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Weakly correlated electrons on a square lattice: Renormalization-group theory
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We formulate the exact Wilsonian renormalization group for a system of interacting fermions on a lattice.
The flow equations for all vertices of the Wilson effective action are expressed in the form of the Polchinski
equation. The advantage of this renormalization scheme is that the flow itself has a physical interpretation, i.e.,
the cutoff has the meaning of the temperature. We apply this method to the Hubbard model on a square lattice
using both zero- and finite-temperature methods. Truncating the effective action at the sixth term in fermionic
variables and neglecting self-energy renormalization, we obtain the one-loop functional renormalization equa-
tions for the effective interaction. We find the temperature of the instabilityTc

RG as a function of doping.
Furthermore we calculate the renormalization of the angle-resolved correlation functions for the superconduc-
tivity ~SC! and for the antiferromagnetism~AF!. The dominant component of the SC correlations is of the type
dx22y2, while the AF fluctuations are of the types. Following the strength of both SC and AF fluctuations along
the instability line, we obtain the phase diagram. The temperatureTc

RG can be identified with the crossover
temperatureTco found in the underdoped regime of the high-temperature superconductors, while in the over-
doped regimeTc

RG corresponds to the superconducting critical temperature.
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I. INTRODUCTION

In systems of correlated fermions on a lattice some in
esting and also puzzling physics seems to happen w
interaction-induced localization tendencies, antiferrom
netic fluctuations, and superconducting fluctuations
mixed. The standard example of such a system is cop
oxide superconductors.1 In the underdoped regime, betwee
the antiferromagnetic~AF! and superconductivity~SC!
phases, correlations of both AF and SC types are stron
enhanced, and a pseudogap is visible in the one-par
spectrum and in the spin response functions. The pseud
regime is limited from above by a crossover temperat
Tco(x), a monotonously decreasing function of doping.
the temperaturesT*Tco the underdoped materials a
‘‘strange metals’’: many physical properties are unlike tho
of a standard Fermi liquid.2 In the overdoped regimeTco(x)
merges with the critical temperature for superconductiv
and the regimeT.Tc is merely a Fermi liquid. Another
interesting feature of the phase diagram is the unusual f
of the order parameter. After a rather long period of cont
versies thedx22y2 symmetry is finally generally accepted.3,4

This is one of the reasons to believe that the pairing mec
nisms are tightly related to the antiferromagnetic tenden
and not to the standard phonon-exchange mechanisms.
dx22y2 form of the superconducting correlations also subs
in the pseudogap regime, as seen in recent angle-reso
photoemission5 and tunneling6 experiments. The simulta
neous existence of strong AF correlations, as seen by NM7

or neutron-scattering8 experiments, and even localizatio
tendencies such as the flattening of the band,4 make us con-
clude that the interpretation of this regime in terms of on
superconducting or antiferromagnetic fluctuations is not s
ficient, especially because we expect that they are coup
PRB 610163-1829/2000/61~20!/13609~24!/$15.00
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It is striking that some other apparently completely diffe
ent systems of correlated fermions have very similar prop
ties. A phase diagram with the superconducting phase in
vicinity of the spin density wave~i.e., antiferromagnetic! in-
stability also characterizes the quasi-one-dimensional Be
gaard salts9 and the quasi-two-dimensional organic sup
conductors of the ET family,10 where instead of doping the
relevant parameter for the phase diagram is pressure. H
ever the common feature of all these compounds is that t
are systems of correlated fermions with reduced dimens
ality (D,3), and with strongly anisotropic and more or le
nested Fermi surfaces. The main points for the understan
of the three groups of compounds are~i! the destruction of
the nesting by doping~cuprates! or by applying pressure
~Bechgaard salts and ET!; and ~ii ! the suppression of the
umklapp processes by doping the half-filled band~in the cu-
prates and ET’s! or by making the half–filled band effec
tively quarter-filled through the breaking of the longitudin
dimerization by pressure~in the Bechgaard salts!. Concern-
ing the Bechgaard salts it is interesting to remark that so
recent interpretations of the phase diagram of
(TMTSF)PF6 material11 suggest that the intermediate regim
between the high-temperature one-dimensional~1D! behav-
ior and the low-temperature 3D physics is a strange 2D
uid with properties very similar to those of the underdop
cuprates above the crossover temperatureTco .

From the theoretical point of view it is certainly interes
ing to construct a theory able to treat antiferromagnetic a
superconducting tendencies in more than one dimension
the same footing, and to follow how the result changes w
some external parameter that destroys nesting and the M
like localization. The first question one can ask is whethe
purely repulsive model like, for example, the Hubbard mo
~or some generalization of it! contains coexisting and inter
13 609 ©2000 The American Physical Society
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13 610 PRB 61D. ZANCHI AND H. J. SCHULZ
dependent antiferromagnetic and superconducting corr
tions. In such a model the antiferromagnetic fluctuations
associated with the enhancement of the particle-h
(p-h) propagators at low energies, and the superconduc
tendencies appear through particle-particle (p-p) propaga-
tors. The Hubbard model is appropriate because at h
filling a simple mean-field calculation already gives an an
ferromagnetic instability at a finite temperature. However
one also tries to include thep-p processes, the problem be
comes nontrivial even in the weak-coupling limit: a simp
mean-field theory is not able to follow bothp-h and p-p
correlation channels. One can of course try to remedy
problem by including summation of selected subseries
higher-order diagrams. One such attempt was to calculate
effective Cooper amplitude as a sum of bubble and lad
random-phase-approximation~RPA! series.12,13The resulting
Cooper amplitude is then used as coupling constant for
sumed effective BCS theory. This procedure thus explic
decouples three different summations~RPA bubbles, RPA
ladder, and BCS ladder! without real justification.FLEX ~con-
serving! calculations14 based on similar simplifications ar
also prejudiced by the choice of diagrams to be summed.
only way to proceed systematically is to construct a ren
malization group that takes into account allp-p and p-h
loops of a given order~or to use the equivalent parquet a
proach!. In ~quasi-! one dimension, the renormalizatio
group has been successfully used, and is one of the b
theoretical ingredients in the physics of low-dimension
metals.9,15,16

In two dimensions only a limited number of simplifie
cases was solved by the renormalization group. The p
man’s scaling applied only to interactions between electr
placed at the van Hove points gives an antiferromagn
instability at half-filling and a superconductivity ofdx22y2

symmetry if the deviation of the chemical potentialm from
its value at half-filling becomes of the order of the critic
temperature of the antiferromagnetic state.17,18 The equiva-
lent parquet approach has been used for half-filling~but
without the limitation to the van Hove points!, and also pro-
duces an antiferromagnetic instability.19,20 Parquet calcula-
tions for simple flat Fermi surfaces21 give an antiferromag-
netic instability, but cannot provide a continuous pha
diagram as a function of some imperfect nesting param
or band filling: thedx22y2-like superconducting pole appea
simply by cutting thep-h part of the flow, as in Ref. 17. A
scaling approach to a system with a Fermi surface with b
flat and curved parts22 has also reported a superconducti
instability in a purely repulsive model, together with devi
tions from Fermi-liquid behavior. However, a complete on
loop renormalization group~or parquet! for a realband of
electrons with imperfect and tunable nesting, or doping, s
remains unresolved. The main difficulty is related to the c
rect treatment of the coupling betweenp-p and p-h chan-
nels.

Different authors have tried to avoid taking into accou
the coupling between the different renormalization chann
making drastic simplifications or limiting themselves
some particular forms of the Fermi surfaces or only to
low-energy effective action. In our former publications23,24

we have shown that in the Hubbard model one can treat
p-h channel perturbatively if the filling is sufficiently fa
la-
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from one-half. Then the renormalization group gives only
weak Kohn-Luttinger-like pairing. Thep-p part of the flow
is decoupled from thep-h one in the low-energy regime fo
the simple reason that thep-h part is negligible there. Othe
calculations based on the perturbative treatment of thep-h
channel were also reported.25,26 If the Fermi surface is well
~but imperfectly! nested, and this is exactly the interestin
regime, this strategy does not work any longer because b
p-p and p-h loops are nonperturbatively large, even f
weak interactions. In the case of the square Fermi surf
~with or without the van Hove singularities! taking only the
leading logarithmic part the coupling between the chann
into account27 is equally insufficient. Another way to pro
ceed is to see the 2D Hubbard system as an ensemb
coupled chains.28 This approach gives a phase diagram w
superconductivity formed by pairs of electrons on differe
chains, giving rise to a spatially anisotropic version of
d-wave order parameter. Among the number of theoret
approaches to the Hubbard model other than via the l
summations, Monte Carlo calculations in principle take ‘‘e
erything’’ into account, but it is still unclear whether the
give29 the superconductivity or not.13,30

In the present paper we seek to reliably determine
phase diagram of the Hubbard model in the vicinity of ha
filling, where p-h processes are nonperturbatively enhanc
and at least nearly as important asp-p ones. We also detec
the dominant components of the angle-resolved correla
functions for antiferromagnetism and superconductivity
functions of temperature. This allows us to know the sy
metry of the microscopic fields whose fluctuations beco
important. The method that we will use is a generalization
Shankar’s renormalization-group approach31 to an arbitrary
form of the Fermi surface. In particular, the Kadano
Wilson mode elimination~developed by Shankar for 2D fer
mions! applied to the effective action with only two-particl
interaction retains only strictly logarithmic contributions
the flow. Thus, even if the nesting is very good but n
perfect, thep-h part of the flow would be zero because th
logarithmic singularity is destroyed by imperfect nesting.
keep thep-h part of the flow finite even in the case of im
perfect nesting, we start by formulating theexactKadanoff-
Wilson-Polchinski renormalization group for fermions on
lattice. This was formulated previously32,33only for quantum
fields with one zero-energy point in the momentum spac
like the f4 field theory ~critical phenomena!. In many-
fermion systems in more than one dimension we have, on
contrary, a whole Fermi surface that plays the role of a z
energy manifold, which makes the calculations more com
cated. Starting with the full bandwidth as the initial ener
cutoff we perform an iterative mode elimination, reducin
the cutoff L around the Fermi surface. Collecting at ea
step of the renormalization all the terms~cumulants! of the
effective action, we obtain the Polchinski equation for t
vertices of the effective theory at a given step of the ren
malization. It is important that even if the initial interactio
is only a four-point function~two-particle interaction!, verti-
ces ofall higher orders are created by the renormalizat
procedure. Once the exact renormalization group is form
lated we proceed with its truncation at the one-loop level:
one-loop truncation of the flow for the four-point vertex
done by neglecting all renormalization-group-created ve
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ces of order larger than 6. Shankar31 already remarked tha
the six-point function created by the mode elimination
essential to obtain a nonlogarithmic contribution to the fo
point vertex~the effective interaction!. The one-loop renor-
malization of the interaction that we obtain in this way a
pears to be generallynonlocal in L, i.e., the flow of the
vertex at a given step of the renormalization depends on
values of the vertex at former steps. This is certainly
pleasant, but is~as far as we can see! a necessary property o
the Kadanoff-Wilson-Polchinski~KWP! procedure if we
want to keep more than just purely logarithmic contributio
In principle, some other renormalization-group~RG! sche-
mas, local inL, could also be used. In particular, the fiel
theory scheme,23 also derived recently from an exa
Polchinski RG equation,34 or, on the other hand, Morris
version of one-particle-irreducible ~1PI! RG’s, are
procedures33 local in L and could take into account every
thing what takes KWP approach. The difference between
KWP and FT approaches is that in the former the cutoff
a physical meaning. At some step of the renormalization
KWP procedure gives an effective model renormalized o
by electrons with an energyuju.L. This means thatL acts
as an energy resolution: the vertices of the model have
meaning of correlation functions energy resolved for en
gies larger thanL. In fact, this is equivalent to saying thatL
acts like an effective temperature. The FT approach does
have this advantage, and one can compare it with KWP
sults only in the fixed point (L→0). On the other hand
Morris’ 1PI equations are not suitable for the approximatio
that we make in our calculations. Essentially these consis
neglecting all energy dependences of the effective interac
for uju,L, using power counting. In the KWP scheme th
approximation is always allowed because, by the definit
of the Wilson effective action, all electrons live in the regio
uju,L of the phase space. The approximation is not straig
forward in 1PI equations, because there the ‘‘classic
fields are not constrained in phase space to onlyuju,L, so
that power counting cannot be done simply.

We apply the one-loop KWP renormalization group to t
Hubbard model. One further approximation we make is
consider the effective interaction as a function only of t
projection of the momenta to the square Fermi surface~mar-
ginal interactions!, while the radial dependence and dyna
ics are neglected because they are irrelevant with respe
the Fermi-liquid scaling.31 We also neglect the renormaliza
tion of the self-energy. If we take only marginal interactio
into account this is justified at the one-loop level because
renormalizations of the weight and of the lifetime of th
electrons receive nonzero contributions only at the two-lo
level. We thus renormalize only the interactio
U(u1 ,u2 ,u3), a function of three angular variables corr
sponding to the angular parts of the three external mome
the fourth being determined by momentum conservation.
allow the u variables to be anywhere on the almost squ
Fermi surface, and not only in the configurations that g
perfect nesting or zero center-of-mass momentum: these
classes of the configurations would correspond only to
processes with the leading logarithmic renormalization in
p-h and p-p channels, respectively. As will become cle
later, taking all threeu variables without constraints is th
essential point of the calculation, because the coupling
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tweenp-p and p-h channels appears mostly through inte
actions that have other than just leading-logarithmic flo
This is a special feature of the square or almost square F
surface, and can be handled only by nonlocal~outer-shell!
contributions to the flow, using the Polchinski equation.

