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Effects of magnetic ordering on the anisotropy and temperature dependence
of the optical conductivity in LaMnO 3: A tight-binding approach

K. H. Ahn* and A. J. Millis
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854

~Received 14 January 1999; revised manuscript received 29 November 1999!

A tight-binding parametrization of the band structure, along with a mean-field treatment of the Hund,
electron-electron, and electron-lattice couplings, is used to obtain the full optical conductivity tensor of
LaMnO3 as a function of temperature. We predict striking changes with temperature in the functional form and
magnitude of the optical absorption. Comparison of our results with existing data makes it possible to deter-
mine the electron-lattice and electron-electron couplings. The effective ‘‘HubbardU ’’ is found to be'1.6 eV,
rather less than the full bandwidth'3.6 eV, putting the material in the weak-intermediate coupling regime.
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I. INTRODUCTION

In this paper we present calculations of the temperatu
dependent optical conductivity of LaMnO3. Our work has
two motivations. One is to help clarify the physics of a
important class of materials. LaMnO3 is the ‘‘parent com-
pound’’ of the ‘‘colossal’’ magnetoresistance compound
which are currently the subject of intense theoretical, exp
mental, and applied interest.1 Our results suggest that th
optical conductivity of the parent compound exhibits char
teristic structures, frequency scales, and temperature de
dences, from which the important interactions and ene
scales may be deduced, and the consistency of the theory
data may be verified. In particular, we show how estimate
the Hund’s coupling and the effective Coulomb repulsi
may be obtained. The values of both of these parame
have been the subject of controversy in literature.2–4

Our second motivation concerns the theory of optical c
ductivity of ‘‘correlated electron’’ systems. Most theoretic
studies of optical conductivity of correlated electron mate
als ~including the one presented here! make a fundamenta
approximation: The underlying band structure is represen
by a tight-binding model and the optical matrix elements
computed via the ‘‘Peierls phase’’ method. The approxim
tion is made because correlation effects may be studied m
more conveniently and in much more detail in a neare
neighbor tight-binding model~such as the Hubbard mode!
than in a full band-structure calculation. However, few d
tailed quantitative comparisons between the results fo
from simple tight-binding-based calculations and the res
from experimental data or the results found via other th
retical techniques have appeared, and therefore the lim
tions of the simple tight-binding-plus-interactions approa
are not clear. The work presented here is a step towards
a comparison. In addition to relating the results of our c
culations to available data and to other calculations, we
troduce a general framework, emphasizing robust feature
the conductivity, in terms of which comparisons should
made. We also argue that particular features of the LaM3
family of materials~especially the ‘‘tunable’’ kinetic energy
explained in more detail below! make them ideal material
on which to test a general theory of conductivity of corr
lated materials.

The paper is organized as follows. Section II introduc
PRB 610163-1829/2000/61~20!/13545~15!/$15.00
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the material, the Hamiltonian, the approximation, and
formalism used to compute the conductivity. Section III pr
sents our results. Section IV compares our results to av
able data. Section V discusses the theoretical status of
results, considers the magnitude of errors introduced by
approximations we have made, and notes a troubling disc
ancy between our results and those obtained by a diffe
method.5,6 Section VI is a conclusion.

II. MATERIAL, MODEL, AND METHODS
OF CALCULATION

A. Overview

LaMnO3 exists in a distorted form of theABO3 perov-
skite structure. The important ions in LaMnO3 are the Mn
ions, with nominal valence Mn31, corresponding to four 3d
electrons. The actual states are linear combinations main
Mn eg orbitals and O 2p orbitals, but this will not play any
role in our subsequent considerations and we will herea
refer to the states aseg levels. A strong Hund’s coupling
makes all four electrons’ spins parallel with each other.
approximately cubic crystal field due to the oxygen octa
dron around the Mn ion splits the Mn 3d levels in
t2g (xy,yz,zx) andeg (x22y2,3z22r 2) levels. Three elec-
trons occupy thet2g core levels, and one electron occupies
linear combination of the twoeg levels. In the ideal perov-
skite structure the twoeg levels are degenerate, but i
LaMnO3 belowT5800 K a cooperative Jahn-Teller~JT! dis-
tortion occurs,7 which essentially preserves the unit-cell vo
ume and bond angle, but makes some Mn-O bonds sho
than average and some longer. The structural change con
of two components: a uniformQ3-type tetragonal distortion
which shortens one lattice constant~along z direction! and
lengthens the other two~along x and y directions!, and a
Q2-type (p,p,0) staggered distortion, which introduces a
ternating Mn-O bond lengths in thexy plane. In addition to
these distortions, small bucklings of oxygen octahedrons
ist. However, we believe these bucklings have little effect
optical conductivity, as we explain in more detail in the ne
section. AsT is decreased through 140 K, a magnetic tra
sition to an A-type antiferromagnet, with ferromagnetic o
dering in thexy plane and antiferromagnetic ordering alon
the z direction, occurs. This magnetic ordering produces
marked temperature-dependent anisotropy.
13 545 ©2000 The American Physical Society
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B. Model Hamiltonian

1. Choice of orbitals

In this paper, we focus on low-energy excitations (&4
eV! that contribute to optical conductivity. According t
band-theory calculations,8–10 the Mn eg-symmetricd levels
are near the Fermi energy and well separated from o
bands except for those derived from the Mnt2g orbitals. We
believe that thet2g band is not important for the optica
conductivity we study. Our reasons are as follows: First,
band theory and the magnetic measurements agree tha
t2g electrons have parallel spins and form a filled shell tha
expected to be electrically inert. Indeed, thet2g band has a
narrow bandwidth~about one-third of theeg band!, implying
a small hopping amplitude. The band structure also sh
that thet2g to t2g transition requires energy more than abo
3 eV, and the Coulomb interaction will increase this. The
fore, the t2g to t2g excitations require higher energies a
have a smaller optical spectral weight than theeg to eg ex-
citations. Second, the mixing between theeg andt2g levels is
small. In a simple nearest-neighbor tight-binding model fo
perovskite structure with 180° Mn-O-Mn bonds, due to t
symmetry about the Mn-O-Mn axis, the Mnt2g orbitals hy-
bridize only with O 2pp orbitals, whereas the Mneg orbit-
als hybridize only with O 2ps orbitals, which forbids theeg
and t2g mixing. Even after further neighbor hoppings an
bond bucklings are included, the admixture betweeneg and
t2g will be very weak compared to theeg andeg mixing. The
band structure for the system that does not have bucklin
oxygen octahedrons was calculated in Ref. 9, which sh
that theeg andt2g bands cross with a tiny gap less than 0.
eV ~0.6% of the totaleg bandwidth!. The buckling of the
oxygen octahedrons increases the mixing as shown betw
G andT points in Fig. 2~a! in Ref. 8. Theeg

1 ↑ band and the
t2g ↑ band mix and open a gap'0.26 eV~about 7% of the
eg ↑ bandwidth!, which is still small. Therefore, we believ
that the low-energy excitations can be well described by
Mn eg band only.

2. Model Hamiltonian for TÄ0 K

We find that the band structure appropriate to the id
cubicABO3 perovskite structure may be well represented
the following tight-binding model:

HKE1Hm52
1

2 (
iW,dW ,a,b,a

tdW
ab

diWaa
†

diW1dW ba1H.c.

2m (
iW,a,a

diWaa
†

diWaa . ~1!
er
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s
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Here iW represents the coordinates of the Mn sites, which
the ideal structure are arranged in a simple cubic latticea
andb represent the two degenerate Mneg orbitals on a site,
d (56x,y,z) labels the nearest neighbors of a Mn site,a
denotes the spin state, andtdW

ab is the hopping amplitude be

tween orbitala on site iW and b on site iW1dW . We choose
uc1&5u3z22r 2& and uc2&5ux22y2& as the two linearly in-
dependenteg orbitals on a site. The hopping matrixtdW

ab has a
special form: For hopping along thez direction, it connects
only the twou3z22r 2& states, thus

tz5t2z5t0S 1 0

0 0D . ~2!

