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Influence of divergent electric fields on space-charge distribution measurements
by elastic methods
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Elastic methods are presently being used to study the space charge distributions in insulators. They are
limited in their interpretation to simple geometries whereas real systems often involve complex structures such
as the case for divergent electric field regions. The authors propose a general theory for the interpretation of the
data obtained by the pressure-wave-propagation method and the electro-acoustic method. This model makes it
possible to study crystals, isotropic solids, or fluid samples of any geometry, containing charge and dipole
distributions and also submitted to divergent electric fields such as produced by treeing or defects. A compari-
son is made with existing models in the case of simple geometries, such as planar or coaxial. It is shown that
classical results are justified in the case of a planar sample. However, a correction has to be introduced in more
complex geometries, even in coaxial ones. Indeed, some experiments show the associated difference. The
model also emphasizes the similarities of the two elastic methods of measurement both for the analytical and
experimental point of view.
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I. INTRODUCTION

The measurement of space charge distributions in ins
tors makes it possible to observe the real behavior of ele
cally stressed insulators. This has many consequences
for the validation of theoretical models and for the design
high-voltage structures. Many studies1–11 have already been
carried out on different systems.

In most cases, breakdown phenomena arise from
buildup of large electric fields such as found in regio
where the field is highly divergent. Such regions are,
instance, associated with water trees or defects.12 Though the
measurement methods were initially proposed for plana
coaxial geometries, they can also be applied to diverg
electric field geometries13–17 but the signal analysis is mor
complex. This is true with thermal, pressure-wav
propagation, and electro-acoustic methods, which are ex
sively used to give information on the space charge repa
tions in insulating samples. In the case of thermal a
pressure-wave-propagation methods a local motion of the
sulator, produced by a thermal diffusion or an elastic wa
induces a variation of charges on adjacent electrodes
nected through a low impedance measuring circuit. T
variation is associated with a current that is the measu
signal. In the case of the electro-acoustic method a varia
of the applied voltage produces a variation of the force a
ing on the charges. This variation of force initiates an ela
wave that is transformed by an adjacent transducer into
measured signal. In all cases the measured signal depen
the geometry of the system, which may lead to large unc
tainties on the shape and on amplitudes of the charge d
bution.

The aim of this paper is to propose an analytical mod
taking into account the sample geometry, applicable both
PRB 610163-1829/2000/61~20!/13528~12!/$15.00
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the pressure-wave-propagation method or the elec
acoustic method. Hence, knowing the sample geometry
possible to link the measured signal to the amplitude a
shape of the charge distribution in the insulator with an i
proved accuracy. The equation proposed for the press
wave-propagation method can also be applied with mi
modifications to thermal methods.

In the next section we define the notations. Section III
devoted to the pressure-wave-propagation method. T
method is briefly recalled in the case of a planar geome
Then the variation of the charge on the electrodes is analy
for given deformations and charge and dipole distributio
In Sec. IV the electro-acoustic method is briefly expos
The force density in the material, which is the source of
elastic waves, is studied. In Sec. V, the models built for
analysis of the two former methods are applied to sim
geometries, such as planar or coaxial ones, and the sig
obtained in samples with diverging field are shown.

II. NOTATIONS

The sample, of any geometry, is made with an insulato
dielectric constant« and two electrodes, 1 and 2, the fir
enclosing the other, at least at infinity. This ensures that
electric field lines starting from electrode 1 go to electrod
or reciprocally. In static conditions the potentials on the
terfacial surfacesS1 andS2 are, respectively,V1 andV2 as
illustrated in Fig. 1.

The potentialV(M ) and the electric fieldEW (M ) at a po-
sition M in the volume betweenS1 and S2 for an applied
voltageV22V1 is supposed to be known when the sample
free of charges and dipoles. SinceEW (M ) is proportional to
V22V1 , we define the electric field, normalized in applie
voltage, as
13 528 ©2000 The American Physical Society
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jW~M !5
EW ~M !

V22V1
. ~1!

This quantity, having the units of inverse meters, will a
pear as a factor describing the sample geometry. The s
charge and the permanent dipole distributions are, res
tively, r(M ) andPW (M ). These charges and dipoles produ
when V15V2 , an electric fieldEW 8(M ). In the general case
the electric fieldEW (M ) is then expressed as

EW ~M !5~V22V1!jW~M !1EW 8~M !. ~2!

Since the insulator may be either a fluid or a solid ma
rial, subscripts are used when required to make express
clearer as many times as necessary. Any term is unders
to be summed over all values of any subscript that app
twice. For instance, the displacement field is expressed
Di5« i j Ej1Pi and the Poisson’s equation is written as

]Di

]xi
5r. ~3!

III. PRESSURE-WAVE-PROPAGATION METHOD

A. Brief description of the method

In this subsection, a usual setup for the pressure-wa
propagation method2,12,18,19is presented in the case of a pl
nar sample. It is summarized in Fig. 2.

The insulator has two adjacent electrodes. A plane ela
wave transmitted into the insulator travels at the velocity
sound. We assume that the elastic wave is a pulse of
short duration as compared to the transit time. During
propagation, the pulse moves the charges locally which
turn produces a variation of the image charges on the e
trodes. Thus a current proportional to the displaced sp
charges appears in the external circuit. The dependenc
time of this current is similar to the space charge distribut
inside the insulator since time and position are connected
the speed of sound.

B. Preliminary

The following analysis will be made with the assumpti
that the electrodes are connected through a low impeda
measuring circuit that allows us to assume short-circuit c
ditions. This is indeed the mostly used measuring condit

FIG. 1. Sample geometry.
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As recalled above, the propagation of an elastic wave
duces a variation of the charges on the electrodes. In ord
evaluate the signal produced by this variation of charges,
decompose the effects of the material displacement into
dependent simple situations. We assume that the elect
response of the system to the mechanical perturbatio
short as compared to the time variations of the elastic wa
Thus it is possible to describe the situation with electrosta
equations at any time.

