducting systems, a
atomic quantum point contacts.
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APPENDIX: THE COMPUTATION METHOD

The problem of finding the wave functions for a QW
coupled to reservoirs can be reduced to the solution of
~5! in the inner region2L/2<x<L/2 and matchingc r ,k,s
and its derivative at the boundariesx56L/2 to the wave
functions~4! in the outer regions. Combining the matchin
equations forc r ,k,s and c r ,k,s8 , one can exclude the coeffi
cients Rr and Tr to get finally the following nonuniform
boundary conditions forc r ,k,s :

c r ,kr ,s8 5H ikr~22c r ,kr ,s!, rx52L/2

ikr8c r ,kr ,s , rx5L/2,
~A1!

wherekr andkr8 are defined in Eq.~4!
The wave functionsc r ,kr ,s are considered as functions o

two continuous variables: the space coordinatex and the en-
ergy« r5\2kr

2/2m. Thusc r ,kr ,s5c r ,s(x,« r), wherex and« r

are varied respectively in the regions2L/2<x<L/2 and 0
,« r<«M , with the upper boundary«M being equal tom0
13kBT (kB is the Bolzmann constant,T is the temperature!.
In this region the uniform grid$xi ,« j% i 50,N1 ; j 50,N2

is con-
structed.

The equation forc r ,k,s(xi ,« j ) on the grid is obtained
from Eq.~5! with use of the integro-interpolative method fo
the node presentation onxi and the trapezium formula whe
calculating the integrals onkr for the nodes on« j . This
results in a set of nonlinear finite-difference equations t
can be symbolically presented in the form

M̂ @C#C5F, ~A2!

whereC is the wave function vector to be found andM̂ @C#
is the nonlinear operator. The matrix equation~A2! is inho-
mogeneous as a consequence of the boundary condi
~A1!.

The equations~A2! are solved by the iteration method
However, the commonly used successive approxima
scheme (M̂ @C ( l )#C ( l 11)5F, with l being the iteration num-
ber! turns out to be badly convergent. We use the method
pseudotime evolution to the steady solution.34 More specifi-
cally, we use the two-layer iteration scheme of this meth
In this scheme the approximating matrixM̂ ( l ) is introduced,
which is calculated with the use of the iteration process

M̂ ( l 11)2M̂ ( l )

t l
5M̂ @C ( l )#2M̂ ( l ), l 50,1,2, . . . ,

~A3!

wheret l is a pseudotime parameter. The choice oft l allows
one to attain the best convergence of the iteration process
the starting value ofM̂ (0) we useM̂ @C50#, i.e., the M̂
matrix for noninteracting electrons. During the iteration pr
cess,C ( l ) is calculated with the use of the equation
or
u-
al
l

q.

t

ns

n

of

.

As

-

M̂ ( l )C ( l )5F.

The pseudotimet l is determined by theM̂ ( l ) operator spec-
trum. The optimal convergence is attained when

t l5
2

lmin~M ( l )!1lmax~M ( l )!
,

wherelmin andlmax are the lowest and highest eigenvalu
of M̂ ( l ). The iteration process is ended when the followi
condition is fulfilled:

maxUmi j
( l 11)2mi j

( l )

mi j
( l ) U<d,

wheremi j
( l ) is an element of theM ( l ) matrix. In the present

paper,d was chosen to be 1026.
The above method is successful when the system un

investigation has a unique solution. However, at some fi
values of the applied voltage the computation shows an
stability. In the course of the pseudotime evolution proc
the calculated quantities~such as the potential, the electro
density, the kinetic energy! are randomly switched betwee
several values. This is connected with the fact that the s
of the system is not uniquely determined by the calculat
scheme where the applied voltage is fixed.

A unique description of the system is achieved by us
the mean kinetic energyEkin of the electrons as the param
eter that defines the nonequilibrium state of the system.
have developed a computation algorithm that allows one
vary Ekin continuously; in other words, we solve the proble
usingEkin as the fixed parameter instead of the applied vo
age.

An essential question appearing in this algorithm is h
the applied voltageVa should be defined whenEkin is given.
The equation definingVa is obtained from Eq.~5!. Multiply-
ing this equation byc r ,kr ,s* , integrating it overkr and overx,

and summing overr one gets an equation of the followin
form:

Ekin2eVaA@C#5B@C#, ~A4!

whereA@C# andB@C# are functionals of the electron wav
functions. Solving this equation with respect toVa one gets
Va as a functional ofC, with Ekin being a parameter,

Va5FEkin
@C#. ~A5!

When solving the problem withEkin as a parameter, Eq
~A5! should be taken into account together with Eq.~A3!.
This system of equations is solved using the abo
pseudotime evolution method and two-layer iterati
scheme. The setVa

( l ) approximatingVa is defined as

Va
( l 11)2Va

( l )

t l
5FEkin

@C ( l )#2Va
( l ) , l 50,1,2, . . . .

As the starting value of theVa
( l ) set, the arbitrary value ofVa

in the stability region close to the instability threshold can
used. In this generalized procedure the pseudotimet l is cho-
sen taking into account the spectral properties of the t
matrix M ( l )

% Va
( l ) .
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