PHYSICAL REVIEW B VOLUME 61, NUMBER 20 15 MAY 2000-I1

Weakly correlated electrons on a square lattice: Renormalization-group theory
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We formulate the exact Wilsonian renormalization group for a system of interacting fermions on a lattice.
The flow equations for all vertices of the Wilson effective action are expressed in the form of the Polchinski
equation. The advantage of this renormalization scheme is that the flow itself has a physical interpretation, i.e.,
the cutoff has the meaning of the temperature. We apply this method to the Hubbard model on a square lattice
using both zero- and finite-temperature methods. Truncating the effective action at the sixth term in fermionic
variables and neglecting self-energy renormalization, we obtain the one-loop functional renormalization equa-
tions for the effective interaction. We find the temperature of the instabift§ as a function of doping.
Furthermore we calculate the renormalization of the angle-resolved correlation functions for the superconduc-
tivity (SC) and for the antiferromagnetisF). The dominant component of the SC correlations is of the type
dy2_y2, while the AF fluctuations are of the tyjgeFollowing the strength of both SC and AF fluctuations along
the instability line, we obtain the phase diagram. The temperdtﬁ?ecan be identified with the crossover
temperatureTl ., found in the underdoped regime of the high-temperature superconductors, while in the over-
doped regime‘l’?G corresponds to the superconducting critical temperature.

I. INTRODUCTION It is striking that some other apparently completely differ-
ent systems of correlated fermions have very similar proper-
In systems of correlated fermions on a lattice some interties. A phase diagram with the superconducting phase in the
esting and also puzzling physics seems to happen whevicinity of the spin density wavé.e., antiferromagnetjan-
interaction-induced localization tendencies, antiferromagstability also characterizes the quasi-one-dimensional Bech-
netic fluctuations, and superconducting fluctuations aregaard salts and the quasi-two-dimensional organic super-
mixed. The standard example of such a system is coppeconductors of the ET family® where instead of doping the
oxide superconductorsln the underdoped regime, between relevant parameter for the phase diagram is pressure. How-
the antiferromagnetic(AF) and superconductivity(SC) ever the common feature of all these compounds is that they
phases, correlations of both AF and SC types are stronglgire systems of correlated fermions with reduced dimension-
enhanced, and a pseudogap is visible in the one-particlality (D<3), and with strongly anisotropic and more or less
spectrum and in the spin response functions. The pseudogagsted Fermi surfaces. The main points for the understanding
regime is limited from above by a crossover temperatureof the three groups of compounds digthe destruction of
T.o(X), @ monotonously decreasing function of doping. Atthe nesting by dopindcuprates or by applying pressure
the temperaturesT=T., the underdoped materials are (Bechgaard salts and ETand (ii) the suppression of the
“strange metals”: many physical properties are unlike thoseumklapp processes by doping the half-filled baimdthe cu-
of a standard Fermi liquiélin the overdoped regime&,,(x) prates and ET)sor by making the half—filled band effec-
merges with the critical temperature for superconductivity tively quarter-filled through the breaking of the longitudinal
and the regimel>T, is merely a Fermi liquid. Another dimerization by pressurén the Bechgaard sajtsConcern-
interesting feature of the phase diagram is the unusual forrmg the Bechgaard salts it is interesting to remark that some
of the order parameter. After a rather long period of contro+ecent interpretations of the phase diagram of the
versies thed,2 2 symmetry is finally generally acceptéd. (TMTSF)PR materiat! suggest that the intermediate regime
This is one of the reasons to believe that the pairing mechaetween the high-temperature one-dimensiqaél) behav-
nisms are tightly related to the antiferromagnetic tendencie®r and the low-temperature 3D physics is a strange 2D lig-
and not to the standard phonon-exchange mechanisms. Thé with properties very similar to those of the underdoped
dy2_y2 form of the superconducting correlations also subsisteuprates above the crossover temperaliyg
in the pseudogap regime, as seen in recent angle-resolved From the theoretical point of view it is certainly interest-
photoemission and tunnelin§ experiments. The simulta- ing to construct a theory able to treat antiferromagnetic and
neous existence of strong AF correlations, as seen by NMRsuperconducting tendencies in more than one dimension on
or neutron-scatterifigexperiments, and even localization the same footing, and to follow how the result changes with
tendencies such as the flattening of the banthke us con- some external parameter that destroys nesting and the Mott-
clude that the interpretation of this regime in terms of onlylike localization. The first question one can ask is whether a
superconducting or antiferromagnetic fluctuations is not sufpurely repulsive model like, for example, the Hubbard model
ficient, especially because we expect that they are coupled(or some generalization of)itontains coexisting and inter-
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dependent antiferromagnetic and superconducting correldrom one-half. Then the renormalization group gives only a
tions. In such a model the antiferromagnetic fluctuations areveak Kohn-Luttinger-like pairing. The-p part of the flow
associated with the enhancement of the particle-holés decoupled from th@-h one in the low-energy regime for
(p-h) propagators at low energies, and the superconductinthe simple reason that thee h part is negligible there. Other
tendencies appear through particle-partigie) propaga- calculations based on the perturbative treatment ofptte
tors. The Hubbard model is appropriate because at haliehannel were also reportéd?® If the Fermi surface is well
filling a simple mean-field calculation already gives an anti-(but imperfectly nested, and this is exactly the interesting
ferromagnetic instability at a finite temperature. However, ifregime, this strategy does not work any longer because both
one also tries to include the-p processes, the problem be- p-p and p-h loops are nonperturbatively large, even for
comes nontrivial even in the weak-coupling limit: a simple weak interactions. In the case of the square Fermi surface
mean-field theory is not able to follow bogrh andp-p  (with or without the van Hove singularitipsaking only the
correlation channels. One can of course try to remedy thiteading logarithmic part the coupling between the channels
problem by including summation of selected subseries ofnto accourtt’ is equally insufficient. Another way to pro-
higher-order diagrams. One such attempt was to calculate theeed is to see the 2D Hubbard system as an ensemble of
effective Cooper amplitude as a sum of bubble and laddecoupled chaing® This approach gives a phase diagram with
random-phase-approximatiéRPA) series>*3The resulting  superconductivity formed by pairs of electrons on different
Cooper amplitude is then used as coupling constant for ashains, giving rise to a spatially anisotropic version of a
sumed effective BCS theory. This procedure thus explicitlyd-wave order parameter. Among the number of theoretical
decouples three different summatio(RPA bubbles, RPA approaches to the Hubbard model other than via the loop
ladder, and BCS laddewithout real justificationFLEX (con- ~ summations, Monte Carlo calculations in principle take “ev-
serving calculationd* based on similar simplifications are erything” into account, but it is still unclear whether they
also prejudiced by the choice of diagrams to be summed. Thgive?® the superconductivity or ndé*°
only way to proceed systematically is to construct a renor- In the present paper we seek to reliably determine the
malization group that takes into account pip and p-h phase diagram of the Hubbard model in the vicinity of half-
loops of a given ordefor to use the equivalent parquet ap- filling, where p-h processes are nonperturbatively enhanced
proach. In (quasi) one dimension, the renormalization and at least nearly as important@gp ones. We also detect
group has been successfully used, and is one of the basiike dominant components of the angle-resolved correlation
theoretical ingredients in the physics of low-dimensionalfunctions for antiferromagnetism and superconductivity as
metals>1516 functions of temperature. This allows us to know the sym-
In two dimensions only a limited number of simplified metry of the microscopic fields whose fluctuations become
cases was solved by the renormalization group. The podmportant. The method that we will use is a generalization of
man’s scaling applied only to interactions between electron§hankar’s renormalization-group appro#cto an arbitrary
placed at the van Hove points gives an antiferromagnetiform of the Fermi surface. In particular, the Kadanoff-
instability at half-filling and a superconductivity af,2_,>  Wilson mode eliminatiori{developed by Shankar for 2D fer-
symmetry if the deviation of the chemical potentialfrom  miong applied to the effective action with only two-particle
its value at half-filling becomes of the order of the critical interaction retains only strictly logarithmic contributions to
temperature of the antiferromagnetic stHté® The equiva- the flow. Thus, even if the nesting is very good but not
lent parquet approach has been used for half-fillibgt perfect, thep-h part of the flow would be zero because the
without the limitation to the van Hove pointsand also pro- logarithmic singularity is destroyed by imperfect nesting. To
duces an antiferromagnetic instabilif{?° Parquet calcula- keep thep-h part of the flow finite even in the case of im-
tions for simple flat Fermi surfacésgive an antiferromag- perfect nesting, we start by formulating tegactKadanoff-
netic instability, but cannot provide a continuous phaseWilson-Polchinski renormalization group for fermions on a
diagram as a function of some imperfect nesting parametdattice. This was formulated previoush? only for quantum
or band filling: thed,2_2-like superconducting pole appears fields with one zero-energy point in the momentum space,
simply by cutting thep-h part of the flow, as in Ref. 17. A like the ¢* field theory (critical phenomena In many-
scaling approach to a system with a Fermi surface with botliermion systems in more than one dimension we have, on the
flat and curved parté has also reported a superconductingcontrary, a whole Fermi surface that plays the role of a zero
instability in a purely repulsive model, together with devia- energy manifold, which makes the calculations more compli-
tions from Fermi-liquid behavior. However, a complete one-cated. Starting with the full bandwidth as the initial energy
loop renormalization grougor parquek for a realband of  cutoff we perform an iterative mode elimination, reducing
electrons with imperfect and tunable nesting, or doping, stilthe cutoff A around the Fermi surface. Collecting at each
remains unresolved. The main difficulty is related to the cor-step of the renormalization all the terraumulant$ of the
rect treatment of the coupling betweenp and p-h chan-  effective action, we obtain the Polchinski equation for the
nels. vertices of the effective theory at a given step of the renor-
Different authors have tried to avoid taking into accountmalization. It is important that even if the initial interaction
the coupling between the different renormalization channelsis only a four-point functior{two-particle interactioy) verti-
making drastic simplifications or limiting themselves to ces ofall higher orders are created by the renormalization
some particular forms of the Fermi surfaces or only to theprocedure. Once the exact renormalization group is formu-
low-energy effective action. In our former publicatiéhé® lated we proceed with its truncation at the one-loop level: the
we have shown that in the Hubbard model one can treat thene-loop truncation of the flow for the four-point vertex is
p-h channel perturbatively if the filling is sufficiently far done by neglecting all renormalization-group-created verti-
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ces of order larger than 6. ShanKaalready remarked that tweenp-p andp-h channels appears mostly through inter-
the six-point function created by the mode elimination isactions that have other than just leading-logarithmic flow.
essential to obtain a nonlogarithmic contribution to the four-This is a special feature of the square or almost square Fermi
point vertex(the effective interaction The one-loop renor- surface, and can be handled only by nonlo@aiter-shell
malization of the interaction that we obtain in this way ap-contributions to the flow, using the Polchinski equation.
pears to be generallponlocal in A, i.e., the flow of the The first aim of our calculation is to find the temperature
vertex at a given step of the renormalization depends on théscalg at which the flow diverges toward strong coupling.
values of the vertex at former steps. This is certainly notwe associate this temperature with a mean-field-like critical
pleasant, but i¢as far as we can spa necessary property of temperature and call TR®. A typical mean-field theory is
the Kadanoff-Wilson-PolchinskiKWP) procedure if we  then regularized folf <T, by adding counterterms that con-
want to keep more than just purely logarithmic contributions.i4in fermions bilinearly coupled to some order parameter. In
In principle, some other renormalization-groiRG) sche- o ¢ theory the order parameter is not knowrpriori: it is
mas, local inA, could also be used. In particular, the field- j.iarmined by the manner in which théunction

3 .
theory schemé® also derived recently from an exact U(6;,6,,05) diverges atT=TR®. We perform a detailed

Polchinski RG equatioff: or, on the other hand, Morris’ . . .
version of one-particle-irreducible (IP)) RG's, are analysis of the behavior of the angle-resolved correlation
’ functions for antiferromagnetism and superconductivity, and

procedure¥ local in A and could take into account every- X
thing what takes KWP approach. The difference between th@tain the type and the symmetry of the order parameter