The displacement modifies the electric field, the dielec
constant, and the charge and dipole distributions, which

come, respectively, at a given timeEW 1dEW , «1d«, r1dr,

andPW 1dPW . When the displacement is sufficiently small,
that second-order terms may be neglected, Gauss’s equ
leads to

div~«dEW1EW d«1dPW !5dr. ~4a!

Equation~4a! shows that the material displacement mo
fies locally the electric field as if the space charge distrib

tion dr and the permanent dipole distributionEW d«1dPW were
added into the insulator.

For the application of the boundary conditions it is ne
essary to take into account the motion of the electrodes.
have already definedS1 and S2 as the interfacial surface
before the application of the deformation. We now introdu
S18 and S28 as the interfaces under the deformation. Gaus
theorem makes it possible to advantageously replace
electrodes by equipotential surfaces without modifying
value of the potential between the electrodes. On these e
potential surfaces there is no superficial charge and the
tential is the same as on the electrodes. Then, the elect
displacements are equivalent to the equipotential motio
The potential changes fromV1 to V11dV1(M ) on the sur-
face S1 and from V2 to V21dV2(M ) on the surfaceS2

whereas it remains unchanged on equipotentialsS18 andS28 .
The variations of potentialdV1(M ) anddV2(M ), which de-
pend on the position, represent the motion of the electro
These expressions are valid independently of the magni
of the deformations. However the expression that will

FIG. 2. The pressure-wave-propagation method in planar ge
etry.
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13 530 PRB 61HOLÉ, DITCHI, AND LEWINER
developed in Sec. III E assumes a linear dependence just
by the small-considered deformations.

Consequently one can define the variationdEW of the elec-
tric field due to a material displacement by the equilibriu

state of Fig. 3~a!. By splitting dEW into three components s

that dEW5dEW 11dEW 21dEW 3 one may decompose the equilib
rium state of Fig. 3~a! into three independent equilibrium
states such as

div~«dEW 1!5dr, ~4b!

div~«dEW 21EW d«1dPW !50, ~4c!

div~«dEW 3!50. ~4d!

In the first and second states, the potentials onS1 andS2
are taken equal to zero; in other words, the electrodes are

FIG. 3. The different equivalent equilibrium states describ
the incidence on the electric field of the material displaceme
They are associated with the modification of the dielectric const
of the charge and the permanent dipole densities, and of the
trode surfaces.~a! describes all modifications due to a material d
placement.~b! describes the modification of the space charge d
tribution. ~c! describes the modification of the permanent dip
distribution and the dielectric constant.~d! describes the modifica
tion of the electrode surfaces.
ed

ot

deformed. This is illustrated, respectively, in Figs. 3~b! and
3~c!. In the third state, as shown in Fig. 3~d!, the potential on
S1 and S2 varies from one point to the other in order
reflect the deformation of the electrodes. In the next th
subsections we evaluate the signal contribution of each
these three equilibrium states.

C. Charge displacements

The displacement of charges in a domain limited by
two surfacesS1 and S2 is now analyzed. The charges th
appear on the electrodes during the displacement of the
ternal charges are equivalent to the charges on the electr

of a sample with the internal electric fielddEW 1 @Fig. 3~b!#. In
that equilibrium state, the sample contains the space ch
distributiondr and the potential zero is applied to each ele
trode. We suppose that the chargeq5r(M )dv at the posi-
tion M is moved to a new positionM 8 close toM under the

effect of a material displacementuW 5MMW 8. Then the charge
densitydr is reduced to a charge2q at the positionM and a
charge1q at the positionM 8. In order to evaluate the charg
quantitydQ1 on the electrode 1 anddQ2 on the electrode 2
by using Gauss’s identity~see the Appendix!, we consider
another equilibrium state. In that state, the insulator is free
charges and the potentialsV1 and V2 are, respectively, ap
plied on electrodes 1 and 2. Thus the electric field in
insulator, which derives from the potentialV(M ), is given
by Eq. ~1!. Gauss’s identity connects the two equilibriu
states by

dQ1V11dQ2V21q@V~M 8!2V~M !#50. ~5!

The conservation of the charges implies thatdQ2
52dQ1 . Thus Eq.~5! becomes

dQ15q
V~M 8!2V~M !

V22V1
. ~6!

Furthermore, because the distanceuW from M to M 8 is

small, V(M 8)2V(M )5gradW(V)•uW at first order. This leads
to

dQ152qjW•uW 52rjW•uW dv. ~7!

Finally, the displacement of charges at the positionM for
a given space charge distributionr produces a signal propor
tional to the moved charges. Moreover, the signal is ma
mized when the material displacement is parallel to the
rection of the field that would exist in the insulator if n
space charge were present.

D. Dipole displacements and dielectric constant modifications

The displacement of permanent dipoles and the modifi
tion of the dielectric constant induced by a material def
mation are now analyzed. We have seen that the dipole
placements and the dielectric constant modifications resu

an equilibrium state in which the internal electric field isdEW 2
@see Fig. 3~c!#. In that state, the sample contains the perm

nent dipole distributiondPW1EW d« and both electrodes are a

the potential zero. Since a dipoleq dlW is equivalent to a

t.
t,
c-

-
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negative charge2q and a positive charge1q separated by

the distancedlW, its apparition in the insulator produces

signal identical to that produced by a displacementdlW of a
charge1q. ThusdQ1 can be derived from Eq.~7! as

dQ152q dlW •jW . ~8!