The first aim of our calculation is to find the temperatu
~scale! at which the flow diverges toward strong couplin
We associate this temperature with a mean-field-like criti
temperature and call itTc

RG . A typical mean-field theory is
then regularized forT,Tc by adding counterterms that con
tain fermions bilinearly coupled to some order parameter
our theory the order parameter is not knowna priori: it is
determined by the manner in which thefunction
U(u1 ,u2 ,u3) diverges atT5Tc

RG . We perform a detailed
analysis of the behavior of the angle-resolved correlat
functions for antiferromagnetism and superconductivity, a
obtain the type and the symmetry of the order parame
determining the dominant correlations nearTc

RG . The final
result is the analog of a mean-field phase diagram of
Hubbard model. Let us focus briefly on this point.Tc

RG is the
temperature at which the effective interactions between e
trons diverge. Interpretation of this temperature as a me
field-like critical temperature is well established in the phy
ics of correlated fermions. For example, the divergence
the one-loop flow of a vertex with a total momentum equal
zero is nothing but the BCS critical point.31 Another example
is the theory of the spin-density-wave phases in quasi-o
dimensional organic conductors.35 Here the basic concept i
the analysis of the divergence of the RPA vertex near
2kF momentum transfer. In the language of the renormali
tion group the RPA theory is just one-loop renormalizati
in the electron-hole channel. Altogether, the divergence
the vertex at some critical temperature~scale! is indeed a
breakdown of the renormalization procedure, but with a p
cise physical interpretation.

We are considering a two-dimensional system, anot
reason to be careful about the interpretation ofTc

RG : in the
case of magnetism, this indicates the onset of well-defi
finite-range correlations. For weak interactions, this is ty
cally a very well-defined crossover.36 In the case of pairing
Tc

RG can be identified with the onset of quasi-long-range
der. However, in real systems like copper oxides eve
weak interplane two-particle hopping~particle-hole-pair hop-
ping for antiferromagnetism, or Josephson tunneling for
perconductivity! stabilizes a 3D long-range order. Of cours
in that case the value of the critical temperature depends
the way the planes are coupled, but that kind of analysi
out of the frame of this paper. What we do is to explore
detail the in-plane mechanisms necessary~but not sufficient!
for antiferromagnetic or/and superconducting long-range
der. From the point of view of single electrons,Tc

RG is the
temperature of the onset of strong correlations that des
one-particle coherence. Consequently, the regimeT<Tc

RG is
not a Fermi liquid: the Fermi surface is destroyed by
~pseudo!gap.

In Sec. II we begin by the formulation of the many
fermion system on a lattice in terms of functional integra
We introduce the concept of effective action, and show h
it can be formally calculated using the partial trace tec
nique. We then derive the Kadanoff-Wilson-Polchinski exa
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13 612 PRB 61D. ZANCHI AND H. J. SCHULZ
renormalization group as one possible strategy for calcu
ing the effective action in terms of the renormalization gro
flow of all vertices. Truncating the effective action at th
level of sixth-order vertices, we obtain one-loo
renormalization-group equations for the effective interact
and for the self-energy. In Sec. III we apply the zer
temperature one-loop renormalization group to the Hubb
model on a square lattice. This section is in fact the exten
version of our recent paper.37 We derive the flow equation
for the effective interaction function and for the angl
resolved correlation functions of superconducting and a
ferromagnetic types. After discretization of the angleu on
the Fermi surface, we numerically integrate the flow, a
present the resulting phase diagram. In Sec. IV we introd
finite temperature explicitly into the renormalization-gro
equations. We then calculate the fixed-point values of
correlation functions at temperatures near the instabi
Conclusions are given in Sec. V.

II. FORMULATION OF THE RENORMALIZATION
GROUP FOR A MANY-FERMION PROBLEM

ON A LATTICE

The simplest model for interacting fermions on a tw
dimensional square lattice is the Hubbard Hamiltonian

H52t (
^ i , j &,s

~ai ,s
† aj ,s1aj ,s

† ai ,s!1
U0

2 (
i

nini2m(
i

ni ,

~2.1!

whereai ,s (ai ,s
† ) is the creation~annihilation! operator of an

electron at sitei with spin s, t is the intersite transfer inte
gral, m is the chemical potential, andU0 is the on-site Cou-
lomb repulsion. After Fourier transform, the Hamiltonian
written

H5(
sk

jkask
† ask

1
1

2 (
s

(
k1 ,k2 ,k3

U0a2s,k11k22k3

† a2sk2
ask3

† ask1
,

~2.2!

where

jk522t~coskx1cosky!2m, ~2.3!

and the momenta are within the first Brillouin zone. In th
section we want to derive the renormalization group fo
more general problem. For that purpose we allowjk to have
a general dependence onk. Furthermore, we suppose that th
interaction can be nonlocal and dynamical; that is, we s
pose that it depends on energies and momenta of the i
acting particles.

The statistical mechanics of souch general model is gi
by the partition function31

Z5E DC̄ DC eS$C%, ~2.4!

where the functional integration is over Grassmann variab

C̄ (C) for all electrons in the Brillouin zone. The actionS is
given by
t-

n
-
rd
d

i-

d
e

e
.

a

-
er-

n

s

S$C%5S0$C%1SI$C%5T(
vn

(
sk

C̄sK~ ivn2jk!CsK

1
1

2 (
ss8

T3 (
vn1

,vn2
,vn3

(
k1 ,k2 ,k3

3U0~K1 ,K2 ,K3!C̄sK3
C̄s8K4

Cs8K2
CsK1

. ~2.5!

The variablesC̄ (C) are labeled by the energy-momentu
vector K5(vn ,k). jk is the bare spectrum measured fro
the Fermi level,

jk5ek2m,

whereek is the band dispersion andm the chemical potential.
The energies and momenta are conserved so
K4(K1 ,K2 ,K3)5(vn1

1vn2
2vn3

,k11k22k3). We will re-
member that momenta are conserved up to reciprocal-la
vectors. U0(K1 ,K2 ,K3) is the most general spin
independent interaction, a function of the frequencies a
momenta. The derivation of action~2.5! for a general model
is equivalent to the derivation for the Hubbard model,38,39

provided that we putU0(K1 ,K2 ,K3) instead of the constan
U0 and keepjk general.

We want to derive the low energy effective actio
~LEEA! for this model. The low-energy modes are the ele
tronic degrees of freedom close to the Fermi surface. We
use this criterion and use the energy variablejk to discrimi-
nate fast ~high-energy! modes C. from the slow ~low-
energy! ones C, . Let’s choose some arbitrary nonze
high-energy cutoffL defining a shell of wave vectors aroun
the Fermi surface. The electronic variables can then be w
ten

Cs,K5u~ ujku2L!C.,s,K1u~L2ujku!C,,s,K . ~2.6!

The slow modes are inside the shell6L while the fast ones
are outside, withujku, going up to the physical cutoffL0,
taken to be equal to the bandwidth, so that we are sure
the whole Brillouin zone is taken into account. Note that t
cutoff is imposed only on momentum space, while the M
subara frequencies remain unlimited. The LEEASL$C,% is
an action containing only slow modes, and gives the sa
partition function asS @Eq. ~2.5!#, or, formally,

Z5E DC̄,DC,eSL$C,%. ~2.7!

This means thatSL$C,% is calculated by taking thepartial
trace over only fast modes in Eq.~2.4!:

SL$C,%5 lnE DC̄.DC.eS$C, ,C.%. ~2.8!

The LEEA contains an effective kinetic partS0L with a finite
self-energy term and a new interactionSIL . We havechosen
that the Fermi surface for the bare electrons plays the rol
the zero energy manifold. Certainly, this ceases to be
case if the form of the Fermi surface itself changes up
renormalization. If we however keepjk for bookkeeping of
mode elimination, both technical and conceptual difficult
can be encountered whenL becomes close to the maxima
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Fermi-surface shift. The cutoff than loses its physical me
ing and becomes just a measure of how many electrons
main to be integrated. Ideally, the cure would be to ren
malize around the floating (L-dependent! Fermi surface.
Here we will develop the RG equations for a procedure us
bare dispersionjk for mode discrimination. This still doe
not mean the neglecting of the self-energy renormalizat
We will formally derive the whole, exact flow equations.

If we consider the slow modes as parameters, expres
~2.8! can be evaluated, at least formally, using the link
cluster theorem.38 The result is composed of three terms:

SL$C,%5S$C,%1V.1dS$C,%. ~2.9!

Only the interaction partSI of the actionScan mix slow and
fast modes,

SI5SI$C,%1SI$C.%1SI$C, ,C.%, ~2.10!

while S0 is diagonal and can contain only one kind of mo
in the same term:

S05S0$C,%1S0$C.%. ~2.11!

The first term in Eq.~2.9! is then only a constant from th
point of view of the fast electrons, and is equal toS0$C,%
1SI$C,%. V. is the grand potential~times b) of the fast
electrons as if they were decoupled from the slow ones:

V.52(
k.

ln~11e2bjk!

1( ~all connected clusters withSI$C.%!.

~2.12!

This term gives only a shift of the total free energy of t
system.

The termdS$C,% in Eq. ~2.9! is the most interesting one
It brings the corrections due to the scattering processes o
slow modes on the fast ones into the LEEA, and is given
the sum of all connected graphs composed ofSI$C.%
1SI$C, ,C.%. If we draw the slow modes as external leg
the diagrams fordS$C,% are the clusters with at least tw
legs. A few low-order diagrams fordS$C,% are given in
Fig. 1. The terms with two external legs, labeled bya, b, c,
andd in Fig. 1, are the self-energy terms, renormalizingS0.
The terms with four legse, f , g, andh renormalize the quar
tic interaction termSI . The terms with six (i and j ) and
more legs arecreatedby the mode elimination procedure.

Of physical interest is the LEEA for the electrons in t
very vicinity of the Fermi surface (L!EF). Even if the cou-
pling is small, some of the loop diagrams will, at low tem
perature (T,L), attain large values depending on the for
of the Fermi surface. For example, if the Fermi surface is
close to van Hove singularities the particle-particle (p-p)
diagram (f in Fig. 1! for the four-point vertex with zero
center of the mass momentum always has a logarithmic
pendence like log(L0 /L), whereL0 is the initial cutoff equal
to the bandwidth. If the Fermi surface is nested the partic
hole (p-h) diagram (e in Fig. 1! at 2kF behaves in the sam
way. In the Hubbard model close to half-filling the van Ho
singularities make both loops squares of logarithms. The
-
e-
-

g

n.

on
d

he
y

,

t

e-

-

r-

turbative calculation of expansion~2.12! for smallU0 is thus
not straightforward: at least some of sets of diagrams, c
taining both p-p and p-h subdiagrams, have to be summed
entirely. The lowest order diagram of that kind is the o
denoted byh in Fig. 1. On the other hand, the truncation
the LEEA at fourth order is in general allowed for wea
coupling. However the direct summation of cumulants
dS$C,% ~like the T-matrix or RPA summation! can be per-
formed in a useful and controlled way only for a limite
number of physical problems, that is when some subset
diagrams are dominant. The direct parquet summation fo
general Fermi surface in more than one dimension is pr
ably very hard. It was done only for the case of a perfec
nested~flat! Fermi surface.20,21

The problem is even more difficult if the coupling is n
small. Then the criteria of most important sets of diagra
are no longer clear, and even the truncation of the LEEA
quartic or sextic term inC, is no longer justified.

A. Kadanoff-Wilson-Polchinski renormalization group:
Exact formulation

A tractable way to construct theexactLEEA is to use the
Kadanoff-Wilson-Polchinski renormalization group. Let u
call the initial cutoff~the bandwidth! L0, and parametrizeL
by the renormalization parameterl so thatL5L0 exp(2l).
The idea of the renormalization group is to consider
transformationS[SL0

→SL0 exp(2l)8 as an infinite set of in-

finitesimal mode eliminations

SL0
→SL0 exp(2dl)

(1) →SL0 exp(22dl)
(2) → . . . →SL0 exp(2 l )8 .

~2.13!

At each step we eliminateLdl of modes at a distanceL
from both sides of the Fermi surface. We will see that t
mode elimination of an infinitesimal shell of degrees of fre
dom is much simpler than the one-step procedure discu
in Sec. I.

From now on we will simply call the LEEA the effective
action because in the process of successive mode elimina
@Eq. ~2.13!# L can have any value betweenL0 and zero.
Indeed, it is of physical interest to follow the flow of th

FIG. 1. A few lowest-order cumulants fordS$C,%. All internal
lines are integrated only over the fast (.) modes.
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effective actionSL as L decreases. We now concentrate
one single stepl→ l 1dl of the mode elimination. We cal
outer-shellmodes the modes already eliminated by the p
vious steps@the fast (.) modes# . The modes inside the she
@L0 exp(2l)2L0 exp(2l2dl)# are the ones to integrate ou
We call themon-shellmodes and denote them by (l ). Figure
2 shows the division of the Brillouin zone into three types
modes (., l , and,) for the case of the non-half-filled Hub
bard model.