The hopping matrices in the other bond directions are
tained by the appropriate rotations and are

tx5t2x5t0S 1/4 2A3/4

2A3/4 3/4
D , ~3!

ty5t2y5t0S 1/4 A3/4

A3/4 3/4
D . ~4!

There is substantial high-energy photoemission evidence
the strong on-site Coulomb interactions (Ubare'8 eV! in the
manganites, which places them in the class of ‘‘char
transfer’’ materials. The relevance of the band-theory cal
lation may therefore be questioned. We argue, however,
the effects of the interactions at the low (\v,4 eV! ener-
gies of interest may be determined by comparing the pre
tions of the band-theory calculation to data; the results
present will allow this comparison to be made.

The high-Tc superconductors provide an instructive e
ample. These are also charge-transfer insulators with a
large high-energy on-site repulsionUhigh ~Refs. 11 and 12!.
The low-energy excitations are complicated objects ca
the Zhang-Rice singlets, but it has been established tha
effective interaction relevant to the low-energy theory
much less thanUhigh, and that band theory~albeit with a
renormalized hopping! describes the electron dispersio
well. We therefore suggest that band theory is an appropr
starting point in the manganite case as well.

We now turn to the electron-lattice coupling. Below 80
K, LaMnO3 exists in a distorted form of theABO3 perov-
skite structure. The important distortion is a Jahn-Teller d
tortion, which lifts the degeneracy of theeg levels on a site.
To represent this, we defineuiW

h (h5x,y,z) as theĥ direc-
tion displacement of an oxygen ion located between Mn io
at iW and iW1ĥ, and we definev iW

h
5uiW

h
2uiW2ĥ

h . The Jahn-
Teller distortion term may then be written as
nts:
a

HJT52l(
iWa

S d1,iW,a
†

d2,iW,a
† D TS v iW

z
2 1

2 ~v iW
x
1v iW

y
! )

2 ~v iW
x
2v iW

y
!

)
2 ~v iW

x
2v iW

y
! 2v iW

z
1 1

2 ~v iW
x
1v iW

y
!
D S d1,iW,a

d2,iW,a
D , ~5!

which defines the Jahn-Teller coupling constantl in our model. The experimentally observed distortion has two compone
a Q2-type staggered distortion with wave vector (p,p,0), and aQ3-type uniform distortion. This distortion leads to
Jahn-Teller term of the form
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HJT52l(
iW,a

S d1,iW,a
†

d2,iW,a
† D TS 2 v̄ ~21! i x1 i yw̄

~21! i x1 i yw̄ v̄
D S d1,iW,a

d2,iW,a
D , ~6!
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wherew̄ andv̄ are the amplitudes of the staggered (Q2) and
the uniform (Q3) distortions, respectively.

We next consider the Hund’s coupling. This leads to
term

HHund5 (
iW,a,a

JHSc
iW
•diW,a,a

†
sW abdiW,a,b , ~7!

whereSc
iW represents thet2g core spin andsW the Pauli matrix.

At T50 K, the magnetic structure is of a (0,0,p) antiferro-
magnet, which leads to

HHund5JHSc(
iW,a

$@12~21! i z#diW,a,↑
†

diW,a,↑

1@11~21! i z#diW,a,↓
†

diW,a,↓%. ~8!

We now add an on-site Hubbard-type Coulomb repuls
to our Hamiltonian. Because we have two orbital and t
spin states on each site, we have in principle six differ
Coulomb repulsion terms, which may be generally writtenn̂
is the density operator!

HCoulomb5(
iW

(
(a,a)Þ(b,b)

U (a,a),(b,b)n̂iW,a,an̂iWb,b . ~9!

The total Hamiltonian is the sum of the terms considered
far:

H tot
0K5HKE1Hm1HJT1HHund1HCoulomb. ~10!

We study the band structure ofHnonint
0K 5HKE1Hm1HJT

1HHund, the noninteracting part of the Hamiltonian,
T50 K. By diagonalizing thek space representation given
Appendix A, we find the band structure. AtT50 K, the unit
cell is doubled twice, once by spin and once by orbital
dering. We have two orbital states for each of the two s
states, and four Mn sites per unit cell. Due to the symme
between the two spin states, we will have twofold deg
eracy for each level. Therefore, we have eight sepa
bands. The ground state is obtained by filling the ene
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-
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-
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levels below the chemical potentialm, which is determined
to give the correct number of electrons per unit cell. W
denote the energy levels byEj (kW ) with j 51,2, . . . ,8 in the
order of the increasing energy. Our tight-binding band str
ture is shown in Fig. 1 for the parameters which provide
best fit to the published band calculations.9 Crudely speak-
ing, the bands fall into four pairs, which may be understo
by settingt050 @as occurs at (p/2,p/2,p/2)#. In this case we
have four separate energy levels on each site, which

E1,252lAv̄21w̄2, E3,45lAv̄21w̄2, E5,652JHSc

2lAv̄21w̄2, andE7,852JHSc1lAv̄21w̄2. In the (0,0,p)
antiferromagnetic structure atT50 K, the Hund’s coupling
suppresses thez-directional hopping; the bands thus becom
more two-dimensional asJHSc increases.

3. Model Hamiltonian for TN™T™800 K

In this subsection, we indicate the modifications neede
describe LaMnO3 in the paramagnetic state, in particular
aroundT5300 K@TN . For T@TN , it is reasonable to as
sume that the core spins are completely disordered. H
ever, because room temperature is much lower than
structural transition temperature 800 K, we may neglect
tice fluctuations and assume a static JT distortion with m
nitude similar to theT 5 0 K one.

To describe the system atTN!T!800 K, we use a spa
tially varying spin basis in which⇑ on siteiW indicates theeg

spin parallel to the core spin on siteiW and⇓ indicates theeg
spin antiparallel to the core spin. In this basis, the Hun
coupling energy corresponds to the shift of the spin-do
bands:

HHund52JHSc(
iW,a

diW,a,⇓
†

diW,a,⇓ . ~11!

The hopping amplitudes are modified by spin overlap f
tors. To write this, we define the angle between the core s
directions on siteiW and on siteiW1dW as u iW, iW1dW , so that the
kinetic energy is given by
setting
HKE52
1

2 (
iW,dW ,a,b

tdW
abFcosS u iW, iW1dW

2 DdiWa⇑
†

diW1dW b⇑1cosS u iW, iW1dW

2 DdiWa⇓
†

diW1dW b⇓

1sinS u iW, iW1dW

2 DdiWa⇑
†

diW1dW b⇓1sinS u iW, iW1dW

2 DdiWa⇓
†

diW1dW b⇑1H.c.G . ~12!

At T@TN , u iW, iW1dW will be completely random. Therefore, we argue that it is appropriate to average the Hamiltonian by
^cos(uiW,iW1dW /2)&5^sin(uiW,iW1dW /2)&52/3, which gives the following effective kinetic energy term

HKE
300 K,eff52

1

3 (
iW,dW ,a,b

tdW
ab

@diWa⇑
†

diW1dW b⇑1diWa⇓
†

diW1dW b⇓1diWa⇑
†

diW1dW b⇓1diWa⇓
†

diW1dW b⇑1H.c.#. ~13!
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Hm , HJT, andHCoulomb do not change their forms with th
change of the spin basis. ThekW space representation o
Hnonint

300 K5HKE
300 K,eff1Hm1HJT1HHund is shown in Appendix

B.

C. Hartree-Fock approximation of the Coulomb interaction

We take the Hartree-Fock approximation of the Coulo
interaction, which we believe is reasonably accurate for
simple quantities~peak position and spectral weight! impor-
tant for our analysis. Corrections to the Hartree-Fock
proximation are due to quantum fluctuations. We have co
pared the Hartree-Fock approximation to the exact results
the case of the strongest fluctuations, namely the o
dimensional Hubbard model, studied by Stafford.13 We use
the Hartree-Fock approximation for one electron per site c
and obtain the total kinetic energy, which is proportional
the total spectral weight. The results are shown in Table I
which we also show the exact results in Ref. 13, and
high-U limit approximation, 4t2/U. It shows that the
Hartree-Fock approximation is in agreement with the ex
results within 30%. We believe that in the case of pres
interest, the combination of three dimensionality, the la
core spins, and the localization due to the electron-pho
interaction renders the Hartree-Fock approximation su
ciently accurate.

