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Self-consistent electronic structure of spin-polarized dilute magnetic
semiconductor quantum wells
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The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are inves-
tigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of
modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of
exchange and correlations of electrons are included in a local-spin–density-functional approximation. We
demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the
carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the
concentration of spin-down~majority! electrons increases but that of spin-up~minority! electrons decreases.
The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtooth-
like variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation
is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for
the formation of the integer quantum Hall plateaus.
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I. INTRODUCTION

Recently there has been considerable interest in magn
semiconductor quantum structures of broken spin symme
The spin-polarized quantum well~SPQW! is a spin-
symmetry-broken many-body system consisting ofns elec-

trons of spins and ns̄ electrons of spins̄ embedded in a
uniform positive charge background. The SPQW with ar
trary spin polarizationz @z5(ns2ns̄)/(ns1ns̄)# is not a
common system, unlike the spin-unpolarized electron sys
occurring in metal-oxide-semiconductor or modulatio
doped heterostructures. The SPQW is expected to exhi
variety of phenomena such as spin–dependent quantum
finement effects, magnetic-field-dependent carrier concen
tion, spin-charge-coupled excitations, and different ma
body properties from that of an unpolarized electron sys
offering an interesting testing ground for the roles of cha
and spin correlations in its many-body effects.1–3

A first candidate for a SPQW with tunable spin polariz
tion z is a magnetic quantum well fabricated in a dilute ma
netic semiconductor~DMS! structure.4–6 A DMS structure
A12xMnxB is a mixed semiconductor crystal, in which ma
netic ions ~for example, Mn21 or Co21) are incorporated
into substitutional positions of the host ionA, in which the
enhanced effective carrierg factors lead to a much large
spin splitting compared to the cyclotron frequency. In ge
eral, the ternary compound DMS has a larger band gap
that of the parent material. A quaternary compound DM
that incorporates quantum-well~QW! structures such a
ZnSe/Zn12x2yCdxMnySe/ZnSe~Refs. 7 and 8! is a more
PRB 610163-1829/2000/61~20!/13745~8!/$15.00
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common SPQW system than that of a ternary compound
a DMS SPQW structure, nonmagnetic barriers separate a
lute magnetic layer forming a two-dimensional quantu
well, which is only affected by an external magnetic field

Previously, Oparin and Quinn studied the magnetic-fi
dependence of the carrier concentration in a modulati
doped DMS quantum-well structure within a Hartre
approximation,2 and predicted a substantial increase in c
rier concentration in the presence of a dc magnetic fie
Recently, Salibet al. investigated the magnetoluminescen
of ZnSe-based semiconductor quantum wells,7 and demon-
strated the electron-spin splitting and orbital quantization
the carriers as functions of external magnetic field.

In this paper, the electronic subband structure and car
concentration of a spin-polarized DMS quantum well are
vestigated at zero temperature for various degrees of
polarization. The effects of exchange and correlations
electrons are included within a local-spin–density-functio
approximation.9 We also examined the effect of magneti
field-induced in-plane orbital quantization on the density
states. A strong redistribution of subband electrons is
pected in the presence of orbital quantization,10 and we ob-
serve that the effect of the orbital quantization accounts fo
few-percent enhancement of the Hall plateau resistancerxy

in the integer quantum Hall effect.11,12 In Sec. II, we present
a self-consistent subband structure of the SPQW, includ
the effect of electron interactions. The effects of orbi
quantization on the carrier concentration and spin-split s
band structures are shown in Sec. III. Finally we conclude
Sec. IV.
13 745 ©2000 The American Physical Society
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II. SPIN-SPLIT SUBBAND STRUCTURE

We consider a modulation-doped quantum-well struct
consisting of a magnetic quantum well of widthL centered at
the position z50 ~Fig. 1!. The band gap of an alloy
A12xMnxB is known, in general, to increase linearly as M
ions are substituted into cation sites. However, we can c
ceive of a dilute alloy of smaller band gap compared to
host material by simply extending the linear interpolation
quaternary compounds. For an example such
Zn12x2yCdxMnySe, in a simplest approximation,

Eg~x,y!5~12x2y!Eg~ZnSe!1xEg~CdSe!1yEg~MnSe!.
~1!

