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We present a theoretical study of the electronic and magnetic properties of iron systems in different envi-
ronments: pure iron systems@dimer, bcc bulk,~100! surface, and free-standing iron monolayer#, and low-
dimensional iron systems deposited on Ag~100! surface~monoatomic linear wires, iron monolayer, planar, and
three-dimensional clusters!. Electronic and magnetic properties have been calculated using a recently devel-
oped total-energy first-principles method based on density-functional theory with numerical atomic orbitals as
a basis set for the description of valence electrons and nonlocal pseudopotentials for the atomic core. The
Kohn-Sham equations are solved self-consistently within the generalized gradient approximation for the
exchange-correlation potential. Tests on the pseudopotential, the basis set, grid spacing, andk sampling are
carefully performed. This technique, which has been proved to be very efficient for large nonmagnetic systems,
is applied in this paper to calculate electronic and magnetic properties of different iron nanostructures. The
results compare well with previousab initio all-electron calculations and with experimental data. The method
predicts the correct trends in the magnetic moments of Fe systems for a great variety of environments and
requires a smaller computational effort than otherab initio methods.
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I. INTRODUCTION

Low-dimensional magnetic systems constitute one of
key ingredients in the development of new storage dev
characterized by high storage density and miniaturizatio1

The interest of the scientific community in low-dimension
magnetic systems from both the fundamental and prac
points of view is not new and started after the discovery
the possibility of enhancing the magnetic moment of a m
terial by diminishing the atomic coordination.2 In this con-
text, it is well known that the surfaces and free-stand
clusters of ferromagnets display a larger magnetic mom
per atom than in the bulk configuration and that free clus
of certain paramagnetic materials like Rh or V a
magnetic.1,3 A great impulse in the study of low-dimension
magnetism, from both experiment and theory, was given
the discovery of the magnetoresistance in Fe/Cr and o
multilayers.4 This opened new prospects in materials s
ence: for instance, one of the current goals is to obtain t
dimensional magnetoresistive materials by depositing ato
wires on a surface.

In contrast to the great improvement in the experimen
techniques for growing and characterizing low-dimensio
PRB 610163-1829/2000/61~20!/13639~8!/$15.00
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magnetic systems, particularly when they are supported o
substrate, the theoretical models have limitations in sev
respects. Usualab initio methods, either all electron full po
tential linear augmented-plane-wave@~FLAPW! ~Ref. 5!,
Korringa-Kohn-Rostoker~KKR! ~Ref. 6!, linear muffin tin
orbital ~LMTO! ~Ref. 7!# or based on pseudopotentials f
describing the effect of the core electrons,8 are designed to
deal with periodic structures. Their formulation ink space
requires using supercells for nonperiodic systems and t
particularly with delocalized basis, makes them prohibiti
for realistic systems of low symmetry. However, it is des
able to retain the high accuracy of those first-principle me
ods.

On the other side, semiempirical model Hamiltonia
have been proposed to overcome the difficulties related
low symmetry and large system sizes.9 These methods are
formulated in real space and use localized bases so that
periodic systems without symmetry are easy to deal with
the particular case of magnetic systems, the self-consis
tight-binding model has been successfully applied for
study of free9 and supported clusters,10 surfaces, and
overlayers.11 However, a good parametrization has to
found and, although this is possible through fittings toab
13 639 ©2000 The American Physical Society
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initio results for simple systems, its degree of transferabi
is better for certain materials than for others.

For the study of low-dimensional magnetic systems,
use in this paper a numerical linear combination of atom
orbitals density functional theory~LCAO DFT! approach
that has been recently developed and designed for effic
calculations in large and low-symmetry systems. It has b
applied successfully to quite varied systems, ranging fr
metal nanostructures to biomolecules, showing accuracy
flexibility. We have used theSIESTA code,12–16 which per-
forms a fully self-consistent density functional~DFT! calcu-
lation to solve the standard Kohn-Sham equations17 in the
local or gradient-corrected~spin! density approximations@lo-
cal density approximation~LDA !/local spin density approxi-
mation ~LSDA!/generalized-gradient approximatio
~GGA!#18,19 using a linear combination of numerical atom
orbitals as the basis set, and standard norm-conser
pseudopotentials20 in their fully nonlocal form.21 More de-
tails on the method are given in Sec. II below.

