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Elastic methods are presently being used to study the space charge distributions in insulators. They are
limited in their interpretation to simple geometries whereas real systems often involve complex structures such
as the case for divergent electric field regions. The authors propose a general theory for the interpretation of the
data obtained by the pressure-wave-propagation method and the electro-acoustic method. This model makes it
possible to study crystals, isotropic solids, or fluid samples of any geometry, containing charge and dipole
distributions and also submitted to divergent electric fields such as produced by treeing or defects. A compari-
son is made with existing models in the case of simple geometries, such as planar or coaxial. It is shown that
classical results are justified in the case of a planar sample. However, a correction has to be introduced in more
complex geometries, even in coaxial ones. Indeed, some experiments show the associated difference. The
model also emphasizes the similarities of the two elastic methods of measurement both for the analytical and
experimental point of view.

[. INTRODUCTION the pressure-wave-propagation method or the electro-
acoustic method. Hence, knowing the sample geometry it is
The measurement of space charge distributions in insulgpossible to link the measured signal to the amplitude and
tors makes it possible to observe the real behavior of electrishape of the charge distribution in the insulator with an im-
cally stressed insulators. This has many consequences bagthoved accuracy. The equation proposed for the pressure-
for the validation of theoretical models and for the design ofwave-propagation method can also be applied with minor
high-voltage structures. Many studies have already been modifications to thermal methods.
carried out on different systems. In the next section we define the notations. Section Il is
In most cases, breakdown phenomena arise from thdevoted to the pressure-wave-propagation method. This
buildup of large electric fields such as found in regionsmethod is briefly recalled in the case of a planar geometry.
where the field is highly divergent. Such regions are, forThen the variation of the charge on the electrodes is analyzed
instance, associated with water trees or defécthough the  for given deformations and charge and dipole distributions.
measurement methods were initially proposed for planar oin Sec. IV the electro-acoustic method is briefly exposed.
coaxial geometries, they can also be applied to divergenthe force density in the material, which is the source of the
electric field geometriéd™" but the signal analysis is more elastic waves, is studied. In Sec. V, the models built for the
complex. This is true with thermal, pressure-wave-analysis of the two former methods are applied to simple
propagation, and electro-acoustic methods, which are exteigeometries, such as planar or coaxial ones, and the signals
sively used to give information on the space charge repartiobtained in samples with diverging field are shown.
tions in insulating samples. In the case of thermal and
pressure-wave-propagation methods a local motion of the in- II. NOTATIONS
sulator, produced by a thermal diffusion or an elastic wave, ) ) )
induces a variation of charges on adjacent electrodes con- he sample, of any geometry, is made with an insulator of
nected through a low impedance measuring circuit. Thigliélectric constant and two electrodes, 1 and 2, the first
variation is associated with a current that is the measure@8Nclosing the other, at least at infinity. This ensures that all
signal. In the case of the electro-acoustic method a variatioRI€ctric field lines starting from electrode 1 go to electrode 2
of the applied voltage produces a variation of the force actO" rec_lprocally. In static conditions the_potenuals on the in-
ing on the charges. This variation of force initiates an elastidérfacial surfacess, ands, are, respectivelyy, andV, as
wave that is transformed by an adjacent transducer into thilustrated in Fig. 1. R
measured signal. In all cases the measured signal depends onThe potentiaV(M) and the electric field(M) at a po-
the geometry of the system, which may lead to large uncersition M in the volume betweers, and S, for an applied
tainties on the shape and on amplitudes of the charge distrioltageV,—V; is supposed to be known when the sample is
bution. free of charges and dipoles. SinE€M) is proportional to
The aim of this paper is to propose an analytical modelV,—V;, we define the electric field, normalized in applied
taking into account the sample geometry, applicable both teoltage, as
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FIG. 1. Sample geometry.

o "

1) FIG. 2. The pressure-wave-propagation method in planar geom-
etry.