For the case of ZnSe/Zn0.825Cd0.14Mn0.035Se/ZnSe, the gap
energy isEg(0.14,0.035)52.6845 eV, which is smaller tha
that of the host materialEg(0,0)52.8 eV. The nondilute
magnetic layer is intentionally doped with donor impuritie
Impurity-free spacer layers of a non-DMS host material
width w separate the DMS quantum well from the remaind
of the host material. Although donor-free spacer layers
present, we assume that the ionized donors can serve a
electron reservoir, which makes it possible to vary the car
concentration in the DMS layer by varying the effective
magnetic field.

The band structure of the DMS QW region is modified
the exchange interaction of the host band electrons~i.e., the
sp electron! with the localized magnetic moments~for ex-
ample, the 3d5 electrons of Mn21 ions!. Such an interaction
can be included formally by adding a new exchange termHx
to the original HamiltonianH0. The total HamiltonianH of
an electron in the DMS layer is written as

H5H01Hx . ~2!

HereH0 andHx are given, respectively, as

H05
p2

2m*
1V01g* mBsW •BW ~3!

and

FIG. 1. Schematic diagram of a modulation-doped dilute m
netic semiconductor quantum-well structure and its band pro
The DMS layer is taken to have a smaller band gap, formin
spin-dependent quantum well.
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Hx5(
RW i

Jsp-d~rW2RW i !SW i•sW . ~4!

The original HamiltonianH0 includes the band discontinuit
V0(z) and the Zeeman energyg* mBsW •BW . In Eq. ~4!, SW i and
sW are the spin operators of the Mn21 ion and the band elec
tron, respectively.Jsp-d is the electron-ionsp-d exchange
coupling constant.rW andRW i are the coordinates of the ban
electron and the Mn21 ion, respectively. The summation i
only over the lattice sites occupied by the Mn21 ions.

We adopt two convenient approximations to simplify t
exchange term. Since the electronic wave function is v
extended, we can expect that the electron ‘‘sees’’ a la
number of Mn21 ions at any time. Hence we first replace th
spin operatorSi by its thermal averagêS& taken over all
Mn21 ions. Then we approximateJsp-d(rW2RW i) by xJsp-d(rW

2RW ), wherex is the fraction occupancy of cation sites b
magnetic ions, andRW denotes the coordinate of the catio
sublattice. Therefore we replace Eq.~4! by

Hx5sz^Sz&x(
RW

Jsp-d~rW2RW !. ~5!

Here the summation extends over all cation sites. Then
spin-dependent part of the energy of a conduction electro
written as

VB
s5sz@g* mBB2N0hx^Sz&#5ge f fmBBsz . ~6!

In the present section we confine our consideration to
case when theeffectivemagnetic fieldB is in a direction
parallel to the interface. The term2N0hx^Sz&sz arises due
to the exchange interaction between the conduction elec
and Mn21 ions: h5(1/V)^fuJsp-duf&. N0 is the number of
cation sites per unit volume, andh is the expectation value
of the exchange coupling integral over a unit cellV.2,6 f is
the wave function of a conduction electron. For conduct
electrons the sign ofJsp-d is negative.

The Schro¨dinger equation for an electron of spins in the
quantum well can be written, within the Hartree approxim
tion, by

F2
\2

2m*

d2

dz2
1V0~z!1VB

s2eFs.c.~z!2En
sGxn

s~z!50,

~7!

whereVB
s is the spin-dependent potential given by Eq.~6!.

The self-consistent potentialFs.c is the sum of the contribu-
tions arising from the electrons in the potential well and t
ionized donors in the barrier. The total electronic energy
written, as shown in the Appendix, by

E5(
is

ni
sF Êi

s1
1

2
~m2Ei

s!G , ~8!

where

Êi
s5Ei

s2
1

2
^vh~z!&. ~9!