Our aim in this paper is to demonstrate the applicability
the method to the study of low-dimensional magnetic s
tems and for this purpose we have chosen iron-based
tems. The reason of this choice is double. On one ha
iron-based systems have been widely investigated thro
both all electronab initio methods and semiempirical meth
ods so that we can compare our results. On the other han
is an element of great current interest; maybe it is also
most studied magnetic element experimentally and it is
completely understood so far in many respects.

We have organized the paper as follows. The theoret
method is presented in the next section. The different
proximations are analyzed, in particular, the choice of
nonlocal pseudopotential and the basis set. In Sec. III
study pure iron systems: the dimer, the bulk, a~100! surface,
and a~100! free-standing monolayer. In this way we test t
transferability of our Fe pseudopotential and basis set.
cohesive energy, bond length, vibrational frequency, a
spin polarization of the free Fe dimer are calculated us
different basis sets, and the results are compared to ex
ments and to other calculations. The results for the sp
polarized band structure of bcc Fe is calculated and va
for the magnetic moment, density of states, exchange s
ting, and electronic occupation are discussed and comp
with other ab initio results and with experiments. Also, th
magnetic moments of the~100! surface and free-standin
monolayer are calculated, showing good agreement with
vious calculations. These calculations show that the met
is able to deal with a wide variety of iron systems using
same pseudopotential and basis set. Section IV is devote
low-dimensional Fe systems supported on Ag~100!: clusters
with linear ~wires!, planar, and three-dimensional configur
tions are studied as typical examples of supported nanos
tures. We analyze the influence of different chemical en
ronments through the hybridization and interface effects. T
main conclusions of this work are summarized in the l
section, together with the perspectives for the future, part
larly in connection with molecular-dynamics simulation a
noncollinear magnetism.

II. THEORETICAL MODEL

In this section we describe briefly the numerical-LCA
DFT computational scheme,12–16 as implemented in theSI-
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ESTA code. Details about the choice of the pseudopoten
basis set, and computational parameters are also given.
method is based on DFT, using both local-density17,18 and
generalized-gradients functionals,19 including spin polariza-
tion, both collinear and noncollinear.22 Core electrons are
replaced by norm-conserving pseudopotentials20 factorized
in the Kleinman-Bylander form,21 including scalar-
relativistic effects, and nonlinear partial-core corrections23

The one-particle problem is then solved using a LCAO
~pseudo! atomic orbitals~PAO’s!. The main advantage o
atomic orbitals is their efficiency~fewer orbitals needed pe
electron for similar precision! and their main disadvantage
the lack of systematics for optimal convergence, a we
known issue in quantum chemistry.24 In our approach, there
are no constraints either on the radial shape of these num
cal orbitals or on the size of the basis, allowing for the f
quantum-chemistry know-how25 ~multiple-z, polarization,
off-site, contracted, and diffuse orbitals!. In order to limit the
range of the pseudoatomic basis orbitals, they are slig
excited by a common ‘‘energy shift’’dEPAO , and truncated
at the resulting radial node.26 Schemes to generate multiple
z and polarization orbitals within finite truncation rang
were also developed, as described elsewhere.15 These basis
orbitals are projected on a uniform grid in real space to c
culate the density, the Hartree and exchange-correlation
tentials, and the local part of the pseudopotential. The sa
grid is used to calculate the matrix elements of the s
consistent potential between basis orbitals.

The basis functions and the electron density are projec
onto a uniform real-space grid in order to calculate the H
tree and exchange-correlation potentials and matrix
ments. Given the Hamiltonian, the one-particle Schro¨dinger
equation is solved yielding the energy and density matrix
the ground state. This task is performed either by diagon
ization ~cube-scaling, appropriate for systems under 100
oms or for metals! or with a linear-scaling algorithm. Thes
have been extensively reviewed elsewhere.27 In this work we
use a standard diagonalization method to solve the sec
matrix problem, because of the difficulty of linear-scalin
algorithms to treat metallic systems.27 From the resulting
density matrix, a new Hamiltonian matrix is obtained
O(N) operations, and the self-consistency loop is iterated
convergence.