E(M)
EM)= -

This quantity, having the units of inverse meters, will ap-

pear as a factor describing the sample geometry. The spaés recalled above, the propagation of an elastic wave in-

charge and the permanent dipole dlstrlbutlons are, respeduces a variation of the charges on the electrodes. In order to

whenV,=V,, an electrlc fieldE’ (M). In the general case decompose the effects of the material displacement |nto in-

the electric fieIdIi(M) is then expressed as dependent simple situations. We assume that the ele'ctrlc'al
response of the system to the mechanical perturbation is

short as compared to the time variations of the elastic wave.

Thus it is possible to describe the situation with electrostatic

equations at any time.

The displacement modifies the electric field, the dielectric

nstant, and the charge and dlpole distributions, which be-

E(M)=(Vo—V)EM)+E'(M). )

Since the insulator may be either a fluid or a solid mate-
rial, subscripts are used when required to make expressions
clearer as many times as necessary. Any term is understo&@
to be summed over all values of any subscript that appeareome, respectlvely, at a given tinke+ O, &+ Je, p+ dp,

twice. For instance, the displacement field is expressed agndp+ 5P. When the displacement is sufficiently small, so

Di=¢;;E;+ P; and the Poisson’s equation is written as  that second-order terms may be neglected, Gauss’s equation
leads to
dD; 3
P 3 o N
div(s SE+Eds + 5P) = 8p. (43

Ill. PRESSURE-WAVE-PROPAGATION METHOD
Equation(4a shows that the material displacement modi-
fies locally the electric field as if the space charge distribu-
In this subsect|on2, 1213.S“a' setup for the pressure-waveg,, Jp and the permanent dipole distributi&de + 5P were
propagation methdd?>181%s presented in the case of a pla- added into the insulator
narT‘;amplel It |shsummar|zded in Flgl 2. des. A ol | For the application of the boundary conditions it is nec-
e insulator has two adjacent electrodes. A plane elastigsa v 14 take into account the motion of the electrodes. We
wave transmitted into the insulator travels at the velocity thave already define®, and S, as the interfacial surfaces
sound. We assume that the elastic wave is a pulse of Verlgefore the application of the deformation. We now introduce
short duration as compared to the transit time. During it ! and S, as the interfaces under the deformation. Gauss’s
propagation, the pulse moves the charges locally which in theorem makes it possible to advantageously replace the

:Eégegro.?_ﬁﬁisaacﬁrrgfnrgf g?ﬁ(;g?%i (t:nsrg?: I‘;Zégesefgelectrodes by equipotential surfaces without modifying the
prop P PaCTalue of the potential between the electrodes. On these equi-

charges appears in the external circuit. The dependence of
otential surfaces there is no superficial charge and the po-
time of this current is similar to the space charge distributio

— . : ; o ential is the same as on the electrodes. Then, the electrode
inside the insulator since time and position are connected b

isplacements are equivalent to the equipotential motions.
the speed of sound.

The potential changes frov; to V;+ V(M) on the sur-
o face S; and fromV, to V,+ 6V,(M) on the surfaceS,
B. Preliminary whereas it remains unchanged on equipotenaland S, .
The following analysis will be made with the assumption The variations of potentiadV,(M) and 6V,(M), which de-
that the electrodes are connected through a low impedangend on the position, represent the motion of the electrodes.
measuring circuit that allows us to assume short-circuit conThese expressions are valid independently of the magnitude
ditions. This is indeed the mostly used measuring conditionof the deformations. However the expression that will be

A. Brief description of the method
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deformed. This is illustrated, respectively, in Figgb)3and
3(c). In the third state, as shown in Fig(d3, the potential on

) S, and S, varies from one point to the other in order to
Potential: 3V, (M) reflect the deformation of the electrodes. In the next three
SzP/_ subsections we evaluate the signal contribution of each of
: : these three equilibrium states.

P Potential: 8V, (M)

Electnc field: 8E :
Dlelectnc constant: € ;
(@) Dlpoles E58+8P The displacement of charges in a domain limited by the
~Charges: 8p .- two surfacesS, and S, is now analyzed. The charges that
""""" appear on the electrodes during the displacement of the in-
ternal charges are equivalent to the charges on the electrodes

C. Charge displacements

-5, Potential: 0 S Potential: 0 of a sample with the internal electric fieBTEl [Fig. 3b)]. In
’ Potential- Ty . that equilibrium state, the sample contains the space charge
-, otential: 0 -~,— Potential: 0 L . . . .