KWP and FT approaches is that in the former the cutoff ha§létermining the dominant correlations nek°. The final
a physical meaning. At some step of the renormalization théeSult is the analog of a mean-field phase @ag(}rgm of the
KWP procedure gives an effective model renormalized onlyHubbard model. Let us focus briefly on this poiif.® is the
by electrons with an energy|>A. This means that acts temperature at which the'effectlve' interactions between elec-
as an energy resolution: the vertices of the model have thons diverge. Interpretation of this temperature as a mean-
meaning of correlation functions energy resolved for ener.ﬁeld'”ke critical tempe_rature is well established .in the phyS-
gies larger than . In fact, this is equivalent to saying that  ICS of correlated fermions. For example, the divergence of
acts like an effective temperature. The FT approach does né#€ one-loop flow of a vertex with a total momentum equal to
have this advantage, and one can compare it with KWP reZero is nothing but the BCS critical poifit Another example
sults only in the fixed point £—0). On the other hand, IS the theory of the spin-density-wave phases in quasi-one-
Morris’ 1PI equations are not suitable for the approximationsdimensional organic conductotsHere the basic concept is
that we make in our calculations. Essentially these consist df€ analysis of the divergence of the RPA vertex near the
neglecting all energy dependences of the effective interactioAkr momentum transfer. In the language of the renormaliza-
for |£<A, using power counting. In the KWP scheme this tion group the RPA theory is just one-loop renormalization
approximation is always allowed because, by the definitiorin the electron-hole channel. Altogether, the divergence of
of the Wilson effective action, all electrons live in the region the vertex at some critical temperatugcalg is indeed a
|€|<A of the phase space. The approximation is not Straightb_reakdown of_the renorr_nahzatlon procedure, but with a pre-
forward in 1Pl equations, because there the “classical’Cise physical interpretation. _
fields are not constrained in phase space to ¢&llyc A, so We are considering a two-dllmen3|onall system, another
that power counting cannot be done simply. reason to be careful about the mterpretauonTﬁrG: in the

We apply the one-loop KWP renormalization group to thecase of magnetism, this indicates the onset of well-defined
Hubbard model. One further approximation we make is tdfinite-range correlations. For weak interactions, this is typi-
consider the effective interaction as a function only of thecally a very well-defined crossovét.In the case of pairing
projection of the momenta to the square Fermi surfacar- TcRG can be identified with the onset of quasi-long-range or-
ginal interactiong while the radial dependence and dynam-der. However, in real systems like copper oxides even a
ics are neglected because they are irrelevant with respect weak interplane two-particle hoppiigarticle-hole-pair hop-
the Fermi-liquid scaling® We also neglect the renormaliza- ping for antiferromagnetism, or Josephson tunneling for su-
tion of the self-energy. If we take only marginal interactions perconductivity stabilizes a 3D long-range order. Of course,
into account this is justified at the one-loop level because th@ that case the value of the critical temperature depends on
renormalizations of the weight and of the lifetime of the the way the planes are coupled, but that kind of analysis is
electrons receive nonzero contributions only at the two-looput of the frame of this paper. What we do is to explore in
level. We thus renormalize only the interaction detail the in-plane mechanisms necesghiy not sufficient
U(64,6,,05), a function of three angular variables corre- for antiferromagnetic or/and superconducting long-range or-
sponding to the angular parts of the three external momentaer. From the point of view of single eIectron‘ESG is the
the fourth being determined by momentum conservation. Wéemperature of the onset of strong correlations that destroy
allow the 6 variables to be anywhere on the almost squareone-particle coherence. Consequently, the renge‘l’cRG is
Fermi surface, and not only in the configurations that givenot a Fermi liquid: the Fermi surface is destroyed by a
perfect nesting or zero center-of-mass momentum: these twpseudagap.
classes of the configurations would correspond only to the In Sec. Il we begin by the formulation of the many-
processes with the leading logarithmic renormalization in thefermion system on a lattice in terms of functional integrals.
p-h and p-p channels, respectively. As will become clear We introduce the concept of effective action, and show how
later, taking all threed variables without constraints is the it can be formally calculated using the partial trace tech-
essential point of the calculation, because the coupling beaique. We then derive the Kadanoff-Wilson-Polchinski exact
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renormalization group as one possible strategy for calculat- —
ing the effective action in terms of the renormalization group S{W}=So{W}+S{¥}=T> Ek WV ok(lon= &)W ok
flow of all vertices. Truncating the effective action at the “n 7

level of sixth-order vertices, we obtain one-loop 1 .
renormalization-group equations for the effective interaction + 5 2 T 2 ) ; .
and for the self-energy. In Sec. Il we apply the zero- oo’ Onyp@nyng K152

temperature one-loop renormalization group to the Hubbard
model on a square lattice. This section is in fact the extended
version of our recent papéf.We derive the flow equations —
for the effective interaction function and for the angle- The variables¥ (¥) are labeled by the energy-momentum
resolved correlation functions of superconducting and antivector K= (wy,k). & is the bare spectrum measured from
ferromagnetic types. After discretization of the angleon  the Fermi level,

the Fermi surface, we numerically integrate the flow, and

present the resulting phase diagram. In Sec. IV we introduce Ek= €& M

finite temperature explicitly into the renormalization-group heree, is the band dispersion andthe chemical potential.

correlation functions at temperatures near the instabilityk ,(k, K, ,K3) = (w,. + @, — 0p.. K, + Ko —Ks). We will re-
1 1 1 2 31 -

Conclusions are given in Sec. V.

XUo(K1, Ko, K) W ok Wik, Vo, W ok, (2.5

member that momenta are conserved up to reciprocal-lattice
vectors. Uy(K{,K5,K3) is the most general spin-
independent interaction, a function of the frequencies and
momenta. The derivation of actid@.5) for a general model

is equivalent to the derivation for the Hubbard motfel’

The simplest model for interacting fermions on a two- Provided that we putlo(Ky,K;,K3) instead of the constant

dimensional square lattice is the Hubbard Hamiltonian ~ Uo @nd keept, general. _ _
We want to derive the low energy effective action

+ t Ug (LEEA) for this model. The low-energy modes are the elec-
H= _th)U (a),68),01 ) 08, 0) + 5 Z nin; _Mzi i, tronic degrees of freedom close to the Fermi surface. We will
o (2.1  use this criterion and use the energy variagjldo discrimi-
.y _ o nate fast(high-energy modes V. from the slow (low-
wherea; , (&) is the creatior{annihilatior) operator of an  energy ones W_. Let's choose some arbitrary nonzero
electron at site with Spin o, tis the intersite transfer inte- high_energy cutoff\ deﬁning a shell of wave vectors around

gral, u is the chemical potential, arld, is the on-site Cou-  the Fermi surface. The electronic variables can then be writ-
lomb repulsion. After Fourier transform, the Hamiltonian is ten

written

Il. FORMULATION OF THE RENORMALIZATION
GROUP FOR A MANY-FERMION PROBLEM
ON A LATTICE

Vo= 06 =AW o+ OA=[ENV < 5. (2.6

H ZEK £ b The slow modes are inside the shell\ while the fast ones
7 are outside, with & |, going up to the physical cutoffy,
1 . . taken to be equal to the bandwidth, so that we are sure that
*ts5 > ) kE ) U0, k, +k,—ks@— ok,Rok Rk, the whole Brillouin zone is taken into account. Note that the
7 Tt cutoff is imposed only on momentum space, while the Mat-
(2.2 subara frequencies remain unlimited. The LEEXWY _} is
where an action containing only slow modes, and gives the same
partition function asS[Eq. (2.5)], or, formally,

&= —2t(cosk,+cosky) — u, (2.3

and the momenta are within the first Brillouin zone. In this Z=f DY _DY eV, 2.7
section we want to derive the renormalization group for a

more general problem. For that purpose we algwo have  This means thaS,{W¥ _} is calculated by taking thpartial
a general dependence bnFurthermore, we suppose that the trace over only fast modes in Eq2.4):

interaction can be nonlocal and dynamical; that is, we sup-
pose that it depends on energies and momenta of the inter-
acting particles.

The statistical mechanics of souch general model is given ) ) L ) .
by the partition functiodt The LEEA contains an effective kinetic p&§, with a finite

self-energy term and a new interactigy, . We havechosen
— S that the Fermi surface for the bare electrons plays the role of
Z:f DY DV e, (24 the zero energy manifold. Certainly, this ceases to be the
] ) o ] case if the form of the Fermi surface itself changes upon
where the functional integration is over Grassmann variableganormalization. If we however keeR, for bookkeeping of
¥ (W) for all electrons in the Brillouin zone. The acti®s  mode elimination, both technical and conceptual difficulties
given by can be encountered when becomes close to the maximal

ST _}=In f DY_DW_eSV< V=), 2.9
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Fermi-surface shift. The cutoff than loses its physical mean-
ing and becomes just a measure of how many electrons re
main to be integrated. Ideally, the cure would be to renor- Q »@»
malize around the floating A-dependent Fermi surface.
b c d

Here we will develop the RG equations for a procedure using
bare dispersiorg, for mode discrimination. This still does

not mean the neglecting of the self-energy renormalization.
We will formally derive the whole, exact flow equations.

If we consider the slow modes as parameters, expressiol m
(2.8 can be evaluated, at least formally, using the linked

cluster theoreni® The result is composed of three terms:

SMY =SV _}+Q.+5S{V_}. 2.9
Only the interaction parg, of the actionS can mix slow and
fast modes,

S=S{¥Yj+S{¥.}+S{Vv_..¥.}, (210
FIG. 1. A few lowest-order cumulants f@S{¥ _}. All internal
while Sy is diagonal and can contain only one kind of mode|ines are integrated only over the fast) modes.

in the same term:
turbative calculation of expansid@.12) for smallUy is thus
So=So{ W <} +Se{ V- }. (210 hot straightforward: at least some of sets of diaograms, con-
taining both p-p and p-h subdiagrambave to be summed
entirely. The lowest order diagram of that kind is the one
denoted byh in Fig. 1. On the other hand, the truncation of
the LEEA at fourth order is in general allowed for weak
coupling. However the direct summation of cumulants for
SS{W _} (like the T-matrix or RPA summationcan be per-
Q.= —E In(1+ e~ Pé) formed in a useful and controlled way only for a limited
k= number of physical problems, that is when some subsets of
diagrams are dominant. The direct parquet summation for a
+ >, (all connected clusters wit§{¥.}). general Fermi surface in more than one dimension is prob-
ably very hard. It was done only for the case of a perfectly
(212 nested(flat) Fermi surfacé&®?

This term gives only a shift of the total free energy of the 1he problem is even more difficult if the coupling is not
system. small. Then the criteria of most important sets of diagrams

The termdS{¥ .} in Eq. (2.9) is the most interesting one. are no longer clear, and even the truncation of the LEEA at

It brings the corrections due to the scattering processes of tHHartic or sextic term il is no longer justified.
slow modes on the fast ones into the LEEA, and is given by

the sum of all connected graphs Composed S@I\P>} A. Kadanoff-Wilson-Polchinski renormalization group:
+S{¥_,¥._}. If we draw the slow modes as external legs, Exact formulation

the diagrams fooS{W -} are the clusters with at least two A tractable way to construct thexactLEEA is to use the
legs. A few low-order diagrams fofS{W_} are given in  Kadanoff-Wilson-Polchinski renormalization group. Let us
Fig. 1. The terms with two external legs, labeleddnb, ¢, call the initial cutoff(the bandwidth Ay, and parametrizé.
andd in Fig. 1, are the self-energy terms, renormaliz&g  py the renormalization parameteiso thatA=Aqexp(-1).
The terms with four legs, f, g, andh renormalize the quar- The idea of the renormalization group is to consider the

tic interaction termS,. The terms with sixi( and j) and  transformations= Sx,—Sh,expi) @ an infinite set of in-
more legs arereatedby the mode elimination procedure. .. . . Lo
finitesimal mode eliminations

Of physical interest is the LEEA for the electrons in the
very vicinity of the Fermi surfaceA<Eg). Even if the cou- (1) (2) ’
pling is small, some of the loop diagrams will, at low tem- Sao ™ Shgexp-a 7 Shgexp-2an ™ - - - S, eXp(_')Z' 1
perature T<A), attain large values depending on the form (2.13
of the Fermi surface. For example, if the Fermi surface is not each step we eliminatd dl of modes at a distanca
close to van Hove singularities the particle-particle () from both sides of the Fermi surface. We will see that the
diagram € in Fig. 1) for the four-point vertex with zero mode elimination of an infinitesimal shell of degrees of free-
center of the mass momentum always has a logarithmic dedom is much simpler than the one-step procedure discussed
pendence like log{y/A), whereA is the initial cutoff equal in Sec. I.
to the bandwidth. If the Fermi surface is nested the particle- From now on we will simply call the LEEA the effective
hole (p-h) diagram € in Fig. 1) at 2k behaves in the same action because in the process of successive mode elimination
way. In the Hubbard model close to half-filling the van Hove[Eg. (2.13] A can have any value betweek, and zero.
singularities make both loops squares of logarithms. The pelndeed, it is of physical interest to follow the flow of the

The first term in Eq(2.9) is then only a constant from the
point of view of the fast electrons, and is equalSgV -}
+S{W¥_}. Q. is the grand potentialtimes B) of the fast
electrons as if they were decoupled from the slow ones:
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+A !