In our simulations, we use soft ionic pseudopotenti
generated according to the procedure of Troullier a
Martins20 from the atomic configurations@Ar#3d74s1 for Fe
and @Kr#4d105s1 for Ag. The core radii for thes, p, andd
components in Fe are all 2.00 a.u., and in Ag, 2.60, 2.80,
2.60 a.u., respectively. A weighted average of the scalar r
tivistic potentials is used both for Fe and Ag. Up tof angular
momentum components of the nonlocal pseudopotential
treated via the Kleinman-Bylander construction,21 while the
local part is optimized for smoothness.

Due to the well-known failure of LSDA to predict the bc
ground state of bulk iron, we use the GGA for the exchan
correlation potential as parametrized by Perdew, Burke,
Ernzerhof.19 The calculation of density gradients is pe
formed numerically28 ~with a five-point Lagrange interpola
tion! for the discrete set of grid points. The partial-core co
rection for nonlinear exchange correlation23 has been
included. A careful study of the optimum core correctio
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TABLE I. Properties of Fe2 obtained with theSIESTA code. We use the GGA, an integration grid cuto
of 150 Ry, and a basis-orbital energy shift of 0.001 Ry for both SZSP and DZSP basis. The total spin
the cases isS53\. Bond lengthsr e ~bohrs!, binding energiesEb ~eV/atom!, and vibrational frequenciesve

~cm21) are shown. The binding energiesEb are calculated with respect to spherical5D Fe atoms. Other
calculations and experimental results are given for comparison.

SZSP DZSP PW-LSDAa GTO-LSDA b GTO-GGAb Expt.c

r e ~bohrs! 3.88 3.76 3.71 3.71 3.78 ~3.53,c3.82d!

Eb ~eV/at! 1.35 1.55 2.06 2.19 1.62 ~0.57,e0.65f!

we(cm21) 341 370 453 418 474 300g

aReference 22. eReference 34.
bReference 31. fReference 35.
cReference 32. gReference 36.
dReference 33.
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radius for the Fe pseudopotential leads to a value of 0.7
Two different basis sets were used for the present wor

describe the valence states. The first one is a single-z set
~containing ones orbital and fived orbitals!, in which thes
orbital was polarized by introducing a single shell ofp orbit-
als. We will refer to this set as the single-z singly-polarized
~SZSP! set. The second one is a double-z set, in which thes
andd orbitals were doubled, and thes shell was also polar-
ized with a singlep shell. We refer to this second set as t
double-z singly-polarized~DZSP! set. The grid fineness i
controlled by the ‘‘energy cutoff’’Ecut of the plane waves
~PW! that can be represented in it without aliasing.29 As a
rough estimate, one can associate a grid spacingh with a PW
cutoff of (p/h)2 Ry with h in a.u. We have used an energ
cutoff of 150 Ry, after checking that the results for bulk iro
and for the iron dimer do not change significantly with i
creasing the energy cutoff up to 200 Ry.

The orbital contribution to the magnetic moment is n
glected for all the Fe systems considered in this work, a
the previous calculations that we compare with. For bulk b
Fe, the orbital contribution to the magnetic moment is sm
~about 0.08mB) and for free-standing clusters with a fe
dozens of atoms, that contribution is experimentally found
be about 0.1–0.2mB with the total magnetic moment abou
3mB per atom.2

III. RESULTS FOR PURE IRON SYSTEMS

A. Iron dimer

The simulations for Fe2 have been carried out with
dEPAO50.001 Ry for both the SZSP and DZSP calculatio
Table I shows our results for the spectroscopic propertie
Fe2 with total spinS53\, which corresponds to the exper
mental configuration (7Du) and also to the ground state fo
the Fe dimer in our calculations. Let us point out here tha
we generate the iron pseudopotential from the atomic c
figuration @Ar#3d64s2 instead of the used@Ar#3d74s1, we
obtainS54\ for the equilibrium state of Fe2, instead of the
experimental valueS53\.