If l is not the very first step, the effective actionSL con-
tains couplings of all orders. Schematically it reads

SL5S0L1SIL5G2
( l )C̄C1G4

( l )C̄C̄CC1G6
( l )C̄C̄C̄CCC

1•••. ~2.14!

All C ’s live only within the cutoff6L. The summation over
all frequencies, momenta, and spins is assumed. The
point vertexG2 defines Wick’s theorem at stepl. In particu-
lar the propagator of the ‘‘bare electrons’’G2

21 changes as
we proceed with the renormalization.

The construction of the effective action one step furth
~at l 1dl) is of the same form as Eq.~2.9!, with the differ-
ence that now the on-shell modes play the role of the
modes. As we are interested only in the renormalization
vertices, we can skip the constantV, and we obtain the re
cursion relation

SL( l 1dl)5SL( l )1dS~ l !. ~2.15!

The contributiondS( l ) is due to the elimination ofl modes.
It is given by the sum of all cumulants made ofSIL$C l% and
SIL$C l ,C,% with two or more legs, but now with all inter

FIG. 2. The division of the Brillouin zone into the outer-she
(.), on-shell (l ), and slow (,) modes.
ne

k
ap
-

f

o-

r

st
f

nal momenta constrained to be on shell. Now we use the
thatdL is infinitesimal: In the expression fordS( l ) only the
terms linear indl will survive, to make recursion~2.15! a
differential equation forSL( l ) . Generally cumulants withm
internal lines are proportional todLm, because every interna
line is constrained to the shell. In principle only diagram
with one internal line are proportional todl. If we group
terms with equal number of legs, we obtain the flow equat
for verticesGn

( l ) , known as the Polchinski equation for th
vertices.32,33 Only two types of diagrams with one interna
line are possible: tree diagrams and loop diagrams. We
tain the recursion for the two-point vertex

]

]L l
G2

( l )~K !52T(
vn8

E
dL

d2k8G4
( l )~K8,K,K8,K !Gl~K8!.

~2.16!

This means that only the loop term renormalizes the s
energy~see Fig. 3!. Both loop and tree terms are present
the recursion equation for the higher-order vertices:

FIG. 3. Differential flow for the vertices withn52 andn.2
legs. Lines ‘‘l ’’ are dressed on-shell propagators.
]

]L l
G2n

( l )~K1 , . . . ,Kn ,Kn11 , . . . ,K2n!5 (
I 1 ,I 2

T(
vn

E
dL

d2kG2n1

( l ) ~2K,I 1!Gl~K !G2n2

( l ) ~K,I 2!

2T(
vn

E
dL

d2kG2(n11)
( l ) ~K,K1 , . . . ,Kn ,K,Kn11 , . . . ,K2n!Gl~K !, ~2.17!
2

also shown in Fig. 3. The two-point vertex defines the o
particle propagatorGl at each step of the renormalization:

Gl~K !5@G2
( l )~K !#21. ~2.18!

We use thisrenormalizedpropagator to construct the Wic
theorem. Note that this is the difference between our
-

-

proach and the standard Polchinski equation,33 where all
contractions are bare propagators. We call the vertex withn
external legs at the stepl of the renormalization,
G2n

( l )(K1 , . . . ,Kn ,Kn11 , . . . ,K2n), with legs $K1 , . . . ,Kn%
coming in and$Kn11 , . . . ,K2n% coming out. SymbolsI 1

and I 2 in Eq. ~2.17! are disjoint subsets (I 1ùI 25B) of the
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FIG. 4. ~a! The six-point vertex for a one-loop renormalization group.~b! Relation between the vertexG4 and the interactionU. ~c!
Recursion for the one-loop renormalization of the interactionU.
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energies and momenta such thatI 1øI 25$K1 , . . . ,K2n%.
The sum runs over all such sets. We have skipped spin i
ces for simplicity.

We see that the Polchinski flow equation is a functio
equation because all vertices are renormalized asfunctionsof
momenta and frequencies. It gives the exact renormalizat
group flow of the model. In particular, this means that b
sides ‘‘leading logarithmic’’ contributions all other contribu
tions are also taken into account. For example, if we are
two or more dimensions, and especially if the nesting is go
but not perfect, the Polchinski equation takes correctly
‘‘almost logarithmic’’ contributions into account.

In principle vertices of all orders are created with incre
ing powers of the initial couplingU0: It is easy to see tha
the vertexG2n , (n.2), is created by the tree term of th
Polchinski equation with power (n21) of the bare coupling.
This means that the truncation of expansion~2.14! is equiva-
lent to the weak-coupling perturbation theory.

B. Truncation of the Polchinski equation: one-loop
renormalization group

The one-loop renormalization for the vertexG4 ~or for the
effective interactionUl) is the perturbative procedure t
truncate the flow equations at orderU2. All terms of order
higher than 6 in expansion~2.14! are created with a powe
higher than 2 of the interaction by the tree term of t
Polchinski equation. Thus, puttingG85G105•••50, we
generate the one-loop renormalization group. The only c
tribution to the vertexG6 is then the tree term, made of tw
G4 terms connected by one line@see Fig. 4~a!#. The line
denoted byl has in principle to be taken dressed by t
self-energy at the stepl defined as

S l[G2
( l )2G2

05G2
( l )2 ivn1jk . ~2.19!
i-

l

n-
-

in
d
ll

-

n-

We assume that the self-energy remains diagonal upon re
malization. This is consistent with the weak-coupling tre
ment, because off-diagonal terms would imply the existe
of some form of long-range order, which is out of the rea
of the present calculation. All we can possibly expect fro
our calculation is a divergence of some effective interact
signaling theonset of a long-range order in a mean-fiel
sense.

We now go back to the formulation in terms of the inte
action as defined by Eq.~2.5! and illustrated in Fig. 4~b!. We
will skip the spin indices where they are not necessary. T
differential flow of the six-point functionG6 at stepl is ac-
cording to Fig. 4~a! given by

dG6
( l )~K1 ,K2 ,K3 ,K28 ,K38!

5T(
vn

E
dL

d2k d~k2k12k21k3!dvn2vn12vn21vn3

3Gl~K !Ul~K1 ,K2 ,K3!Ul~K,K28 ,K38!. ~2.20!

The phase-space integral is over the shell of thicknessdL
corresponding to stepl, andGl(K) is the renormalized Green
function at the same step. Physically this is the propagato
an on-shell electron renormalized by the scattering on
fast electrons.Ul(K1 ,K2 ,K3) is the effective interaction a
step l. The vertexG6 at some stepl is the integral of Eq.
~2.20! over all steps betweenL5L0 andL l , that is, over all
fast degrees of freedom. On the other hand, there is no
integration in this term: the Dirac function in Eq.~2.20! re-
duces the integral*dLd2k to a single pointk5k11k22k3
(5k381k482k28). To obtainG6 we can thus skip the inte
gration overdl and take care of the momentum conservatio
The effective action at the stepl then reads
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Sl5 (
vn ,k

C̄K,s@ ivn2jk1S l~K !#CK,sQ@L~ l !2ujku#

1
1

2
T3(

ss8
(
1,2,3

Ul~K1 ,K2 ,K3!

3Qk1 ,k2 ,k3 ,k4

„L( l )… C̄sK3
C̄s8K4

Cs8K2
CsK1

1T5 (
s,s8,s9

(
1,2,3,28,38

@Qk1 ,k2 ,k3 ,k
28 ,k

38 ,k
48

„L( l )…

3Q@ ujku2L~ l !#Gl 8~K !Ul 8~K1 ,K2 ,K3!

3Ul 8~K,K28 ,K38!C̄sK3
C̄s8K

38
C̄s9K48

3Cs9K28
Cs8K2

CsK1
#, ~2.21!

where l 85 ln L0 /ujku @i.e., jk5L( l 8)] is the scale fixed by
external momenta,K5K11K22K3 and the energy-
momentum vector 48511212823238. The summations
over 1,2,3, . . . run over corresponding Matsubara freque
cies and momenta. The term of the sixth-order contains
interactions and Green functions from former stepsl 8, l of
the mode elimination since only fast degrees of freedom c
tribute toG6

l so thatl 8< l . This constraint is imposed to th
sextic term of action~2.21! by Q@ ujku2L( l )#. The functions
Qk1 ,k2 ,k3 ,k4

(L) andQk1 ,k2 ,k3 ,k
28 ,k

38 ,k
48

(L)
constrain the momenta in

arguments to be slow modes~inside a shell of thickness6L
around the Fermi surface!. This simply means that the field
described by the effective action at cutoffL( l ) are inside the
cutoff range.

If the initial interactionU0 is spin independent, the reno
malized interactionUl will remain spin independent as wel
It is thus not necessary to worry about spin indices and
two-particle interactions are given only byone function
Ul(1,2,3). The detailed justification for this is given in th
Appendix. The differential flow ofUl(1,2,3) is readily ob-
tained by applying the loop term of the Polchinski equat
@the second term in Eq.~2.17! and in Fig. 3~b!# to the six-leg
part of the effective action~2.21!. At first sight, two kinds of
diagrams are created: a one–particle reducible~1PR! dia-
gram and a one-particle irreducible~1PI! diagram. We will
show that only 1PI diagrams contribute to the renormali
tion of the effective interaction: We can try to construct t
1PR diagram by contracting legs 28 and 48 in Fig. 4~a!. This
immediately implies that the internal line denoted withl and
the leg 38 carry the same momentum. This momentum c
responds to some fast mode since linel is already integrated
out. The conclusion is that the resulting four-point 1PR v
tex cannot be a vertex of the effective action~2.21!, since
this action contains only slow modes. Consequently, o
1PI diagrams renormalize the effective interaction betw
slow electrons. The resulting diagrams are all topologica
different two-particle loops as shown in Fig. 4~c!. The first
diagram is ap-p diagram, and the others arep-h diagrams.
Let us illustrate how we obtain the first diagram in Fig. 4~c!.
The procedure is shown in Fig. 5. The diagram represents
p-p contribution to the effective interactionUl(1,2,3) due to
the elimination of the infinitesimal shell at stepl. We take
the six-leg diagram with the configuration of external m
e

n-

ll

-

-

-

y
n
y

he

-

menta shown in the figure, with legsK being on shell. Their
contraction~dashed line! is done precisely at stepl. The con-
traction K8 was done at a previous stepl pp fixed by mo-
menta K, K1, and K2 @see Eq. ~2.20!#. K11K25Qpp
[(vnpp ,qpp) is the total energy-momentum vector in th
p-p process. The scalel pp is then given by

l pp52 ln
ujk2qpp

u

L0
. ~2.22!

Similar constructions give all other (p-h) diagrams. One has
to take care of both direct and exchange interactions@Fig.
4~b!# to obtain four different graphs. The interactions a
one-particle propagators are to be taken at the scalel ph< l .
This scale is determined by the momentum transferqph as

l ph52 ln
ujk1qph

u

L0
. ~2.23!

In the second, third, and fourth diagrams in Fig. 4~c!, the
energy-momentum transfer isQph5K12K3, while in the
last diagramQph5K12K4.

We see that even though the Polchinski equation app
to be local in l, the flow at stepl depends on the Gree
functions and interactions at the former stepsl pp ,l ph< l . The
reason for this is the dependence of the six-point function
the two-particle interaction, and on the one-particle propa
tor at all former steps.

In Fig. 4~c! the internal lines labeledl are to be integrated
over two infinitesimal shells of the widthdL at j056L l .
For this purpose we pass from the Cartesian measuredkx dky
to the measure

E
j

j1dL

dj8 R ds

v~s,j8!
, ~2.24!

wheres are lines~or surfaces inD.2) of constant energy
j(k) and v(s,j8) is the group velocity as defined b
]j(k)/]k' (k' is the component of the momentum perpe
dicular to the equal-energy lines!. We will use measure
~2.24! in what follows, where we write the analytic expre
sion for the flow of functionUl(1,2,3).

From the diagrams in Fig. 4~c! one obtains the expressio

FIG. 5. Construction of thep-p diagram from the six-leg vertex
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]Ul

] l
5b~ l ,$U%!5bpp$U,U%12bph$U,U%2bph$U,XU%

2bph$XU,U%2Xbph$XU,XU%. ~2.25!

b is a four-point object and a bilinear functional ofUl 8 ,
( l 8< l ). The operatorX is the exchange operator acting on
four-point function:XF(1,2,3,4)[F(2,1,3,4).bpp and bph
are thep-p andp-h parts of theb function given by

bpp$U,U%5J$U,U%1J$XU,XU%, ~2.26!

bph$U1 ,U2%5P$U1 ,U2%1TP$U1 ,U2%. ~2.27!

T is the time inversion operator acting on a four-point fun
tion: TF(1,2,3,4)[F(3,4,1,2). The functionsJ andP cor-
respond to the on-shell integrals of thep-p andp-h bubbles:

J$U,U%~K1 ,K2 ,K3 ,K4!