FS
-A

7 2n=2

FIG. 2. The division of the Brillouin zone into the outer-shell IJ A
(>), on-shell (), and slow ) modes.

effective actionS, asA decreases. We now concentrate to i *
one single step—I|+dl of the mode elimination. We call 1 *
outer-shellmodes the modes already eliminated by the pre- L 4... A A )
vious stepsthe fast (=) modeg. The modes inside the shell + l—é(n+1) 1 2n>2
[Apexp(=1)—Ayexp(—1—dl)] are the ones to integrate out. Eg)
We call themon-shellmodes and denote them bh) (Figure !
2 shows the division of the Brillouin zone into three types of ‘4 A A *
modes ¢, |, and<) for the case of the non-half-filled Hub-
bard model.

If 1'is not the very first step, the effective acti8y con-
tains couplings of all orders. Schematically it reads

FIG. 3. Differential flow for the vertices witlhn=2 andn>2
legs. Lines ‘1" are dressed on-shell propagators.

_ s nao o T nal momenta constrained to be on shell. Now we use the fact
SA=Soa + S = WY+ WYY+ Te v vy thatdA is infinitesimal: In the expression f&S(l) only the
terms linear indl will survive, to make recursiori2.15 a
LEREE (2.14 ; . . ;
_ o ) differential equation foiS, ;). Generally cumulants witim
All '¥’s live only within the cutoff+ A. The summation over internal lines are proportional thA™, because every internal
all frequencies, momenta, and spins is assumed. The tW@ne is constrained to the shell. In principle only diagrams
point vertexI', defines Wick’s theorem at s:[?pln particu-  with one internal line are proportional wl. If we group
lar the propagator of the “bare electrond™, = changes as terms with equal number of legs, we obtain the flow equation

we proceed with the renormalization. for verticesT'\)’, known as the Polchinski equation for the
The construction of the effective action one step furtherertices®?33 Only two types of diagrams with one internal
(atl+dl) is of the same form as Eq2.9), with the differ-  |ine are possible: tree diagrams and loop diagrams. We ob-

ence that now the on-shell modes play the role of the fasfain the recursion for the two-point vertex
modes. As we are interested only in the renormalization of

vertices, we can skip the constait and we obtain the re- d 0 2 10o(l)
cursion relation (9_A|F2 (K)=—T2 fdAd k'3’ (K", K,K",K)G(K").

Saq+dny=Saqy+ 6(1). (2.19 (2.19

The contributionsS(1) is due to the elimination of modes.  This means that only the loop term renormalizes the self-
It is given by the sum of all cumulants made®f{¥} and energy(see Fig. 3 Both loop and tree terms are present in
SA{Y,, ¥} with two or more legs, but now with all inter- the recursion equation for the higher-order vertices:

Jd
—TOKy, o Ko Kngg, - Ko =2 T2 | d2kTE) (=K 1) GH(K)TE) (K,1)
N I, dA 1 2

@n

-T> dAdsz(z'()nH)(K,Kl,...,Kn,K,KnH,...,K2n)G|(K), (2.17)
@n

also shown in Fig. 3. The two-point vertex defines the oneproach and the standard Polchinski equatibmyhere all
particle propagatoG, at each step of the renormalization: contractions are bare propagators. We call the vertex with 2
G (K) = [TO(K)]-1 91 external legs at the sted of the renormalization,
(K)=[T2° (k)] 218 pOK, KKty - Kon), With legs {Ky, . . . K}
We use thisrenormalizedpropagator to construct the Wick coming in and{K,,, ... ,K,,} coming out. Symbold,
theorem. Note that this is the difference between our apandl, in Eq. (2.17) are disjoint subsetd (N1,=J) of the
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FIG. 4. (a) The six-point vertex for a one-loop renormalization gro(p. Relation between the vertdx, and the interactiot. (c)
Recursion for the one-loop renormalization of the interaction

energies and momenta such thatul,={K,, ... K,,}.  We assume that the self-energy remains diagonal upon renor-
The sum runs over all such sets. We have skipped spin indmalization. This is consistent with the weak-coupling treat-
ces for simplicity. ment, because off-diagonal terms would imply the existence

We see that the Polchinski flow equation is a functionalof some form of long-range order, which is out of the reach
equation because all vertices are renormalizeftiastionsof ~ of the present calculation. All we can possibly expect from
momenta and frequencies. It gives the exact renormalizatiorsur calculation is a divergence of some effective interaction
group flow of the model. In particular, this means that be-signaling theonsetof a long-range order in a mean-field
sides “leading logarithmic” contributions all other contribu- sense.
tions are also taken into account. For example, if we are in  We now go back to the formulation in terms of the inter-
two or more dimensions, and especially if the nesting is goodction as defined by E@2.5 and illustrated in Fig. ). We
but not perfect, the Polchinski equation takes correctly alWwill skip the spin indices where they are not necessary. The
“almost logarithmic” contributions into account. differential flow of the six-point functiol's at stepl is ac-

In principle vertices of all orders are created with increas-cording to Fig. 4a) given by
ing powers of the initial couplindJ,: It is easy to see that
the vertexI',,,, (n>2), is created by the tree term of the
Polchinski equation with powen(- 1) of the bare coupling. dI'{(K,K,,K3,K},K%)

This means that the truncation of expansi@ri4) is equiva-
lent to the weak-coupling perturbation theory. =T2 4%k S(k— Ky — kot Ks) B
O dA

B. Truncation of the Polchinski equation: one-loop X G (K)U (Kq,Kp,Ka)U (K, K5, KS). (2.20
renormalization group 3

—wp T @t ogg

The one-loop renormalization for the vertEx (or for the ] ) )
effective interactionU,) is the perturbative procedure to 1he phase-space integral is over the shell of thickrss
truncate the flow equations at orde?. All terms of order ~ €orresponding to stelpandG,(K) is the renormalized Green
higher than 6 in expansiof2.14 are created with a power function at the same step. Phy_S|caIIy this is the pro_pagator of
higher than 2 of the interaction by the tree term of the@" on-shell electron renormgllzed by th.e sgatterlng on the
Polchinski equation. Thus, puttin§g=T1o=---=0, we fast electronsU(K1,K5,K3) is the gffectlvg interaction at
generate the one-loop renormalization group. The only conSteP!. The vertexl's at some step is the integral of Eq.
tribution to the verteX'y is then the tree term, made of two (2-20 over all steps betweef=A, andA,, that is, over all
T, terms connected by one linsee Fig. 48)]. The line fast degree; of _freedom. On t.he other hanq, there is no loop
denoted byl has in principle to be taken dressed by theintegration in this termz: the D|r§\c functlpn in ER.20 re-
self-energy at the stepdefined as duces the integraf 44 d°k tg a single p0|ntk=k1'+ k2—}<3
(=ks tky —ksr). To obtainl'g we can thus skip the inte-
)10l gration overd| and take care of the momentum conservation.
=05 -To=T —iw,+ &. (219 The effective action at the stdghen reads
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+5T°2 2 Ui(Ky, Kz, Kp) !
2 oo’ 123 N
1
_ K
X®£/:$:()2),k3,k4qfoK3\I,U’K4\PU’K2\P0K1 :I
A R
5 (A() \
o UUZU” 12?2 3 [®k1'k2'k3 ko ks kg \ K
Y e \{ 1 2
X O[] —A(]G (KU (Kyq,K;,Kj) % )
~ /7
><U|f(K,Ké,Ké)‘l’UK3\I’ngé‘PU'fK4, el 7
XW o, Vo, Wok, 1, (2.2 FIG. 5. Construction of thp-p diagram from the six-leg vertex.

wherel’ =InAq/|&]| [i.e., &=A(1")] is the scale fixed by menta shown in the figure, with leggbeing on shell. Their
external momenta,K=K;+K,—K; and the energy- contraction(dashed lingis done precisely at stdpThe con-
momentum vector 4=1+2+2'—-3—-3'. The summations traction K’ was done at a previous step, fixed by mo-
over 1,2,3... runover corresponding Matsubara frequen-menta K, K;, and K, [see Eq.(2.20]. K;+K;=Q,
cies and momenta. The term of the sixth-order contains thes(wnpp,dpp) iS the total energy-momentum vector in the
interactions and Green functions from former stéps| of p-p process. The scalg, is then given by

the mode elimination since only fast degrees of freedom con-

tribute toI's so thatl’<I. This constraint is imposed to the |§qupp|

sextlc term of aCtIOAHiZ 221 by O[|&]—A(1)]. The functions lpp=— '”A—O- (2.22

ol k2 kg K, and@k K g KD G K constrain the momenta in _ _ .
273 Similar constructions give all othep¢h) diagrams. One has

arguments to be .SlOW mod(a_ﬂsu_ale a shell of th'CknES$.A to take care of both direct and exchange interactidtig.

around the Fermi surfageThis simply means that the fields 4(b)] to obtain four different graphs. The interactions and

described by the effective action at cutdf{l) are inside the one-particle propagators are to be taken at the scgtel .

cutoff range. . . )
ST . . o Thi lei rmin he momentum trangfgr
If the initial interactionU, is spin independent, the renor- s scale is dete ed by the momentum trangfgras

malized interactiorJ; will remain spin independent as well.
It is thus not necessary to worry about spin indices and all =—In
two-particle interactions are given only bgne function PP Ao
U,(1,2,3). The detailed justification for this is given in the
Appendix. The differential flow otJ,(1,2,3) is readily ob-
tained by applying the loop term of the Polchinski equation
[the second term in Eq2.17) and in Fig. 3b)] to the six-leg
part of the effective actiof2.21). At first sight, two kinds of
diagrams are created: a one—particle reduciieR dia-
gram and a one-particle irreducib{&Pl) diagram. We will
show that only 1Pl diagrams contribute to the renormaliza:
tion of the effective interaction: We can try to construct the
1PR diagram by contracting legs and 4 in Fig. 4(a). This . . . .
immediagtely imgnes that the internal line den%tii )\/\liﬂmd In Fig. 4(c) the internal lines labeletiare to be integrated
the leg 3 carry the same momentum. This momentum cor-0Ver two infinitesimal shells of the widttA at £=*A, .
responds to some fast mode since lirie already integrated " this purpose we pass from the Cartesian meabkyrek,
out. The conclusion is that the resulting four-point 1PR ver- to the measure
tex cannot be a vertex of the effective actith?21), since
this action contains only slow modes. Consequently, only F*"Ad , # ds

. . o . , (2.29
1PI diagrams renormalize the effective interaction between ¢ v(s, &)
slow electrons. The resulting diagrams are all topologically
different two-particle loops as shown in Figc4 The first  wheres are lines(or surfaces inD>2) of constant energy
diagram is ap-p diagram, and the others apeh diagrams. &(k) and v(s,&’') is the group velocity as defined by
Let us illustrate how we obtain the first diagram in Figc)d  9&(k)/dk, (k, is the component of the momentum perpen-
The procedure is shown in Fig. 5. The diagram represents thdicular to the equal-energy linesWe will use measure
p-p contribution to the effective interactidi(1,2,3) due to  (2.24 in what follows, where we write the analytic expres-
the elimination of the infinitesimal shell at stépWe take sion for the flow of functionJ,(1,2,3).
the six-leg diagram with the configuration of external mo- From the diagrams in Fig.(d) one obtains the expression

|§k+qph|

(2.23

In the second, third, and fourth diagrams in Figc)4 the
energy-momentum transfer iQ,,=K;—Kjs, while in the
last diagramQ =K1 —Ky.