Three previous calculations are also given in Table I; o
of them22 is taken from a recent PW calculation using t
ultrasoft Vanderbilt pseudopotential30 and the LSDA of Per-
dew and Zunger;18 the two other sets of results come from
all-electron calculation31 using a linear combination o
.u.
to

-
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c
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o

.
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if
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e

Gaussian orbitals, the first with the LSDA of Vosko, Wilk
and Nusair,37 and the second with the GGA of Perdew a
Wang.38 Experimental values obtained by differe
groups32–36are also given. We can see that the bond leng
and binding energies calculated within GGA are larger a
smaller, respectively, than the corresponding LSDA valu
In all the calculations, the binding energyEb is calculated
relative to the isolated spherical5D Fe atoms. A discussion
of the improvement of the binding energy of Fe2 when cal-
culated relative to nonspherical atoms is given in the work
Castro and Salahub.31 With respect to our results, we stres
that despite the fact that the SZSPEb is closer to experi-
ments than the DZSP value, the DZSP solution is energ
cally more stable~and closer to the results converged wi
respect to the basis set!.

We conclude by comparing the different results in Tab
I, that the pseudopotential of Fe used in our calculations
combination with the DZSP basis leads to results compara
to other standard high-qualityab initio calculations. The
SZSP basis, although very small, also provides a very
ceptable description of the dimer.

B. Fe bulk

It is well known that bulk iron is bcc, and that the GGA
needed to find the bcc structure as the ground state inab
initio calculations.39–43We have calculated bulk bcc Fe wit
both SZSP and DZSP basis sets. First of all we performe
study in order to find the cutoff radius for the pseudo-orbit
that minimizes the energy of the system. For both SZSP
DZSP basis sets, we obtain a cutoff radius of 4.90 a.u.
both thes and d orbitals. These basis sets and cutoff ra
will be used later for more complicated Fe systems. T
electron spin density and total energy are obtained from
wave functions calculated at 500k points. No significant
changes are found with up to 5000k points.

In Table II we compare our results for the lattice para
eter, bulk modulus, and magnetic moment~obtained with
both the SZSP and DZSP basis! with results from other types
of ab initio GGA calculations, either using
pseudopotentials44,45or all electron,42,39,43as well as with the
experimental values.46 The different GGA’s used in the pre
vious calculations quoted in Table II are as follows. T
GGA functional of Perdew and Wang38 was used in the
pseudopotential planewave PW,44 the all-electron Gaussian
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TABLE II. Convergence tests for bulk bcc iron using SZSP and DZSP basis. Lattice parametera ~bohrs!,
bulk modulusB ~Mbar!, and magnetic momentM (mB) are presented. Otherab initio calculations and
experimental results are given for comparison.

SZSP DZSP PWa LAPW b GTO c FP-LMTO d FLAPW e Expt. f

a ~bohrs! 5.44 5.44 5.60 5.40 5.44 5.43 5.44 5.42
B ~Mbar! 2.32 1.90 1.45 1.69 1.74 1.60 1.82 1.68
M (mB) 2.35 2.35 2.35 2.32 2.20 2.20 2.13 2.22

aReference 44. dReference 39.
bReference 45. eReference 43.
cReference 42. fReference 46.
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Type Orbitals GTO,42 and the FLAPW calculations.43 The
GGA functional of Perdew47 was used in the pseudopotenti
linear-augmented-plane-wave45 ~LAPW! and in the all-
electron full-potential linear muffin-tin orbitals~FP-LMTO!
calculation.39 Our values for the lattice parameter of bulk F
are in good agreement with the experimental ones and in
with otherab initio calculations. Concerning the bulk modu
lus, the results with the SZSP basis are worse than th
corresponding to the DZSP basis. The calculated magn
moment for bulk iron (2.35mB) is somewhat larger than th
experimental value (2.22mB), but similar to that of previous
all-electron LMTO calculations within atomic sphere a
proximation ~ASA!,48 and to the pseudopotential resu
quoted in Table II. It is important to stress again the imp
tance of the pseudopotential for this system. For
@Ar#3d64s2 pseudopotential, the converged magnetic m
ment is 2.24mB for the experimental lattice parameter a
2.28mB for the theoretical one. At the level of these calcu
tions, the pseudopotential is more problematic than the b
set.

In order to further check the reliability of our pseudop
tential calculation, we performed anab initio tight-binding
~TB! LMTO ~Ref. 49! study of Fe bulk, using the GGA
functional of Perdew and Wang.38 Not only the magnetic
moments are very close~as shown above!, but also the den-
sity of states is similar, as can be seen in Fig. 1.