In this approximation, one of the two density operators
replaced by its expectation value, which is determined s
consistently. The approximation explicitly breaks symme
in spin and orbital space, so the issue of basis choice ar
We choose the orbital basis picked out by the observed
tice distortion and the spin basis picked out by the magn
ordering. We refer to the higher- and the lower-lying orbi
states as1 and2, respectively, and the spin states by⇑ and
⇓ as defined in the previous section. The Hartree-F
Hamiltonian may then be written as

HCoulomb
HF 5(

iW
U⇑1diW⇑1

†
diW⇑11U⇑2diW⇑2

†
diW⇑2

1U⇓1diW⇓1

†
diW⇓11U⇓2diW⇓2

†
diW⇓2 , ~14!

FIG. 1. Fitted eg band structure of LaMnO3: t050.622 eV,
2JHSc52.47 eV,l51.38 eV/Å, andm50.4 eV. (p,0,0), ~0,0,0!,
(p/2,p/2,p/2), and (p,0,p/2) points correspond toM, G, R, andA
points in Ref. 9, respectively. The dots represent the energy le
of the LDA calculation in Ref. 9, with which we fitted our mode
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where U⇑,15U⇑⇑12^n̂⇑2&1U⇑⇓11^n̂⇓1&1U⇑⇓12^n̂⇓2&,
etc.

This equation may be reorganized into a term proportio
to the total eg density operator, which renormalizes th
chemical potential and is of no interest, a term that coup
to the totaleg spin operator and changes the Hund’s co
pling, and terms that renormalize the local Jahn-Teller sp
ting in a manner that differs for electrons locally parallel a
antiparallel to the core spins. Therefore,HJT1HHund

1HCoulomb
HF can be cast into the following form:

HJT1HHund1HCoulomb
HF 5(

i
l⇑8Av̄21w̄2~ n̂iW⇑12n̂iW⇑2!

1l⇓8Av̄21w̄2~ n̂iW⇓12n̂iW⇓2!

12JH8Sc~ n̂iW⇓11n̂iW⇓2!, ~15!

where

l⇑85l1
U⇑12U⇑2

2Av̄21w̄2
, ~16!

l⇓85l1
U⇓12U⇓2

2Av̄21w̄2
, ~17!

2JH8Sc52JHSc1
1

2
~U⇓11U⇓22U⇑12U⇑2!. ~18!

We transform the above Hamiltonian intouc1&5u3z22r 2&
and uc2&5ux22y2& orbital basis, in which the hopping ma
trices are defined. The total Hartree-Fock Hamiltonians
T50 K and 300 K are

H tot
0 K,HF5HKE1Hm1HJT1HHund1HCoulomb

HF , ~19!

H tot
300 K,HF5HKE

300 K,eff1Hm1HJT1HHund1HCoulomb
HF .

~20!

By representing the total Hartree-Fock Hamiltonian ink
space, we obtain the results in Appendix C, in which we a
presented the expressions of the number operators.

ls

TABLE I. Total spectral weights represented in terms of kine
energies for the one-dimensional Hubbard model witht51 andn
51.

U

Exact kinetic
energy from

Ref. 13

Kinetic energy
in Hartree-Fock
approximation

Large-U limit,
4t2/U

0 1.27 1.27 Not applicable
4 0.97 0.77 1
8 0.62 0.46 0.5
` 0 0 0
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D. Optical conductivity

1. At TÄ0 K

Optical conductivity per volume,s, is obtained using the
standard linear-response theory explained in detail in Ref
and used in Ref. 15. The electromagnetic field couples to
electrons via the Peierls phase factortd→tdexp(ieAW•dWa0 /\).
By expandinĝ JW &5^dH/dAW & to linear order inAW , we find

shn5shn
d 1shn

p , ~21!

shn
d 52

1

iv S ea0

\ D 2

dhnKhh

1

a0
3

, ~22!

shn
p 52

1

ivNMna0
3 (

n

^0uJph
† un&^nuJpnu0&

\v2~En2E0!1 i e
, ~23!

where

Khh5
1

NMn
^0u

1

2 (
iW,dW 56ĥ,a,b,a

tdW
ab

~diWaa
†

diW1dW ba1H.c.!u0&,

~24!
te

o

4
e

Jp
Ŵ52

iea0

2\ (
iW,dW ,a,b,a

tdW
abdW ~diWaa

†
diW1dW ba2H.c.!, ~25!

e is an infinitesimal introduced to make the expression w
defined, andh, n5x,y,z. Khh is the kinetic energy along
h (5x,y,z) direction. a0 is the distance between the M
ions. By taking the large-v limit and using the Kramers-
Kronig relation, we obtain the following sum rule:

Khh5
\2a0

e2

2

pE0

`

dv Re@shh~v!#. ~26!

We have evaluatedK ands using the Hamiltonians and
approximations listed above. AtT50 K, we find

Khh5
2

~2p!3ER
dkW (

Ej (k
W ),m

2 coskhBh~kW ! j j ~27!

and
ergy
~sp!hh52
2

iva0
3

1

~2p!3ER
dkW (

Ej (k
W ),m,Ej 8(kW ).m

u~ea0 /\!2 sinkhBh~kW ! j j 8u
2

\v2Ej 8~kW !1Ej~kW !1 i e
, ~28!

whereBh(kW ) is a matrix related to the current operator. Explicit expressions ofBh(kW ) for Hnonint
0 K and H tot

0 K,HF are given in
Appendices A and C, respectively.R is the first Brillouin zone of the band structure of the fully ordered state.j and j 8 are the
band indices. The factor of 2 is from the spin degeneracy. Therefore, the real part ofs at T50 K is

Re@shh#5
2

va0
3

1

~2p!3ER
dkW (

Ej (k
W ),m,Ej 8(kW ).m

Uea0

\
2 sinkhBh~kW ! j j 8U2 e

@\v2Ej 8~kW !1Ej~kW !#21e2
. ~29!

2. At TN™T™800 K

To compute the optical conductivity in the paramagnetic state, we use the effective Hamiltonian forT5300 K, and use the
same method as theT50 K case. Because atT@TN , the core spin directions are fluctuating in time and space, the en
levels are broadened. To incorporate this physics, we introduce a phenomenological broadening parameterG of each energy
level, leading to the following expression of the optical conductivity:

Re@shh#5
1

va0
3

1

~2p!3ES
dkW (

Ej (k
W ),m,Ej 8(kW ).m

2Gu~ea0 /\!2 sinkhBh8 ~kW ! j j 8u
2

@\v2Ej 8~kW !1Ej~kW !#21~2G!2
, ~30!
ller

. 7,

ed
-

whereS is the first Brillouin zone for the paramagnetic sta

The explicit expressions ofBh8 (kW ) for Hnonint
300 K and H tot

300 K,HF

are given in Appendices B and C, respectively.G may be
estimated from the root-mean-square fluctuation in the h
ping amplitude; we find

G't0A^cos2~u/2!&2^cos~u/2!&2'
t0

3A2
. ~31!
.

p-

E. Determination of the parameters

We first determinet0 , l, and JHSc by fitting the band
structure ofHnonint

0 K to the LDA band structure,9 and deter-
mine the Coulomb interaction by comparing the Jahn-Te
peak position in the optical conductivity ofH tot