We see that even though the Polchinski equation appears
to be local inl, the flow at stepl depends on the Green
functions and interactions at the former stéFg,sI ph<I. The
reason for this is the dependence of the six-point function on
the two-particle interaction, and on the one-particle propaga-
tor at all former steps.
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| Let us explain briefly how we obtained the flow equation
1 = BUAUD=BpplU, U +28,,{U, U} = Bpni U, XU} (2.25. The first term is simply th@-p loop with U interac-
tion. The remaining terms are different versions of the
= Bpnt XU, U} = XBpr{ XU, XU}, (2.295 p-h loops, corresponding respectively to g diagrams in
Fig. 4(c). They can all be seen as a single Ig@, [with the
topology of the second diagram in Fig(c], given by Egs.
(2.27 and(2.29 by performing appropriately the operation
X. The third and fourth graphs can be drawn as the second
one-by-one exchange: In the third term we replace the upper
= = interaction lineU by XU, and in the fourth we replace the
BoplV,U}=E{U, U} +E{XU, XU}, 2.29 lower one. After this manipulation both diagrams look like
_ the second diagram. The last graph is more complicated: one
BpntU1, U2t =TH{U1, Uz} + 711U U (227 has to perfornX upon both interactions and upon the whole
T'is the time inversion operator acting on a four-point func-graph to see it aspn- The factor 2 before the second term is
tion: 7F(1,2,3,4=F(3,4,1,2). The function& andII cor-  due to spin summation in the loop. All other diagrams have a
respond to the on-shell integrals of thep andp-h bubbles:  fixed spin.
The flow of the effective actiori2.21) is still not com-

B is a four-point object and a bilinear functional bf;,,
(I"=<I). The operatoiX is the exchange operator acting on a
four-point function:XF(1,2,3,4=F(2,1,3,4). B,p and By
are thep-p andp-h parts of theg function given by

E{U,U}K1,Kz,K3,Ky) pletely determined because we do not know how the self-
ds energy 2,(K) is renormalized. The differential flow for
E @(|§k o |=ADT 3,(K) is readily found from the Polchinski equation for the
(277)2 v="+ Uy Aop two-point function(2.16 shown graphically in Fig. 3. In the
language of the effective interactiod,(1,2,3) this gives
_ Hartree-Fock-like contributions shown in Fig(ck We ob-
X 2, Gi(K(,,)G K+
2 Gi(K()G,,(~ Ky +Qup) tain the renormalization equation
U| (K11K21K(V))U| (K3!K41K(V))1 (22& aE(Kl)
o PP —a = @parred Ui H(K +aFock{Ul}(Kl)+ahom(|)
I{U1,U5}(K1,K5,K3,Ky) (2.30
—A, The first term is the Hartree term
-3 I~ AT
(2m)° v=+,—
aHartree{Ul}(Kl)_ 2 f 1(K,)
sz Gl(K(V))Glph(K(V)_Qph) .
XUy (Ke Ky Ke)Uzgy | (Ky Ky Ka). (2.29 X5 BXUIKLK, Ky, (239

U, andU, can beU or XU as required by Eq(2.25. The and the second is the exchange term
summation over index=+,— is over two shells atf,
==*A,; the velocities are ,=v(s,,é=vA), andK, sym-
bolizes , ,w,). The quantity

A ds,
arod U (Kp)=——— > J

(2m?2 .- v,

T Gi(K,)

Qpp=(@n,pp,dpp) =K1t K;

1
><§(1—X)U|(KV,K1,K1). (2.32
is the total energy-momentum vector, and

The third term is added to cancel the chemical potential
Qpn=(@n,pn,Gpn) =K1~ K3, renormalization due to the homogeneous part of the direct
is the energy-momentum transfer between the curr@n®8  term
and(2,4) where 1, 2, 3, and 4 are the external variable& of

andII. The scaled,, andl,, are defined by expressions hom. f 2
pp ph -
(2.22 and(2.23. As already discussedl,, and |, depend @, () (2m)2 d lewznl Frarred U1} (K1)
on the integration variablke, and on the configuration of the (2.33

external energy momenta. Let us call the external legs of the

If the initial interaction has no dynamics, the first nontrivial
total 8 function [Eq. (2.25] 1, 2, 3, and 4 Note that the contributions to the flow of the self-energy come from the

operatorX exchanges the external legsahd 2in the last renormalizedinteraction and not the bare interaction. As the
term of this expression. This means that the energyinteraction is renormalized by one-loop processes this im-
momentum transfer in this term Q,,=K7—K3 and not plies that the interesting part of the flow bf(K) is given by
Ki—K3, as in the first three-h terms. In the standard lan- two loops. On the level of the present one-loop calculation it
guage(see, for example, Ref. 31the p-h terms with trans- is thus consistent to neglect self-energy corrections. This is
fers 1-3 are called zero-souri@dS) terms, and the terms what we do in the subsequent one-loop renormalization of
with transfers 1-4 are ZS the Hubbard model.
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FIG. 6. The marginal interactions in the BCS regime. e )
[ll. RENORMALIZATION GROUP
FOR THE HUBBARD MODEL ]4

In this section we will apply the above renormalization-
group procedure to the Hubbard model. The model is given FIG. 7. Some of the marginal processes for the square Fermi
by Egs.(2.1), (2.2, and (2.3). The initial actionS for the  surface.

Hubbard model is given by expressithb5), with the disper-

sion (2.3 and with the initial interaction Uy v is the pairing amplitude, whil& and F are the forward
=const{y,K3,K3). The interaction will depend more and 4nq the backward scattering related to the Fermi-liquid pa-
more on K;,K3,K3) as we go on with the renormalization ameters. The three kinds of processes are shown in Fig. 6
(asl increasep so that we will see the functional aspect of t5, the case of a Hubbard model far from half-filling. We
our renormalization group at work. We will complete our analyzed this problem in detail in a previous paper.
analysis by the renormalization of two-particle correlation | ot us now concentrate on the square Fermi surface, for
functions. the half-filled Hubbard model. The processes between elec-
trons on the Fermi surface are now labeled with three vari-
A. Renormalization of the interaction ables instead of two, as in the case of the Fermi surface

If we neglect the self-energy corrections, the flow of theWithout nesting: if we put particles 1, 2, andaBywhereon
effective interaction is completely determined by expression§n€ side or on two opposite sides of the square, the fourth

(2.25—(2.29 with the bare propagators instead of the renor-falls exactly on the square as well. This is due to the perfect
malized ones: flatness of the Fermi surface and to the marginality of the

umklapp processes. A few examples of marginal interactions
G|(K)—=Go(K)=(iw,— &) . (3.1)  between the electrons on the square are shown in Fig. 7. The
L L . interaction depends only on the positions of the particles on
The effective interaction is a function of three energy-,, square. The “angle’d can be defined in a way shown in
momenta \(ectors. This makes formul@za and (2.29 our previous papet’ It is important to notice that even if the
very complicated. For that reason we will consider only thefilling is not exactly one-halfand the Fermi surface not ex-

marginal part of the dependence Wf on energies and mo- .4y squarg all above interactions will still be important, as
menta. This approximation is justified by the zero-order scal]ong as the effective phase space is open, i.e., when

: : 4,31 :
ing and power-counting argumerfts:** For example, in >|u|. We thus take as marginal all effective interactions

one dlmen5|or51 this proced_ure _JUSt'f'es the VVell'knownviewed as functions of three anglé@f the particles:
g-ology model*® one adds an indeixto the electrons so that

all electrons moving to the left havie=—, and all right

movers have = +. Then the marginal interactions do not U1K Kz Kg)=Ui(01.,02.05),
depend on impulsk and energyw of the electrons in inter-
action, but only on their indices This can be seen as pa-
rametrization of the interactions as if the electrons were OfWWhen the cutoff becomes smaller than the chemical poten-
the Fermi surfaceor points in one dimensiowith @=0.1In  tjal, we are back to the nonnested case, in which the func-

two dimensions the marginal interactions depend only oRionsV andF are the marginal interactions. They read
polar coordinates of the wave vectors. Only the interactions

w134~0, 1,2,3,4 areonthe square. (3.4

between electrons at the Fermi surface are then kept and, if V (01,0,)=U,(01,0,+,6,),

the Fermi surface is not nested, one obtains the LEEA for the

Fermi liquid?*3! The marginal processes in that case are F(61,05)=U,(6;,0,,0,). 3.5
V(61,02)=U (K, =Ky ,Kp), @1,=0, & =0 Altogether, for the half- and almost half-filled Hubbard mod-

(8.2 els the functiorlJ,(6,,6,,653) given by Eq.(3.4) contains all
marginal scattering processes. The renormalization-group
analysis is now much simpler because we deal with a func-

F(01,0,)=U(Ky,Kp,Ky), @1,=0, & =0, tion of th_ree variab!es instead of nine_.
: We will now derive the flow equation fod(64,6,,05)
~ at zero temperature. After replacir@(K) by Go(K) and
F(01,07) =XUi(Kq,Kz, Kp) =Ui(Ky, Kz, Ky), Ui(Ky,K;,,K3) by Ui(6,,6,,65) in expressiong2.28 and
(2.29, we can perform the Matsubara summations analyti-
01,=0, &,,=0. (3.3 cally. After taking theT—0 limit we obtain

and
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> doJ(vA,6)

(27)% v27 .-

OO0, 01l =)

14
1+ Kékv*qpp

XUlpp(0110210)U|pp(03164!6)1
(3.6

I{U4,U5}(6,,6,,05)

2 > fdaj(vA,a)

C(2m?2 ST

O (= vé, +q,,) O &k, +q,, | —A)
X

14
1- ng,ﬁ—qph

XUy, (01,0,05)Uz  (64,6,07). (3.7)

k, is the momentum of a particle at the andlevith energy
E=vA. J(e,60)=I[(X,y)(€,6)]=(dsla0)Iv(6,e) is the
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quently, A is not only the measure of how many electrons
are already integrated out: it hasphysicalmeaning of the
effective temperature. Given that effective “microscopic”
degrees of freedom live inside the cutoff range, this cutoff
also plays the role of the best energy resolution one can
obtain for correlation functions at a given step of renormal-
ization. In fact, all features with characteristic energies lower
thanA are smeared. All these nice aspects are in general not
present in the field-theory approach, whose only advantage is
that the RG equation are local ih. There, if we want to
obtain the correct temperatufer energy dependence of the
vertex, we have to integrate the whole flow downAe-0,

with temperaturel taken as the input parameter.

Let us concentrate briefly on the nonlocality of our equa-
tions, which is a consequence of the KWP scheme. On can
also ask why we do not use the 1P| schethehich is local
and apparently simpler. The answer is related to the fact that
both Polchinski and 1PI versions are written for vertices with
full energy-momenta dependences. In that sense, if we were
able to keep all,, K,, andK3) dependences of the vertex,
the 1PI version would indeed be simpler. But the very point
of our calculations is that we neglect all energy dependences
(radial momenta and frequenciesf the vertex, except the
one onA. If we apply this approximation to the Polchinski
equation, in a correct way we still keéip the RG sensgethe

Jacobian of the transformation from rectangular coordinategependence of the vertex on outer-shell momenta. That is,
in momentum space to polar coordinates. One should nahe assumption that) has only an angular dependence is
forget that the scaldg, andl,;,, which make the flow equa- made for slow modes only. This is implicit in our approach
tion nonlocal, depend on external momenta and on the intepecause the Wilsonian action with a hard cutoff contains
gration variabled throughqp,, d,,, andk,, as given by  only slow modes, so that the legsldfcan be only within the
relations(2.22 and(2.23. U; andU, represent) or XU as  cutoff range. On the other hand, we can also formally ex-
required by Eq(2.25. Equation(3.6) gives the leading loga- plore the Polchinski-like flow of a particular four-point ver-
rithmic flow in thep-p channel for the configuration of mo- tex with one fast legwith energyé>A) and three slow legs.
menta withq,,=0, while Eq.(3.7) gives the leading loga- At least on the one-loop level, it can be shdiihat this
rithmic flow in the p-h channel only exactly at half-filling vertex can be replaced by the same vertex at forier £.
for gpn=(m,7). In the standard renormalization-group There all energies can be set to zero, including the spirit
proceduré’! only configurations of these kinds are renormal-of our approximation of only angular dependence. This ver-
ized. We see that in our formalism they are taken into actex is the one intervening in our nonlocal RG equations. We
count on an equal footing with all other scattering processegust say that it can be replaced by another vertex, at actual
with any values ofj,, andqy,, as illustrated in Fig. 7. The cutoff, but with an outer-shell dependence éraken into
processes with the leading logarithmic renormalization inaccount. This means that if we want our RG to be localjn
one channel and with less strong but still important flow inwe have to pay it by supplementary energy dependence. If
the other channdlike the processes in Figs(dj and 1e)]  we ignore both nonlocality and thedependence, the flow is
are the processes which strongly couple both renormalizatiopverestimated. On the other hand, the 1Pl procedure gives
channels. For example, the process in Figl) has leading Ilocal equations for all vertices. We can try to apply our ap-
logarithmic renormalization in th@-p channel, and a less proximation of “no energy dependence” directly to this, just
strong (but still logarithmic, because of partial nesting as we did to the vertices of Wilsonian effective action. The
renormalization in th-h channel, while the process in Fig. same reasoning as above brings us to the conclusion that for
7(e) has perfect nesting and, consequently, a greater logaritiadl vertices with at least one fast leg at least one energy scale
mic flow in the p-h channel and a weaker logarithmic flow should be kept other than the cutoff itself. Thus the 1PI
in the p-p channel. scheme, once carefully applied, becomes just as complicated
The advantage of the Kadanoff-Wilson-Polchinski modeas the KWP scheme.
elimination technique a =0 upon renormalization schemas  If we want to see which series of diagrams is generated by
based on field theory renormalizatfSris that in the KWP  our renormalization group, we have to solve the differential
approachA can be interpreted as the temperature. That isequation(2.25 for U, in iterations of the bare interactiduh,.
the interaction at some temperatdrés renormalized mainly The obtained series is exactly the parquet summation. It is
by virtual processes involving “quantum” electrons, those constructed from all iterations of five basic loop diagrams
with energy larger thaiT, having almost the same distribu- from Fig. 4(c). A few lowest-order parquet diagrams are
tion as theT=0 electrons. This is exactly what we do with shown in Fig. 8.
the renormalization group: only modes witf|> A are in- An important aspect of the non-half-filled Hubbard model
volved in the virtual processes renormalizity. Conse- s that it cannot be solved by a scale-invariant renormaliza-
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G S S FIG. 10. The angle-dependent correlation functions.
FIG. 8. The parquet summation. topology of the effective phase space in the parquet regime is

open(see Fig. 2, and in the BCS regime the phase space is

tion group. The finite chemical potential determines the in-, regular closed ring around the Fermi surface, as in Fig. 6.