Furthermore, the apparition of the dipole distributio

dPW1EW d« in the insulator leads to the variation of char
dQ1 on electrode 1:

dQ152~dPW1EW d«!•jW dv. ~9!

In order to take into account the possible anisotropy of
dielectric constant,dQ1 can also be expressed as

dQ152~dP1j i1Ejj id« i j !dv. ~10!

The variationsdPi andd« i j derive from two effects. First
the dipole density and the dielectric constant at a positionM 8
become that which existed at positionM prior to the material

displacementuW 5MMW 8. Thus, a variation of permanent d
pole density or of dielectric constant appears only if a gra
ent of these quantities existed before the material displa
ment. The first component of the variation is then

~dPi !152uk

]Pi

]xk
and ~d« i j !152uk

]« i j

]xk
. ~11!

Second, the volume that was at positionM changes due to
the material deformationSkl . The number of permanent d
poles does not change. One has

~dPi !2dv1Pid dv50, so ~dPi !252Pi

d dv
dv

.

~12!

Since the relative variation of volume is given by th
divergence of the material displacementuW, which is alsoSkk ,
the second component of the variation of the permanen
pole density is

~dPi !252Pi

]uk

]xk
. ~13!

If the deformation is sufficiently small, the dielectric co
stant can be assumed to be linearly dependent on the d
mation. The product of the electrostrictive tensorai jkl with
the deformationSkl gives the variationd« i j . One has

~d« i j !25ai jkl Skl5
1
2 ai jkl S ]uk

]xl
1

]ul

]xk
D , ~14!

Noticing thatai jkl 5ai j lk , the variationdQ1 on the elec-
trode 1 is

dQ15S ]~Piuk!

]xk
j i1Ejj iuk

]« i j

]xk
2ai jkl Ejj i

]uk

]xl
Ddv.

~15!
e

i-
e-

i-

or-

E. Electrode deformations

We have seen that the deformation of the electrodes
sults in the equilibrium state illustrated in Fig. 3~d!. In that

state, the electric field isdEW 3 and the potentials on the su
faceS1 andS2 are, respectively,dV1(M ) anddV2(M ). Fur-
thermore in this case the sample contains no space ch
nor permanent dipole distributions. In order to evaluate
chargeDQ1 on electrode 1 due to the deformation of th
electrodes, we proceed in two steps.

~i! We consider two equilibrium states, one with the p
tentialdV2(M ) on the surfaceS2 and zero on the surfaceS1 ,
and the other with the potentialV1 on the surfaceS1 and zero
on the surfaceS2 . In this latter state, the electric field at
positionM in the sample is2V1jW (M ) as defined in Eq.~1!.
Moreover the sample contains only superficial charges
surfacesS1 and S2 . These superficial charges are given
2DW •nW , which reduces to2«EW •nW since we are now in the
particular equilibrium state where the sample contains
permanent dipole distribution. In the above expressionsEW is
the electric field, andnW is the unit normal vector outwards th
surfaces. One finds with Gauss’s identity that

DQ185E
S2

«jW•nW dV2ds. ~16!

In order to expressdV2(M ), we observe that if the dis
placement is sufficiently small, the potential on surfaceS2
has been modified, in a first approximation, as the oppo
of the variation of the voltage along the displacement vec
This variation is given by the dot product of the displac
ment vector with the electric field. One has

dV25EW •uW . ~17!

By introducing this result into Eq.~16!, one obtains the
variation of charge:

DQ185E
S2

«~EW •uW !~jW•nW !ds. ~18!

~ii ! We also consider two equilibrium states, one with t
potentialdV1 on the surfaceS1 and zero on the surfaceS2 ,
and the other with the potentialV2 on the surfaceS2 and zero
on the surfaceS1 . In this latter state, the electric field at
position M in the sample isV2jW (M ) as defined in Eq.~1!.
The resulting variation of chargeDQ29 can be obtained by the
same development as above. One has

DQ2952E
S1

«~EW •uW !~jW•uW !ds. ~19!

Since the variation of charge on one electrode is the
posite of that on the other electrode, the total variation
chargeDQ1 on electrode 1 when both electrodes are mov
is given byDQ15DQ181DQ195DQ182DQ29 .

DQ15E
S
«~EW •uW !~jW•nW !ds, ~20!

whereS5S11S2 .
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F. Synthesis

The signal produced by the deformation of the insula
sample can be determined by integrating over the volumV
of the sample Eqations~7! and~15!, and by adding Eq.~20!.
One has

DQ15E
V
F2rukjk1

]~P1uk!

]xk
j i1Ejj iuk

]« i j

]xk

2ai jkl Ejj i

]uk

]xl
Gdv1E

S
« i j j jniBkukds. ~21!

In order to avoid the partial derivatives over space in
case of discontinuous variables, for instance the electric fi
the dielectric constant and the dipole distributions, we c
split, applying integration by parts, the volume integral its
of Eq. ~21! into a surface integral and a volume integral ea
containing only partial derivatives of the displacement. U
ing Gauss’s equation to express the charge densityr, it be-
comes

DQ15E
V
F2

]~« i j Ej1Pi !

]xi
ukjk1

]~Piuk!

]xk
j i1Ejj iuk

]« i j

]xk

2ai jkl Ejj i

]uk

]xl
Gdv1E

S
« i j j jniEkukds. ~22!

This expression can also be written as

DQ15E
V
F2

]~« i j Ejukjk!

]xi
1« i j Ejjk

]uk

]xi
1Ejuk

]~« i j j i !

]xk

1« i j EjukS ]jk

]xi
2

]j i

]xk
D Gdv1E

V
F]~Piukj i !

]xk

2
]~Piukjk!