300 K,HF with
experimental data. From crystallographic studies in Ref
we obtainw̄50.488 Å andv̄50.174 Å atT50 K. For our
fitting, we use the LDA band calculation for the JT distort
LaMnO3 by Satpathyet al.9 at high symmetry points in re
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ciprocal space, (p,0,0), ~0,0,0!, (p/2,p/2,p/2), and
(p,0,p/2). The standard deviation is'0.2 eV, and the maxi-
mal error of 0.4 eV occurs at (p/2,p/2,p/2) for the lower JT
level of the upper Hund state,E5,6. The determined param
eter values aret050.622 eV, l51.38 eV/Å , and 2JHSc
52.47 eV. The fitted band structure is shown in Fig. 1. T
dots represent the energy levels from the LDA band calc
tion in Ref. 9, which we used to fit our model. These para
eters fit the LDA band calculations for the JT distorted a
buckled actual LaMnO3 structure published by Satpath
et al.8 with a similar size of error. The above values oft0 and
JHSc are similar to the values obtained by Mryasovet al.16

from an LDA calculation for the ideal cubic structure.
The parameterl may be independently determined b

fitting the observed lattice distortions7 to a simple model of
localized electrons that are Jahn-Teller-coupled to a h
monic lattice as explained in Ref. 17. This reference sho
that the amplitudes of the observed distortions fix the par
eterl/(K1a0), whereK1 is the force constant for compres
sion of the Mn-O bond, anda0 is the average Mn-O distance
After correcting a factor of 2 error in Eq.~10! of Ref. 17, we
obtain

l

K1a0
5AS ez

112K2 /K1

2 D 2

1S 2us
x

A3a0
D 2

, ~32!

whereK2 is an extra parameter related to the elastic modu
c112c12, eh (h5x,y,z) is the uniform strain, andus

h is the
staggered oxygen displacement. From the results of E
manset al.,7 ez520.0288,us

x50.141 Å , anda054.034 Å.
For 0<K2 /K1<1.0, we obtain 0.0428<l/(K1a0)
<0.0591.K1 is estimated from the frequency of the highe
lying bond-stretching mode measured in this material
Jung and Noh.18 The measured bond-stretching mode ha
peak at 70.3 meV. From the relation (\v)252K1(mMn

21

1mO
21), we obtainK157.36 eV/Å2. Therefore, we obtain

l between 1.27 eV/Å and 1.76 eV/Å, which includes t
value obtained above. We can, in fact, determine the lo
bound ofK2 /K1 from the structural transition temperature
explained in Ref. 17. In Ref. 17, the mean-field estimation
the structural phase transition temperature was found to
Ts

MF53l2K2 /@2K1(K112K2)#. By comparing Ts
MF with

the observed structural transition temperature 750 K~565
meV! and considering that mean-field theory overestima
transition temperature, we obtain

3

2

l2K2

K1~K112K2!
.65 meV. ~33!

Combining Eqs.~32! and ~33!, we can determine the rang
of K2 /K1. The determined range isK2 /K1.0.26, and gives
l. 1.36 eV/Å, which is remarkably close to the value o
tained by the band fitting.

We will use the optical conductivity to estimate the si
of the Coulomb interaction. First, as the simplest case,
consider the case whereU (a,a),(b,b)5U, independent of
(a,a) and (b,b). Roughly speaking, the presence of t
Coulomb interactionU shifts all peaks of the optical conduc
tivity upward by'U, since in the ground state of LaMnO3
every site has one electron, and any excitation puts two e
trons at the same site. Therefore, we use the values oft0 , l,
e
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-
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and JHSc obtained from the band fitting, and determine t
value ofU by calculating optical conductivity and fitting th
peak position to the experimental peak position. We use
JT peak for this fitting, since this peak is most promine
We obtainU51.6 eV. Details of the optical conductivity
results will be explained in the next section.

III. RESULTS OF THE CALCULATION

A. At TÄ0 K without the Coulomb interaction term

Figures 2~a!, 2~c!, and 2~e! show theT50 K optical con-
ductivities sxx and szz calculated for three values of th
coupling constantl with t0 andJHSc predicted by the band
theory andv̄ and w̄ from the crystallographic data. Figur

2~a! showssxx and szz for the case 2lAv̄21w̄2,2JHSc .
For sxx ~solid line!, we see a large peak at the Jahn-Tel
splitting, corresponding to motion within one plane. Note t
jump in absorption at the gap edge—a characteristic tw
dimensional feature. A weak feature is also visible at 2JHSc ;
this corresponds to the electron trajectories that overlap f
one plane to the next. An extremely weak feature is a
visible at the sum of the Jahn-Teller and Hund’s splittin
~JT1Hund!. For szz ~dotted line!, we see a very weak fea
ture at the Jahn-Teller energy, corresponding to a small
plitude for an electron to tunnel through an intervening pla
and land on a ‘‘correctly oriented’’ core spin, a large peak
the Hund’s energy, and another peak at the sum of
Hund’s and Jahn-Teller splitting energies. The sharp pea
the Hund’s energy inszz originates from the essentially pa
allel bands seen in Fig. 1 between (p/2,p/2,p/2) and
(p,0,p/2). In the LSDA band calculation in Ref. 9, thes
two bands are not exactly parallel: The mean splitting var
by ;60.17 eV, which should induce a comparable broa
ening ofe50.17 eV. The effect of this broadening is furth
discussed in Sec. V. Figure 2~c! shows the case of compa
rable Hund’s and Jahn-Teller couplings. We see that
structure becomes more complicated as the features ove
and the band structure becomes less two-dimensional.
low-energy shoulder starting from 1 eV originates from t
transition between the opposite spin directions. Finally, F
2~e! shows the case of a Jahn-Teller coupling greater than

FIG. 2. Optical conductivitiessxx ~solid lines! andszz ~dotted
lines! for t050.622 eV and 2JHSc52.47 eV without the Coulomb
repulsion term~i.e., U50).
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Hund’s coupling. In this case the Hund’s features app
strongly for bothsxx andszz, whereas the Jahn-Teller fea
ture is almost absent inszz. Figures 3~a!, 3~c!, and 3~e!
show the results for a lower value ofJHSc , which show
similar features as Figs. 2~a!, 2~c!, and 2~e!. The results for a
larger value ofJHSc are shown in Figs. 4~a!, 4~c!, and 4~e!.

We have also studied the change of optical conductiv
caused by the change of the ordered orbital state. The or
ordering angleu defined in Sec. II is related to the lattic
distortion v̄ and w̄ by

cos 2u52
v̄

Av̄21w̄2
. ~34!

For the observedv̄ andw̄ at T50 K, we obtainu'54°. We
have varied the ratio betweenv̄ andw̄ without changing the

JT splitting 2lAv̄21w̄2. The results are shown in Fig. 5
When u530°, the orbital ordering isx22z2/y22z2 type,
and whenu560°, 3x22r 2/3y22r 2 type. Whenu545°, the
orbital state is between these two configurations. As the
dered orbital state changes fromx22z2/y22z2 to 3x2

2r 2/3y22r 2, the total spectral weight ofszz has substan-
tially decreased. Ifu is further varied towardu590°, which

FIG. 3. Optical conductivitiessxx ~solid lines! andszz ~dotted
lines! for t050.622 eV and 2JHSc52.10 eV without the Coulomb
repulsion term~i.e., U50).
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corresponds to the nonstaggeredx22y2 type orbital order-
ing, then thez-direction conductivity becomes even smalle
For sxx , asu decreases, the spectral weight has moved cl
to the lower edge without appreciable changes in the t
spectral weight.

B. At TN™T™800 K without the Coulomb interaction term

The general features ofsxx and szz at T@TN are these:
Because we have random spin directions along bothx andz
directions, bothsxx and szz show the JT, Hund, and JT
1Hund peaks. Due to the anisotropy of the lattice distorti
we still expect anisotropy in the peak intensity. The broa
ening due to the random spin directions means that the p
become smoother than theT50 K case.

Optical conductivities calculated for the room temperatu
are shown in Figs. 2~b!, 2~d!, and 2~f!. For these calculations
we use the samel, t0, andJHSc as in Figs. 2~a!, 2~c!, and
2~e!, but we use the room-temperature lattice paramet
which differ slightly from the 0 K lattice parameters. We
obtain w̄50.417 Å andv̄50.155 Å from Ref. 7. As ex-
pected, the peaks are substantially broadened and inde
Figs. 2~d! and 2~f! only two peaks are visible. The upturn o
the optical conductivity at around zero frequency is an a
fact of our choice of the energy-independent level broad
ing G. Figures 3~b!, 3~d!, 3~f!, 4~b!, 4~d!, and 4~f! show
similar results, obtained for the parameters used in Figs. 3~a!,
3~c!, 3~e!, 4~a!, 4~c!, and 4~e!, respectively.