trinsic scale, the phys_lcal interpretation of \_/vh|ch is the Cross=, - peak ofg® (1) atl =1 is the enhancement due to van
over between two different renormalization regimes. TheH inaul E’tp Th Mk q t exi N b
crossover can be seen from tegplicit scale dependence of fovr:e S|®ng]1(u artty. The peax does no emstﬁﬁh( ) e_lclzause
p-p andp-h differential loopsZ(l) andII(l). We can de- of the O-function constraint In EQ(3.7). As we will see
. o below, the renormalization in the parquet regime will give
fine the quantities . e . : .
rise to precursors of a strong-coupling fixed point with domi-
ng“ )=E{1L, -0 (3.9 nant antiferromagnetic correlations, while in the BCS regime
PP only a Cooper-like instability is possible.
,th(l)=H|{l,1}q . (3.9 It is d|ff|cult to see frqm the sole flow of the mteralctlon.
P U, what kind of correlations are enhanced and possibly di-
They measure the dominant parts of the andp-h renor-  vergent. For that purpose we have to calculate the renormal-
malization tendencies, respectively. The configurations ofzation of the correlation functions.
momenta are chosen to give the most important flow: for the

p-p channel at zero total momentum and for thér channel B. Renormalization of the correlation functions

at theoantlferromagnetlg wave v_ector. The q_ugnnﬁi%g(l). It is well knowr?3243L4%hat in studying the anisotropic
and Bpy(1) are shown in the Fig. 9 for a finite chemical g,perconductivity, one has to consider the pairing amplitude
potential = —Aq exp(-1,). as a function of two angle/( 4, ,6,). The angles determine

We see that fof <I, both differential loops have linear the angular positions of the Cooper pairs annihilatég) (
dependences on the logarithmic variablethe total (inte-  anq created 4,) in the scattering. This interaction will be
grated loops are thus square logarithmic, as is known for theniimately related to the superconducting correlation function
half-filled band. Whenl>1, the function B3,(I) crosses x°(601,65). In the same spirit we can define the correlation
over to constant, which gives the logarithm of the Coopeffynction for the antiferromagnetism dependent on two
bubble. Bpy(1) decays exponentially as expll)~A% the  angles. We will define both correlation functions as
nesting no longer exists, and tipeh flow crosses over to
irrelevance. We call the first regime the parquet regime be- 4
cause both loops are important. The second regime, in which Xd
only the Cooper channel flows, we call the BCS regime. The

(91a92i|7'1_72|):f>d€1f>d€2~7(61a91)(7(52a92)

X<Ag(€1,91;71)A3(€2,92§7'2)>,

2.00 . .
(3.10
A with & equal to SC or AF. The symbols>*" mean that the
150 | ,'" | energy integrations run over energieatside of the shell
: ,I o + A. ConsequentlyyS© and y”F are interpreted as the sus-
/ ceptibilities at the temperatufE=A. They measure the re-
/ —_— () sponse of outer shell electrons for givdn The order pa-
1.00 - /7 ——-p’ () i rameter variables are
. / pol
/
/ R
p AS9e ;1= oW, (DV_, iq(n), (3.1
0.50 - j
ASF(E,G;T)EE ‘Pa',k( T)‘I,—a,k+(77,77)+q(7)1 (312
0.00 . wherek is given by the angl®@ and the energy. Note that
0.0 50 =In(8YA) 10.0 150 Aqsc is a singlet. To obtain a triplet, one just skips the factor

o in the sumation oves. Figure 10 illustrates what configu-
FIG. 9. The quantitiesegp(l) and ,th(l), The crossover is at rations of four angles are described by the correlation func-
I=1,=6. tions x59(6,,6,) and x*F(6,,6,): the first measures the
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correlation of one Cooper pair a4 with the other at),, and A B A B’

the second represents the correlation of the momentun
(7r,7r) p-h pair at 6, with the otherp-h pair at 5. h A 5
The correlation functions can be seen as response func NNNNS

tions of the system to an infinitesimal external field, as
shown by Bourbonnais and Car6rin one dimension. We
will generalize this procedure to two dimensions. To the ac- FIG. 11. Tree diagrams containing the source fields for the AF

tion S;_o we add the term channel.
antiferromagnetian,AF. We obtain it from the spin—spin
S{h}l=0:f de dqf do interactionU ;, (see the Appendjxputting the particles 1 and

3 on the opposite sides of the square Fermi surface so that

ki—kz=(xm, =) (as in Fig. 10

X Fg(@;T)-FH.C.

(3.13 VIF(61,600)= = (XU)(01,60,,60). (319

f deJe, G)Ag(e, 0;7)

The external angle dependent fieﬁg 9;7) are the source ¢ IS @ function of¢ such that
fields coupled to the order-parameter variables of the #pe

The correlation function$3.10 are obtained as k(0)—=k(8)= (), (3.17
s ] k being on the square Fermi surface. The tree terms for the
Xig( 01,023 71— 72]) SC channel are analogous, but with different orientations of

i c i
21InzZ the arrows: in the vertex° both arrows point outward, and

5h§( 61;71) 5h§( 62;72)

. in the verte><z|SC both arrows point inward. The correspond-
haW_ W_=0 ing interaction is the familiar effective Cooper amplitude
(3.14 [Eq. (3.5]. All “tree terms” in Eq. (3.15 are produced by
' the tree term of the Polchinski equation applied to the action
Setting slow modes to zero means symbolically that we wanwith the S{h}, terms.
the response only from the fast modes, as defined in Eq. The coefficientz(s(el,ez) is the effective vertex of typé.
(3.10. We consider only the static and long-wavelengthEquation(3.13 gives the initial conditions fog,
limit. For that reason we will simply writg/( 6, 6,) instead 5
of xq—o(01,02;i ©=0) andh(6) instead othy_o( 6;i @=0). Zi_o(61,02)= 0p( 61— 62), (3.18
The cqrrelatlons with nonzerq and o are related' to the where 8p, is the Dirac function and, fog,
dynamics of the collective modes, a problem which we do
not study in this work. _ o xP_o(61,6,)=0. (3.19
We now apply the Kadanoff-Wilson-Polchinski formal-
ism to the action containing tern{8.13. The procedure of The differential flow of the triangular vertices and of
collecting differential cumulants is analogous to what wethe correlation functiong is obtained from the loop diagram
explained in Sec. Il, but now we tre&h} terms together of the Polchinski equation applied to the tree terms in the
with the interaction par§, . To obtain the correlation func- actionS{h},. For the AF channel, the cumulant with on-shell
tions forh—0, it is sufficient to follow the renormalization integration of electroné\ and B in Fig. 11 gives contribu-
of the first two terms in powers df in the h-dependent part tions to the vertex['", and the cumulant with electrons

of the effective action. They read andB’ on the shell contributes to the susceptibiligg™. A
. similar construction yields the renormalization of the vertex
S{h},= jg dé, fﬁ dé, f dej(s,ﬂl)ﬁg(e,al;r) and_ of the susceptibility fo_r the s_upercond_uctivity. _The re-
0 sulting diagrams for the differential recursion relations for
_ both channels are shown in Fig. 12.
><z,5( 61,6,)h°(6,)+H.c. The corresponding flow equations are written
+ jg do, f)g d6h°(61) x{(61,62)h’(6,) 20(0,,0,) = — j@ 0z (6:,6)DP(6)V}(6,6,)
— (3.20
+tree termghh}. 3.1
$hh) CECT

The term with)(f( 01,6,) contains no electronic variable: it

resylFs from the elimination of all ?suter-she-ll glectrons. From st( 0,,0,)= fﬁ dezf(el,a)Df( 0)25(0.02)- (3.21)
definition (3.14), one can see that’(64,6,) is just the sus- ° °

ceptibility of type d. The “tree terms” are the terms contain- Tpe scalessc andl 5 symbolize the scalds, andl ,p, given
ing one outeishell contraction, two slow-electron fields, andoy expressiong2.22 and (2.23, with the total momentum
fields h and h. They are illustrated by Fig. 11 for the AF q,,=0 and with the momentum transfgp,= (7, ) (anti-
channel. The square symbolizes the effective interaction foferromagnetic wave vectpr
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Lon C. Discretization of renormalization-group equations

The interactionU, that we want to renormalize is a func-
tion of three continuous angular variablé@s, 6,, and 6.
I} I The B function given by Eqs(2.295—(2.27), (3.6), and(3.7)
L is a complicated function bilinear id, and it does not seem
possible to find an analytic solution for the flow of the inter-
‘ 3 action. We thus use numerical method. For that purpose we
= i AL cut the Brillouin zone inm; angular ¢) patches, and we
] I assume that the interaction is a function only of the patch
indices (4,i,,i3) of the three angle®,, 0,, and 65. After
" I the discretization of the interaction function the differential

W{ = KW©< loopsE andIl also become functions of three indices:

I+dl ! l m;
E{U,UH(i1i2,ia)= 2 Bpplinsiziiih)

O = o rden XUy (i1i2,0)U; (ig.da),
l l (3.29

FIG. 12. The recursion relations for the vertices and for the m
tc;pr;eslfaltlon functions of superconducting and antiferromagnetic H{Ulyuz}(ilaizyis)zgo Bph(ilatii;I)Ul,lph(ilii!iB)

h

= AV

I+dl

- MA@

I+dl

@b

h

- A @rhe

I+dl

xU i4,0,2), 3.2
Ipp|qpp:0=I for & superconductivity 2""“( ahl2) @29
| = with
_ 0 . .
Iph|qph=(m,)—ln—Al+2|#| for & antiferromagnetic. B
o ) . Bpp(is,iz,ish=—— f do J(vA,0)
We see that the renormalization of the antiferromagnetic cor- (2r)° v=+,- JIi]
relation function is nonlocal ith if the filling is not exactly ® ®
one-half. The functioD(6) is y (6,0 @ (€, ~q,,| =)
14
1 1+ —gkv_q
DFO=5 X JIvA0)L6l (322 AT
e (3.2
for the superconducting channel and and
1 J(=A(1),0) 2
DM (O) =5 3.2 Bon(iz,isi;l)= do J(vA, 6
O Tl 323 lindalil) =07 & )20 aeA.0)
for the antiferromagnetic channel, where only the Fnegative O(— kay+qph)®(|fky+qph| —A)
shell (v=—1) contributes to the flow. One sees tByt"™(6) X .

decays exponentially withfor A<|ul: in the BCS regime

the correlation function for antiferromagnetism saturates

with increasingl. (3.27
From Egs.(3.20 and (3.21), we see that information

about thesymmetryof the correlations is determined from The total momentum and the momentum transfer become

the symmetry of the effective interactions: functidbé(g) ~ discrete variables:

have a total lattice symmetry, but the interactidff?( 0,65) —k(iy)+k(i,)

can belong to any of the representations of the crystal sym- Gpp ! 2

metry group, in our case thHe, point group. The decompo- Qon=K(i1) —K(is)

sition of the interaction in terms of all basis functions of all ph ! 3

irreducible representations of tiik, group was discussed in The integralf(;; is over theith angular sector.

detail in our previous papéf. The diagonalization of the For a given numbem; of patches the number abupling

correlation functions(f(al,ez) gives the final answer about constantsis equal to the number of configurations of three

which correlations are dominant in both AF and SC chan-indices for all four particles lying on the square Fermi sur-

nels. The strength of the dominant correlations is associatefdce. That is a very large number. However because of the

wit the maximal eigenvalues, and the corresponding eigensymmetry many of the coupling constants are identical. The

vectors determine the symmetry and the form of the microavailable symmetries are as follow$) The symmetries of

scopic fluctuating field. the D, point group(mirror, 7r/4-rotationg. (ii) Time inver-