-
.
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The final subband energy functionalsE1
s(n0 ,n1 , . . . ,nn) are

obtained by minimizing the total energyE. Details of the
self-consistent calculation of the subband structures
given in the Appendix.

A. Carrier concentration

The electron concentration of each spin-split subband
be determined by iterating Eq.~A16! and the subband energ
functional Ei

s(n0 ,n1 , . . . ,nn) simultaneously. We measur
energies in units of@Hartree* #5m* e4/\2e2 and lengths in
units of the effective Bohr radiusaB* 5\2e/m* e2. For the
case of ZnSe (e58.1, m* 50.17me) we have 1 Hartree*
570.5 meV andaB* 52.521 nm. In numerical calculations
donor concentrationsNd and the sp-d exchange energy
N0hx (x50.035) were taken of the values 1018/cm3 and
0.13 Hartree* , respectively. And the conduction-band offs
is taken the case of 1 Hartree* . The thermal averagêSz&,
taken over all Mn21 ions, is given by

^Sz&52
5

2
B5/2~j!, ~10!

wherej5gMnmBSB/kBT, and S55/2. Here B5/2(j) is the
standard Brillouin function,13 which approaches a value of
at very low temperature.

As one increases the degree of spin polarizationz, i.e., the
effectivemagnetic fieldB, the spin-split subband separatio
is expected to increase, and the total electron density in
quantum well remains constant until the spin-up~minority-
spin! electron states are completely emptied. Figure 2 sh
the magnetic field and the potential-well width depende
of the carrier concentrations in spin-split subbands. The e
tron concentrationsn↓ and n↑ are obtained using the loca
spin-density approximation, and displayed as a function

FIG. 2. Magnetic-field dependence of carrier concentrations
spin-split subbands for various widths of the semimagnetic layeL.
The effective magnetic field is taken to be along the interface of
structure. In the inset, the variation ofn↓ is shown as a function o
the width of the semimagnetic layer,L at B51 T, at which the
minority-spin states are empty,n↑50.
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the effective magnetic fieldB. As the magnetic field in-
creases, the concentration of spin-down~majority-spin! elec-
trons increases, but that of spin-up~minority-spin! electrons
decreases. The reason for this is that the well depth of s
down electrons becomes deeper as the magnetic field
creases due to the exchange interaction with Mn21 ions, and
finally saturates to a constant value. The variation of subb
electron concentrationn↓ is shown in the inset of Fig. 2 as
function of the width of the semimagnetic layerL of the
casesV570 meV andw525 nm atB51 T, at which the
minority–spin states are all above the Fermi energy, i
n↑50. For a quantum well of a larger conduction-band d
continuity (V0598 meV), the ground subband bottom
minority-spin electrons exceeds the chemical potential
Bc ;2.5 T.

B. Effects of carrier interactions

We examine the effect of electron-electron interaction
the subband structure employing a local-spin–dens
functional approximation. We first seek electron densities
each spin,n↑(r ) and n↓(r ), for a system ofn electrons in-
teracting with one another in the SPQW beyond the Hart
approximation. These are obtained by solving Eqs.~A1! and
~A2! self-consistently, including the local-spin-depende
exchange-correlation potentialvxc

s (@n↑ ,n↓#;z).
The single-particle Schro¨dinger equation becomes

F2
\2

2m*

d2

dz2
1V0~z!1VB

s2eFs.c.1vxc
s ~n↑ ,n↓ ;z!Gx i

s~z!

5Ei
sx i

s~z!, ~11!

where s (5↑, ↓) is the z component of the spin, andi
stands for the subband indices. With use of Eqs.~A5! and
~A6!, the total energy is now modified as follows:

E5(
is

ni
sF Êi

s1
1

2
~m2Ei

s!G1Exc@n↑ ,n↓#. ~12!