We show in Table II the variation of the spectral weig
with temperature and parameter values. The results obta
from Eq. ~27! and from direct integration ofs @as in Eq.
~26!# are in agreement. The temperature dependence co
from the familiar double-exchange-driven correlation b
tween spin order and spin-dependent hopping amplitude
is complicated at smallJHSc by competition between acces
sibility of different orbitals and spin-dependent hoppin
but at largerJHSc the expected decrease inKav, as T is
changed from 0 to 300 K, is always seen. Table II shows t
at T 5 0 K, Kxx sensitively decreases asl increases, but is
insensitive toJHSc , while Kzz decreases asl or JHSc in-
creases, which can be understood from the spin and la
configuration atT50 K. On the other hand, atT5300 K,
both Kxx andKzz have moderate dependence on bothl and
TABLE II. Total spectral weights fort050.622 eV without the Coulomb interaction term~i.e., U50),
expressed in terms ofKx , Kz , andKav for T50 K and 300 K.

2JHSc ~eV! l ~eV/Å! Kx
0 K ~eV! Kz

0 K ~eV! Kav
0 K ~eV! Kx

300 K ~eV! Kz
300 K ~eV! Kav

300 K ~eV!

2.10 1.38 0.295 0.242 0.277 0.290 0.211 0.264
2.10 2.20 0.236 0.226 0.206 0.248 0.179 0.225
2.10 2.90 0.196 0.184 0.192 0.219 0.155 0.198

2.47 1.38 0.294 0.217 0.268 0.277 0.199 0.251
2.47 2.20 0.235 0.185 0.218 0.236 0.167 0.213
2.47 2.90 0.195 0.165 0.185 0.207 0.144 0.186

4.00 1.38 0.289 0.149 0.242 0.249 0.159 0.219
4.00 2.20 0.239 0.129 0.202 0.209 0.139 0.186
4.00 2.90 0.194 0.110 0.166 0.179 0.109 0.156
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JHSc . The spectral weight of each peak depends sensitiv
on temperature. Particularly, when the Jahn-Teller splittin
much less than the Hund’s splitting@as in Figs. 2~a! and
2~b!#, it is possible to identify the lowest-energy feature
both 0 K and 300 K as arising from the transitions betwe
the parallel-spin but different Jahn-Teller states, and to
termine the spectral weight in this feature. When we defi

Kh,JT5
2\2a0

pe2 E
JT peak

dvshh~v!, ~35!

we find Kx,JT
0 K50.271 eV,Kx,JT

300 K50.151 eV for Figs. 2~a!
and 2~b!, whose ratio is between 1/2 and 2/3, as predicted
Ref. 3. The extraT50 K JT spectral weight is pulled dow
from the higher-energy peaks as the spin disorder is
creased. It is also noteworthy that the peak shape is m
asymmetric atT50 K than atT5300 K, due to the two-
dimensional character.

C. With the Coulomb interaction term

The experimental results of Ref. 19 show the lowe
energy peak at 2.5 eV, which we interpret as the JT pe
This peak position is about 1.3 eV higher than our resu
obtained without the Coulomb interaction term. We belie
that the difference comes from the Coulomb interaction.
fitting the calculated peak position to the experimental p
position we estimate the size of the Coulomb interaction.
obtainU51.6 eV. This value ofU is close to the difference
of the experimental peak position and the calculated p
position for theU 5 0 case. The room-temperature resu
are shown in Figs. 6~b! and 6~d!. As we increase the value o
U, the peak position shifts upwards by'U, and the peak
intensity decreases. With this determined value ofU, we cal-
culate theT50 K results shown in Figs. 6~a! and 6~c!. It
shows that asT is changed from 300 K to 0 K, the anisotrop
is enhanced and the spectral weight of the JT peak insav is
increased approximately twice.

We briefly mention the more general case in whi
U (a,a),(b,b) depends on the indices, i.e., the Coulomb rep
sion depends on precisely which spin and orbital states
occupied. In the no-hopping case, the energy levels on e

FIG. 4. Optical conductivitiessxx ~solid lines! andszz ~dotted
lines! for t050.622 eV and 2JHSc54.0 eV without the Coulomb
repulsion term~i.e., U50).
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site are 2l⇑8Av̄21w̄2, l⇑8Av̄21w̄2, 2JH8Sc2l⇓8Av̄21w̄2,

and 2JH8Sc1l⇓8Av̄21w̄2. Even though the finite hopping
gives dispersion to these energy levels, the peak positions
close to the energy differences between different lev

Therefore, the JT peak position is close to 2l⇑8Av̄21w̄2, the

Hund peak position is close to 2JH8Sc1(l⇑82l⇓8)Av̄21w̄2,
and the JT1Hund peak position is close to 2JH8Sc1(l⇑8
1l⇓8)Av̄21w̄2. To see the effects of the different types
the Coulomb interaction, we use different values ofl⇓8 , JH8Sc

for the same value ofl⇑8 , and calculate the optical conduc
tivities. We found that the JT peak position and spect
weight do not change very much. Therefore, even if we us
more general Coulomb interaction withU (a,a),(b,b) depen-
dent on the indices, as far as we fix the JT peak position
fixing l⇑8 , its spectral weight does not change very much

For the above model, we also calculate the variation
the level occupancies as a function ofU. The results for the
lowest-lying orbital^n̂⇑,2& are shown in Fig. 7 forT50 K
andT5300 K, which shows that asU increases, theeg elec-

FIG. 5. Optical conductivitiessxx ~solid lines! andszz ~dotted
lines! for t050.622 eV, 2JHSc52.47 eV, l51.38 eV/Å, andU
50 with different orbital ordering angleu.

FIG. 6. Optical conductivities fort050.622 eV, 2JHSc52.47
eV, l51.38 eV/Å, andU51.59 eV.
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trons are more likely to have spins parallel to the core sp
and stay in the ground state of the local lattice distortion. T
curves, however, show that the value ofU required to fit the
data of Ref. 19 does not change the ground-state occup
much.

IV. COMPARISON WITH EXPERIMENTS

We now compare our results to data. This compariso
preliminary because the available data disagree. Optical
ductivity for polycrystalline LaMnO3 was measured at room
temperature by Junget al.20 Because the crystal direction
are random in polycrystalline samples, the observed quan
is sav52sxx/31szz/3, provided that the crystallite size i
large. We have also plotted our calculatedsav for Hnonint

300 K in
Fig. 8. Figure 8~a! shows the results for the parameter valu
determined from the band fitting. The data in Ref. 20 exh

FIG. 7. Occupancies of the lowest-lying orbital versusU for
t050.622 eV, 2JHSc52.47 eV, andl51.38 eV/Å atT50 K and

300 K. ^n̂⇑2& for T5300 K is smaller than that forT50 K due to
the reduced kinetic energy in the paramagnetic state as menti
in Sec. III B. For example,Kav

0 K50.268 eV,Kav
300 K50.251 eV for

U50 eV, Kav
0 K50.207 eV,Kav

300 K50.149 eV forU52 eV, and
Kav

0 K50.087 eV,Kav
300 K50.050 eV forU510 eV.

FIG. 8. Average optical conductivitiessav for t050.622 eV and
2JHSc52.47 eV atT5300 K without the Coulomb repulsion term
~i.e., U50).
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two main structures; a lower peak centered at 1.9 eV w
maximum intensity 420V21 cm21 and integrated intensity
corresponding toKav,JT52Kx,JT/31Kz,JT/3'0.115 eV, and a
peak centered at around 4.5 eV with a much larger intens
The authors of Ref. 20 attribute the 4.5 eV feature to
eg–O 2p transitions beyond the scope of our model and
sign the peak at 1.9 eV to the JT-spliteg-eg transitions
within the parallel-spin manifold. In this interpretation, th
transitions to the reversed spin states are obscured by
Mn-O transitions. Recently, room-temperature optical refl
tivity spectra using a cleaved single-crystal surface
La12xSrxMnO3 have been measured by Takenakaet al.19 Al-
though it is referred to as a single crystal, we believe that
sample of LaMnO3 is microtwinned. In Ref. 19, the Jahn
Teller peak appears at around 2.5 eV with maximum int
sity '600 V21 cm21 and width'1.5 eV corresponding to
Kav,JT'0.141 eV, and the Mn-O peak appears at 5 eV w
maximum intensity'2800 V21 cm21. Similar results were
obtained by Okimotoet al.2 The results of Takenakaet al.
show a weak shoulder at 1.9 eV that our model cannot
plain. The two different experiments therefore disagree
30% in peak position and 20% in spectral weight. Furth
the experiment reporting the lower gap value has a low
spectral weight, a trend opposite to that found in any reas
able model. We therefore regard the experimental situa
as uncertain.