14
1- ngu+qph
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o

3 5.0

4.0

3.0
4 3 4 2.0

1.0

20
2 o0
. (080 (1,1,1)
= 10t 2,10,6 . C o s .
_ > ) iy igGiy sy iy )
= o0l (1,9.1) _
14 3.0 - T 1
-4.0 | i1 i2 E
-5.0 1 1 L 1
. m; =4 m; =8 0.00 0.02 0.04 0.0 0.08 0.10
m; [no. of coupling const] 1 (0000) 1 ©000) A/8t
2 (0013) 2 (0015) . .
4 4 3 0101 3 (0026) FIG. 14. The flow of a few typicalamong 93 scattering am-
8 20 4 (0110 4; 010D plitudes for a Fermi surface covered by 16 patches, for chemical
12 47 5 (0110) ; o .
16 93 ¢ WD potential| x| =8t exp(—7.8) and initial interactiorJ = 4t/3.
20 156 7 (0152)
24 244 § (020 with
32 497 9 (0211)
10 (0220)
11 (1111) 5.
12 (1133) Dfs(l)EJ dﬁDfS(ﬁ). (3.30}
13 (1155) [i]
14 (1313)
15 g1390) The initial conditions are the same as in the continuous case,
i Emsi provided we replaced thé function by the Kronecker sym-
18 (1515) bol divided bym;:

19 (1537)
20 (1551)

5D(0_ 6,)_)5i,i’ /mi .
FIG. 13. This figure shows how we reduce the number of cou-
pling constants by applying symmetry transformations. The depen-
dence of the number of independent coupling constants on the num-
ber of angular patchesy, and the list of coupling constants for ~ We have numerically integrated the renormalization equa-
m;=4 and 8, are also shown. tions for all coupling constants and correlation functions, and
have analyzed how the results change as functions of the

sion symmetryZ; exchanging particles with holes, and vice initial interactionU, and of the chemical potentigt. We
versa (see the Appendix (i) The exchange symmetry, first Iook. at the renormalization flow of the coupling con-
which is allowed to exchangd.,?) and(3,4) particles simul- ~ Stants. Figure 14 shows the flow of sevei@hong 93) cou-
taneously.(iv) The freedom of choice of the points at the Pling constants for a discretization bf;=16; the choice of
edges of the Brillouin zone. the input parameters I3,=4t/3, andl ,=In 8t/|u|=7.8. The
Figure 13 illustrates some of the symmetry operations apdivergence occurs at the critical cutoff =Aqexp-I
plied to one of the coupling constants. The same figure=Aoexp—5.3. Approaching this point, some of the coupling
shows the relation between the number of patches and tHgonstants increase and diverge, while some decrease and,
corresponding number of different marginal coupling con-after changing their sign, diverge te . Some do not
stants, and the list of the coupling constantsrfpr=4 and 8.  change significantly upon renormalization and almost do not
The renormalization of the interaction as a function ofdiverge. In fact, in one-loop renormalization all zero-order
three angles is now represented by a set of coupled differeriparginal processes diverge. The ones that “almost” do not
tial equations, one for each coupling constant. In the saméiverge are those with a pole strength much weaker than the
way we discretize the correlation functiong(6;,6,) and bare interaction. For example the coupling constant

the verticesz)( 6, ,6,). Equations(3.20) and (3.21) become U(0,m;/2,0) diverges very strongly te-«. It is a typical
interaction with a singular Cooper channgl,=0) without

_ . nesting. Indeed, all coupling constants obeying only the Coo-
Z(iy,i)=—> zfa(il,i)Df(i)Vfﬁ(i,iz) (3.29  per condition (,,=0) and without logarithmic flow in the
! p-h channel diverge te- . This is what we expected since
thep-p channel “pushes” interactions downward in a repul-
sive model. However, instead of just decaying to zero, they
continue to decrease towarde because the Cooper ampli-
)-(Iﬁ(ilviz):E Zf:(il,i)a‘s(i)zfi(i,iz), (3.29 ']Eude obtainsattractive components frorrp_-h diagrams in,_
: é or example, theD-wave channel. Coupling constants with

D. Results and discussion

and
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1.25 ; ; reduced with respect t6"'" . The ratio between the critical
scaled R® andIM* (associated with RG and MF critical tem-
1.00 parquet regime T=p | pe.ratu.re}ssl(; né)(t;depend on the interaction. Its value at half-
filling is 127 /1¢~=0.985, which is not far from the value
¢ 0.981 calculated by Dzyaloshinskii and Yakovenko using
075 It parquet equatior®. TMF disappears completely at some
- '-‘ threshold doping. This means that the physical mechanisms
= ] BCS regime which reduceTR® near half-filing enhanc&R® at higher
0.50 r ': 1 doping keeping it always nonzero.
(',:’S:C The straight lineT= w is roughly the crossover between
' the parquet and the BCS regimes. If the instability occurs in
025 ¢ '-' | the parquet regime, botip-p and p-h correlations are
\ SCd strongly enhanced nem‘sG. On the other hand, in the BCS
0.00 L0 . s ‘ regime only thep-p correlations are critical. To know which
0.00 0.25 0.50 0.75 1.00 1.25

fluctuations are the most important at the instability, we need
a renormalization of the correlation functions. However,
FIG. 15. The phase diagram. The solid line is the critical tem-there is a formal problem related to the fact that we are
peratureTRC | and the dashed line is the temperatTit¥ . performing the renormalization dt=0 and associating the
cutoff to the temperature: the renormalization equations for
nesting between particles 1 and 3 or 1 and 4 diverge4a  the antiferromagnetic vertei8.28 and the correlation func-
Among the interactions with nesting there are also umklappion (3.29 (6 antiferromagneticareretardedin | of a quan-
processes liké0,0,4 or (2,2,10 in Fig. 14. The processes tity | —In[Aq/(A;+2u)]. If the interactionV{'" diverges at
(almos} without divergence are those without any logarith-1=1., the divergence of the functio;@{*F will be retarded.
mic instability either from the nesting or from the Cooper Since we cannot go further thar I in the renormalization
logarithm. this divergence cannot be seen in the present formalism. The
The critical scald . depends on the initial interaction and cure is to work at a finite temperature. In this case one per-
on the chemical potential. We associate the cutoffforms the full renormalization, up tb=c, and the final
Agexp(=Iy) with the critical temperatur@?e. As we stated fixed-pointcorrelation functions are the ones at the given
in Sec. |, this temperaturis not a critical temperature for temperature. This is the procedure that we use in Sec. IV.
long-range order. Instead,® should be interpreted as a  However, in the zero-temperature formalism one can still
mean-field-like critical temperature. Figure 15 shoifi$® as  obtain some idea of what happens with different correlations
a function of the chemical potential calculated for=32  atl=Ic: the finite cutoff divergence of the correlation func-
patches(497 different coupling constantsTR® decreases tions for SC and AF are determined Cexclus&\\/sly by the di-
rapidly but never really falls to zero: it becomes exponen-vergence of the effective interactiok§ © andV{*". Further-
tially small far from half-filling, the regime analyzed in Ref. more the symmetry of the correlation functions is also
23. Our numerical calculations show that this form is univer-brought only by the symmetry of the effective interactions. It
sal if one measureg in units of the critical temperature at iS thus reasonable to assume that the dominant eigenvalue of
half-filling T(c)' the correlation function is driven mostly by the dominant
attractive (negative eigenvalue of the corresponding effec-

|y,

|l tive interaction. From the renormalization of the interaction
TEC=TIxf| = |, (3.3) (the set of coupling constantse can deduce the flow of the
Te effective interaction&/7®andV{*F as given by Eqs(3.5) and

wheref is the universal function visible in Fig. 15. Thdg .(3'16)' The dlagonal|;at|on is straightforward because both
: . - interactions are matrices whose rows and columns are la-
depends on the interaction only througﬁ=8t exp(—lg),

h beled by discretized angular variables. Let us call the most
where attractive eigenvalues & andV{*F, respectivelyy>and
VAF
0y2 4t e scC AF
(I2) =CU—, (3.32 Figure 16 shows the flow o¥7~ and of V" near the
0

critical point as a function of Ii A — TR®(u)]/4t) for sev-

C being a numerical constan€~8.8. The dashed line in eral values of the chemical potential. The critical temperature
Fig. 15 represents the critical temperat@ié® that one ob- Tt () is adjusted for every value qf. Solid lines repre-
tains when taking into account only the last term of Eg.sent the antiferromagnetic interactiMﬁF. The correspond-
(2.25: XB{XU,XU}. This is the “renormalization-group” ing eigenvector belongs t4,. It is a standards wave. The
version of the RPA summation, equivalent to the mean fieldlashed lines represent the flow ‘ﬁfc. Its eigenvector be-

for the antiferromagnetism. We now see the main differencéongs to theB, representation},2.,. wave). Both coupling
between the critical temperature in the mean-field approxiconstants are always enhanced by the renormalization, which
mation and the result obtained with the renormalizationmeans that the correlation functions are always enhanced re-
group: in the case of weak doping, because ofdistructive  spectively to their value atl,=0. The possibility of the
interference betweep-p andp-h channelsTR® is slightly ~ charge-density wave instability is excluded: we have
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40.0 80.0 T T T T
— 4txsc:(d) (@)
4tXSDW(s)
30.0 1 800 | ___ 4, sowse
S 200 1 400 1 B
m>u A
20.0 -
10.0 .
0.0
00— L 0.0 2.0 4.0 6.0 8.0 10.0
10 20 30 40 50 60 70 80 90 100 110 1
In[(A=A(u)y41]
100.0 . . . .

FIG. 16. The flow ofVS® (dashed lingand of VL (solid line) oo ®) e
for |u|/(4t)=0 (A), 0.00067 B), 0.0018 C), 0.0049 P), and B T
0.0081 €). 80.0 | —— 4 -~

—_— 4%50
checked that all eigenvalues of the charge interactidps ol — g [ === 3
(see the Appendjxat 2kg decay upon renormalization. The B
competition between the divergences \6f© and V4 is
clearly visible in the figure. At half-filling the couplings™ 400 | S
diverges faster tha’/s©. As the chemical potential in- =
creases, both divergences are weaker bitihan inversion
o o . o

of the slope is visible. This is the signature of the crossover
from the parquet regime to the BCS regime. At half filling
this crossover does not exist and the sIopé/@'f is always 0.0

2.0 4.0 6.0 8.0 10.0

upwards. The lines labeled ly in the figure correspond to
the critical temperature in the parquet regime. HoweVéF,
starts to “feel” the proximity of the crossover: the critical ~ 3000 ' ' '

scale isl.=6.025 and the crossover occurs at abiqutl , L ©

=7. The divergence 0¥2" can still entail the d|vergence of — e _

the antiferromagnetic correlat|on function because the nest- ™ //

ing is still relevant. The Cooper amplitud€© always has an 2000 | 4y ow s \
4

upward slope and diverges ﬁfG because th@-p channel
has a logarithmic instability for any doping. Lin€sand E

are examples of the flow in the BCS regime. After some
saturation tendencie¥A" still diverges afTE®. This diver-
gence is only due to thp-p loop: for a choice of angles;
and 6, such thate,= 6+, it is the functlonVAF(el,ez)

—VS(9,,6,) that diverges. The relation betweép and 6,
is given by Eq.(3.17. The interactionV4" is thus driven 00
upwards by the Cooper channel. It has no effect on the cor- 700 2,0 4.0 6.0 8.0 10.0
relation function for the antiferromagnetism because its flow !
has disappeared together with the nesting. This will become £ 17. The flow of the correlation functions with interaction
visible in Sec. IV, where we calculate the temperature denick lines and without interactiorithin lines (a) at half filling for
pendence of both correlation functions near the critical temT/4t=0.03 (4), 0.0204 @), and 0.0163 C); (b) at | |/4t=0.002
perature. for T/4t=0.0228 @), 0.0108 @), and 0.0086 C); and (c) at

| w|/4t=0.006 forT/4t=0.03 (A), 0.006 @), and 0.0026 C).