5
2L l

~2p!2 (
n51,2

E dsn

vn
Q~ ujkn2qpp

u2L l !T

3(
vn

Gl~K (n)!Gl pp
~2K (n)1Qpp!

3Ul pp
~K1 ,K2 ,K (n)!Ul pp

~K3 ,K4 ,K (n)!, ~2.28!

P$U1 ,U2%~K1 ,K2 ,K3 ,K4!

5
2L l

~2p!2 (
n51,2

E dsn

vn
Q~ ujkn1qph

u2L l !T

3(
vn

Gl~K (n)!Gl ph
~K (n)2Qph!

3U1,l ph
~K1 ,K (n) ,K3!U2,l ph

~K4 ,K (n) ,K2!. ~2.29!

U1 andU2 can beU or XU as required by Eq.~2.25!. The
summation over indexn51,2 is over two shells atj0
56L l ; the velocities arevn5v(sn ,j5nL), andKn sym-
bolizes (kn ,vn). The quantity

Qpp5~vn,pp ,qpp!5K11K2

is the total energy-momentum vector, and

Qph5~vn,ph ,qph!5K12K3 ,

is the energy-momentum transfer between the currents~1,3!
and~2,4! where 1, 2, 3, and 4 are the external variables oJ
and P. The scalesl pp and l ph are defined by expression
~2.22! and ~2.23!. As already discussed,l pp and l ph depend
on the integration variablekn and on the configuration of th
external energy momenta. Let us call the external legs of

total b function @Eq. ~2.25!# 1̃, 2̃, 3̃, and 4̃. Note that the

operatorX exchanges the external legs 1˜ and 2̃ in the last
term of this expression. This means that the ener
momentum transfer in this term isQph5K 1̃2K 4̃ and not
K 1̃2K 3̃ , as in the first threee-h terms. In the standard lan
guage~see, for example, Ref. 31!, the p-h terms with trans-
fers 1–3 are called zero-sound~ZS! terms, and the terms
with transfers 1–4 are ZS8.
-

e

-

Let us explain briefly how we obtained the flow equati
~2.25!. The first term is simply thep-p loop with U interac-
tion. The remaining terms are different versions of t
p-h loops, corresponding respectively to thep-h diagrams in
Fig. 4~c!. They can all be seen as a single loopbph @with the
topology of the second diagram in Fig. 4~c!#, given by Eqs.
~2.27! and ~2.29! by performing appropriately the operatio
X. The third and fourth graphs can be drawn as the sec
one-by-one exchange: In the third term we replace the up
interaction lineU by XU, and in the fourth we replace th
lower one. After this manipulation both diagrams look lik
the second diagram. The last graph is more complicated:
has to performX upon both interactions and upon the who
graph to see it asbph . The factor 2 before the second term
due to spin summation in the loop. All other diagrams hav
fixed spin.

The flow of the effective action~2.21! is still not com-
pletely determined because we do not know how the s
energy S l(K) is renormalized. The differential flow fo
S l(K) is readily found from the Polchinski equation for th
two-point function~2.16! shown graphically in Fig. 3. In the
language of the effective interactionUl(1,2,3) this gives
Hartree-Fock-like contributions shown in Fig. 4~c!. We ob-
tain the renormalization equation

]S~K1!

] l
5aHartree$Ul%~K1!1aFock$Ul%~K1!1am

hom.~ l !.

~2.30!

The first term is the Hartree term

aHartree$Ul%~K1!5
L

~2p!2 (
n51,2

E dsn

vn
T(

vn

Gl~Kn!

3
1

2
~32X!Ul~K1 ,Kn ,K1!, ~2.31!

and the second is the exchange term

aFock$Ul%~K1!52
L

~2p!2 (
n51,2

E dsn

vn
T(

vn

Gl~Kn!

3
1

2
~12X!Ul~Kn ,K1 ,K1!. ~2.32!

The third term is added to cancel the chemical poten
renormalization due to the homogeneous part of the di
term

am
hom.~ l !52

1

~2p!2E d2k1T(
vn1

aHartree$Ul%~K1!.

~2.33!

If the initial interaction has no dynamics, the first nontrivi
contributions to the flow of the self-energy come from t
renormalizedinteraction and not the bare interaction. As t
interaction is renormalized by one-loop processes this
plies that the interesting part of the flow ofS l(K) is given by
two loops. On the level of the present one-loop calculatio
is thus consistent to neglect self-energy corrections. Thi
what we do in the subsequent one-loop renormalization
the Hubbard model.
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III. RENORMALIZATION GROUP
FOR THE HUBBARD MODEL

In this section we will apply the above renormalizatio
group procedure to the Hubbard model. The model is gi
by Eqs. ~2.1!, ~2.2!, and ~2.3!. The initial actionS for the
Hubbard model is given by expression~2.5!, with the disper-
sion ~2.3! and with the initial interaction U0
5const(K1 ,K2 ,K3). The interaction will depend more an
more on (K1 ,K2 ,K3) as we go on with the renormalizatio
~as l increases!, so that we will see the functional aspect
our renormalization group at work. We will complete o
analysis by the renormalization of two-particle correlati
functions.

A. Renormalization of the interaction

If we neglect the self-energy corrections, the flow of t
effective interaction is completely determined by expressi
~2.25!–~2.29! with the bare propagators instead of the ren
malized ones:

Gl~K !→G0~K ![~ ivn2jk!21. ~3.1!

The effective interaction is a function of three energ
momenta vectors. This makes formulas~2.28! and ~2.29!
very complicated. For that reason we will consider only t
marginal part of the dependence ofUl on energies and mo
menta. This approximation is justified by the zero-order sc
ing and power-counting arguments.23,24,31 For example, in
one dimension this procedure justifies the well-kno
g-ology model:15 one adds an indexi to the electrons so tha
all electrons moving to the left havei 52, and all right
movers havei 51. Then the marginal interactions do n
depend on impulsek and energyv of the electrons in inter-
action, but only on their indicesi. This can be seen as pa
rametrization of the interactions as if the electrons were
the Fermi surface~or points in one dimension! with v50. In
two dimensions the marginal interactions depend only
polar coordinates of the wave vectors. Only the interacti
between electrons at the Fermi surface are then kept an
the Fermi surface is not nested, one obtains the LEEA for
Fermi liquid.24,31 The marginal processes in that case are

V~u1 ,u2!5Ul~K1 ,2K1 ,K2!, v1,250, jk1,2
50

~3.2!

and

F~u1 ,u2!5Ul~K1 ,K2 ,K1!, v1,250, jk1,2
50,

F̃~u1 ,u2!5XUl~K1 ,K2 ,K1!5Ul~K1 ,K2 ,K2!,

v1,250, jk1,2
50. ~3.3!

FIG. 6. The marginal interactions in the BCS regime.
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V is the pairing amplitude, whileF and F̃ are the forward
and the backward scattering related to the Fermi-liquid
rameters. The three kinds of processes are shown in Fi
for the case of a Hubbard model far from half-filling. W
analyzed this problem in detail in a previous paper.23

Let us now concentrate on the square Fermi surface,
the half-filled Hubbard model. The processes between e
trons on the Fermi surface are now labeled with three v
ables instead of two, as in the case of the Fermi surf
without nesting: if we put particles 1, 2, and 3anywhereon
one side or on two opposite sides of the square, the fo
falls exactly on the square as well. This is due to the perf
flatness of the Fermi surface and to the marginality of
umklapp processes. A few examples of marginal interacti
between the electrons on the square are shown in Fig. 7.
interaction depends only on the positions of the particles
the square. The ‘‘angle’’u can be defined in a way shown i
our previous paper.37 It is important to notice that even if the
filling is not exactly one-half~and the Fermi surface not ex
actly square!, all above interactions will still be important, a
long as the effective phase space is open, i.e., whenL
.umu. We thus take as marginal all effective interactio
viewed as functions of three anglesu of the particles:

Ul~K1 ,K2 ,K3!→Ul~u1 ,u2 ,u3!,

v1,2,3,450, 1,2,3,4 are on the square. ~3.4!

When the cutoff becomes smaller than the chemical po
tial, we are back to the nonnested case, in which the fu
tions V andF are the marginal interactions. They read

Vl~u1 ,u2!5Ul~u1 ,u11p,u2!,

Fl~u1 ,u2!5Ul~u1 ,u2 ,u1!. ~3.5!

Altogether, for the half- and almost half-filled Hubbard mo
els the functionUl(u1 ,u2 ,u3) given by Eq.~3.4! contains all
marginal scattering processes. The renormalization-gr
analysis is now much simpler because we deal with a fu
tion of three variables instead of nine.

We will now derive the flow equation forUl(u1 ,u2 ,u3)
at zero temperature. After replacingGl(K) by G0(K) and
Ul(K1 ,K2 ,K3) by Ul(u1 ,u2 ,u3) in expressions~2.28! and
~2.29!, we can perform the Matsubara summations anal
cally. After taking theT→0 limit we obtain

FIG. 7. Some of the marginal processes for the square Fe
surface.
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J$U,U%~u1 ,u2 ,u3!5
22

~2p!2 (
n51,2

E duJ~nL,u!

3
Q~njkn2qpp

!Q~ ujkn2qpp
u2L!

11
n

L
jkn2qpp

3Ul pp
~u1 ,u2 ,u!Ul pp

~u3 ,u4 ,u!,

~3.6!

P$U1 ,U2%~u1 ,u2 ,u3!

5
2

~2p!2 (
n51,2

E duJ~nL,u!

3
Q~2njkn1qph

!Q~ ujkn1qph
u2L!

12
n

L
jkn1qph

3U1,l ph
~u1 ,u,u3!U2,l ph

~u4 ,u,u2!. ~3.7!

kn is the momentum of a particle at the angleu with energy
j5nL. J(e,u)[J@(x,y)/(e,u)#5(]s/]u)/v(u,e) is the
Jacobian of the transformation from rectangular coordina
in momentum space to polar coordinates. One should
forget that the scalesl pp andl ph , which make the flow equa
tion nonlocal, depend on external momenta and on the i
gration variableu throughqpp , qph , and kn , as given by
relations~2.22! and~2.23!. U1 andU2 representU or XU as
required by Eq.~2.25!. Equation~3.6! gives the leading loga
rithmic flow in thep-p channel for the configuration of mo
menta withqpp50, while Eq.~3.7! gives the leading loga
rithmic flow in the p-h channel only exactly at half-filling
for qph5(p,p). In the standard renormalization-grou
procedure,31 only configurations of these kinds are renorm
ized. We see that in our formalism they are taken into
count on an equal footing with all other scattering process
with any values ofqpp andqph , as illustrated in Fig. 7. The
processes with the leading logarithmic renormalization
one channel and with less strong but still important flow
the other channel@like the processes in Figs. 7~d! and 7~e!#
are the processes which strongly couple both renormaliza
channels. For example, the process in Fig. 7~d! has leading
logarithmic renormalization in thep-p channel, and a les
strong ~but still logarithmic, because of partial nestin!
renormalization in thep-h channel, while the process in Fig
7~e! has perfect nesting and, consequently, a greater loga
mic flow in the p-h channel and a weaker logarithmic flo
in the p-p channel.

The advantage of the Kadanoff-Wilson-Polchinski mo
elimination technique atT50 upon renormalization schema
based on field theory renormalization23 is that in the KWP
approachL can be interpreted as the temperature. That
the interaction at some temperatureT is renormalized mainly
by virtual processes involving ‘‘quantum’’ electrons, tho
with energy larger thanT, having almost the same distribu
tion as theT50 electrons. This is exactly what we do wit
the renormalization group: only modes withujku.L are in-
volved in the virtual processes renormalizingUl . Conse-
s
ot

e-

-
-
s,

n

n

h-

s,

quently,L is not only the measure of how many electro
are already integrated out: it has aphysicalmeaning of the
effective temperature. Given that effective ‘‘microscopic
degrees of freedom live inside the cutoff range, this cut
also plays the role of the best energy resolution one
obtain for correlation functions at a given step of renorm
ization. In fact, all features with characteristic energies low
thanL are smeared. All these nice aspects are in genera
present in the field-theory approach, whose only advantag
that the RG equation are local inL. There, if we want to
obtain the correct temperature~or energy! dependence of the
vertex, we have to integrate the whole flow down toL50,
with temperatureT taken as the input parameter.