S ,/— SzP/_ distribution 8p and the potential zero is applied to each elec-
Ty trode. We suppose that the chamge p(M)dv at the posi-
L ", L tion M is moved to a new positioM’ close toM under the
Blecire field: 3 ; Eleiri fied: 3% effect of a material displacemeat= MM '. Then the charge

" Dielectric constant: ¢ D‘°‘°°t”° constant: & ; density &p is reduced to a chargeq at the positiorM and a

®) Dipoles: 0 (©) Dlpoles E8£+8P i

charge+q at the positiorM’. In order to evaluate the charge

*..Chi 8 ... Ch 10 .
argCSp argesO guantity Q4 on the electrode 1 andQ, on the electrode 2
Potential: 5V, (M) by using Gauss’s identitysee the Appendix we consider
54 o another equilibrium state. In that state, the insulator is free of

/— Potential: 8V, (M) charges and the potentials andV, are, respectively, ap-
plied on electrodes 1 and 2. Thus the electric field in the
insulator, which derives from the potent(M), is given

oy by Eg. (1). Gauss’s identity connects the two equilibrium
y Electnc field: 8E3 states by

» Dielectric constant: ¢

(d ."‘-~..,..,..Dipoles5 :O 6Q1V1+6Q,Vo+q[V(M') = V(M)]=0. ®)

The conservation of the charges implies thaQ,
FIG. 3. The different equivalent equilibrium states describing=— §Q,. Thus Eq.(5) becomes
the incidence on the electric field of the material displacement.
They are associated with the modification of the dielectric constant, V(M')=V(M)
of the charge and the permanent dipole densities, and of the elec- 5Q1:QW- (6)
trode surfacedqa) describes all modifications due to a material dis- 2 !

placement(b) describes the modification of the space charge dis- Fyrthermore, because the distancdrom M to M’ is

tribution. (c) describes the modification of the permanent dipole , = - . .
distribution and the dielectric constaritl) describes the modifica- fmaII,V(M )—V(M)=gradV)-u at first order. This leads
(0]

tion of the electrode surfaces.

developed in Sec. Ill E assumes a linear dependence justified 6Q1=—q¢-u=—p¢-udo. @

by the small-considered deformations. Finally, the displacement of charges at the posifibifor

~ Consequently one can define the variatifih of the elec-  a given space charge distributipmproduces a signal propor-
tric field due to a material dlsplacement by the equilibriumtional to the moved charges. Moreover, the signal is maxi-
state of Fig. ). . By splitting SE into three components so Mized when the material displacement is parallel to the di-
rection of the field that would exist in the insulator if no

that 6E = 5E1+ 5E2+ 5E3 one may decompose the equilib- space charge were present.

rium state of Fig. 8) into three independent equilibrium

states such as _ ) . . S
D. Dipole displacements and dielectric constant modifications

div(sgél): Sp, (4b) The displacement of permanent dipoles and the modifica-

tion of the dielectric constant induced by a material defor-

L= 2 = mation are now analyzed. We have seen that the dipole dis-
div(e 8E,+Ede+ 6P)=0, (40 placements and the dielectric constant modifications result in
. = an equilibrium state in which the internal electric fieldis,
div(e 6E3)=0. (4d)

[see Fig. &)]. In that state, the sample contains the perma-
In the first and second states, the potentialsSpand S, nent dipole distributiorsP + E 8¢ and both electrodes are at
are taken equal to zero; in other words, the electrodes are ntite potential zero. Since a dlpotqadl is equivalent to a
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negative charge-q and a positive charge q separated by
the distancedl, its apparition in the insulator produces a

signal identical to that produced by a displacen@bf a
charge+q. Thus8Q; can be derived from Ed7) as

5Q;=—qdI-£. ®
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E. Electrode deformations

We have seen that the deformation of the electrodes re-
sults in the equilibrium state illustrated in Fig(d3. In that

state, the electric field i§—E3 and the potentials on the sur-

faceS; andS; are, respectivelygV,(M) and 6V,(M). Fur-
thermore in this case the sample contains no space charge

nor permanent dipole distributions. In order to evaluate the

Furthermore, the apparition of the dipole distribution chargeAQ; on electrode 1 due to the deformation of the