In Eq. ~12!, the last term is the exchange-correlation e
ergy, whose functional derivative yields the exchang
correlation potentialvxc

s (@n↑ ,n↓#;rW). If the exact dependenc
of Exc uponn↑ andn↓ were known, Eq.~12! would describe
the exact ground-state energy of the spin-polarized ma
electron system. In a local-spin-density~LSD! func-
tional approximation Exc is written by Exc

LSD@n↑ ,n↓#
5*d3n(r )exc(n↑ ,n↓). Here, exc(n↑ ,n↓) is the known
exchange-correlation energy per particle for an electron
of uniform spin densities. In the present work, we use
exchange-correlation potential suggested by Gunnarsson
Lundqvist,9

vxc
s 5mP

x ~r s!Fb~r s!6
1

3
d~r s!z/~16gz!GRy, ~13!

where b(x) and d(x) are defined, respectively, b
b(r s)5110.0545r s ln(1111.4/r s) and d(r s)5120.036r s
11.36r s /(1110r s). Here r s5(3/4pne)

1/3, g50.297, and
mP

x (r s)521/par s with a5(4/9p)1/3. The spin-subband en
ergies and carrier concentrations are shown, respectively
functions of the magnetic field in Figs. 3~a! and 3~b!. The
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energy differencem2Ei
s increases linearly withne , where

ne(5n↑1n↓). For the case ofV0570 meV, L510 nm,
andw55 nm, the ground subband bottom of the minorit
spin electrons becomes higher than the chemical potenti
Bc ;1 T, and hence only spin-down states are occupied
a magnetic-field strength above 1 T. In the Hartree appro
mation the Coulomb repulsion of other electrons in sh
ranges is, in general, known to be overestimated and
effect of the exchange-correlation hole becomes more im
tant for a small electron density;1011/cm2, lowering the
Coulomb interaction energy.14 Figure 3~a! shows that inclu-
sion of the exchange correlations lowers the subband ene
Therefore, more electrons are expected to transfer into
quantum well due to the exchange correlations of electr
@Fig. 3~b!#. The larger spacer width gives a smaller electr
density for the same reason that the larger separation o
pacitors induces fewer accumulated charges. In a sin
particle picture, ignoring the interaction effects altogeth
i.e., neglecting both the Hartree and exchange–correla
potentials,2eFs.c. andvxc

s in Eq. ~11!, the calculation does
not show the complete depletion of the minority spin sta
at B>1 T which is shown in Fig. 3. This observation im
plies that partial spin polarization (z,1) of the DMS QW
would continue at higher magnetic fields in the absence
carrier interaction.

III. EFFECTS OF ORBITAL QUANTIZATION

In the presence of a strong dc magnetic fieldB
perpendicular to the quantum well, the well-known tw
dimensional density of statesr(e)5(m* A/p\2)( isu(e
2Ei

s) is modified in such a way that

FIG. 3. The spin-split subband energies~a! and electron concen
trations~b! as functions of theeffectivemagnetic field taken to be
parallel to the interface of the DMS layer. The solid and dotted lin
are the results of the local-spin-density~LSD! functional and Har-
tree approximations, respectively.
at
r
i-
t
e
r-

y.
he
s

n
a-
e-
,
n

s

f

r~e!5(
i

r i~e!, ~14!

where

r i~e!5
A

2pl (
n,s

dFe2Ei
s2S n1

1

2D\vc2g* mBsG .
~15!

Here l, n, and A are the magnetic lengthA\c/eB, the
Landau-level index, and the area of the layer, respectiv
The carrier density is given by

ni5H Dl if S l 2
1

2D\vc,m2Ei,S l 1
1

2D\vc ~a!

D~ l 1t! if S l 1
1

2D\vc5m2Ei ~b!,

~16!

whereD is the orbital degeneracy of each Landau levelD
5eB/hc), andl andt are the integral and fractional part o
the Landau-level filling factorf, respectively (f 5 l 1t). The
case of Eq.~16b! occurs when the Fermi level lies exactly o
the highest occupied Landau level.