Let us concentrate briefly on the nonlocality of our equ
tions, which is a consequence of the KWP scheme. On
also ask why we do not use the 1PI scheme,33 which is local
and apparently simpler. The answer is related to the fact
both Polchinski and 1PI versions are written for vertices w
full energy-momenta dependences. In that sense, if we w
able to keep all (K1 , K2, andK3) dependences of the vertex
the 1PI version would indeed be simpler. But the very po
of our calculations is that we neglect all energy dependen
~radial momenta and frequencies! of the vertex, except the
one onL. If we apply this approximation to the Polchinsk
equation, in a correct way we still keep~in the RG sense! the
dependence of the vertex on outer-shell momenta. Tha
the assumption thatU has only an angular dependence
made for slow modes only. This is implicit in our approa
because the Wilsonian action with a hard cutoff conta
only slow modes, so that the legs ofU can be only within the
cutoff range. On the other hand, we can also formally
plore the Polchinski-like flow of a particular four-point ve
tex with one fast leg~with energyj.L) and three slow legs
At least on the one-loop level, it can be shown41 that this
vertex can be replaced by the same vertex at formerL85j.
There all energies can be set to zero, includingj, in the spirit
of our approximation of only angular dependence. This v
tex is the one intervening in our nonlocal RG equations. W
just say that it can be replaced by another vertex, at ac
cutoff, but with an outer-shell dependence onj taken into
account. This means that if we want our RG to be local inL,
we have to pay it by supplementary energy dependence
we ignore both nonlocality and thej dependence, the flow is
overestimated. On the other hand, the 1PI procedure g
local equations for all vertices. We can try to apply our a
proximation of ‘‘no energy dependence’’ directly to this, ju
as we did to the vertices of Wilsonian effective action. T
same reasoning as above brings us to the conclusion tha
all vertices with at least one fast leg at least one energy s
should be kept other than the cutoff itself. Thus the 1
scheme, once carefully applied, becomes just as complic
as the KWP scheme.

If we want to see which series of diagrams is generated
our renormalization group, we have to solve the differen
equation~2.25! for Ul in iterations of the bare interactionU0.
The obtained series is exactly the parquet summation.
constructed from all iterations of five basic loop diagram
from Fig. 4~c!. A few lowest-order parquet diagrams a
shown in Fig. 8.

An important aspect of the non-half-filled Hubbard mod
is that it cannot be solved by a scale-invariant renormali
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13 620 PRB 61D. ZANCHI AND H. J. SCHULZ
tion group. The finite chemical potential determines the
trinsic scale, the physical interpretation of which is the cro
over between two different renormalization regimes. T
crossover can be seen from theexplicit scale dependence o
p-p and p-h differential loopsJ( l ) andP( l ). We can de-
fine the quantities

bpp
0 ~ l !5J l$1,1%qpp50 , ~3.8!

bph
0 ~ l !5P l$1,1%qph5(p,p) . ~3.9!

They measure the dominant parts of thep-p andp-h renor-
malization tendencies, respectively. The configurations
momenta are chosen to give the most important flow: for
p-p channel at zero total momentum and for thep-h channel
at the antiferromagnetic wave vector. The quantitiesbpp

0 ( l )
and bph

0 ( l ) are shown in the Fig. 9 for a finite chemic
potentialm52L0 exp(2lm).

We see that forl , l m both differential loops have linea
dependences on the logarithmic variablel; the total ~inte-
grated! loops are thus square logarithmic, as is known for
half-filled band. Whenl . l m the function bpp

0 ( l ) crosses
over to constant, which gives the logarithm of the Coop
bubble. bph

0 ( l ) decays exponentially as exp(22l);L2: the
nesting no longer exists, and thep-h flow crosses over to
irrelevance. We call the first regime the parquet regime
cause both loops are important. The second regime, in w
only the Cooper channel flows, we call the BCS regime. T

FIG. 8. The parquet summation.

FIG. 9. The quantitiesbpp
0 ( l ) and bph

0 ( l ). The crossover is a
l 5 l m56.
-
-

e

f
e

e

r

-
ch
e

topology of the effective phase space in the parquet regim
open~see Fig. 2!, and in the BCS regime the phase space
a regular closed ring around the Fermi surface, as in Fig
The peak ofbpp

0 ( l ) at l 5 l m is the enhancement due to va
Hove singularity. The peak does not exist inbph

0 ( l ) because
of the Q-function constraint in Eq.~3.7!. As we will see
below, the renormalization in the parquet regime will gi
rise to precursors of a strong-coupling fixed point with dom
nant antiferromagnetic correlations, while in the BCS regi
only a Cooper-like instability is possible.

It is difficult to see from the sole flow of the interactio
Ul what kind of correlations are enhanced and possibly
vergent. For that purpose we have to calculate the renorm
ization of the correlation functions.

B. Renormalization of the correlation functions

It is well known23,24,31,40that, in studying the anisotropic
superconductivity, one has to consider the pairing amplitu
as a function of two angles,V(u1 ,u2). The angles determine
the angular positions of the Cooper pairs annihilated (u1)
and created (u2) in the scattering. This interaction will be
intimately related to the superconducting correlation funct
xSC(u1 ,u2). In the same spirit we can define the correlati
function for the antiferromagnetism dependent on t
angles. We will define both correlation functions as

xq
d~u1 ,u2 ;ut12t2u!5E

.
de1E

.
de2J~e1 ,u1!J~e2 ,u2!

3^D̂q
d~e1 ,u1 ;t1!D̂̄q

d~e2 ,u2 ;t2!&,

~3.10!

with d equal to SC or AF. The symbols ‘‘. ’’ mean that the
energy integrations run over energiesoutside of the shell
6L. Consequently,xSC andxAF are interpreted as the sus
ceptibilities at the temperatureT5L. They measure the re
sponse of outer shell electrons for givenL. The order pa-
rameter variables are

D̂q
SC~e,u;t![(

s
sCs,k~t!C2s,2k1q~t!, ~3.11!

D̂q
AF~e,u;t![(

s
C̄s,k~t!C2s,k1(p,p)1q~t!, ~3.12!

wherek is given by the angleu and the energye. Note that

D̂q
SC is a singlet. To obtain a triplet, one just skips the fac

s in the sumation overs. Figure 10 illustrates what configu
rations of four angles are described by the correlation fu
tions xSC(u1 ,u2) and xAF(u1 ,u2): the first measures the

FIG. 10. The angle-dependent correlation functions.
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correlation of one Cooper pair atu1 with the other atu2, and
the second represents the correlation of the momen
(p,p) p-h pair atu1 with the otherp-h pair atu2.

The correlation functions can be seen as response f
tions of the system to an infinitesimal external field,
shown by Bourbonnais and Caron16 in one dimension. We
will generalize this procedure to two dimensions. To the
tion Sł 50 we add the term

S$h% l 505E dtE dqE du

3F E deJ~e,u!D̂q
d~e,u;t!G h̄q

d~u;t!1H.c.

~3.13!

The external angle dependent fieldsh̄q
d(u;t) are the source

fields coupled to the order-parameter variables of the typd.
The correlation functions~3.10! are obtained as

x lq
d ~u1 ,u2 ;ut12t2u!

52F d2 ln Z

dhq
d~u1 ;t1!dh̄q

d~u2 ;t2!
G

h,C, ,C̄,50

.

~3.14!

Setting slow modes to zero means symbolically that we w
the response only from the fast modes, as defined in
~3.10!. We consider only the static and long-waveleng
limit. For that reason we will simply writex(u1 ,u2) instead
of xq50(u1 ,u2 ; iv50) andh(u) instead ofhq50(u; iv50).
The correlations with nonzeroq and v are related to the
dynamics of the collective modes, a problem which we
not study in this work.

We now apply the Kadanoff-Wilson-Polchinski forma
ism to the action containing terms~3.13!. The procedure of
collecting differential cumulants is analogous to what
explained in Sec. II, but now we treatS$h% terms together
with the interaction partSI . To obtain the correlation func
tions for h→0, it is sufficient to follow the renormalization
of the first two terms in powers ofh in the h-dependent par
of the effective action. They read

S$h% l5 R du1 R du2F E
0

L( l )

deJ~e,u1!D̂q
d~e,u1 ;t!G

3zl
d~u1 ,u2!h̄d~u2!1H.c.

1 R du1 R du2h̄d~u1!x l
d~u1 ,u2!hd~u2!

1tree terms$hh̄%. ~3.15!

The term withx l
d(u1 ,u2) contains no electronic variable:

results from the elimination of all outer-shell electrons. Fro
definition ~3.14!, one can see thatx l

d(u1 ,u2) is just the sus-
ceptibility of typed. The ‘‘tree terms’’ are the terms contain
ing one outer-shell contraction, two slow-electron fields, a

fields h and h̄. They are illustrated by Fig. 11 for the A
channel. The square symbolizes the effective interaction
m

c-
s

-

nt
q.

o

d

or

antiferromagnetismVl
AF . We obtain it from the spin–spin

interactionUs ~see the Appendix! putting the particles 1 and
3 on the opposite sides of the square Fermi surface so
k12k35(6p,6p) ~as in Fig. 10!:

Vl
AF~u1 ,u2!52~XU!~u1 ,u2 ,ũ1!. ~3.16!

ũ is a function ofu such that

k~u!2k~ ũ !5~p,p!, ~3.17!

k being on the square Fermi surface. The tree terms for
SC channel are analogous, but with different orientations
the arrows: in the vertexzl

SC both arrows point outward, and

in the vertexz̄l
SC both arrows point inward. The correspon

ing interaction is the familiar effective Cooper amplitudeV
@Eq. ~3.5!#. All ‘‘tree terms’’ in Eq. ~3.15! are produced by
the tree term of the Polchinski equation applied to the act
with the S$h% l terms.

The coefficientzl
d(u1 ,u2) is the effective vertex of typed.

Equation~3.13! gives the initial conditions forz,

zl 50
d ~u1 ,u2!5dD~u12u2!, ~3.18!

wheredD is the Dirac function and, forx,

x l 50
d ~u1 ,u2!50. ~3.19!

The differential flow of the triangular verticeszl and of
the correlation functionsx is obtained from the loop diagram
of the Polchinski equation applied to the tree terms in
actionS$h% l . For the AF channel, the cumulant with on-she
integration of electronsA and B in Fig. 11 gives contribu-
tions to the vertexzl

AF , and the cumulant with electronsA8
andB8 on the shell contributes to the susceptibilityx l

AF . A
similar construction yields the renormalization of the vert
and of the susceptibility for the superconductivity. The r
sulting diagrams for the differential recursion relations f
both channels are shown in Fig. 12.

The corresponding flow equations are written

żl
d~u1 ,u2!52 R du zl d

d ~u1 ,u!Dl
d~u!Vl d

d ~u,u2!

~3.20!

and

ẋ l
d~u1 ,u2!5 R du zl d

d ~u1 ,u!Dl
d~u!zl d

d ~u,u2!. ~3.21!

The scalesl SC andl AF symbolize the scalesl pp andl ph given
by expressions~2.22! and ~2.23!, with the total momentum
qpp50 and with the momentum transferqph5(p,p) ~anti-
ferromagnetic wave vector!:

FIG. 11. Tree diagrams containing the source fields for the
channel.



o

tiv

te

ym
-
all
n

t
an
at
e
ro

-

r-
we

tch

ial

me

ee
r-
the
he

th
et

13 622 PRB 61D. ZANCHI AND H. J. SCHULZ
l d5H l ppuqpp505 l for d superconductivity

l phuqph5(p,p)5 ln
L0

L l12umu
for d antiferromagnetic.

We see that the renormalization of the antiferromagnetic c
relation function is nonlocal inl if the filling is not exactly
one-half. The functionDl

d(u) is

Dl
SC~u!5

1

2 (
n51,2

J @nL~ l !,u# ~3.22!

for the superconducting channel and

Dl
AF~u!5

1

2

J„2L~ l !,u…

11umu/L~ l !
~3.23!

for the antiferromagnetic channel, where only the nega
shell (n521) contributes to the flow. One sees thatDl

AF(u)
decays exponentially withl for L!umu: in the BCS regime
the correlation function for antiferromagnetism satura
with increasingl.

From Eqs. ~3.20! and ~3.21!, we see that information
about thesymmetryof the correlations is determined from
the symmetry of the effective interactions: functionsDl

d(u)
have a total lattice symmetry, but the interactionsVl

d(u,u2)
can belong to any of the representations of the crystal s
metry group, in our case theD4 point group. The decompo
sition of the interaction in terms of all basis functions of
irreducible representations of theD4 group was discussed i
detail in our previous paper.23 The diagonalization of the
correlation functionsx l

d(u1 ,u2) gives the final answer abou
which correlations are dominant in both AF and SC ch
nels. The strength of the dominant correlations is associ
wit the maximal eigenvalues, and the corresponding eig
vectors determine the symmetry and the form of the mic
scopic fluctuating field.

FIG. 12. The recursion relations for the vertices and for
correlation functions of superconducting and antiferromagn
types.
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e
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-
ed
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C. Discretization of renormalization-group equations

The interactionUl that we want to renormalize is a func
tion of three continuous angular variablesu1 , u2, and u3.
The b function given by Eqs.~2.25!–~2.27!, ~3.6!, and~3.7!
is a complicated function bilinear inU, and it does not seem
possible to find an analytic solution for the flow of the inte
action. We thus use numerical method. For that purpose
cut the Brillouin zone inmi angular (u) patches, and we
assume that the interaction is a function only of the pa
indices (i 1 ,i 2 ,i 3) of the three anglesu1 , u2, andu3. After
the discretization of the interaction function the different
loopsJ andP also become functions of three indices:

J$U,U%~ i 1 ,i 2 ,i 3!5(
i 50

mi

Bpp~ i 1 ,i 2 ,i ; l !

3Ul pp
~ i 1 ,i 2 ,i !Ul pp

~ i 3 ,i 4 ,i !,

~3.24!