From Fig. 8~a!, it is plain that if the Jahn-Teller interac
tion were the only important one, the observed lattice dist
tions would lead to a peak insav at 1.2 eV with maximum
intensity '1200 V21 cm21, width '1.0 eV, andKav,JT
'0.223 eV. The maximum intensity or spectral weight
much larger than the observed values in either experim
and the peak position is lower. From Fig. 8~c!, we see that
the data of Ref. 19 may be approximately modeled by use
a stronger electron lattice coupling or a nonzero Coulo
interaction, which moves the peak to higher energy and
duces its spectral weight. For the data in Ref. 20, one can
simultaneously fit the peak amplitude and the peak posi
as can be seen from Fig. 3~b!: Choosing interaction param
eters to fit the peak position leads to an amplitude that is
large. The combination of peak energy and amplitude co
only be explained if the actual hopping were significan
smaller than the band-theory value~say t0'0.4 eV rather
than 0.6 eV!.

Further optical data would be very desirable~especially
measurements at lowerT). For the present we assume th
data of Ref. 19 are correct, and consider their interpreta
in more detail. We believe that the combination of the ba
calculation and the estimates from the crystallographic d
adequately fix the magnitude of the Jahn-Teller splitting. W
therefore believe that the differences between the data
Ref. 19 and Fig. 8~a! are mainly due to the Coulomb inter
action whose effects we have studied in Sec. III C. ForU
51.6 eV, the calculated maximum peak intensity is 7
V21 cm21, the width is 1.2 eV, andKav,JT

300 K'0.145 eV,
which is close to the observed spectral weight in Ref.
Because our choice of the parameters reproduces both
peak position and the spectral weight, we believe our mo
is in reasonable agreement with the experiment atT5300 K.
We emphasize, however, that the true test of our result

ed
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the predicted strong temperature dependence, which ha
yet been observed.

V. UNCERTAINTIES

In this section we present a detailed discussion of poss
errors in our results. There are two motivations: First, tig
binding-based many-body calculations are widely used
understand experimental data, so a discussion of their
rectness is needed. Second,s(v,T50 K) was
calculated5,6,21 for LaMnO3 using band-theory-based met
ods involving explicit construction of wave functions an
evaluation of matrix elements. These works disagree w
each other, most notably in the spectral weight in the p
we have identified as the JT feature: The spectral weigh
the Jahn-Teller peak at 2 eV shown in Fig. 1 of Ref. 21
twice that in Fig. 8 of Ref. 5. Our average spectral weig
calculated forU50 andl51.38 eV/Å, is close to the result
in Ref. 21 and is about twice as large as that found in Ref
The difference is particularly troubling, because the tig
binding Peierls phase formalism omits further-neighbor h
ping and on-site transitions betweens andp symmetry orbit-
als, and therefore might be expected to underestimate
spectral weight, not to overestimate.

We compare our results in more detail to those of Ref
which disagree with ours in two respects. First, the form
different: The sharp peaks we find are absent in their ca
lation. We suspect that the difference is due in part to
0.01 Ry'0.14 eV level broadening employed in Ref. 6 a
in part to the oversimplicity of our tight-binding model. Fig
ure 9 shows the effects of introducing an artificial broad
ing e into our calculation; the result is to be compared w
Fig. 2~a!. This figure shows that as the artificial broadeni
is increased, the peaks diminish in amplitude and beco
more symmetrical~although there is always more asymme

FIG. 9. Optical conductivitiessxx ~solid lines! andszz ~dotted
lines! for t050.622 eV, 2JHSc52.47 eV, l51.38 eV/Å, andU
50 with different broadeninge.
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in our calculation than in Ref. 6!. Regarding the oversimplic
ity of our model, our nearest-neighbor tight-binding fit pr
dicts that certain bands are parallel, while in the actual b
structure a certain curvature is present due to small sec
neighbor hoppings, as noted in Sec. III A. This effect w
give an additional broadening'0.2 eV to the Hund’s peak in
szz. Therefore, the total broadening for the Hund’s peak
szz in Ref. 6 relative to our result will bee'0.3 eV, which
explains the difference in line shape, which is not of fund
mental importance for this paper.

A far more serious discrepancy is the difference in sp
tral weight. The area under the lowest conductivity peak
Ref. 6 is about a factor of 4 smaller than in our calculatio
and as noted one expects the tight-binding model to un
estimate the spectral weight. This difference seems not to
caused by trivial errors in our calculation. In Sec. III B, dire
integration ofs @Eq. ~26!# and thef-sum rule expression@Eq.
~27!# were shown to agree. We may verify our results also
a different way. According to the Hellman-Feynman the
rem,K5Kxx1Kyy1Kzz can be found from the ground-sta
energyE0 /NMn by

K52t0

d~E0 /NMn!

dt0
, ~36!

wheret0 is the hopping parameter defined in Sec. II B 2.
T50 K, we have calculatedE0 /NMn as the sum of energie
of the filled bands,

E0

NMn
5

2

~2p!3ER
dkW @E1~kW !1E2~kW !# ~37!

and evaluatedK using Eq.~36!. The result obtained in this
way is in agreement with the results in Table II.

We next examine the size of the possible error due to
following two approximations we have made: First, we ha
assumed that the hopping between Mn ions, which origina
from the Mn-O hopping, can be effectively represented wi
out explicit consideration of the O band. Second, we ha
used the tight-binding approximation.

To study the effects of the Mn-O hybridization on th
conductivity in the dominantly Mn bands, we consider
simple model of a one-dimensional Mn-O chain along thx
direction. Each unit cell contains one Mn ion at positio
Ri

Mn5nia0 with a d orbital represented bydi
† , and one oxy-

gen ion at positionRi
O5(ni11/2)a0 with a p orbital repre-

sented bypi
† . We consider a Mn-O hopping of magnitud

tMn-O and choose the sign to reflect the symmetry of the Op
orbital ~the sign can be removed by change ofk space ori-
gin!. In addition, to model the Jahn-Teller distortion, we co
sider alternating periodic potentialD on the Mn site. We
represent the energy of thed level relative to thep level by
V. For simplicity we assume spinless electrons. This can
represented by the following Hamiltonian:

H52
tMn-O

2 (
i

~di
†pi2pi

†di 112di 11
† pi1pi

†di1H.c.!

1(
i

D

2
~21! idi

†di2Vpi
†pi . ~38!
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We obtain the exact band structure and optical conducti
for the above Hamiltonian, and compare these to the b
structure and conductivity obtained from the neare
neighbor tight-binding fit to the two uppermost~Mn-
dominant! bands. The difference turns out to be small. T
effective tight-binding Hamiltonian is

Heff52
teff

2 (
i

~di
†di 111di

†di 211H.c.!

1(
i

Deff

2
~21! idi

†di . ~39!

By transforming intok space, we can find the band structu
for H andHeff . The band structure ofHeff is simply given by

E56A4teff
2 cos2k1

Deff
2

4
. ~40!