]xi
1Pijk

]uk

]xi
1PiukS ]jk

]xi
2

]j i

]xk
D Gdv

2E
V
Fai jkl Ejj i

]uk

]xl
Gdv1E

S
@« i j j jniEkuk#ds. ~23!

Since curlW(EW )50W , one has

DQ151E
V
F« i j Ejjk

]uk

]xi
Gdv1E

V
FPijk

]uk

]xi
Gdv

2E
V
Fai jkl Ejj i

]uk

]xl
Gdv1E

V
F]~« i j j iEjuk!

]xk

2
]~« i j j iEkuk!

]xj
2« i j j i S Ej

]uk

]xk
2Ek

]uk

]xj
D

1Ekuk

]~« i j j i !

]xj
Gdv1E

S
@« i j niuk~j jEk2jkEj !#ds

1E
S
@Piuk~j ink2jkni !#ds. ~24!

We recall thatj i is the voltage normalized electric field i
a sample free of charges and permanent dipoles. Thus
r

e
d,
n
f
h
-

he

divergence of« i j j i is equal to zero. MoreoverEW and jW are
collinear to the unit normal vector outwardsnW at the insulator
electrode interfaces so thatj jEk5jkEj , Ejnk5Eknj , and
j ink5jkni . Consequently the surface integrals vanish. T
variation of chargeDQ1 is finally

DQ15E
V
F ~« i j Ej1Pi !jk

]uk

]xi
2ai jkl Ejj i

]uk

]xl
2« i j j i

3S Ej

]uk

]xk
2Ek

]uk

]xj
D Gdv. ~25!

This general formula can be applied to various mater
for instance isotropic solids or fluids. One can derive fro
Eq. ~25! the measured currenti m(t) in short-circuit condition
by applying i m(t)5]DQ1 /]t. In the case of open circui
conditions, the measured voltagevm(t) can be reconstructed
in a similar way.

~i! In isotropic solids, the dielectric constant is a scala«
and the electrostrictive tensorai jkl is reduced, due to the
invariance of the tensor with any space rotation, to two
efficientsa11 and a12. Introducing the Kronecker’s symbo
d i j which is equal to 1 ifi 5 j and 0 otherwise, one has

« i j 5«d i j and

ai jkl 5
1
2 ~a112a12!~d ikd j l 1d i l d jk!1a12d i j dkl . ~26!

In isotropic solids, the variation of chargeDQ1 on elec-
trode 1 is

DQ15E
V
F ~«Ei1Pi !jk

]uk

]xi
1~«1a122a11!j iEk

]uk

]xi

2~«1a12!Eij i

]uk

]xk
Gdv. ~27!

so that

DQ15E
V
$@~«EW 1PW !•gradW#~uW !•jW1~«1a122a11!

3~jW•gradW!~uW !•EW 2~«1a12!EW •jW div~uW !%dv.

~28!

~ii ! In fluids, both the dielectric constant and the electro
trictive tensorai jkl are scalars sincea125a11. The variation
of the dielectric constant (d«)2 of Eq. ~14! with the variation
of the volumeddv is

~d«!25
]«

]v
d dv. ~29!

Introducing the mass densitymv it becomes

~d«!25
]«

]mv

]mv

]v
d dv52mv

]«

]mv
div~uW !. ~30!

Hence the coefficienta11 has the value

a1152mv

]«

]mv
. ~31!
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In fluids, the variation of chargeDQ1 on electrode 1 is
thus

DQ15E
V
H @~«EW 1PW !•gradW#~uW !•jW1«~jW•gradW!~uW !•EW

2S «2mv

]«

]mv
DEW •jW div~uW !J dv. ~32!

IV. ELECTRO-ACOUSTIC METHOD

A. Brief description of the method

In this subsection, a usual setup for the electro-acou
method4,6,7,9 is presented in the case of a planar sample. I
summarized in Fig. 4.

The insulator has two adjacent electrodes. When a volt
is applied, a Coulombian force acts on its charges. If a s
pulsed voltage is superimposed to the applied voltage,
force acting on each charge varies. This creates an el
wave that travels through the sample at the velocity of sou
A piezoelectric transducer picks up this wave. Since the a
plitude of the elastic source is proportional to the charge,
elastic wave is the image of the charge distribution. The ti
to reach the transducer is proportional to the distance
tween the charge and the transducer. The dependenc
time of the transducer signal is similar to the space cha
distribution inside the insulator, since time and position
connected by the speed of sound.

B. Preliminary

The electrostatic forces acting on each charge are in e
librium with the reaction forces in the material. If the ele
trostatic force changes with time, via the applied voltage
instance, an elastic wave is created. The associated defo
tion in the material induces a change of the dielectric c
stant known as electrostriction. In solids, even when they
isotropic, the dielectric constant becomes anisotropic un
the effect of the material deformation.

In order to establish the propagation equation of the e
tic waves in the solid, the force densities in the volume m

FIG. 4. The electro-acoustic method in planar geometry.
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be expressed. In a first stage the static forces are studied
then the impact of the variation of the voltage applied to
sample is analyzed.

C. Electrostatic force densities

In this subsection the local expression of the electrost
force density is demonstrated in the general case. Elec
static forces have been extensively studied in many refere
books.20 A simple way to find the force density is to consid
the variationdW of the electric energy when the charges a
virtually moved by an arbitrary small displacementduk .
This variation can be expressed either as the work of
electrostatic force densityf k or as the variation of the electri
energyW. The first approach leads to

dW52E f kdukdv. ~33!

The second approach requires the knowledge ofW, which
is the sum of the energy24 due to the charges and to th
permanent dipoles in their own electric field. One has

W5 1
2 E rV dv2 1

2 E PiEidv. ~34!

From the above expression ofW, the variationdW can be
written as

dW5 1
2 E Vdr dv1 1

2 E rdV dv2 1
2 E EidPidv

2 1
2 E PidEidv. ~35!