C. Fe„100… surface

The loss of coordination at the surface atoms influen
the electronic and magnetic properties of the system, as c
pared with those of the bulk. In order to mimic the Fe~100!
surface, we have taken a slab of 13 Fe layers. Checks d
onstrated that the results did not change significantly w
considering thicker slabs. Previous all-electronab initio
studies of the same surface by Ohnishi, Freeman,
Weinert50 have been performed by means of the FLAP
method5 for a slab of 7 Fe layers.

We have calculated the electronic and magnetic prope
of the Fe~100! surface for SZSP and DZSP basis sets w
the same cutoff radius of the pseudo-orbitals used in the b
and with enoughk points in the Brillouin zone to get con
verged energy and magnetic moments. For the sake of c
parison we have also performed a TB-LMTO GGA calcu
tion in the same conditions, that is, a slab of 13 Fe layers
this TB-LMTO calculation we consider enough emp
spheres to avoid the Fe-Fe interaction in different cells.
Table III we present ourSIESTA results for SZSP and DZSP
e
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basis as compared with our TB-LMTO calculations and a
with the all-electron FLAPW results obtained by Onish
Freeman, and Weinert.50 For both basis sets~SZSP and
DZSP! we obtain an enhancement in the magnetic mom
of the surface atoms compared to the bulk. In going from
surface to the central layers, we get a reduction in the m
netic moment until we find nearly the bulk magnetization
the central layer. The magnetic moments obtained with SZ
basis are systematically slightly smaller than those obtai
with the DZSP basis.

The magnetic moments obtained are a little larger th
with other ab initio calculations that use all-electron ful
potential methods, but they are smaller than the ones
tained by Weinert, Blu¨gel, and Johnson51 (3.77mB) through
a modified valence-only FLAPW method in which the ma

FIG. 1. Total density of states, in eV21 per atom, for the ma-
jority and minority spin channels of bulk bcc Fe calculated with t
TB-LMTO method ~upper panel! and with SIESTA ~lower panel!
using two different basis sets: double zeta~continuous line! and
single zeta~dashed line!, both of them including an extrap polar-
izing orbital.
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TABLE III. Local magnetic moments obtained for the Fe~100! surface with SZDP and DZSP basis se
S-n represent the different underlayers below the surface~S! andS-6 corresponds to the center of the sla
Results from otherab initio calculations are also presented for the sake of comparison. FLAPW calcula
were performed for a slab of seven layers; therefore in this case S-3 is the slab central layer.

S S21 S22 S23 S24 S25 S26

SZSP 3.04 2.43 2.50 2.41 2.39 2.37 2.36
DZSP 3.08 2.46 2.52 2.43 2.42 2.40 2.39
TB-LMTO~LDA ! 2.92 2.07 2.28 2.18 2.15 2.16 2.12
TB-LMTO~GGA! 2.99 2.13 2.35 2.24 2.20 2.19 2.16
FLAPW a 2.98 2.35 2.39 2.25

aReference 50.
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netic contributions are determined by the valence den
only. On the other hand, our small overestimation of
magnetic moments is also present in our Fe bulk calc
tions, but the general trend in going from the surface to
center of the slab~bulk! is correctly described.

Another test of our model is to examine the surfa
charge density. The fact that we obtain a good agreemen
an integrated magnitude like the magnetic moment does
guarantee a good agreement in the spin-density map
reflects the spatial electronic distribution on the surface. T
magnitude is available in the study of Onishi, Freeman,
Weinert,50 and in Fig. 2 we compare it with the correspon

FIG. 2. ~a! Self-consistent spin-density map of Fe~100! obtained
through a 13-layer calculation within the GGA and a DZSP ba
compared to~b! a seven-layer all electron FLAPW calculation~Ref.
50!. Dashed contour lines correspond to negative spin density. E
contour line differs by a factor of 2 in both panels~a! and~b!. The
contours around the Fe sites in the upper panel~a! are an artifact of
the pseudopotential. It is important to remark that due to the s
ing, small spin density differences between the two calculations
be magnified in the contour plot.
ty
e
-

e

or
ot
at

is
d

ing spin density from our DZSP calculation. The agreem
between both spin-density contours is quite satisfactory.