For giventMn-O , D, andV, we can fit the band structure o
Heff to that ofH to determineteff andDeff .

For tMn-O52.0 eV andD51.0 eV, we studyV51.0 eV
and 10 eV cases. The obtainedd bands are shown in Figs
10~a! and 10~b! (V51.0 eV and 10 eV, respectively! as solid
lines, along with the best Mn-band tight-binding fit as dott
lines. The fitted parameter values areteff50.88 eV, Deff
50.59 eV forV51.0 eV, andteff50.35 eV,Deff50.93 eV
for V510 eV. It shows that whenV51.0 eV, the fitting has
an error of 10% of thed-band width~comparable to the erro
in the fits used in Secs. II–IV!, but whenV510 eV, the
fitting has negligible error. For these two cases, we ass
half filling, and calculate optical conductivities which a
shown in Figs. 10~c! and 10~d!. The insets show the inte

FIG. 10. Mnd-band structures@~a!, ~b!# and optical conductivi-
ties @~c!, ~d!# of the Mn-O chain in the model explicitly considerin
the Op level ~solid lines! and in the best-fit effective Mn-Mn chain
model~dotted lines!. The used parameter values aretMn-O52.0 eV,
D51.0 eV,V51.0 eV,teff50.88 eV, andDeff50.59 eV for~a! and
~c!, and tMn-O52.0 eV, D51.0 eV, V510 eV, teff50.35 eV, and
Deff50.93 eV for~b! and~d!. The insets show the integrated spe
tral weight represented in terms of kinetic energy~K! versus photon
energy~P.E.!.
y
d

t-

e

grated spectral weight,K(\v)5(2\2a0 /pe2)*0
\vs(v)dv.

In this calculation, we assumed the Mn-Mn distance isa0
54.034 Å, and the cross-sectional area perpendicular to
direction of the chain isa0

2. For V510 eV, the two calcula-
tions give almost identical results. ForV51.0 eV, the tight-
binding fit has about 25% larger spectral weight. We the
fore expect our Mn-only approximation yields errors'25%.

Next, to estimate the error of the tight-binding approx
mation ~i.e., of the Peierls approximation to the optical m
trix elements!, we consider the following Kronig-Penne
~KP! model:

Ĥ52
1

2

d2

dx2
1 (

n52`

` FV1

2
d~x22n21!1

V2

2
d~x22n!G ,

~41!

whereV1 , V2,0, \5me5e51, and spinless electrons ar
assumed for simplicity. Once the values ofV1 and V2 are
given, we can find the eigenstatesck(x), the band structure
and the optical conductivity, and compare these to the Pe
approximation. The band structure has two bands; an
51/2, one is filled and the other is empty. Therefore, we c
calculate the optical conductivity via

s5
1

v

1

2pE2p/2

p/2 z^2,kud/dxu1,k& z2e

@v2E2~k!1E1~k!#21e2
, ~42!

where 1 and 2 are the band indices. ForV1524, V2525,
we calculate the exact band structure, shown as solid line
Fig. 11~a! along with the best tight-binding fit from Eq.~39!
(teff51.33, Deff50.6) shown as solid lines. It shows that th
error is about 7% of the total bandwidth. Figure 11~b! shows
the calculated optical conductivities for the exact KP mo
and the tight-binding fit. The spectral weight of the tigh
binding fit is about 20% larger than that of the exact res
as shown in the inset.

For LaMnO3, our band fitting has an error of about 0
eV, which corresponds to about 5% of the total Mneg ↑
bandwidth. So, we expect our approximation to have a si
lar size error in spectral weight as the two cases conside
above. Thus, we expect that our calculated optical cond
tivity may have overestimated spectral weight by about 20
Therefore, we believe that within this error our approxim
tions are valid.

FIG. 11. Band structures@~a!# and optical conductivities@~b!#
for the exact Kronig-Penney model@Eq. ~41!# with V1524, V2

525 ~solid lines! and for the best tight-binding fit withteff

51.33, Deff50.6 ~dotted lines!. The inset shows the integrate
spectral weight represented in terms of kinetic energy~K! versus
photon energy~P.E.!.
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The relation between the kinetic energy and the opt
spectral weight follows from the two assumptions of gau
invariance and reasonably localizedd-electron wave func-
tions. The success of the tight-binding fit confirms this loc
ized character. A tight-binding parametrization of the ba
structure has been used to studys(v) in other correlated
electron contexts,14,22 and seems to work well for high-Tc
superconductors. The apparent discrepancy between
LDA and the tight-binding methods and between the diff
ent LDA calculations found for manganites is thus an imp
tant issue for future research.

VI. CONCLUSION

We have calculated the optical conductivity of LaMnO3
and have shown that the available data are consistent
the band-theory estimate for the hopping parametert0 and
the lattice-distortion-inducedeg-level splitting. Our main
prediction that the functional form and magnitude ofs
change asT is decreased belowTN is contained in Fig. 6.
The experimental determination of the Hund’s coupling
well as the final validation of our model must await defin
tive measurements of the magnitude and temperature de
dence ofs(v).

In conclusion, we comment on the implications of o
results. First, we note that the estimate of the electron-lat
coupling derived from band theory is in good agreement w
that derived directly from the crystallographic data as sho
in Sec. II E, and the room-temperature spectral weights s
gest that the band-theory estimate of the hopping param
is not far off, implying the relevance of a bandlike descr
tion. Second, we observe that the electron-lattice interac
by itself does not account for the magnitude of the gap or
spectral weight in the absorption spectrum. A Coulomb
teraction U'1.6 eV is also required. This value pu
LaMnO3 in the weak-intermediate coupling range: The Co
lomb interaction is approximately 40% of the full bandwid
6t0'3.6 eV. In the simple one-band Hubbard model, a C
lomb interaction of this size~relative to the bandwidth! does
not significantly affect properties~such as optical spectra
weights! at reasonable dopings of order 0.2 or larger. T
effects of this moderate Coulomb coupling on properties
models of doped manganites deserve further attention. M
authors have argued on the basis of photoemission data23 that
the Coulomb repulsion is large~5–10 eV!; however, as noted
l
e

-
d

the
-
-

ith

s

en-

e
h
n
g-
ter
-
n
e
-

-

-

e
f

ny

by the experimentalists themselves, because the manga
are charge-transfer rather than the Mott-Hubbard mater
~as are the high-Tc superconductors! theU measured in pho-
toemission is not directly relevant to the low- (\v,4 eV!
energy physics of interest here.

Our data analysis focuses on robust features~peak posi-
tions and spectral weights! and is insensitive~at the 20%
level! to the approximations we made. Uncertainties in t
tight-binding parametrization of the band structure lead to
error'0.2 eV in peak position, which is not important her
the consistency of the peak position and spectral we
leads us to believe that the band-theory estimates oft0 are
reasonably accurate. Uncertainties in the estimates of
electron-phonon couplingl could change our estimate
Coulomb repulsion by around 0.2 eV, which is also insign
cant. We note, however, that we have not included any
citonic effects arising from the first-neighbor interactio
such as those proposed by Maekawa and co-workers.24 At
T50 K, the two-dimensional character and general flatn
of the bands suggest that these might be important and in
esting to look for.

The crucial prediction of the present model is the d
matic change in the optical absorption with temperature. T
change is a robust feature of the model, and comes fro
dramatic shift in spectral weight caused by the ferromagn
spin ordering, along with a very nearly two-dimension
character of the bands atT→0 K caused by the between
plane antiferromagnetism. Early data2 reported only a weak
temperature dependence of the optical absorption; if th
data are reproduced, then our fundamental picture of
manganites based oneg electron with electron-lattice and
electron-electron interactions must be modified.