Introducing the displacement electric fieldDi , whose di-
vergence gives the charge densityr, dW can also be ex-
pressed as

dW5E Vdr dv2 1
2 E V

]dDi

]xi
dv1 1

2 E ]Di

]xi
dV dv

2 1
2 E EidPidv2 1

2 E PidEidv. ~36!

The second and the third terms of this expression can
split into volume and surface integrals applying integrati
by parts. Since the potential tends rapidly towards zero
one goes to the infinity, the surface integral is equal to ze
Thus

dW5E Vdr dv2 1
2 E EidDidv1 1

2 E DidEidv

2 1
2 E EidPidv2 1

2 E PidEidv. ~37!

Replacing the displacement electric fieldDi by its expres-
sion and noticing that« i j is symmetrical so that« i j 5« j i ,
one obtains finally

dW5E Vdr dv2 1
2 E EiEjd« i j dv2E EidPidv.

~38!
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The variation of energydW contains three terms that de
pend, respectively, on the variations of the charge densitydr,
of the dielectric constantd« i j , and of the permanent dipol
densitydPi . Each of these variations has two componen
the first due to the material displacement and the other to
material deformation. The two components of the variatio
d« i j anddPj have already been expressed in Eqs.~11!, ~13!,
and~14!. Since the number of charges does not change w
the deformation, the variation of the charge densitydr is
similar to the variation of the permanent dipole densitydPi .
Thus

dr5~dr!11~dr!252duk

]r

]xk
2r

]duk

]xk
. ~39!

Noticing as in Eq.~14! that ai jkl 5ai j lk and introducing
the variations of the dielectric constant, the charge and
permanent dipole densities in Eq.~38!, the variation of en-
ergy is

dW5 1
2 E EiEj

]« i j

]xk
dukdv2 1

2 E ai jkl EiEj

]duk

]xl
dv

2E V
]r

]xk
dukdv2E rV

]duk

]xk
dv1E Ei

]Pi

]xk
dukdv

1E Ei Pi

]duk

]xk
dv. ~40!

Terms having partial derivative of the displacement c
be integrated by parts in order to yield volume and surf
integrals. Since the potential and the electric field tend r
idly towards zero as one goes to infinity, surface integrals
equal to zero. Thus

dW5 1
2 E EiEj

d« i j

]xk
dukdv1 1

2 E ]~ai jkl EiEj !

]xl
dukdv

1E r
]V

]xk
dukdv2E Pi

]Ei

]xk
dukdv. ~41!

Finally, the two expressions ofdW can be compared
@Eqs.~33! and ~41!# leading to

f k52 1
2 EiEj

]« i j

]xk
2 1

2

]~ai jkl EiEj !

]xl
1rEk1Pi

]Ek

]xi
.

~42!

The result obtained in such a manner leads to an exp
sion of the force density that is valid anywhere in space
in particular inside the finite size dielectrics. The abo
terms, from left to right, are the components of the for
densities due to the variation of the dielectric constant, to
effect of electrostriction, and to the presence of charge
permanent dipole densities in an electric field. The effec
electrostriction is negligible when the electric field is almo
uniform whereas it is significant when the electric field
diverging since its variation with space becomes importa

In order to benefit from the general properties of tenso
we use Eq.~42! to determine the Maxwell tensorMkl , re-
calling that
,
e

s

th

e

n
e
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re

s-
d

e
d
f
t

.
s,

f k5
]Mkl

]xl
. ~43!

We replace in Eq.~42! the charge density by the diver
gence of the displacement field and take into account the
that the electric field derives from a potential. Since« i j
5« j i , one has

f k52 1
2

]~« i j EiEj !

]xk
2 1

2

]~ai jkl EiEj !

]xl
1

]@~« i j Ej1Pi !Ek#

]xi
.

~44!

We introduce the Kronecker symbold i j , which leads to
Maxwell’s tensorMkl :

Mkl5~« l j Ej1Pl !Ek2 1
2 ~ai jkl 1dkl« i j !EiEj . ~45!

D. Voltage variation

During the variation of the voltage applied to the ele
trodes, the electric field in the insulator changes. Assum
that the displacement of charges and dipoles in the mate
is negligible, and thus the electric fieldEW produced by these
distributions is not modified, the electric fieldEW 8 in the in-
sulator submitted to an extra voltageV(t) can be deduced
from Eq. ~2! by

EW 85EW 1V~ t !jW . ~46!

With this expression of the electric field, Maxwell’s ten
sor Mkl can be written as

Mkl5~« l j Ej1Pl !Ek2 1
2 ~ai jkl 1dkl« i j !EiEj

1V~ t !@d i l ~« i j Ej1Pi !jk2ai jkl Ejj i

2« i j j i~dklEj2d j l Ek!#

1V2~ t !@« l j j jjk2 1
2 ~ai jkl 1dkl« i j !j i« j #. ~47!

As expected the application of an extra voltage modifi
Maxwell’s tensor. It becomes the sum of the static Ma
well’s tensor, of a term proportional to the extra voltage, a
of a third term proportional to the square of the extra volta
If the static electric fieldEW is much larger than the electri
field produced by the extra voltage, the squared term can
neglected. It can be noticed that the term under the inte
of Eq. ~25!, which is the signal obtained in the case of t
pressure-wave-propagation method, is equal to the term
portional to the extra voltage times the partial derivative
uk over xl . This shows the great similarity between th
pressure-wave-propagation method and the electro-aco
method.