For completeness we have also calculated with theSIESTA

code and with the TB-LMTO GGA method the electron
structure and the magnetization for a~100! free-standing Fe
monolayer. The magnetic moments found with the SZSP
DZSP basis sets are 3.19mB and 3.23mB , respectively, and
the TB-LMTO result is 3.15mB . The SIESTA calculation
leads to an enhancement of about 0.15mB with respect to the
~100! surface, due to the loss of coordination.

IV. IRON SYSTEMS SUPPORTED ON Ag„100…

In the previous section we have shown the capability
the method for correctly describing different geometrical e
vironments for pure Fe systems. In this section we test i
mixed systems, where new ingredients are present like in
faces and hybridization effects. We have chosen Fe-Ag s
tems because Ag is a noble-metal substrate often use
experimental growth processing in order to minimize the
terference of the overlayer-to-substrate bonding with the
terlayer.

A. Iron monolayer on Ag„100…

We start with the Fe monolayer supported on the
Ag~100! substrate. In this example we have to deal not o
with the loss of bonds at the surface but also with the int
action between Fe~ferromagnetic! and Ag ~noble metal,
paramagnetic! that can influence the electronic and magne
properties of the supported Fe atoms. Previo
experimental52 and first-principles calculations53,54 have es-
tablished that Fe and Co monolayers on Ag~100! are ferro-
magnetically ordered whereas V, Cr, and Mn monolayers
Ag~100! display antiferromagnetic order.

We have first tested bulk Ag to choose the right cut
radii for the pseudo-orbitals in order to minimize the energ
resulting in a cutoff radius of 5.60 a.u. for all Ag pseud
orbitals. Then we use this basis set for all Ag calculation

We construct our system by taking Fe atoms in t
pseudomorphic position of fcc Ag and we consider the sa
lattice parameter for Ag and Fe, like in the previousab initio
calculations of Blu¨gel et al.,55 using the FLAPW method,
and of Stepanyuket al.,56 using the KKR Green’s-function
method.6

Results obtained for SZSP and DZSP basis are comp
in Table IV with those of two previousab initio calculations.

,

ch

l-
n
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TABLE IV. Magnetic moments~in units ofmB) for a free-standing monolayer~FSM! of iron at Ag lattice
distance and for a Fe supported monolayer~SM! on Ag~100! calculated with SZSP and DZSP basis se
FLAPW and KKR calculations for the same systems are also shown for comparison.

SZSP DZSP FLAPWa KKR b

FSM 3.35 3.40 3.29 3.30
SM 3.02 3.10 3.01 3.00

aReference 55.
bReference 56.
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We can see an enhancement in the magnetic moment o
Fe overlayer due to the loss of bonds. The magnetic mom
is slightly lower than for a free-standing Fe monolayer, d
to the interaction with the Ag substrate. As in the pure
systems, the magnetic moment obtained with DZSP bas
a little bit larger than that obtained with the SZSP, but t
trends for both of them are similar and compare very w
with the data available from FLAPW and KKR calculation
We obtain also a small charge transfer from iron to
(0.10e2 per atom! that is also present in the previous a
electronab initio calculations.

B. Iron clusters on Ag„100…

In this section we study the magnetic behavior of differe
types of iron clusters on Ag~100!. From the experimenta
point of view, supported clusters are easier to grow and c
acterize than free-standing clusters. Besides, most of the
plications for magnetic devices are based on supported
tems.

We have studied a single adatom, one-dimensional~1D!
linear wires, planar clusters~2D!, and small 3D Fe nano
structures on Ag~100!. We have taken fixed positions, so th
no relaxations are permitted. The corresponding geome
are shown in Fig. 3, indicating the inequivalent sites. T
local magnetic moments of each inequivalent atom are
ported in Table V. Our results can be compared with rec
KKR calculations by Stepanyuket al.57 for planar Fe clusters
on Ag ~adatom and nine-atom cluster!. These data are als
included in Table V. The atoms displaying larger mome
are those located at the corners~the least coordinated ones!
and those located in the center have reduced magnetic