1000 |

IV. FINITE-TEMPERATURE RG . . .
(called TR® in Sec. II), the divergence of the renormaliza-

In the zero-temperature formalism the flow of differenttion flow will disappear. Consequently we will be able to
guantities was of physical interest. In the finite-temperaturecontrol the flow all the way down to the fixed poift=0. In
renormalization group, we are interested in the fixed-pointhe zero-temperature formalism the effects of the elimination
value of the correlation functions. The temperature is takemf the slow modes are neglected. At finite temperature all
as input parameter. [T is larger than the critical cutoff . modes are integrated so that contributions of the thermal
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electrons are also taken into account. The other advantage prp(il,iz,i;l,T)
the finite temperature renormalization group is that we can
explicitly follow the temperature dependence of the correla- -2
tion functions for the superconductivity and the antiferro- = 2 & ] do J(vA,0)
magnetism. (2m)" v=+.- 10
Formally, the finite-temperature procedure is the same as [1—f(vA)—f(& —q V1O & —q |—A)
) . . ) . v~ %pp v~ Ypp
in Sec. Ill, with the difference that the differential loofs X (4.5
andII have to be calculated at finite temperature. They now b &
can be written A =% %p
E{U,U}(T,6:.,65,65) and
- J'dgj(,,Ayg) Bpn(i,is,i;1,T)
(2m)% v27,- 5
_ _ _ = do J(vA,0
) 16,10 )= ) I IR
vt by [F(rA) = (&, 0, ) 1O (& vq |~ ) we
X . .
1
XU|pp(0110250)U|pp(63504;0)! (41) V_ngu+qph
IM{U,,U,(T,0,,6,,053) The equations for finite temperature’(T,i;,i,) and
) X (T,iq,i,) are Eqs.(3.28 and(3.29 with D{(T,i) calcu-
_ 2 f doJ(vA,6) lated from Eq.(3.30), but using Eqs(4.3) and(4.4).
(2m)% v=7 - To find each point of the phase diagram, we have to find
the fixed-point \ —0) value of the maximal eigenvalues
[F(rA) = F &k +q,) 1O €k 4, = A) x(T,1) of the correlation functiong{(i,i,); (& supercon-
X 1 ducting and ferromagnelic This means that the complete
v ngV+qph renormalization froml =0 to |- has to be done for each
temperature.
XUy (61,0,05)Us; (64,0,67). (4.2 The flow of the quantitiesyS(T,I) and x2F(T,l) is

The functionf(e€) is the Fermi distribution at temperatufe

shown in Fig. 17 for several temperatures and three different
values of the chemical potential. The susceptibilities for the

The finite-temperature version of the flow equations for thgonintéracting Y =0) case are also shown. For all calcula-

verticesz and for the correlation functiong are again given
by Egs.(3.20 and(3.21), but with modifiedD €,

vA

D|SC(T,0)=V:E+’_ j(vA,ﬁ)tan!‘( ZT)’ (4.3
andDAF,
DI(T,0)
= > JvA,0)

v=-+,—

[f(vA) =1 (2| ul =vA)]1O(|2|u[ = vA|=A)

-5

(4.9

We see that now both shells= + and — contribute toD{*"
for A>|u|, unlike in the zero-temperature case where

tions the initial interaction wa$),=4t/3 and we have cut
the Brillouin zone intam; = 32 patches. The symmetry of the
dominant superconducting correlations is for all caBgs
(which transforms as,2.,2) and the dominant antiferromag-
netic correlations hava, (s) symmetry. They correspond to
the symmetries of the strongest attractive components of the
effective interaction&/SAF found in Sec. III.

Let us concentrate first on Fig. @&J, that shows the flow
at half-filling. The entire flow is in the parquet regime: the
nesting is perfect. In the beginning of the flow wheke
>T all correlation functions, bare or with correlations, scale
as if the temperature was zero, i.e., liké(lhy/A)=I2. As the
cutoff approaches the temperature, the flow starts to saturate.
At the same time the effects of the interaction become more
and more visible as we decrease the temperature. For all
temperaturegs™ and x> are enhanced from their bare val-
ues xo" and x5C that are equal at half-filing. As we ap-
proach the temperatuie~0.016 from above, the difference
between the bare and the interacting cases increases rapidly;
this temperature is in fact the critical temperatLT@G dis-
cussed in Sec. lll. We have approximated the fixed-point
values x*°(T) and x&°(T) of x2(T,l) and x&(T,l) with

+ contributions were forbidden by the Fermi distribution. In their value forl =10 (the corresponding energy, is much
the discretized version of the flow equations, one calculatesmaller than any physical energy sgaleigure 18a) shows

= andII from expression$3.24) and(3.25), but with

the temperature dependence of the fixed-point values at half-
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70.0 . . we have taken small deviations of the best nesting wave
60.0 | vector from (@, ): the susceptibility would saturate as the
50.0 - temperature decreases because the differeptial bubble
40.0 ¢ decays in the BCS regimat any wave vectowith positive
30.0 - power of A.
20.0 100.0 The universal functiorf (| «|/T9) [Eq. (3.31], which de-
i 1 800 termines the dependence Bf© on the chemical potential, is
i 1 600 practically the same as th_e one obta_ined in_ the zero-
' temperature formalism. The final phase diagram is the one in
- 40.0 Fig. 15. At half-filling the antiferromagnetic fluctuations are
300.0 : : 20.0 dominant over the superconducting ones, but both correla-
\ M tion functions diverge al=TR®. Upon doping the antifer-
2000 [\ ar0.006 1| — s, *(m romcz;lgnc_etic Correlﬁtipns lose their strenglth vc\j/_hile the su_IE)her-
\ sc conducting correlations remain stron ivergent. e
1000 | Sne ] ::X"-.F(T) divergencg of AF correlation functionsgig complgetely sup-
— 4y, (T) . RG : . : .
pressed ifT=T; " is in the BCS regime.

0.0 1 1 1 Il Il
0.000 0.006 0.010 0.015 0.020 0.025 0.030

T/t
V. CONCLUSION

FIG. 18. The temperature dependence of the fixed-point corre-

lation functions for three different values of the chemical potential. W€ have formulated the exact Kadanoff-Wilson-

Polchinski(KWP) renormalization group for a general prob-

- Lo , lem of interacting fermions on a two-dimensional lattice. In
filing. The bare susceptibility scales as(o/T). The inter- principle the generalization to higher dimensions is trivial.

action ”_”a"es b(.)th Susce_}pt'b'“t'es diverge, but the antlferro=I'he procedure of the KWP renormalization scheme is to in-
magnetic one diverges first.

Now we increase the chemical potential fg|/4t tegrate out.successively the degrees of frged.om starting from
. - high energies, and to follow the renormalizationatifterms
:0'00.2 [F'g' 17b)]. The pegm_mng of the flow, whera, in the effective action. We parametrize the renormalization
>|u|, is still square logarithmic. Whehbecomes close to by a high-energy cutofh = A , exp() determining the ring
| ,=6.9 the bare antiferromagnetic correlations start to beilf\ around the Fermi surfgce. In order to take the whole
weaker because we approach the crossover from the Parq4etiiouin zone into account, the cutoff is taken to be equal

to f[he BCS regime. 'I_'he nonanalytic point islatl , ; at this to the bandwidth A= B) at the beginning of the renormal-
point the flow equation3.2§ qnd (3'2.9) h?V% a peak be- ization (1=0). As one proceeds with the mode elimination,
cause of the van Hovg singularity i{(¢) at 6 vertices of all orders are created. To follow the exact renor-
=0, WF% , and 3r/2. Again, as we approach the tempera- n\5jization of the effective action we need to know the flow
ture T; ~ the effects of the interaction become strc;nger a”d(the dependence dp of all vertices. The Polchinski equa-
stronger so that the difference betwegT,1) andxg(T.1) tion [Egs.(2.16 and(2.17), and Fig. 3 determines the dif-
increases more and more. The temperature dependence of fa@ential flow of all vertices agunctions of energies and
fixed-point valuesf for_all correlatiqn funqt_ions for the presentmomenta. In principle the fixed point solutioh-¢ %) of this
case are shown in Fig. . The instability temperature is equation gives us the exact connected Green functions of the
T /4t~0.0075, which is higher thafy|/4t=0.002. This  model2Clearly, the exact integration of Polchinski equa-
means that the instability is still in the parquet regime, buttion is impossible and for concrete calculations we have to
not too deeply: the proximity of the crossover already affectsruncate the effective action.
the antiferromagnetic correlations, which start to lose their The truncation at the sextic terfat the three-particle in-
strength with respect to the superconducting correlationgeraction termgenerates the one-loop renormalization group
near the instability. However, both are still strongly en-for the two-body interaction. The truncated effective action
hanced and their flow is dominated by the parquet part (is given by expressioii2.21). Its renormalization is deter-
<l,) for all temperatureg > TRC, mined by the flow equation for the two-body interaction and
Let us further increase the chemical potential|td/4t  for the self-energy. The flow equation for the interactidn
=0.006[Fig. 17c)]. The flow of the antiferromagnetic cor- is made of all one-loop diagrams bilinearlih as shown in
relations saturates in the BCS reginie-(,,=5.8), but both  Fig. 4 and by Eq(2.25. Note thatU, is renormalized as a
correlation functions SC and AF remain enhanced from theifunction of three energy momen tne fourth is conserved
bare values. In the temperature dependence of their fixeide., this is afunctional renormalization group. Thg func-
point values[Fig. 18c)], one sees that only the supercon-tion (2.25 contains the contributions from the-p (B,p)
ducting instability is possible. The temperattig® is lower  and p-h diagrams Bor). The first term is called the BCS
than the chemical potential, i.e., the instability is in the BCScontribution in the literature, the next three terms are the zero
regime, in which thep-h part of the flow is negligible. The sound(ZS) contribution, and the last term is the Z8ontri-
antiferromagnetic susceptibility even starts to decrease witbution to the differential flow. The flow equation for the
the temperature whem= x. This happens because we do interaction is not local i, as one can see from Eq2.29
not adjust the wave vector of the spin-density wéS&W) and(2.29 for differentialp-p andp-h bubbles: at some step
to the best nestinncommensurate SDWbut we keep it for | of the renormalizationlJ, is renormalized by the values of
simplicity at (7, 7). Nothing drastic would happen even if U at former steps$,,(k,kq,k;) andlgn(k,kq,ks). This non-
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locality is the price we have to pay if we want to keep all discretize theird dependence. The coupling function is then
contributions, logarithmic or not, that renormalize the inter-approximated by a set of coupling constants. The vertices
action. In this way one takes correctly into account, for ex-and correlation functions become discrete matrices. Using
ample, thep-h flow because of the imperfectly nested Fermiphysical and geometrical symmetries we reduce the number
surface. The standaftbcal) Wilsonian RG! that takes into  of coupling constants to a set of the independent dees
account only dominant logarithmic diagrantthose withl Fig. 13. The functional renormalization-group equations be-
=lpp=1Ipn), can give useful results only for the perfectly come a set of equations, one for each coupling constant and
nested(but not squareFermi surfaces or the Fermi surfaces for each matrix element af° “AF and A .
far from being nested, so that tipeh part is negligible. We have solved the renormalization equations for up to
We have applied the one-loop renormalization group tom;=32 angular patches. The typical flow of the coupling
the Hubbard model on a square lattice near half-filling. Theconstants is shown in Fig. 14. There is a critical scale for
interaction functionU that we renormalize is dependent on which coupling constants diverge. We associate it with the
the angular ) position of three momenta on the squarecritical temperatureT2®. Its dependence on the chemical
Fermi surfacethe fourth one is conservedAll radial mo-  potential is shown in Fig. 15%solid line) together with the
mentum dependencies and energy) (dependencies are ir- RPA result(dashed ling At the line TRS(u) the electronic
relevant to the Fermi-liquid scaling. It is important that we correlations are strongly enhanced. The type and form of the
allow variablesd of the interacting particles to be anywhere corresponding microscopical fluctuating fields are given by
on the square Fermi surface, and not only in the configurathe dominating eigenvaluegnd their eigenvectoysof the
tions which give perfect nesting or zero total momentsee  correlation matricesy?“*". These are determined by the
Fig. 7). This means that we do not limit ourselves to the ominant attractive eigenvalu®s© andVAF of the effective
leading logarithmic parts of the flow, but that we take allinteractions. For all values of the chemical potential studied

non-logarithmic contributions into account. o in this work, the eigenvalu¥/s® corresponds tal,z_2 (or
From the explicit scale dependence of the differentia OWBl) singlet superconductivity whiwﬁ': is ans wave (A

for U we see two renormalization regimesee Fig. . In the representation The flow of the interactiony>© and VAT in
first regime,A,;>|u|. We call it the parquet regime because o . : RG c = TC
both p-p and p-h contributions are important. The other the V'C'”_'tY of thigr!t'cal pqmtAzTC IS shoyvn in Fig. _16'
regime exists in the non-half-filed case whetn<|u|. At haIf—ﬁIhr/l%, Ve is dominant. Upon dopmg, the diver-
There onlyp-p loops have a strong logarithmic flow, while 9ence ofV™ loses its strength and the divergenceWi®
the p-h part decays to zero. We call this regime the BCSPecomes dommant. . . .
regime. The effective phase spddé,(k)|<A] in the par- To determine the dominant fluctuations né’eﬁ more
quet regime is open so that the nesting is relevaee Fig. Precisely, we have done one further step in the
2), while in the BCS regime the phase space is a closefenormalization-group formalism: we have introduced the
regular ring of degrees of freedom around the Fermi surfacéemperature explicitly into the flow equations. In this formal-
so that perfect nesting is impossitikee Fig. 6. The flow in  ism the cutoffA no longer has the physical meaning of the
the parquet regime is characterized by a strong coupling beeffective temperature. At a given temperatdiréhe physical
tween thep-p and p-h channels of renormalization. This information is contained in the fixed point\(~0) of the
coupling comes into play over the interactions that have &orrelation functions. This extension of the formalism was
strong flow from bottp-p andp-h diagrams. For the case of necessary because in the zero-temperature procedure it was
a (nearly square Fermi surface these are all interactions benot possible to have the divergencegf™ at the same scale
tween electrons from opposite sheets of the Fermi surfacel. as the divergence of the coupling*: for any nonzero
The leading correlations in the Hubbard model are ex-chemical potential the flow of{*" has a finite retardation in
pected to be antiferromagnetic and/or superconducting. Tb[see Egs(3.20 and(3.21)]. ThusX,AF diverges later, at
give a precise answer to this question, we use the Kadanoff>| . In the finite-temperature formalisr)af\F, X|Sc, VIAF,