E. Wave equation

The electrostatic forces are compensated by elastic for
The elastic force densities are given by the divergence of
stress tensorTkl . Hooke’s law specifies that the stress tens
Tkl is proportional to the deformationSi j :

Tkl5ckli j Si j , ~48!
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whereckli j is the elastic stiffness tensor. Taking into accou
the relation between the acceleration and the sum of all fo
densities, it turns out that

mv

]2uk

]t2 5
]Tkl

]xl
1

]Mkl

]xl
1Ok , ~49!

whereOk represents all other static force densities, for
stance the gravity,t is the time, anduk is the displacemen
along the directionxk . When no extra voltage is applied t
the sample, the forces in the insulator are all static. Defin
ui

e as the static material displacement in such an equilibr
situation, one has

mv

]2uk
e

]t2 5
]

]xl
Fckli j

]ui
e

]xj
G1

]

]xl
@~« l j Ej1Pl !Ek

2 1
2 ~ai jkl 1dkl« i j !EiEj #1Ok

50. ~50!

When an extra voltage is applied, the material displa
ment is the sum of the static material displacementui

e and of
the dynamic material displacementui . Introducing Eqs.~50!
into ~49! and using expression~47! for Maxwell’s tensor, the
elastic wave propagation equation becomes

mv

]2uk

]t2 5
]

]xl
Fckli j

]ui

]xj
G1V~ t !

]

]xl
@d i l ~« i j Ej1Pi !jk

2ai jkl Ejj i2« i j j i~dklEj2d j l Ek!#

1V2~ t !
]

]xl
@« l j j jjk2 1

2 ~ai jkl 1dklj i !j ij j #.

~51!

This equation does not exhibit any coupling between
electric field and the material displacement. We can see
the terms depending on the extra voltage are the force
sities that create the elastic sources. Thus introducing
Green’s functionGW i(M ,M 8,t) connecting the displacemen
ui at the positionM to the force density fW at the positionM 8,
the solution of Eq.~51! is

ui~M ,t !5E
t8
E

V8
GW i~M ,M 8,t2t8!• fW~M 8,t8!dv8dt8.

~52!

In this expressionV8 represents the entire space fro
which M 8 is taken andt8 all times. If the Green’s function is
unknown, this equation must be solved by applying the c
tinuity of the displacement and superficial tensions throu
interfaces as boundary conditions. IntroducingTkl8 and Mkl8
as the stress and the Maxwell’s tensor on the other side o
interface having the unit normal vectornl , the continuity of
superficial tension can be written as

~Tkl2Tkl8 !nl1~Mkl2Mkl8 !nl50. ~53!

Calculating the terms depending on the extra voltage
plied to the sample in Eq.~51!, the propagation equation i
also expressed as
t
e
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mv

]2uk

]t2 5
]

]xl
Fckli j

]ui

]xj
G

1V~ t !Frjk1Pi

]jk

]xi
2Eij j

]« i j

]xk
2

]~ai jkl Eij j !

]xl
G

2 1
2 V2~ t !F]~ai jkl j ij j !

]xl
1j ij j

]« i j

]xk
G . ~54!

In the term proportional to the extra voltage a first sou
is proportional to the space charge density and is in the
rection of the electric field as if the insulator were free
charges and dipoles. A second source is proportional to
dipole density. This source exists only as long as the elec
field, in the insulator free of charges and dipoles, is nonu
form at the position of the dipole. A third source depends
the variation of the dielectric constant and a fourth sou
depends on the variation of the electric field amplitude. T
last source may be very important when the electric field
diverging.

This wave equation can be applied to various materi
for instance isotropic solids or fluids.

~i! In isotropic solids, the wave equation is simplified b
taking as the dielectric constant and the electrostrictive t
sor the values of Eq.~26!. The stress tensor is

ci jkl 5
1
2 ~c112c12!~d ikd j l 1d i l d jk!1c12d i j dkl . ~55!

~ii ! In fluids, the wave equation is even more simplifie
sincea115a12 andc115c12. In that case the coefficienta11
is given by Eq.~31!.

V. APPLICATION OF THE GENERAL THEORY TO
SIMPLE GEOMETRIES

A. Comparison with existing situations

It is of interest to apply the general theory presen
above to simple geometries for which many detailed cal
lations have been reported and that have been extens
experimentally studied.4,7,10,18,21 This allows verifying the
theory and also to point out discrepancies with presently
mitted interpretations. We limit ourselves to situations
which the dielectric constant is uniform and no perman
dipoles are present.

B. Planar sample geometry

In planar geometry, the value of all subscripts presen
the above equations is 1. The sample thickness isd and the
electrode surface isS.

1. Pressure-wave-propagation method

The signal produced by the pressure-wave-propaga
method is calculated from Eq.~25!. One has

DQ15SE
0

dF ~«E1P!j
]u

]x
2a11Ej

]u

]xGdx. ~56!

The normalized electric fieldjW is uniform in the insulator.
When the current is picked up from the electrode that i
poses the high voltage, as illustrated in Fig. 5, the normali
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electric field is21/d. The derivative of the displacemen
along the sample thickness is equivalent to the opposit
the pressureP in the sample over Young’s modulusY. If the
sample contains no permanent dipoles and has a unif
dielectric constant, the variation of chargeDQ1 on electrode
1 becomes

DQ15
S~«2a11!

Yd E
0

d

EP dx. ~57!

Introducing the capacityC0 of the sample at rest and th
coefficientG(«)512a11 /«, one finds finally the usual ex
pression of the currenti m(t) in the measuring circuit:2,18

i m~ t !5
CoG~«!

Y E
0

d

E
]P

]t
dx. ~58!

2. Electro-acoustic method

In the case of the electro-acoustic technique, the propa
tion equation in a one-dimensional plate sample is

mv

]2u

]t2 5
]T

]x
1

]M

]x
with T5c11

]u

]x
and

M5~«2a11!EjV~ t !1PjV~ t !1 1
2 ~«2a11!j

2V2~ t !.
~59!