FIG. 3. Labelling of the different inequivalent sites of Fe nan
structures supported on Fe~100! as used in Table V.
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ment because they have more Fe neighbors. The abs
values of the local moments in our calculations are sligh
larger than those obtained by the KKR method~always the
DZSP basis gives a little bit larger values than the SZ
basis set!. However, the relative difference between the loc
magnetic moments in different inequivalent sites is nea
the same, so that the effect of the different environment
reflected in the same way for both models and the magn
trends are correctly described. Also in both methods, K
and SIESTA, we find a small charge transfer from Fe to A
due to the hibridization effects, and the difference betwe
the magnetic moments of the free-standing Fe monolaye
Ag distance and the supported Fe monolayer is nearly
same.

For the other supported clusters, atomic wire~only one
inequivalent atom!, and 3D nanostrutures, the discussion
planar clusters is still valid, local magnetic moments ob
the coordination rule.

V. SUMMARY

In this work we have performedab initio pseudopotential
calculations of the electronic and magnetic properties of p
and mixed Fe systems with the numerical-LCAO DF
method, using theSIESTA code. We have compared our re
sults with available data obtained through different we
known ab initio methods in order to demonstrate the cap
bilities of ours for describing magnetic systems.

-

TABLE V. Results for the local magnetic moments~in units of
mB) at the inequivalent sites of several Fe clusters supported
Ag~100!, using SZSP and DZSP basis. The inequivalent sites
indicated with capital letters in Fig. 3. Available KKR data for th
adatom and for the nine-atom cluster are given for comparison

SZSP DZSP KKRa

0D adatom A 3.36 3.47 3.32

1D wire B 3.17 3.24

2D four atom C 3.23 3.33
nine atom D 3.26 3.34 3.22

E 3.23 3.31 3.17
F 3.17 3.26 3.11

3D 13 atom G 3.15
H 3.17
I 3.04
J 2.91

aReference 57.



iro

x
o

i f
er

ul
Fe
on
er

e-
s

ik
tio

m

P
w
th

v
o
d

ms
rem
e
la-
nd

of
od.
lar
the
ed.
ag-
ol-

in

wl-
FG
arch
.O.

PRB 61 13 645SYSTEMATIC AB INITIO STUDY OF THE . . .
We have constructed the nonlocal pseudopotential of
from the atomic configuration@Ar#3d74s1 and of silver from
@Kr#4d105s1. In both cases we have used the GGA appro
mation and nonlinear core corrections. Two different sets
basis have been used: SZSP and DZSP. The cutoff radi
the basis orbitals have been chosen to minimize the en
for bulk bcc Fe and bulk fcc Ag.

We have studied the following systems: Fe dimer, b
bcc Fe, Fe~100! surface, free-standing Fe monolayer,
monolayer on Ag~100!, and several Fe clusters supported
Ag~100!. The results are in good agreement with the exp
mental values~when available! and with previousab initio
~mainly all-electron! calculations. The method is able, ther
fore, to deal with complex low-dimensional magnetic sy
tems, taking correctly into account the finite-size effects l
reduced coordination and symmetry as well as hybridiza
effects.

The absolute values for the magnetic moments are so
times a little bit larger~about 0.15mB) than in all-electron
calculations, and the magnetization obtained using SZS
slightly smaller than the one obtained with DZSP. For Fe,
find similar trends with SZSP and DZSP basis sets, but
computational cost~CPU and memory! of SZSP calculations
is extremely reduced.

In order to compare with previous calculations, we ha
used fixed atomic positions, so that no relaxations are c
sidered. TheSIESTAmethod, however, allows relaxations an
s.
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molecular dynamics by calculating the forces on the ato
and the stress tensor from the Hellman-Feynman theo
with Pulay corrections.12 The computational cost would b
obviously higher than with a frozen geometry, but calcu
tions for complex magnetic systems are still feasible a
cheaper than with otherab initio methods~KKR, FLAPW,
LMTO!. Also our method does not require the inclusion
empty spheres as it is the case for the LMTO-ASA meth
Besides, going from 2D to 3D supported clusters of simi
size does not increase the computational cost, like in
KKR method where Green’s functions have to be comput
The next step will be to study more realistic, supported, m
netic nanostructures, introducing relaxations and nonc
linear magnetization.
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