5P +Ede in the insulator leads to the variation of charge

6Q, on electrode 1:

5Q,=—(6P+Ede)- £ dv. (9)

In order to take into account the possible anisotropy of th
dielectric constantyQ, can also be expressed as

5Q1=— (8P 16+ E; 0y )du. 10

The variationssP; and ds;; derive from two effects. First
the dipole density and the dielectric constant at a posMdn
become that which existed at positivhprior to the material

displacementi= MM’. Thus, a variation of permanent di-

pole density or of dielectric constant appears only if a gradi-
ent of these quantities existed before the material displace-

ment. The first component of the variation is then

Pi 58”

1%
(5Pi)1:_uk(9_xk and(58ij)1:_uk(9_xk. (11)

Second, the volume that was at positdrchanges due to
the material deformatio,,. The number of permanent di-
poles does not change. One has

odv
Tdv
(12

(5Pi)2dU+Pi5dU:0, SO (5P|)2:_P

Since the relative variation of volume is given by the

divergence of the material displacementvhich is alsoSy,,

electrodes, we proceed in two steps.
(i) We consider two equilibrium states, one with the po-
tential 5V,(M) on the surfacé&, and zero on the surfa ,
and the other with the potenti®l; on the surfac&, and zero
on the surfaces,. In this latter state, the electric field at a
ositionM in the sample is-V£(M) as defined in Eq(l).
oreover the sample contains only superficial charges on
surfacesS; andS,. These superficial charges are given by
—D-n, which reduces to-¢E-n since we are now in the
particular equilibrium state where the sample contains no
permanent dipole distribution. In the above expressibiis
the electric field, and is the unit normal vector outwards the
surfaces. One finds with Gauss'’s identity that

Angf e£-MoV,ds, (16)
S,

In order to expres®V,(M), we observe that if the dis-
placement is sufficiently small, the potential on surf&e
has been modified, in a first approximation, as the opposite
of the variation of the voltage along the displacement vector.
This variation is given by the dot product of the displace-
ment vector with the electric field. One has

8V,=E.- 0. (17)

By introducing this result into Eq(16), one obtains the

variation of charge:

AQ)= fszs(é-a)(é-ﬁ)ds. (18)

the second component of the variation of the permanent di- (i) We also consider two equilibrium states, one with the

pole density is

dUy

(6Pi)2=—P; X

13

If the deformation is sufficiently small, the dielectric con-

potential 5V, on the surfaces; and zero on the surfac®,
and the other with the potenti®l, on the surfac&, and zero
on the surfaces; . In this latter state, the electric field at a
position M in the sample isV,£(M) as defined in Eq(1).
The resulting variation of chargeQ?’ can be obtained by the
same development as above. One has

stant can be assumed to be linearly dependent on the defor-

mation. The product of the electrostrictive tensgg, with
the deformatior gives the variationse;; . One has

duy  Ju,
—+ —,
(9X| (9Xk

(&) 2= aijk1 S = 3 ik (14
Noticing thata;j, = ajj , the variationsQ, on the elec-
trode 1 is

d(Pjuy) Jejj

5Q,= +E Ol
Q1= % & jgiuk(?xk

TXI dv.

(15

=ik Ejé;

Aqu—fs e(E-0) (& U)ds. (19

Since the variation of charge on one electrode is the op-
posite of that on the other electrode, the total variation of
chargeAQ, on electrode 1 when both electrodes are moved

is given byAQ;=AQ;+AQT=AQ;—AQ5.
Alef s(E-U)(£-R)ds, (20)
S

whereS=S,;+S,.
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F. Synthesis divergence of¢;;¢; is equal to zero. MoreoveE and & are

The signal produced by the deformation of the insulatorcollinear to the unit normal vector outwardst the insulator
sample can be determined by integrating over the volwme electrode interfaces so th@{E,= &E;, Ejn,=Eyn;, and
of the sample Egation&) and(15), and by adding E¢(20). &ne=&n; . Consequently the surface integrals vanish. The
One has variation of charge\ Q, is finally