A transducer, at a distancext from the insulator on the
side of the electrode 1, produces a signalS(t) proportional to
the pressure stress to which it is submitted. When a h
voltage is applied to electrode 2, as shown in Fig. 6,
normalized electric field is21/d. We suppose that elasti
waves come only from the sample, i.e., the electrodes ar
infinite thickness and the transducer is perfectly match
The transmission coefficient of elastic waves from the in
lator to electrode 1 ist1 . g1 and g2 are, respectively, the
reflection coefficients of elastic waves from the insulator

FIG. 5. Pressure-wave-propagation setup for a planar samp

FIG. 6. Electro-acoustic setup for a planar sample.
of

m

a-

h
e

of
d.
-

electrodes 1 and 2. The Green’s functionG(xt ,x,t) giving
the pressure at a pointxt produced by a force density at
positionx in the insulator is22

G~xt ,x,t !5 1
2 t1(

n50

`

~g1g2!nFdS t2
xt

v l
2

2nd1x

vs
D

2g2dS t2
xt

v l
2

2~n11!d2x

vs
D G , ~60!

whered(x) is the Dirac function,v l andvs are, respectively,
the speed of sound in electrode 1 and in the insulator, andt is
the time. The coefficient12 at the front of Eq.~60! represents
the radiating diagram. The energy of the elastic source
indeed separated in two equal parts, the first giving a w
propagating forward and the other a wave propagating ba
ward. We callH the coefficient that gives the amplitude o
the signal produced by the transducer for a given pressur
the positionxt . Then the signal amplitudeS(t) measured on
the transducer is

S~ t !5HE
t8
E

x8
G~xt ,x8,t2t8!

]M ~x8,t8!

]x8
dx8dt8.

~61!

Moreover at each interface of force discontinuity, that
to say in this case at the interface between the insulator
the electrodes, the signal depends on the superficial tens
The interfacial signalS(t) produced by a tension at the po
sition x5x0 is

S~ t !5HE
t8

G~xt ,x0 ,t2t8!M ~x0 ,t8!n~x0!dt8, ~62!

wheren(x0) is the unit normal vector outwards the interfac
The useful signal, which is the first measured signal, com
from the direct propagation of elastic waves and not from
reflected waves on the insulator boundaries. If the extra v
age is applied to the sample at timet50, the first signal is
produced at timet5xt /v l and originates from the interfac
between electrode 1 and the insulator atx50. This interfa-
cial signal is obtained by introducing definitions~59! and
~60! into Eqs.~62!:

S~ t !5 1
2 Ht1F ~«2a11!

V~ t2xt /v l !

d
E~x50!

2 1
2 ~«2a11!

V2~ t2xt /v l !

d2 G . ~63!

Since the dielectric constant is uniform in the insulat
the electric field derivative over space is alsor/«. Hence the
signal produced by the direct sources in the insulator,
times xt /v1,t,xt /v11d/vS , is obtained by introducing
definitions~59! and ~60! into Eq. ~61!:

S~ t !52H
t1~«2a11!

2«d E
0

d

V~ t2xt /v12x/vS!r~x!dx.

~64!

.



lo

a

-
h

ro

th
b
ld

s

in
a-

p-
s.

site

-

ual

arge
-
ntal

eld
ure-

in

ctro-
ame

ave-
ing

as a
ius
the
he

ple

the
ave-

PRB 61 13 537INFLUENCE OF DIVERGENT ELECTRIC FIELDS ON . . .
The interfacial signal produced by the other interface
calized at the positionx5d and taking place at timet
5xt /v11d/vS is obtained by introducing definitions~59!
and ~60! into Eq. ~62!:

S~ t !5 1
2 Ht1~12g2!F ~«2a11!

V~ t2xt /v12d/vS!

d
E~x5d!

2 1
2 ~«2a11!

V2~ t2xt /v12d/vS!

d2 G . ~65!

As expected, the theory applied to this simple case le
to the usually reported results4,21 in which electrostriction is
taken into account.

C. Coaxial sample geometry

In coaxial geometry the electric fieldEi , the normalized
electric fieldj i , the dipolesPi , and the material displace
mentui are all supposed radial. If the sample has a lengtl,
an inner radiusa, and an outer radiusb, the signal produced
by the pressure-wave-propagation method calculated f
Eq. ~25! is

DQ152p l E
a

bF ~«E1P!j
]u

]r
2a11Ej

]u

]r
2a12Ej

u

r

2«Ej
u

r G r dr . ~66!

The normalized electric fieldjW is proportional to the in-
verse of the radius. When the current is picked up from
inner electrode, on which the high voltage is supposed to
applied as shown in Fig. 7, the normalized electric fie
along the radius is

j5
1

r ln~b/a!
. ~67!

If the sample contains no permanent dipoles and ha
uniform dielectric constant, the signal becomes

DQ15
2p l

ln~b/a!
E

a

bF«ES ]u

]r
2

u

r D2a11ES ]u

]r
1

a12

a11

u

r D Gdr.

~68!

This equation is slightly different from those reported
the literature.10 This is due to the fact that previous calcul

FIG. 7. Pressure-wave-propagation setup for a coaxial sam
-

ds

m

e
e

a

tions assumeda115a12 as is the case in fluids. Such an a
proximation may not be justified for some solid dielectric
In fluids the divergence of the displacement is the oppo
of the pressureP times the compressibilityx. In that case the
variation of chargeDQ1 on the electrode 1 is

DQ152
2p l

ln~b/a! H ~«2a11!xE
a

b

EP dr12«E
a

b E

r
u drJ .