Figure 4 shows the magnetic-field dependence of
Landau-level energies. When a Landau level is located
the chemical potential, as shown in the inset, the filling fa
tor is fractional. For electron concentrations of;1011/cm2

and a magnetic field of 10 T, both the cyclotron energy\vc
and the Fermi energy are approximately equal to
Hartree* , and the filling factor is an order of unity. In nu
merical calculations we pick 1.0 Hartree* and 10 nm forV0
and L, respectively. As one changes the magnitude of

s
FIG. 4. The energy of each Landau level as a function of

magnetic field applied perpendicular to the quantum well. The
fective magnetic field is taken to be perpendicular to the interfac
the structure in order to examine the effect of orbital quantizati
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magnetic fieldB, a sawtoothlike variation is expected in th
carrier concentration due to the displacement of a Lan
level relative to the Fermi energyEF . The displacement oc
curs for two reasons. First, its magnetic energyl
11/2)\vc relative to the confining potential of the quantu
well increases asB increases. Second, the potential in t
quantum well relative toEF also changes withB because the
electrons needed to fill the levels transfer into or out of
reservoir~ionized donors!. When a Landau level is locate
on EF , an increase ofB raises its magnetic energy an
causes the electron density to decrease; hence the La
levels become empty, transferring electrons back to the
ervoir and, thereby, lowering the potential in the quant
well. This potential lowering holds the partially filled leve
exactly atEF , After the evacuation is completed, the emp
level rises aboveEF . Then there are no partially filled Lan
dau levels, and the electron density starts to increase.
increase inB now increases the number of electrons allow
on each Landau level, and electrons transfer into the qu
tum well from the reservoir. As the potential in the quantu
well rises, the magnetic energy of the Landau level rises,
the topmost filled Landau level reachesEF . This cyclic
change then repeats.

In the presence of imperfections in a sample, the den
of states given by Eq.~16! is broadened, and the states
each Landau level, each of which has a degeneracy
eB/hc, are divided into two classes: localized states and
tended states. If the number of electrons per unit areane is
constant, the Fermi energyEF jumps from one Landau leve
to the next with an increase in the magnetic field. WhenEF
lies inside the regions of localized states, the diagonal m
netoconductivitysxx becomes zero and the off-diagonal Ha
conductivity becomessxy5(nee

2/mevc)5 f (e2/h), wheref
is the filling factor of the Landau level. This gives ris
to a region of vanishing magnetoresistancerxx5sxx /(sxx

2

1sxy
2 ), and the corresponding plateau in the Hall resista

rxy5sxy /(sxy
2 1sxx

2 ), at values (h/e2)(1/f ), f 51,2,3, . . . .
This is exactly the integer quantum Hall effect.11,12 Here a
constant electron number means that only the localized s
act as electron reservoirs. However, in the present work,
nors in the host material are considered to act as elec
reservoirs supplying electrons to the two-dimensional DM
QW. Then, as the magnetic field increases, the electron n
ber in the well varies to establish equilibrium with the ho
material. With an increase in magnetic field, the Land
level degeneracyD also increases, and hence addition
quantum states are available. Those additional states are
mally filled by electrons coming from the localized state
but in the present case the electrons are supplied by the
ized donors, and these electrons fill the new states. Th
fore, one can observe plateaus ofrxy without localized
states. In Fig. 5, we plot the inverse of the off-diagonal H
conductivitysxy

21 as a function of the magnetic field. If th
diagonal conductivitysxx is zero, as when the filling facto
is an integer,sxy

21 becomes the Hall resistancerxy . We can
clearly observe plateaus at 13 and 25 T, and electron co
lations enhance the width of the plateaus.15

IV. CONCLUSION

Self-consistent electronic properties of spin-polariz
semiconductor quantum wells are investigated, including
u
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effects of exchange and correlations of electrons in a lo
spin–density-functional approximation. The spin-split ele
tron subband structure and carrier density of modulati
doped dilute magnetic semiconductor quantum wells
examined as functions of the magnetic field. We demonst
that exchange correlations of electrons suppress the sub
energies but enhance the carrier densities in spin-polar
quantum wells. We also observe that as the magnetic fi
increases, the concentration of spin-down~majority-spin!
electrons increases but that of spin-up~minority-spin! elec-
trons decreases. Therefore, one could tune the spin pola
tion of the system by varying the strength of an effecti
magnetic field.