Wilson-Polchinski  procedure  to  construct  the andvSC all diverge at the same temperature. The price of
renormalization-group equations for taegle-resolvedor-  this s that for each temperature we have to integrate the
relation functionsy*"(6y,6,) andx9(6;,6,) for antiferro-  complete flow all the way fronh=0 to | =o¢, and to follow
magnetism and superconductivity, defined by E310. At how the result changes with the temperature.
a given stepA(l) of the renormalization these correlation  The flow of the dominant eigenvalues g™ andx>Cat a
functions measure the linear response of the electrons outsige\y different values of the temperature is shown in Fig. 17
the shell= A around the Fermi surface. We take the staticfor three different values of the chemical potential. Both cor-
long-wave limit. The renormalization equation ff™>“is  relation functions are always enhanced with respect to their
Eq. (3.21). The renormalization of the correlation functions pare (U=0) values. The temperature dependence of the
depends on the renormalization of the vertie85:5C [Eq.  fixed point correlation functions is shown in Fig. 18. The
(3.20]. Furthermore, from Eqs3.20 and(3.21) one sees critical temperatureTR® found by the finite-temperature
that the ﬂOWS of the Susceptibilities and of the Vertices demethod iS practica”y the same as the one found by Zero-
pend on the flows of the correspondieffective interactions  temperature calculations, but now we are able to follow ex-
V€ andViF, given by Eqs(3.5) and(3.16), respectively. piicitly the enhancement of the correlations of both types in
The flow equations for the interactidsy [Eq. (2.29], for  the vicinity of the instability. It is clearly visible how the
the verticesz? “*F [Eq. (3.20], and for the correlation func- doping favors superconductivity and how the divergence of
tions x7“*F [Eq. (3.21)] can be integrated numerically if we x*“F is completely suppressed if the instability is in the BCS
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regime, i.e., ifTX®<|w|. This result justifies the phase dia- tions as we approach the crossover life |u.|. We expect
gram in Fig. 15. that the critical temperatures for antiferromagnetism and su-
In the low-doping regime, both correlations are stronglyperconductivity in this regime are lower thé’rﬁ‘e, because
enhanced, and the low-temperature phase can in principle lw# the self-energy corrections. In other words, at temperature
a mixture of both(quasijlong-range orders, with the super- TEG in the parquet regime, the local antiferromagnetic mo-
conducting component falling to zero at half-filling. The in- ments andd-wave singlets are created with finite correlation
stability is in the parquet regime: the critical fluctuations arelengths. This gives rise to pseudogaps in both spin and
a mixture of two fluctuating channels and cannot be treategharge responses, together with the precursors of both anti-
by an effective mean-field theory like BCS or RPA theories.ferromagnetism and-wave superconductivity. The absence
In other words, the parquet regime is deeply non-Migdalian©f the long-range order between superconductivity and anti-
so that the vertex corrections are as important aspte  ferromagnetism in the phase diagram of cuprates is perhaps
loops. The vertex corrections can no longer be seen as smaflué to the fact that both types of fluctuations are strong. That
but have to be taken at all orders, just as php diagrams, IS the central idea of th&Q(5) modeI§G for the highT,
and together with othep-h loops. supercondl_Jctlvny_._In that language o'Df* plays the role of
The situation is less complicated in the BCS regime the mean-field critical temperature for t56X5) field.
There, a low-energy effective action can be constructed so N the BCS regime only the superconducting fluctuations

that only thep-p diagrams contribute to the instability while gre c(rjitical_. WeFthus iassociate the F;glsgéd V‘I’('th thtehofc/ter:-
the p-h parts (antiferromagnetic tendencieare irrelevant. oped regime. From largs-argumen we know that the

The attractived-wave component of the Cooper amplitude in _self—energy corrections disappearfadt if the Fermi surface

the LEEA is due to the higher energies|x|), where the is not nested. This is the case in the BCS regime where the
p-h diagrams are important. In the BCS regir,ne only supernestmg processes are irrelevant. Consequently, in this regime

conductivity is possible as a low-temperature order. Tc® s the BCS-like critical temperature. In two dimensions
As we are considering a two-dimensional system, ond© long-range order is possible, but a Kosterlitz-Thouless

should be careful about the interpretationTof. in the case transition for superconductivity exists. The corresponding

of magnetism, this indicates the onset of well-defined finite-STiiCal temperatureTyr is close to the mean-field one,

range correlations. For weak interactions, this is typically alc
very well-defined crossovéP.In the case of pairing ffG can
be identified with the onset of quasi-long-range order. Fur-
thermore, the line between ASCd and SC phases in Fig. TEC—Tkr TRO
15 is only partially determined in our calculations: we only TRG Er
know that at temperature ne@E°®, this line is close to the
crossover lineT=|u/|, but at lower temperatures we cannot
say anything about its position. This means that in the BCS regime a phase transition exists
It is difficult to discuss the experimental results from the nearTcRG even in the absence of interplane couplitigird
point of view of our phase diagram. First of all, the one-loopdimension.
renormalization group is a weak coupling perturbative Experimentally, in the overdoped regime the crossover
method, while the interactions in the copper-oxide supercontemperatureT,,, is equal to the critical temperature for the
ductors are moderate to strong. For that reason our phasgperconductivity. Independently of the mechanisms for the
diagram can be compared to the experiments only qualitaghase transition, Kosterlitz-Thouless or interplane hopping,
tively. Furthermore, in our calculations we have neglecteghis existence of one single characteristic temperature which
self-energy corrections, which are given in Polchinski’s for-is the critical temperature is a reason to believe that the criti-
malism by Hartree-Fock-like terms with renormalized  cal temperature in the overdoped regime is very close to the
and g-dependent verticefEq. (2.30]. The broadening and mean-field critical temperature. Finally, mean-field
redistribution of the spectral weight of the quasiparticles iSargumentg’ suggest that one expects an incommensurate
then determined by the dynamics of the vertex, which isSpw (ICSDW) only in the BCS regime, and only where the
irrelevant and therefore neglected. One should however namperfect nesting is still strong, i.e., not far from the cross-

tice that at the two-loop level self-energy effects becomegver T=|u|. However, the precision of our calculatigwe
important, as known from the one-dimensional c&de.that ¢yt the Brillouin zone into up to 32 patchesis not suffi-
sense, oulf¢ © should be understood as a temperature whereient to check whether a magnetic correlation function di-
the effects of interactions start to change strongly not onlyerges at some incommensurate wave vector. In any case,
the two-particle correlations, but the single-particle properthe incommensurate SDW addsuperconductivity are not in
ties as well. For that reason it seems natural to associate th@mpetition because they appear at different places on the
temperaturé’?ewith the crossover temperatufg, found in  Fermi surfaceSCdin the corners and the ICSDW in the flat
the cuprates. The parquet regime would then correspongarts; one thus expects their coexistence.
roughly to the underdoped situation, and the BCS regime to Altogether, the phase diagram in Fig. 15 has important
the overdoped regime. similarities to the experimental phase diagrams. The one—
The “phase” AF(SCd corresponds then to the antifer- loop renormalization group, taking into account electron—
romagnetism and to the pseudogap regime: the antiferromagiectron and electron—hole processes on the same footing,
netic correlations and the localization tendencies there areeveals the essence of the physics of a doped half-filled band
accompanied more and more with superconducting correlasf correlated electrons.

<1. (5.1



13630 D. ZANCHI AND H. J. SCHULZ PRB 61

ACKNOWLEDGMENTS tea(Ko K)=W 1 W (A6)

Important comments of P. Nozis are acknowledged.
D.Z. thanks J. Schmalian for interesting discussions an
K.-H. Bennemann for his hospitality at the Institutrfu : : : )
Theoretische Physik der Freien Universigerlin. Labora- é:r(afér’;(éé?t’)};‘geﬁnzg%usplmg function, two exchange op
toire de Physique Theique et Hautes Energies is associated
with CNRS, UMR 7589. The work of D.Z. during his stay at XFK, Ky, Kz, Ky =F(Ky, Ky, Kg,Ky) (A7)
Institut fur Theoretische Physik der Freien Universigerlin
was done in the framework of an Alexander von Humboldtand
fellowship. D.Z. also thanks B. Binz for a careful reading of —
the manuscript, and for finding an error in the first version. XF(K1,Kz, K3, Kg)=F(Ky,Kz,Ky,K3).  (A8)

All coupling functions in Eqs(A2)—(A4) possess a symme-
y related to momentum exchange and time inversion. If

The time inversion operatdrf is
APPENDIX: INTERACTION U(1,2,3

AND ITS SYMMETRIES THK,Ky,Ks, Ky =FKg, Ky, Kq,K). (A9)
The most general spin-rotation-invariant interaction termThe symmetries of the coupling function are the time inver-
can be written in several ways. One way is in terms ofsion symmetry
charge-charge and spin-spin interactions,
. TF=F (A10)
UKy, K2, K3)C(K2,Kg)C(K3,Ky) and the exchange symmetry
+U(I(K11K2!K3)S(K21K4)'S(K3!Kl)l (Al)

whereC andS; are

XXF=F. (A11)

Both symmetries can be easily checked for coupling func-
— tions in expressiofA3). We will see that all other couplings
C(Kz K= Yo,V ok, can be derived fron, only, and have the same symmetry
7 properties uporX and 7 operations. It is easy to see that

— i XF=XF if TF=F: the exchanging of particles 1 and 2 or
Si(Ks,Ky)= 2 Yok, 0V ok, (A2)  particles 3 and 4 is equivalent.
77 We want now to find the relations between the six cou-
The summation over all three energy-momentum vectorpling functions in Eqs(A2)—(A4). Using the Pauli principle
(K{,K5,K3) is assumed anl ,= K+ K,—Kj3. On the other one obtains
hand, the interaction can also be written as a sum of one term

with equal (=0¢"') spin quantum numbers and one with Uj=U.+U,, (A12)
opposite ¢=—o0"') spin quantum numbers, with corre-
sponding  coupling  functions U;(K;,K,,K3)  and U,=U.~U,—2XU,. (AL13)

U1 (K1.Kz,Ky), Let us suppos&. andU,, to be two independent functions.

- — We can write them in the forms
UH(Kl!K2!K3)\I,0'K3\P0'K4\P0'K2\PUK1

_ 1

U LKy, Ko K) Wi W o W= o, W ok, (A3) Ue=7(2=X)Us+ Uz, (A14)
with the summation over spin indices assumed. Spin-rotation X
invariance allows us to write the interaction part of the action U,=- Zul_ (A15)
as a sum of the singlef¢+o'|=0) and triplet (oc+ o]
=/2) parts, If we now choose Y=U, it follows from Eg. (A1l3) that
. U,=0. This means that the most general interaction can be
s(K,4,Ka)US(K 4, K5, K3)s(Ky,Ky) written in terms of a single functiotJ, , without losing

o generality. The functiotJ is also contained itJ, . That is,
+tﬂ(K4.K3)UA(K1,Kz,Ks)tM(Kz.Kl). (A4) from two equal-spin electrons one can build only a triplet

state(antisymmetric undekK), so that

wheres andt,, are the variables of annihilation of the singlet
and triplet states: Uj=UA, (A16)
1 while
S(Ko K)= 7= 2 oW, Wiy (A5) U —UAsUS A1)
containing the singlet and the triplet interactiobg: andUS

1

V2

to(Ky Ky =—= >, LI can be seen as the antisymmetric and symmetric parts of the

same function. This function is simply, .
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We see that all coupling functions are containedJin,
which we call simplyU or U, to make its scale dependence
explicit. One thus has

VAF(6y,0,)=4U ,y(6,,6,,0,), (A20)

where we take only thé dependence of the coupling func-

UC=£(2—X)U, U,=— fu, (A18) tions into account. The angr& is related to the anglé in
4 4 such a way that the momentum difference between the par-
1 1 ticles k(6) and k() is the perfect nesting vectorH,
UA=UH=§(1—X)U, US=§(1+X)U. (A19) + ). The coupling function for the charge density wave
(CDW) at q=(r,7) would be
The effective coupling function for the renormalization of
the AF correlation functiofEqg. (3.16)] is obtained from the

spin coupling VP01, 60,)=4U(0,,6,,0,). (A21)
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