~69!

Introducing the capacityC0 of the sample at rest, the co
efficient G(«)512a11/«, and exchanging the limits of the
integrals, the currenti m(t) in the measuring circuit is

i m~ t !5C0H G~«!xE
b

a

E
]P

]t
dr12E

b

a E

r

]u

]t
drJ . ~70!

Finally an additive term has to be added to the us
expression10 corresponding to the first term of Eq.~70!. This
additive term makes the signal vanish when no space ch
is in the insulator and whena1150, except during the defor
mation of the electrodes of the sample. The experime
results exposed in the next section show that Eq.~70! is more
suitable than the formerly reported expressions.

D. Signals from divergent field geometry

In this section measurements on divergent electric fi
samples are exposed. In the first experiment the press
wave-propagation method is used on a coaxial sample
order to validate expression~70! of the signal. In the second
experiment the pressure-wave-propagation and the ele
acoustic methods are used and compared on the s
sample.

Figure 8 shows a measurement using the pressure-w
propagation method on a coaxial polyethylene sample hav
no space charge and submitted to 20 kV. This sample h
5.1-mm inner-radius electrode and an 11.7 mm outer-rad
electrode. Close to the inner electrode the deviation of
measured signal, in the solid line of Fig. 8, is due to t

.

FIG. 8. Comparison between the analytical expressions and
real signal in a coaxial sample in the case of the pressure-w
propagation method.
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variation of the electric field in the insulator. As one can s
the usual estimation does not fit properly the signal in t
region whereas the analytical expression~70! fits quite well
the experimental data takinga11520.3«, which is nearly
the electrostrictive coefficient of polyethylene.23 However
close to the outer electrode the models do not follow co
pletely the experimental signal. This is due to the fact t
calculations have been carried out with a purely coax
wave contrary to that used in the experiment. Indeed
wave is initiated from a portion representing 8% of the c
inder perimeter so that diffraction occurs resulting in t
modification of the pressure wave profile.

Figure 9 illustrates measurements on a very diverg
electric field sample. Both the pressure-wave-propaga
and the electro-acoustic methods have been used on the
sample. This sample has two planar electrodes connecte
ground enclosing the insulator. A 25-mm-diameter wire em-
bedded in the insulator and submitted to a high voltage p
duces the divergence of the electric field. It can be seen
each measurement that, before the wave reaches the w
large negative signal is detected whereas one would ex
the interfacial electric field on the wire to induce a positi
signal. This deviation is not produced by the presence
charge but by the effect of electrostriction. As expected
divergence of the electric field produces nonnegligible s
nals that have comparable shapes for both the pressure-w
propagation method and the electro-acoustic method.

*Electronic address: stephane.hole@espci.fr
†Electronic address: thierry.ditchi@espci.fr
‡Electronic address: jacques.lewiner@espci.fr
1R. E. Collins, J. Appl. Phys.47, 4804~1976!.
2P. Laurenceau, G. Dreyfus, and J. Lewiner, Phys. Rev. Lett.38,

46 ~1977!.
3R. Gerhard Multhaupt, Phys. Rev. B27, 2494~1983!.
4T. Takada, T. Maeno, and H. Kushibe, IEEE Trans. Electr. Ins

22, 497 ~1987!.
5A. Toureille and J. P. Reboul, inSixth International Symposium

on Electrets, edited by D. K. Das-Gupta and A. W. Pattull
~IEEE, Piscataway, 1988!, pp. 23–27.

6T. Maeno, T. Futami, H. Kushibe, T. Takada, and C. M. Coo
IEEE Trans. Electr. Insul.23, 433 ~1988!.

7J. B. Bernstein, Phys. Rev. B44, 10 804~1991!.
8A. S. De Reggi, B. Dickens, T. Ditchi, C. Alquie´, J. Lewiner, and

I. K. Lloyd, J. Appl. Phys.71, 854 ~1991!.
9K. Fukunaga, H. Myata, T. Takahashi, S. Yoshida, and T. Niw

FIG. 9. Effect of a divergent electric field for both the pressu
wave-propagation and the electro-acoustic methods.
e
s

-
t
l
e

-

nt
n
me
to

-
n
, a
ct

f
e
-
ve-

VI. CONCLUSION

In this paper, the pressure-wave-propagation method
the electro-acoustic method have been analyzed in crys
isotropic solids or fluids in the case of complex electric fie
distributions. The solutions proposed show the great simi
ity of these two methods and are in good agreement with
experiments. The usual expressions already reported in
literature are justified in the case of simple sample geo
etries such as planar and coaxial geometries. In this l
geometry, the solutions proposed predict some change
the usual formulation of the pressure-wave-propagat
method signal. These changes have been physically
plained and experimentally verified. In more complex geo
etries, there is a non-negligible signal in regions contain
no charges but where the electric field is diverging. This
the effect of electrostriction, which has been demonstra
for both pressure-wave-propagation method and elec
acoustic method.

The general theory proposed makes it possible to st
the behavior of insulators submitted to complex electric fi
distributions, for instance insulators including water tre
defects, wires, or needles electrodes. It can be applied to
pressure-wave-propagation method and to the elec
acoustic method.

APPENDIX

The Gauss identity connects two equilibrium statesA and
B by an integral equation involving the charges and the
tential V of each state.24 If r denotes a set of any kinds o
charges, for instance in a volume, on a surface, on a curv
at a point, one has

E rAVBdv5E rBVAdv. ~A1!

This relation can easily be demonstrated by replacing
potential by its expression in terms of charge:

V~M !5E r~M 8!

4p«~M 8!MM 8
dv, ~A2!

whereMM 8 is the distance from the charge at the positi
M 8 to the positionM where the potential is calculated.
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