The orbital quantization of the in-plane motion of ele
trons causes sawtoothlike variation in electron density as
magnetic-field intensity increases. The latter variation is
tributed to the presence of ionized donors acting as an e
tron reservoir, and they are demonstrated to be responsib
part for the width of the Hall plateaus. The description w
are proposing is suitable for experimental observation. T
broken spin symmetry of the system would introduce int
esting features to its elementary excitations, such as s
charge-coupled interspinsubband excitations. We hope
present results could be verified, for example, by far-infra
Fourier transform or resonant light scattering spectrosco
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APPENDIX: SELF-CONSISTENT SPIN-SPLIT SUBBAND
STRUCTURES OF DMS QUANTUM WELLS

The Schro¨dinger equation for an electron of spins in the
quantum well can be written, in the Hartree approximatio
by

FIG. 5. Inverse off-diagonal Hall conductivity as a function
the magnetic field perpendicular to the quantum well. Dotted a
solid lines, respectively, indicate the results of the Hartree
local-spin–density-functional approximations.
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F2
\2

2m*

d2

dz2
1V0~z!1VB

s2eFs.c.~z!2En
sGxn

s~z!50,

~A1!

where VB
s is the spin-dependent potential of Eq.~6!. The

self-consistent potentialFs.c is the sum of the contribution
arising from the electrons in the potential well and the io
ized donors in the barrier,

d2Fs.c.

dz2
5

4pe

e F (
is

occupied

ns i ux i
s~z!u22(

Rd

d~r 2Rd!G ,

~A2!

whereni
s is the areal concentration of electrons with spins

in the i th subband, andRd denotes the position of ionize
donor impurities. We now make a typical approximation f
doped semiconductors,16

(
Rd

d~r 2Rd!5
1

VE
V

d~r 2Rd!d3Rd5Nd
1~z!, ~A3!

whereV is a macroscopic volume. HereNd
1(z) is the con-

centration of ionized donors. The Poisson equation to
solved together with the Schro¨dinger equation~A1! is writ-
ten by

d2Fs.c.

dz2
5

4pe

e F (
is

occupied

ni
sux i

s~z!u22Nd
1~z!G5vh91vd9 ,

~A4!

where we have

vh95
4pe

e (
is

ni
sux i

s~z!u2 ~A5!

and

vd952
4pe

e
Nd

1~z!. ~A6!

Now, we consider the case~Fig. 1!

Nd
1~z!5NduS uzu2

L

2
2wD uS L

2
1w1d2uzu D . ~A7!

Hereu(x) denotesu(x)50 for x,0; u(x)51 for x.0. d is
the width of the depletion layer andNd is the average dono
-

r

e

concentration. The chemical potentialm of the electrons,
electron densityni

s , subband energyEi
s , and effective mass

mi
s of an electron in thei th subband are related, atT

50 K, by

ni
s5

mi
s

p\2
~m2Ei

s!u~m2Ei
s!. ~A8!

As a first approximation, we solve the Schro¨dinger equa-
tion by assuming variational wave functions of the forms

x0
s55 A0

sexpF2
k0

s

2 S uzu2
L

2D G for uzu.
L

2

B0
scosS pb0

sz

L D for zu,
L

2
,

~A9!

x1
s55 A1

sexpF2
k1

s

2 S uzu2
L

2D G for uzu.
L

2

B1
ssinS pb1

sz

L D for uzu,
L

2
,

~A10!

where b i
s are variational parameters of thei th subband.