Finally, we note that a troubling discrepancy with LD
band-theory calculations of the optical conductivity exis
Further work is needed to find the origin of the difference

Note added in proof:Orbital angleu in Sec. III A is de-
fined by 10&5cosu u 3z2r2&1sinu u y22x2&.
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APPENDIX A: HAMILTONIAN IN k SPACE AT TÄ0 K

Without considering the Coulomb repulsion, the total Hamiltonian atT50 K is given by the following expression:

Hnonint
0 K 5 (

a5↑,↓,kWPR

da,kW
†

Hnonint,a
0 K ~kW !da,kW , ~A1!

where

da,kW
†

5~d1,kW ,a
† ,d2,kW ,a

† ,d1,kW1(p,p,0),a
† ,d2,kW1(p,p,0),a

† ,d1,kW1(0,0,p),a
† ,d2,kW1(0,0,p),a

† ,d1,kW1(p,p,p),a
† ,d2,kW1(p,p,p),a

†
!, ~A2!

Hnonint,a
0 K ~kW !5S M11G1V W Ga 0

W M21G1V 0 Ga

Ga 0 M31G1V W

0 Ga W M41G1V

D , ~A3!



PRB 61 13 557EFFECTS OF MAGNETIC ORDERING ON THE . . .
M15S 2
t0

2
~coskx1cosky14 coskz!

A3t0

2
~coskx2cosky!

A3t0

2
~coskx2cosky! 2

3t0

2
~coskx1cosky!

D , ~A4!

M25S t0

2
~coskx1cosky24 coskz! 2

A3t0

2
~coskx2cosky!

2
A3t0

2
~coskx2cosky!

3t0

2
~coskx1cosky!

D , ~A5!

M35S 2
t0

2
~coskx1cosky24 coskz!

A3t0

2
~coskx2cosky!

A3t0

2
~coskx2cosky! 2

3t0

2
~coskx1cosky!

D , ~A6!

M45S t0

2
~coskx1cosky14 coskz! 2

A3t0

2
~coskx2cosky!

2
A3t0

2
~coskx2cosky!

3t0

2
~coskx1cosky!

D , ~A7!
is

.

G5S JHSc 0

0 JHSc
D , ~A8!

G↑52G, ~A9!

G↓5G, ~A10!

V5S l v̄ 0

0 2l v̄
D , ~A11!

W5S 0 2lw̄

2lw̄ 0
D , ~A12!

R5$kW uukxu1ukyu,p and ukzu,p/2%. ~A13!

Bh(kW ), which is used to calculate optical conductivity,
given by

Bh~kW !5D~kW !†ThD~kW !, ~A14!
Tx5S tx 0 0 0

0 2tx 0 0

0 0 tx 0

0 0 0 2tx

D , ~A15!

Ty5S ty 0 0 0

0 2ty 0 0

0 0 ty 0

0 0 0 2ty

D , ~A16!

Tz5S tz 0 0 0

0 tz 0 0

0 0 2tz 0

0 0 0 2tz

D , ~A17!

where D(kW ) is the matrix diagonalizingHnonint
0 K (kW ) given

above.tx , ty , and tz are the 232 matrices defined in Sec
II B 2.
APPENDIX B: HAMILTONIAN IN k SPACE AT TÄ300 K

Without considering the Coulomb repulsion, the effective total Hamiltonian atT5300 K is given by the following
expression:

Hnonint
300 K5 (

kWPS

dkW
†
Hnonint

300 K~kW !dkW , ~B1!

where

dkW
†
5~d1,kW ,⇑

† ,d2,kW ,⇑
† ,d1,kW1(p,p,0),⇑

† ,d2,kW1(p,p,0),⇑
† ,d1,kW ,⇓

† ,d2,kW ,⇓
† ,d1,kW1(p,p,0),⇓

† ,d2,kW1(p,p,0),⇓
†

!, ~B2!



13 558 PRB 61K. H. AHN AND A. J. MILLIS
Hnonint
300 K~kW !5S 2

3 M11V W 2
3 M1 0

W 2
3 M21V 0 2

3 M2

2
3 M1 0 2

3 M11V12G W

0 2
3 M2 W 2

3 M21V12G

D , ~B3!

S5$kW uukxu1ukyu,p and ukzu,p%. ~B4!
y

e

-

M1 , M2 , V, W, andG are defined in Appendix A.Bh8 (kW ),
which is used to calculate optical conductivity, is given b

Bh8 ~kW !5D8~kW !†Th8D8~kW !, ~B5!

Tx85
2

3 S tx 0 tx 0

0 2tx 0 2tx

tx 0 tx 0

0 2tx 0 2tx

D , ~B6!

Ty85
2

3 S ty 0 ty 0

0 2ty 0 2ty

ty 0 ty 0

0 2ty 0 2ty

D , ~B7!

Tz85
2

3 S tz 0 tz 0

0 tz 0 tz

tz 0 tz 0

0 tz 0 tz

D , ~B8!

andD8(kW ) is the matrix diagonalizingHnonint
300 K(kW ).

APPENDIX C: HAMILTONIAN IN k SPACE
WITH THE COULOMB INTERACTION

We definelav8 anddl8 by

l⇑85lav8 1dl8, ~C1!

l⇓85lav8 2dl8. ~C2!

At T50 K, the total Hartree-Fock Hamiltonian with th
Coulomb interaction,

H tot
0 K,HF5 (

a5↑,↓,kWPR

da,kW
†

H tot,a
0 K,HF~kW !da,kW , ~C3!

consists of two terms: One has the same form asHnonint
0 K in

Appendix A with JHSc→JH8Sc andl→lav8 , while the other
additional term is

Hadd
0 K,HF5 (

a5↑,↓,kWPR

da,kW
†

Hadd,a
0 K,HF~kW !da,kW , ~C4!

where
Hadd,a
0 K,HF~kW !5S 0 0 dV̄a dW̄a

0 0 dW̄a dV̄a

dV̄a dW̄a 0 0

dW̄a dV̄a 0 0

D , ~C5!

dV̄a5S dla8 v̄ 0

0 2dla8 v̄
D , ~C6!

dW̄a5S 0 2dla8 w̄

2dla8 w̄ 0
D , ~C7!

dl↑85dl8, ~C8!

dl↓852dl8. ~C9!

Similarly, for T5300 K the total Hartree-Fock Hamil
tonian with the Coulomb interaction,

H tot
300 K,HF5 (

kWPS

dkW
†
H tot

300 K,HF~kW !dkW , ~C10!

consists of two terms: One has the same form asHnonint
300 K in

Appendix B withJHSc→JH8Sc andl→lav8 , while the other
additional term is

Hadd
300 K,HF5 (

kWPS

dkW
†
Hadd

300 K,HF~kW !dkW , ~C11!

where

Hadd
300 K,HF~kW !5S dV̄ dW̄ 0 0

dW̄ dV̄ 0 0

0 0 2dV̄ 2dW̄

0 0 2dW̄ 2dV̄

D .

~C12!

dV̄5S dl8v̄ 0

0 2dl8v̄
D , ~C13!

dW̄5S 0 2dl8w̄

2dl8w̄ 0
D . ~C14!
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With these Hamiltonians for givenU (a,a),(b,b) , we can
repeatedly calculatên̂b,b& until its value converges. AtT
50 K, ^n̂a,a& is given by the following expression:

^n̂a,a&5
1

~2p!3ER
dkW (

j 51,2
@P↑~kW !†Q↑aaP↑~kW !# j j

1@P↓~kW !†Q↓aaP↓~kW !# j j , ~C15!

where

Q↑⇑,65Q↓⇓,65Q16 , ~C16!

Q↓⇑,65Q↑⇓,65Q26 , ~C17!

Q165S A6 B6 A6 B6

B6 A6 B6 A6

A6 B6 A6 B6

B6 A6 B6 A6

D , ~C18!

Q265S A6 B6 2A6 2B6

B6 A6 2B6 2A6

2A6 2B6 A6 B6

2B6 2A6 B6 A6

D , ~C19!

A65S a6
2 /2 0

0 b6
2 /2

D , ~C20!

B65S 0 a6b6/2

a6b6/2 0 D , ~C21!

*On leave from the Department of Physics and Astronomy, T
Johns Hopkins University, Baltimore, Maryland 21218.
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