P$U1 ,U2%~ i 1 ,i 2 ,i 3!5(
i 50

mi

Bph~ i 1 ,i 3 ,i ; l !U1,l ph
~ i 1 ,i ,i 3!

3U2,l ph
~ i 4 ,i ,i 2!, ~3.25!

with

Bpp~ i 1 ,i 2 ,i ; l !5
22

~2p!2 (
n51,2

E
[ i ]

du J~nL,u!

3
Q~njkn2qpp

!Q~ ujkn2qpp
u2L!

11
n

L
jkn2qpp

~3.26!

and

Bph~ i 1 ,i 3 ,i ; l !5
2

~2p!2 (
n51,2

E
[ i ]

du J~nL,u!

3
Q~2njkn1qph

!Q~ ujkn1qph
u2L!

12
n

L
jkn1qph

.

~3.27!

The total momentum and the momentum transfer beco
discrete variables:

qpp5k~ i 1!1k~ i 2!,

qph5k~ i 1!2k~ i 3!.

The integral* [ i ] is over thei th angular sector.
For a given numbermi of patches the number ofcoupling

constantsis equal to the number of configurations of thr
indices for all four particles lying on the square Fermi su
face. That is a very large number. However because of
symmetry many of the coupling constants are identical. T
available symmetries are as follows:~i! The symmetries of
the D4 point group~mirror, p/4-rotations!. ~ii ! Time inver-

e
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PRB 61 13 623WEAKLY CORRELATED ELECTRONS ON A SQUARE . . .
sion symmetryT, exchanging particles with holes, and vic
versa ~see the Appendix!. ~iii ! The exchange symmetry
which is allowed to exchange~1,2! and~3,4! particles simul-
taneously.~iv! The freedom of choice of the points at th
edges of the Brillouin zone.

Figure 13 illustrates some of the symmetry operations
plied to one of the coupling constants. The same fig
shows the relation between the number of patches and
corresponding number of different marginal coupling co
stants, and the list of the coupling constants formi54 and 8.

The renormalization of the interaction as a function
three angles is now represented by a set of coupled diffe
tial equations, one for each coupling constant. In the sa
way we discretize the correlation functionsx l

d(u1 ,u2) and
the verticeszl

d(u1 ,u2). Equations~3.20! and ~3.21! become

żl
d~ i 1 ,i 2!52(

i
zl d

d ~ i 1 ,i !D̄ l
d~ i !Vl d

d ~ i ,i 2! ~3.28!

and

ẋ l
d~ i 1 ,i 2!5(

i
zl d

d ~ i 1 ,i !D̄ l
d~ i !zl d

d ~ i ,i 2!, ~3.29!

FIG. 13. This figure shows how we reduce the number of c
pling constants by applying symmetry transformations. The dep
dence of the number of independent coupling constants on the n
ber of angular patchesmi , and the list of coupling constants fo
mi54 and 8, are also shown.
-
e
he
-

f
n-
e

with

D̄ l
d~ i ![E

[ i ]
du Dl

d~u!. ~3.30!

The initial conditions are the same as in the continuous c
provided we replaced thed function by the Kronecker sym
bol divided bymi :

dD~u2u8!→d i ,i 8 /mi .

D. Results and discussion

We have numerically integrated the renormalization eq
tions for all coupling constants and correlation functions, a
have analyzed how the results change as functions of
initial interaction U0 and of the chemical potentialm. We
first look at the renormalization flow of the coupling co
stants. Figure 14 shows the flow of several~among 93) cou-
pling constants for a discretization ofMi516; the choice of
the input parameters isU054t/3, andl m[ ln 8t/umu57.8. The
divergence occurs at the critical cutoffLc5L0 exp2lc
'L0 exp25.3. Approaching this point, some of the couplin
constants increase and diverge, while some decrease
after changing their sign, diverge to2`. Some do not
change significantly upon renormalization and almost do
diverge. In fact, in one-loop renormalization all zero-ord
marginal processes diverge. The ones that ‘‘almost’’ do
diverge are those with a pole strength much weaker than
bare interaction. For example the coupling const
U(0,mi /2,0) diverges very strongly to2`. It is a typical
interaction with a singular Cooper channel (qpp50) without
nesting. Indeed, all coupling constants obeying only the C
per condition (qpp50) and without logarithmic flow in the
p-h channel diverge to2`. This is what we expected sinc
thep-p channel ‘‘pushes’’ interactions downward in a repu
sive model. However, instead of just decaying to zero, th
continue to decrease toward2` because the Cooper ampl
tude obtainsattractive components fromp-h diagrams in,
for example, theD-wave channel. Coupling constants wi

-
n-
m-

FIG. 14. The flow of a few typical~among 93! scattering am-
plitudes for a Fermi surface covered by 16 patches, for chem
potentialumu58t exp(27.8) and initial interactionU54t/3.
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13 624 PRB 61D. ZANCHI AND H. J. SCHULZ
nesting between particles 1 and 3 or 1 and 4 diverge to1`.
Among the interactions with nesting there are also umkla
processes like~0,0,4! or ~2,2,10! in Fig. 14. The processe
~almost! without divergence are those without any logarit
mic instability either from the nesting or from the Coop
logarithm.

The critical scalel c depends on the initial interaction an
on the chemical potential. We associate the cut
L0 exp(2lc) with the critical temperatureTc

RG . As we stated
in Sec. I, this temperatureis not a critical temperature for
long-range order. Instead,Tc

RG should be interpreted as
mean-field-like critical temperature. Figure 15 showsTc

RG as
a function of the chemical potential calculated formi532
patches~497 different coupling constants!. Tc

RG decreases
rapidly but never really falls to zero: it becomes expone
tially small far from half-filling, the regime analyzed in Re
23. Our numerical calculations show that this form is univ
sal if one measuresm in units of the critical temperature a
half-filling Tc

0 ,

Tc
RG5Tc

03 f S umu

Tc
0 D , ~3.31!

wheref is the universal function visible in Fig. 15. ThusTc

depends on the interaction only throughTc
0[8t exp(2lc

0),
where

~ l c
0!25C

4t

U0
, ~3.32!

C being a numerical constant:C'8.8. The dashed line in
Fig. 15 represents the critical temperatureTc

MF that one ob-
tains when taking into account only the last term of E
~2.25!: Xb$XU,XU%. This is the ‘‘renormalization-group’’
version of the RPA summation, equivalent to the mean fi
for the antiferromagnetism. We now see the main differe
between the critical temperature in the mean-field appro
mation and the result obtained with the renormalizat
group: in the case of weak doping, because of thedestructive
interference betweenp-p andp-h channels,Tc

RG is slightly

FIG. 15. The phase diagram. The solid line is the critical te
peratureTc

RG , and the dashed line is the temperatureTc
MF .
p

ff

-

-

.

d
e
i-
n

reduced with respect toTc
MF . The ratio between the critica

scalesl c
RG andl c

MF ~associated with RG and MF critical tem
peratures! do not depend on the interaction. Its value at ha
filling is l c

MF/ l c
RG50.985, which is not far from the value

0.981 calculated by Dzyaloshinskii and Yakovenko usi
parquet equations.20 Tc

MF disappears completely at som
threshold doping. This means that the physical mechani
which reduceTc

RG near half-filling enhanceTc
RG at higher

doping keeping it always nonzero.
The straight lineT5m is roughly the crossover betwee

the parquet and the BCS regimes. If the instability occurs
the parquet regime, bothp-p and p-h correlations are
strongly enhanced nearTc

RG . On the other hand, in the BCS
regime only thep-p correlations are critical. To know which
fluctuations are the most important at the instability, we ne
a renormalization of the correlation functions. Howev
there is a formal problem related to the fact that we
performing the renormalization atT50 and associating the
cutoff to the temperature: the renormalization equations
the antiferromagnetic vertex~3.28! and the correlation func-
tion ~3.29! (d antiferromagnetic! areretardedin l of a quan-
tity l 2 ln@L0 /(Ll12umu)#. If the interactionVl

AF diverges at
l 5 l c , the divergence of the functionx l

AF will be retarded.
Since we cannot go further thanl 5 l c in the renormalization
this divergence cannot be seen in the present formalism.
cure is to work at a finite temperature. In this case one p
forms the full renormalization, up tol 5`, and the final
fixed-point correlation functions are the ones at the giv
temperature. This is the procedure that we use in Sec. IV

However, in the zero-temperature formalism one can s
obtain some idea of what happens with different correlatio
at l 5 l c : the finite cutoff divergence of the correlation fun
tions for SC and AF are determined exclusively by the
vergence of the effective interactionsVl

SC andVl
AF. Further-

more the symmetry of the correlation functions is al
brought only by the symmetry of the effective interactions
is thus reasonable to assume that the dominant eigenvalu
the correlation function is driven mostly by the domina
attractive~negative! eigenvalue of the corresponding effe
tive interaction. From the renormalization of the interacti
~the set of coupling constants! we can deduce the flow of th
effective interactionsVl

SC andVl
AF as given by Eqs.~3.5! and

~3.16!. The diagonalization is straightforward because b
interactions are matrices whose rows and columns are
beled by discretized angular variables. Let us call the m
attractive eigenvalues ofVl

SC andVl
AF , respectively,Vc

SC and
Vc

AF .
Figure 16 shows the flow ofVc

SC and of Vc
AF near the

critical point as a function of ln„@L2Tc
RG(m)#/4t… for sev-

eral values of the chemical potential. The critical temperat
Tc

RG(m) is adjusted for every value ofm. Solid lines repre-
sent the antiferromagnetic interactionVc

AF . The correspond-
ing eigenvector belongs toA1. It is a standardS wave. The
dashed lines represent the flow ofVc

SC. Its eigenvector be-
longs to theB1 representation (Dx2-y2 wave!. Both coupling
constants are always enhanced by the renormalization, w
means that the correlation functions are always enhance
spectively to their value atU050. The possibility of the
charge-density wave instability is excluded: we ha

-
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checked that all eigenvalues of the charge interactionsUc
~see the Appendix! at 2kF decay upon renormalization. Th
competition between the divergences ofVc

SC and Vc
AF is

clearly visible in the figure. At half-filling the couplingVc
AF

diverges faster thanVc
SC. As the chemical potential in

creases, both divergences are weaker but inVc
AF an inversion

of the slope is visible. This is the signature of the crosso
from the parquet regime to the BCS regime. At half fillin
this crossover does not exist and the slope ofVc

AF is always
upwards. The lines labeled byC in the figure correspond to
the critical temperature in the parquet regime. However,Vc

AF

starts to ‘‘feel’’ the proximity of the crossover: the critica
scale isl c56.025 and the crossover occurs at aboutl x; l m

57. The divergence ofVc
AF can still entail the divergence o

the antiferromagnetic correlation function because the n
ing is still relevant. The Cooper amplitudeVc

SC always has an
upward slope and diverges atTc

RG because thep-p channel
has a logarithmic instability for any doping. LinesD andE
are examples of the flow in the BCS regime. After som
saturation tendencies,Vc

AF still diverges atTc
RG . This diver-

gence is only due to thep-p loop: for a choice of anglesu1
and u2 such thatu25u11p, it is the functionVAF(u1 ,u2)

5VSC(u1 ,ũ1) that diverges. The relation betweenu1 andũ1

is given by Eq.~3.17!. The interactionVc
AF is thus driven

upwards by the Cooper channel. It has no effect on the
relation function for the antiferromagnetism because its fl
has disappeared together with the nesting. This will beco
visible in Sec. IV, where we calculate the temperature
pendence of both correlation functions near the critical te
perature.

IV. FINITE-TEMPERATURE RG

In the zero-temperature formalism the flow of differe
quantities was of physical interest. In the finite-temperat
renormalization group, we are interested in the fixed-po
value of the correlation functions. The temperature is ta
as input parameter. IfT is larger than the critical cutoffLc

FIG. 16. The flow ofVc
SC ~dashed line! and ofVc

AF ~solid line!
for umu/(4t)50 (A), 0.00067 (B), 0.0018 (C), 0.0049 (D), and
0.0081 (E).
r
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~called Tc
RG in Sec. III!, the divergence of the renormaliza

tion flow will disappear. Consequently we will be able
control the flow all the way down to the fixed pointL50. In
the zero-temperature formalism the effects of the eliminat
of the slow modes are neglected. At finite temperature
modes are integrated so that contributions of the ther

FIG. 17. The flow of the correlation functions with interactio
~thick lines! and without interaction~thin lines! ~a! at half filling for
T/4t50.03 (A), 0.0204 (B), and 0.0163 (C); ~b! at umu/4t50.002
for T/4t50.0228 (A), 0.0108 (B), and 0.0086 (C); and ~c! at
umu/4t50.006 forT/4t50.03 (A), 0.006 (B), and 0.0026 (C).
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13 626 PRB 61D. ZANCHI AND H. J. SCHULZ
electrons are also taken into account. The other advantag
the finite temperature renormalization group is that we
explicitly follow the temperature dependence of the corre
tion functions for the superconductivity and the antiferr
magnetism.

Formally, the finite-temperature procedure is the same
in Sec. III, with the difference that the differential loopsJ
andP have to be calculated at finite temperature. They n
can be written

J$U,U%~T,u1 ,u2 ,u3!