By imposing the boundary conditions thatx i
s(z) and

(1/m* )@dx1
s(z)/dz# are continuous at the interfacesuzu

5L/2, and by accounting for the normalization condition, w
can expressAi

s , B1
s , andki

s in terms ofb i
s :

A0
s5B0

s cosS pb0
s

2 D ,

B0
s5

A2pb0
s

L

Apb0
s1sin~pb0

s!12 cos2S pb0
s

L
D cotS pb0

s

L
D

,

~A11!

k0
s5

2pb0
s

L
tanS pb0

s

2 D
and
1

5

9

2

7

TABLE I. The electron concentrations in each spin subband and the variational parametersbn
s for various

degrees of spin polarizationz.

z 2pn↓ 2pn↑ b0
↓ b0

↑ b1
↓ b1

↑ E10
↓ E10

↑

@aB*
22# @aB*

22# Hartree* Hartree*

0 0.0503 0.0503 0.7214 0.7214 1.3956 1.3956 0.4041 0.404

0.2 0.0603 0.0403 0.7227 0.7202 1.3989 1.3921 0.4065 0.401

0.4 0.0702 0.0304 0.7239 0.7189 1.4022 1.3887 0.4089 0.398

0.6 0.0804 0.0202 0.7251 0.7176 1.4055 1.3850 0.4113 0.396

0.8 0.0907 0.0098 0.7263 0.7163 1.4085 1.3827 0.4135 0.393
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A1
s5B1

ssinS pb1
s

2 D ,

B1
s5

A2pb1
s

L

Apb1
s2sin~pb1

s!22 sin2S pb1
s

L
D tanS pb1

s

L
D

, ~A12!

k1
s52

2pb1
s

L
cotS pb1

s

2 D .

SinceNd
1(z) has nonzero valueNd only in L/21w,uzu,L/21w1d, vd(z) is given by

vd~z!55
0 if uzu,

L

2
1w

2
2pe

e
NdS L

2
1w2uzu D 2

if
L

2
1w1d.uzu.

L

2
1w

4pe

e
NddS L1d

2
1w2uzu D if uzu.

L

2
1w1d.

~A13!

On the other hand,vh(z), in the regionuzu,L/2, becomes

vh~z!5(
s 5

4pen0
s

e
B0

s2H z2

4
2

L2

16
1

L2

8~pb0
s!2 Fcos~pb0

s!2cosS 2pb0
sz

L D G J
1

4pen1
s

e
B1

s2H z2

4
2

L2

16
1

L2

8~pb1
s!2 FcosS 2pb1

sz

L D 2cos~pb1
s!G J 6 , ~A14!

and, in the regionuzu.L/2,

vh~z!5(
s 5

4pen0
s

e S S A0
s

k0
s D 2H expF2k0

sS z2
L

2D G21J 1
z

2
2

L

4D
1

4pen1
s

e S S A1
s

k1
s D 2H expF2k1

sS z2
L

2D G21J 1
z

2
2

L

4D 6 . ~A15!
l

e
:

th
al
ble
he ent
In obtaining Eqs.~A14! and ~A15! we used the physica
boundary conditionsFs.c.8 (0)50 andFs.c.(6L/2)50, and
the continuity ofvh(z), vh8(z), vd(z), andvd8(z). Since the
quantum well is in electrical equilibrium, we obtain th
equation governing the transferred charge in equilibrium

m5V02Ed2
4pe2

e
neS d

4
1

w

2 D1(
is

4pe2ni
s

e S Ai
s

ki
s D 2

.

~A16!

Here, the bulk chemical potential is taken to be pinned at
donor level.Ed andne are the donor binding energy and tot
electron density, respectively. In order to avoid dou
counting of the interaction energy in an evaluation of t
total energy, the Hartree energy is divided by 2 to give
e

a

modified variational energyÊi
s . The total electronic energy

is given by

E5(
is

ni
sF Êi

s1
1

2
~m2Ei

s!G , ~A17!

where

Êi
s5Ei

s2
1

2
^vh~z!&. ~A18!

The final subband energy functionalsE1
s(n0 ,n1 , . . . ,nn) are

obtained by minimizing the total energyE. In Table I, as an
example, we list numerical data obtained in the pres
work.17
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