5(P1Uk) 58”’ j JUy Juy
- BT ¢ b E gyt AQy= | | (&5 Ej+Py) ey E -t &,
AQq fv puét X, §,+EJ§|Uk %, Q1 v ( ijEj |)§ké,xi ijkl ]gl x| |]§|
AUy dUy JUy
_aijklEjgia_)ﬂ dv+f88ij§jnindeS. (21) X E'&_Xk_ Ek&_)(]) dv. (25)

In order to avoid the partial derivatives over space in the, 1hiS general formula can be applied to various materials

case of discontinuous variables, for instance the electric fieldO" instance isotropic solids or fluids. One can derive from
the dielectric constant and the dipole distributions, we carf-d- (25) the measured curreijf(t) in short-circuit condition
split, applying integration by parts, the volume integral itselfPY @PPIyingin(t)=0AQ,/dt. In the case of open circuit
of Eq. (21) into a surface integral and a volume integral eachtonditions, the measured voltaggy(t) can be reconstructed

containing only partial derivatives of the displacement. Us-N @ Similar way.

ing Gauss’s equation to express the charge depsitybe- (i) In isotropic s_oli_ds, the dielecf[ric constant is a scalar
comes and the electrostrictive tensa;,, is reduced, due to the
invariance of the tensor with any space rotation, to two co-
(e Ej+Py) J(P;uy) deij efficientsa,; anda,,. Introducing the Kronecker's symbol
AQFJ’ Tk Ukt o §i+Ej§iukO—,_Xk 8 which is equal to 1 ifi =] and 0 otherwise, one has
|
auk 8”:85”‘ and
— Qjjkl EJ§|(9_X| dv + SSijfjniEkdeS. (22)

aijk = (811~ 812) (S Oj1 + 81 Sjk) +@125; Oyt - (26)

This expression can also be written as In isotropic solids, the variation of chargeQ, on elec-

AQ _f B a(SiJEjkak) N Eé‘f ﬂ-{-E.u a(sijgi) trode 1 is
Y X N e D Uy Uy
AQFJ (eBi+ P ~+(e+an—an) &b -
& I&; A(Piuiéi) v ! !
+8ijEjuk K—X dv+ 3
i k Y% Xk Jduy
_(8+a12)Ei§i(9_Xk dl). (27)
I(Piuiéw) duy & I&;
T ax, T Pibkge TR G g ] (A so that
au > 3 =L s
_J'V aijk|Ej§iW|k dv+fs[8ij§jniEkUk]dS. (23) Ale fv{[(8E+P)'graq(u)'§+(8+a12_a11)
Since—c:irqé)zﬁ, one has X (&-grad(u)-E—(e+aq)E- &div(u)}du.
(28)
Juy Juy B . ) )
AQ,= +f gijEjéi—— dv+f Pié——|dv (i) In fluids, both the dielectric constant and the electros-
\V X \Vi X tricti . o ..
rictive tensora;j are scalars sinca;,=a,;. The variation
AU (e EE;Uy) of the dielectric constantde), of Eq. (14) with the variation
_fv Ajjki Ejfia_xl dv+fv ok of the volumesdu is
de
_deEiRug [ Ok o 0l (88)p=——ddv. (29
IX; S S, TKax v
e &) Introducing the mass density, it becomes
+Ekuk (9Xj dv+fs[eijniuk(ijk—kaj)]ds 5 - de om, . PR i 0
(92)2= - 557 o= —m,Z-div(d). (30
* L[P‘u"( G &) 1ds. (24) Hence the coefficierd,; has the value
We recall that; is the voltage normalized electric field in a.=—m ﬁ (31)
a sample free of charges and permanent dipoles. Thus the t ‘om,
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B be expressed. In a first stage the static forces are studied and

ack electrode X e K

@ Transd then the impact of the variation of the voltage applied to the
ranseueer sample is analyzed.

Front electrode

C. Electrostatic force densities
Elastic wave

‘ In this subsection the local expression of the electrostatic
| | force density is demonstrated in the general case. Electro-

static forces have been extensively studied in many reference
books?° A simple way to find the force density is to consider

0 2 the variation6W of the electric energy when the charges are
virtually moved by an arbitrary small displacemeéi, .