5
22

~2p!2 (
n51,2

E duJ~nL,u!

3
@12 f ~nL!2 f ~jkn2qpp

!#Q~ ujkn2qpp
u2L!

n1
1

L
jkn2qpp

3Ul pp
~u1 ,u2 ,u!Ul pp

~u3 ,u4 ,u!, ~4.1!

P$U1 ,U2%~T,u1 ,u2 ,u3!

5
2

~2p!2 (
n51,2

E duJ~nL,u!

3
@ f ~nL!2 f ~jkn1qph

!#Q~ ujkn1qph
u2L!

n2
1

L
jkn1qph

3U1,l ph
~u1 ,u,u3!U2,l ph

~u4 ,u,u2!. ~4.2!

The functionf (e) is the Fermi distribution at temperatureT.
The finite-temperature version of the flow equations for
verticesz and for the correlation functionsx are again given
by Eqs.~3.20! and ~3.21!, but with modifiedDSC,

Dl
SC~T,u!5 (

n51,2
J~nL,u!tanhS nL

2T D , ~4.3!

andDAF,

Dl
AF~T,u!

5 (
n51,2

J~nL,u!

3
@ f ~nL!2 f ~2umu2nL!#Q~ u2umu2nLu2L!

2S n2
umu
L D .

~4.4!

We see that now both shellsn51 and2 contribute toDl
AF

for L.umu, unlike in the zero-temperature case wheren5
1 contributions were forbidden by the Fermi distribution.
the discretized version of the flow equations, one calcula
J andP from expressions~3.24! and ~3.25!, but with
of
n
-

-

as

w

e

s

Bpp~ i 1 ,i 2 ,i ; l ,T!

5
22

~2p!2 (
n51,2

E
[ i ]

du J~nL,u!

3
@12 f ~nL!2 f ~jkn2qpp

!#Q~ ujkn2qpp
u2L!

n1
1

L
jkn2qpp

~4.5!

and

Bph~ i 1 ,i 3 ,i ; l ,T!

5
2

~2p!2 (
n51,2

E
[ i ]

du J~nL,u!

3
@ f ~nL!2 f ~jkn1qph

!#Q~ ujkn1qph
u2L!

n2
1

L
jkn1qph

. ~4.6!

The equations for finite temperaturezl
d(T,i 1 ,i 2) and

x l
d(T,i 1 ,i 2) are Eqs.~3.28! and ~3.29! with Dl

d(T,i ) calcu-
lated from Eq.~3.30!, but using Eqs.~4.3! and ~4.4!.

To find each point of the phase diagram, we have to fi
the fixed-point (L→0) value of the maximal eigenvalue
xc

d(T,l ) of the correlation functionsx l
d( i 1 ,i 2); (d supercon-

ducting and ferromagnetic!. This means that the complet
renormalization froml 50 to l→` has to be done for eac
temperature.

The flow of the quantitiesxc
SC(T,l ) and xc

AF(T,l ) is
shown in Fig. 17 for several temperatures and three differ
values of the chemical potential. The susceptibilities for
noninteracting (U50) case are also shown. For all calcul
tions the initial interaction wasU054t/3 and we have cut
the Brillouin zone intomi532 patches. The symmetry of th
dominant superconducting correlations is for all casesB1
~which transforms asdx2-y2) and the dominant antiferromag
netic correlations haveA1 ~s! symmetry. They correspond t
the symmetries of the strongest attractive components of
effective interactionsVSC,AF found in Sec. III.

Let us concentrate first on Fig. 17~a!, that shows the flow
at half-filling. The entire flow is in the parquet regime: th
nesting is perfect. In the beginning of the flow whereL l
@T all correlation functions, bare or with correlations, sca
as if the temperature was zero, i.e., like ln2(L0 /L)5l2. As the
cutoff approaches the temperature, the flow starts to satu
At the same time the effects of the interaction become m
and more visible as we decrease the temperature. Fo
temperaturesxc

AF andxc
SC are enhanced from their bare va

ues x0
AF and x0

SC that are equal at half-filling. As we ap
proach the temperatureT'0.016 from above, the differenc
between the bare and the interacting cases increases rap
this temperature is in fact the critical temperatureTc

RG dis-
cussed in Sec. III. We have approximated the fixed-po
values xc*

d(T) and x0*
d(T) of xc

d(T,l ) and x0
d(T,l ) with

their value forl 510 ~the corresponding energyL l is much
smaller than any physical energy scale!. Figure 18~a! shows
the temperature dependence of the fixed-point values at h
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filling. The bare susceptibility scales as ln2(L0 /T). The inter-
action makes both susceptibilities diverge, but the antife
magnetic one diverges first.

Now we increase the chemical potential toumu/4t
50.002 @Fig. 17~b!#. The beginning of the flow, whereL l
@umu, is still square logarithmic. Whenl becomes close to
l m56.9 the bare antiferromagnetic correlations start to
weaker because we approach the crossover from the pa
to the BCS regime. The nonanalytic point is atl 5 l m ; at this
point the flow equations~3.28! and ~3.29! have a peak be
cause of the van Hove singularity inDl

d(u) at u
50, p/2, p, and 3p/2. Again, as we approach the temper
ture Tc

RG the effects of the interaction become stronger a
stronger so that the difference betweenxc

d(T,l ) andx0
d(T,l )

increases more and more. The temperature dependence
fixed-point values for all correlation functions for the prese
case are shown in Fig. 18~b!. The instability temperature is
Tc

RG/4t'0.0075, which is higher thanumu/4t50.002. This
means that the instability is still in the parquet regime, b
not too deeply: the proximity of the crossover already affe
the antiferromagnetic correlations, which start to lose th
strength with respect to the superconducting correlati
near the instability. However, both are still strongly e
hanced and their flow is dominated by the parquet parl
, l m) for all temperaturesT.Tc

RG .
Let us further increase the chemical potential toumu/4t

50.006@Fig. 17~c!#. The flow of the antiferromagnetic cor
relations saturates in the BCS regime (l . l m55.8), but both
correlation functions SC and AF remain enhanced from th
bare values. In the temperature dependence of their fi
point values@Fig. 18~c!#, one sees that only the superco
ducting instability is possible. The temperatureTc

RG is lower
than the chemical potential, i.e., the instability is in the BC
regime, in which thep-h part of the flow is negligible. The
antiferromagnetic susceptibility even starts to decrease
the temperature whenT&m. This happens because we d
not adjust the wave vector of the spin-density wave~SDW!
to the best nesting~incommensurate SDW! but we keep it for
simplicity at (p,p). Nothing drastic would happen even

FIG. 18. The temperature dependence of the fixed-point co
lation functions for three different values of the chemical potent
-

e
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t
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s
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ed

th

we have taken small deviations of the best nesting w
vector from (p,p): the susceptibility would saturate as th
temperature decreases because the differentialp-h bubble
decays in the BCS regimeat any wave vectorwith positive
power ofL.

The universal functionf (umu/Tc
0) @Eq. ~3.31!#, which de-

termines the dependence ofTc
RG on the chemical potential, is

practically the same as the one obtained in the ze
temperature formalism. The final phase diagram is the on
Fig. 15. At half-filling the antiferromagnetic fluctuations a
dominant over the superconducting ones, but both corr
tion functions diverge atT5Tc

RG . Upon doping the antifer-
romagnetic correlations lose their strength while the sup
conducting correlations remain strongly divergent. T
divergence of AF correlation functions is completely su
pressed ifT5Tc

RG is in the BCS regime.

V. CONCLUSION

We have formulated the exact Kadanoff-Wilso
Polchinski~KWP! renormalization group for a general prob
lem of interacting fermions on a two-dimensional lattice.
principle the generalization to higher dimensions is trivi
The procedure of the KWP renormalization scheme is to
tegrate out successively the degrees of freedom starting f
high energies, and to follow the renormalization ofall terms
in the effective action. We parametrize the renormalizat
by a high-energy cutoffL[L0 exp(2l) determining the ring
6L around the Fermi surface. In order to take the wh
Brillouin zone into account, the cutoffL is taken to be equa
to the bandwidth (L05B) at the beginning of the renorma
ization (l 50). As one proceeds with the mode eliminatio
vertices of all orders are created. To follow the exact ren
malization of the effective action we need to know the flo
~the dependence onl ) of all vertices. The Polchinski equa
tion @Eqs. ~2.16! and ~2.17!, and Fig. 3! determines the dif-
ferential flow of all vertices asfunctions of energies and
momenta. In principle the fixed point solution (l→`) of this
equation gives us the exact connected Green functions o
model.32,33 Clearly, the exact integration of Polchinski equ
tion is impossible and for concrete calculations we have
truncate the effective action.

The truncation at the sextic term~at the three-particle in-
teraction term! generates the one-loop renormalization gro
for the two-body interaction. The truncated effective acti
is given by expression~2.21!. Its renormalization is deter
mined by the flow equation for the two-body interaction a
for the self-energy. The flow equation for the interactionUl
is made of all one-loop diagrams bilinear inUl as shown in
Fig. 4 and by Eq.~2.25!. Note thatUl is renormalized as a
function of three energy momenta~the fourth is conserved!,
i.e., this is afunctional renormalization group. Theb func-
tion ~2.25! contains the contributions from thep-p (bpp)
and p-h diagrams (bph). The first term is called the BCS
contribution in the literature, the next three terms are the z
sound~ZS! contribution, and the last term is the ZS8 contri-
bution to the differential flow. The flow equation for th
interaction is not local inl, as one can see from Eqs.~2.28!
and~2.29! for differentialp-p andp-h bubbles: at some ste
l of the renormalization,Ul is renormalized by the values o
U at former stepsl pp(k,k1 ,k2) and l ph(k,k1 ,k3). This non-

e-
l.
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locality is the price we have to pay if we want to keep
contributions, logarithmic or not, that renormalize the int
action. In this way one takes correctly into account, for e
ample, thep-h flow because of the imperfectly nested Fer
surface. The standard~local! Wilsonian RG,31 that takes into
account only dominant logarithmic diagrams~those with l
5 l pp5 l ph), can give useful results only for the perfect
nested~but not square! Fermi surfaces or the Fermi surfac
far from being nested, so that thep-h part is negligible.

We have applied the one-loop renormalization group
the Hubbard model on a square lattice near half-filling. T
interaction functionU that we renormalize is dependent o
the angular (u) position of three momenta on the squa
Fermi surface~the fourth one is conserved!. All radial mo-
mentum dependencies and energy (v) dependencies are ir
relevant to the Fermi-liquid scaling. It is important that w
allow variablesu of the interacting particles to be anywhe
on the square Fermi surface, and not only in the configu
tions which give perfect nesting or zero total momentum~see
Fig. 7!. This means that we do not limit ourselves to t
leading logarithmic parts of the flow, but that we take
non-logarithmic contributions into account.

From the explicit scale dependence of the differential fl
for U we see two renormalization regimes~see Fig. 9!. In the
first regime,L l.umu. We call it the parquet regime becau
both p-p and p-h contributions are important. The othe
regime exists in the non-half-filled case whenL l,umu.
There onlyp-p loops have a strong logarithmic flow, whil
the p-h part decays to zero. We call this regime the BC
regime. The effective phase space@ uj0(k)u,L# in the par-
quet regime is open so that the nesting is relevant~see Fig.
2!, while in the BCS regime the phase space is a clo
regular ring of degrees of freedom around the Fermi surf
so that perfect nesting is impossible~see Fig. 6!. The flow in
the parquet regime is characterized by a strong coupling
tween thep-p and p-h channels of renormalization. Thi
coupling comes into play over the interactions that hav
strong flow from bothp-p andp-h diagrams. For the case o
a ~nearly! square Fermi surface these are all interactions
tween electrons from opposite sheets of the Fermi surfa

The leading correlations in the Hubbard model are
pected to be antiferromagnetic and/or superconducting.
give a precise answer to this question, we use the Kadan
Wilson-Polchinski procedure to construct th
renormalization-group equations for theangle-resolvedcor-
relation functionsx l

AF(u1 ,u2) andx l
SC(u1 ,u2) for antiferro-

magnetism and superconductivity, defined by Eq.~3.10!. At
a given stepL( l ) of the renormalization these correlatio
functions measure the linear response of the electrons ou
the shell6L around the Fermi surface. We take the sta
long-wave limit. The renormalization equation forx l

AF,SC is
Eq. ~3.21!. The renormalization of the correlation function
depends on the renormalization of the verticeszAF,SC @Eq.
~3.20!#. Furthermore, from Eqs.~3.20! and ~3.21! one sees
that the flows of the susceptibilities and of the vertices
pend on the flows of the correspondingeffective interactions
Vl

SC andVl
AF , given by Eqs.~3.5! and ~3.16!, respectively.

The flow equations for the interactionUl @Eq. ~2.25!#, for
the verticeszl

SC,AF @Eq. ~3.20!#, and for the correlation func
tionsx l

SC,AF @Eq. ~3.21!# can be integrated numerically if w
l
-
-
i

o
e

a-

l

d
e

e-

a

e-
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o
ff-
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discretize theiru dependence. The coupling function is the
approximated by a set of coupling constants. The verti
and correlation functions become discrete matrices. Us
physical and geometrical symmetries we reduce the num
of coupling constants to a set of the independent ones~see
Fig. 13!. The functional renormalization-group equations b
come a set of equations, one for each coupling constant
for each matrix element ofzl

SC,AF andx l
SC,AF .

We have solved the renormalization equations for up
mi532 angular patches. The typical flow of the couplin
constants is shown in Fig. 14. There is a critical scale
which coupling constants diverge. We associate it with
critical temperatureTc

RG . Its dependence on the chemic
potential is shown in Fig. 15~solid line! together with the
RPA result~dashed line!. At the line Tc

RG(m) the electronic
correlations are strongly enhanced. The type and form of
corresponding microscopical fluctuating fields are given
the dominating eigenvalues~and their eigenvectors! of the
correlation matricesx l

SC,AF . These are determined by th
dominant attractive eigenvaluesVc

SC andVc
AF of the effective

interactions. For all values of the chemical potential stud
in this work, the eigenvalueVc

SC corresponds todx22y2 ~or
B1) singlet superconductivity whileVc

AF is an s wave (A1

representation!. The flow of the interactionsVc
SC andVc

AF in
the vicinity of the critical pointL5Tc

RG is shown in Fig. 16.
At half-filling, Vc

AF is dominant. Upon doping, the diver
gence ofVc

AF loses its strength and the divergence ofVc
SC

becomes dominant.
To determine the dominant fluctuations nearTc

RG more
precisely, we have done one further step in t
renormalization-group formalism: we have introduced t
temperature explicitly into the flow equations. In this forma
ism the cutoffL no longer has the physical meaning of th
effective temperature. At a given temperatureT the physical
information is contained in the fixed point (L→0) of the
correlation functions. This extension of the formalism w
necessary because in the zero-temperature procedure it
not possible to have the divergence ofx l

AF at the same scale
l c as the divergence of the couplingVAF: for any nonzero
chemical potential the flow ofx l

AF has a finite retardation in
l @see Eqs.~3.20! and ~3.21!#. Thusx l

AF diverges later, atl
. l c . In the finite-temperature formalismx l

AF , x l
SC, Vl

AF ,
and Vl

SC all diverge at the same temperature. The price
this is that for each temperature we have to integrate
complete flow all the way froml 50 to l 5`, and to follow
how the result changes with the temperature.

The flow of the dominant eigenvalues ofx l
AF andx l

SC at a
few different values of the temperature is shown in Fig.
for three different values of the chemical potential. Both c
relation functions are always enhanced with respect to t
bare (U50) values. The temperature dependence of
fixed point correlation functions is shown in Fig. 18. Th
critical temperatureTc

RG found by the finite-temperature
method is practically the same as the one found by ze
temperature calculations, but now we are able to follow
plicitly the enhancement of the correlations of both types
the vicinity of the instability. It is clearly visible how the
doping favors superconductivity and how the divergence
x* AF is completely suppressed if the instability is in the BC
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regime, i.e., ifTc
RG,umu. This result justifies the phase dia

gram in Fig. 15.
In the low-doping regime, both correlations are strong

enhanced, and the low-temperature phase can in principl
a mixture of both~quasi-!long-range orders, with the supe
conducting component falling to zero at half-filling. The i
stability is in the parquet regime: the critical fluctuations a
a mixture of two fluctuating channels and cannot be trea
by an effective mean-field theory like BCS or RPA theorie
In other words, the parquet regime is deeply non-Migdali
so that the vertex corrections are as important as thep-p
loops. The vertex corrections can no longer be seen as s
but have to be taken at all orders, just as thep-p diagrams,
and together with otherp-h loops.

The situation is less complicated in the BCS regim
There, a low-energy effective action can be constructed
that only thep-p diagrams contribute to the instability whil
the p-h parts ~antiferromagnetic tendencies! are irrelevant.
The attractived-wave component of the Cooper amplitude
the LEEA is due to the higher energies (e.umu), where the
p-h diagrams are important. In the BCS regime only sup
conductivity is possible as a low-temperature order.

As we are considering a two-dimensional system, o
should be careful about the interpretation ofTc : in the case
of magnetism, this indicates the onset of well-defined fin
range correlations. For weak interactions, this is typicall
very well-defined crossover.36 In the case of pairingTc

RG can
be identified with the onset of quasi-long-range order. F
thermore, the line between AF(SCd) and SC phases in Fig
15 is only partially determined in our calculations: we on
know that at temperature nearTc

RG , this line is close to the
crossover lineT5umu, but at lower temperatures we cann
say anything about its position.

It is difficult to discuss the experimental results from t
point of view of our phase diagram. First of all, the one-lo
renormalization group is a weak coupling perturbat
method, while the interactions in the copper-oxide superc
ductors are moderate to strong. For that reason our p
diagram can be compared to the experiments only qua
tively. Furthermore, in our calculations we have neglec
self-energy corrections, which are given in Polchinski’s fo
malism by Hartree-Fock-like terms with renormalizedv-
and q-dependent vertices@Eq. ~2.30!#. The broadening and
redistribution of the spectral weight of the quasiparticles
then determined by the dynamics of the vertex, which
irrelevant and therefore neglected. One should however
tice that at the two-loop level self-energy effects beco
important, as known from the one-dimensional case.15 In that
sense, ourTc

RG should be understood as a temperature wh
the effects of interactions start to change strongly not o
the two-particle correlations, but the single-particle prop
ties as well. For that reason it seems natural to associate
temperatureTc

RG with the crossover temperatureTco found in
the cuprates. The parquet regime would then corresp
roughly to the underdoped situation, and the BCS regime
the overdoped regime.

The ‘‘phase’’ AF(SCd) corresponds then to the antife
romagnetism and to the pseudogap regime: the antiferrom
netic correlations and the localization tendencies there
accompanied more and more with superconducting corr
be
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tions as we approach the crossover lineT5umu. We expect
that the critical temperatures for antiferromagnetism and
perconductivity in this regime are lower thanTc

RG , because
of the self-energy corrections. In other words, at tempera
Tc

RG in the parquet regime, the local antiferromagnetic m
ments andd-wave singlets are created with finite correlatio
lengths. This gives rise to pseudogaps in both spin
charge responses, together with the precursors of both
ferromagnetism andd-wave superconductivity. The absenc
of the long-range order between superconductivity and a
ferromagnetism in the phase diagram of cuprates is perh
due to the fact that both types of fluctuations are strong. T
is the central idea of theSO(5) models42 for the high-Tc

superconductivity. In that language ourTc
RG plays the role of

the mean-field critical temperature for theSO(5) field.
In the BCS regime only the superconducting fluctuatio

are critical. We thus associate the phaseSCdwith the over-
doped regime. From large-N arguments31,23we know that the
self-energy corrections disappear asTc /t if the Fermi surface
is not nested. This is the case in the BCS regime where
nesting processes are irrelevant. Consequently, in this reg
Tc

RG is the BCS-like critical temperature. In two dimensio
no long-range order is possible, but a Kosterlitz-Thoule
transition for superconductivity exists. The correspond
critical temperatureTKT is close to the mean-field one
Tc

RG :17

Tc
RG2TKT

Tc
RG

'
Tc

RG

EF
!1. ~5.1!

This means that in the BCS regime a phase transition ex
nearTc

RG even in the absence of interplane coupling~third
dimension!.

Experimentally, in the overdoped regime the crosso
temperatureTco is equal to the critical temperature for th
superconductivity. Independently of the mechanisms for
phase transition, Kosterlitz-Thouless or interplane hoppi
this existence of one single characteristic temperature wh
is the critical temperature is a reason to believe that the c
cal temperature in the overdoped regime is very close to
mean-field critical temperature. Finally, mean-fie
arguments43 suggest that one expects an incommensu
SDW ~ICSDW! only in the BCS regime, and only where th
imperfect nesting is still strong, i.e., not far from the cros
over T5umu. However, the precision of our calculation~we
cut the Brillouin zone into up to 32u patches! is not suffi-
cient to check whether a magnetic correlation function
verges at some incommensurate wave vector. In any c
the incommensurate SDW andd superconductivity are not in
competition because they appear at different places on
Fermi surface:SCd in the corners and the ICSDW in the fla
parts; one thus expects their coexistence.

Altogether, the phase diagram in Fig. 15 has import
similarities to the experimental phase diagrams. The on
loop renormalization group, taking into account electro
electron and electron–hole processes on the same foo
reveals the essence of the physics of a doped half-filled b
of correlated electrons.
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APPENDIX: INTERACTION U„1,2,3…
AND ITS SYMMETRIES

The most general spin-rotation-invariant interaction te
can be written in several ways. One way is in terms
charge-charge and spin-spin interactions,

Uc~K1 ,K2 ,K3!C̄~K2 ,K4!C~K3 ,K1!

1Us~K1 ,K2 ,K3!S̄~K2 ,K4!•S~K3 ,K1!, ~A1!

whereC andSi are

C~K3 ,K1![(
s

C̄sK3
CsK1

,

Si~K3 ,K1!5(
ss8

C̄sK3
sss8

i Cs8K1
. ~A2!

The summation over all three energy-momentum vec
(K1 ,K2 ,K3) is assumed andK45K11K22K3. On the other
hand, the interaction can also be written as a sum of one t
with equal (s5s8) spin quantum numbers and one wi
opposite (s52s8) spin quantum numbers, with corre
sponding coupling functions U i(K1 ,K2 ,K3) and
U'(K1 ,K2 ,K3),

U i~K1 ,K2 ,K3!C̄sK3
C̄sK4

CsK2
CsK1

1U'~K1 ,K2 ,K3!C̄sK3
C̄2sK4

C2sK2
CsK1

, ~A3!

with the summation over spin indices assumed. Spin-rota
invariance allows us to write the interaction part of the act

as a sum of the singlet (usW 1sW 8u50) and triplet (usW 1sW 8u
5A2) parts,

s̄~K4 ,K3!US~K1 ,K2 ,K3!s~K2 ,K1!

1 t̄ m~K4 ,K3!UA~K1 ,K2 ,K3!tm~K2 ,K1!, ~A4!

wheres andtm are the variables of annihilation of the singl
and triplet states:

s~K2 ,K1![
1

A2
(
s

sCsK2
C2sK1

, ~A5!

t0~K2 ,K1![
1

A2
(
s

CsK2
C2sK1

,

d

d

t

f

rs

rm

n
n

t61~K2 ,K1![C↑,↓K2
C↑,↓K1

. ~A6!

All coupling functions in Eqs.~A2!–~A4! possess a symme
try related to momentum exchange and time inversion
F(K1 ,K2 ,K3 ,K4) is a coupling function, two exchange op
erators can be defined as

XF~K1 ,K2 ,K3 ,K4![F~K2 ,K1 ,K3 ,K4! ~A7!

and

X̄F~K1 ,K2 ,K3 ,K4![F~K1 ,K2 ,K4 ,K3!. ~A8!

The time inversion operatorT is

TF~K1 ,K2 ,K3 ,K4![F~K3 ,K4 ,K1 ,K2!. ~A9!

The symmetries of the coupling function are the time inv
sion symmetry

TF5F ~A10!

and the exchange symmetry

XX̄F5F. ~A11!

Both symmetries can be easily checked for coupling fu
tions in expression~A3!. We will see that all other couplings
can be derived fromU' only, and have the same symmet
properties uponX and T operations. It is easy to see th

X̄F5XF if TF5F: the exchanging of particles 1 and 2 o
particles 3 and 4 is equivalent.

We want now to find the relations between the six co
pling functions in Eqs.~A2!–~A4!. Using the Pauli principle
one obtains

U i5Uc1Us , ~A12!

U'5Uc2Us22XUs . ~A13!

Let us supposeUc andUs to be two independent functions
We can write them in the forms

Uc5
1

4
~22X!U11U2 , ~A14!

Us52
X

4
U1 . ~A15!

If we now choose U15U' it follows from Eq. ~A13! that
U250. This means that the most general interaction can
written in terms of a single functionU' , without losing
generality. The functionU i is also contained inU' . That is,
from two equal-spin electrons one can build only a trip
state~antisymmetric underX), so that

U i5UA, ~A16!

while

U'5UA1US, ~A17!

containing the singlet and the triplet interactions.UA andUS

can be seen as the antisymmetric and symmetric parts o
same function. This function is simplyU' .
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We see that all coupling functions are contained inU' ,
which we call simplyU or Ul to make its scale dependenc
explicit. One thus has

Uc5
1

4
~22X!U, Us52

X

4
U, ~A18!

UA5U i5
1

2
~12X!U, US5

1

2
~11X!U. ~A19!

The effective coupling function for the renormalization
the AF correlation function@Eq. ~3.16!# is obtained from the
spin coupling
Vl
AF~u1 ,u2!54Us l~u1 ,u2 ,ũ1!, ~A20!

where we take only theu dependence of the coupling func

tions into account. The angleũ is related to the angleu in
such a way that the momentum difference between the

ticles k(u) and k( ũ) is the perfect nesting vector (6p,
6p). The coupling function for the charge density wa
~CDW! at q5(p,p) would be

Vl
CDW~u1 ,u2!54Ucl~u1 ,u2 ,ũ1!. ~A21!
.
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