This variation can be expressed either as the work of the
electrostatic force densitly, or as the variation of the electric
energyW. The first approach leads to

p(z)

V@

0 t=2z/v
FIG. 4. The electro-acoustic method in planar geometry. OW= — f froudv. (33
In fluids, the variation of chargdQ, on electrode 1 is _ 1he second approach requires the knowledgé/ofvhich
thus is the sum of the enerd$ due to the charges and to the
permanent dipoles in their own electric field. One has
AQ= U[(sé5>-g?ou<6>-§+s<§-97a‘o»<ﬁ>-é W=%Jdev—%f PiEidv. (34)
de\ -~ - . From the above expression \&f, the variationsW can be
- ( g~ mv(??) E- £div(u) (dv. (32 written as

5vv=%f V5pdv+%f p5Vdv—%f E,sP;dv
IV. ELECTRO-ACOUSTIC METHOD

A. Brief description of the method — %J P; oE;dv. (35

In this subsection, a usual setup for the electro-acoustic
method®"is presented in the case of a planar sample. Itis Introducing the displacement electric fielj, whose di-
summarized in Fig. 4. vergence gives the charge densjty SW can also be ex-

The insulator has two adjacent electrodes. When a voltagpressed as
is applied, a Coulombian force acts on its charges. If a short 25D D
pulsed voltage is superimposed to the applied voltage, the -~ 1 i 1 [
force acting on each charge varies. This creates an elastic 5W_j Vap dU_EJ v X dv+5J &_xi5V dv
wave that travels through the sample at the velocity of sound.

A_piezoelectric transducer pi_cks up th_is wave. Since the am- _%f E, 6P, dv _%j P, 5E;du. (36)
plitude of the elastic source is proportional to the charge, the

elastic wave is the image of the charge distribution. The time
to reach the transducer is proportional to the distance be-

tween the charge and the transducer. The dependence B : h ial g idl q
time of the transducer signal is similar to the space charg@y Parts. Since the potential tends rapidly towards zero as

distribution inside the insulator, since time and position areo?]e goes to the infinity, the surface integral is equal to zero.
connected by the speed of sound. Thus

The second and the third terms of this expression can be
Hlit into volume and surface integrals applying integration

B. Preliminary 5vv:J Vép du—%J EiaDidqu%f D; 5E;dv

The electrostatic forces acting on each charge are in equi-
librium with the reaction forces in the material. If the elec- —%j Ei 5Pidv_%f PiSE;dv. (37)
trostatic force changes with time, via the applied voltage for
instance, an elastic wave is created. The associated deforma- Replacing the displacement electric fi€¢ by its expres-
tion in the material induces a change of the dielectric consion and noticing that;; is symmetrical so that;;=¢j; ,
stant known as electrostriction. In solids, even when they arene obtains finally
isotropic, the dielectric constant becomes anisotropic under
the effect of the material deformation.

In order to establish the propagation equation of the elas- 5W:f Vép dv_%f EiE;deijdu _f EioPidv.
tic waves in the solid, the force densities in the volume must (38
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The variation of energyW contains three terms that de- M
pend, respectively, on the variations of the charge dewpity = (43
of the dielectric constande;; , and of the permanent dipole !

density 6P; . Each of these variations has two components, \ye replace in Eq(42) the charge density by the diver-

the first due to the material displacement and the other t0 thgence of the displacement field and take into account the fact
material deformation. The two components of the variationgnat the electric field derives from a potential. Sineg

dej; and 6P; have already been expressed in Ha4), (13), —e. one has

and(14). Since the number of charges does not change with '’

the.deformatlon,. the variation of the cha}rge densipyis LA EE) | d@aEE) (s Ej+P)EC]
similar to the variation of the permanent dipole dengiB; . fk=—35 r -3 P + X .
Thus K : ! (44)

&p &5Uk

Sp=(8p)1+(8p)p=— 5ukp7_xk_p e (39) We introduce the Kronecker symbéj; , which leads to

Maxwell’s tensorM :

Noticing as in Eq.(14) that a;j = a;j and introducing Mk|:(8|jEj+P|)Ek—%(aijk|+5k|8ij)EiEj- (45)
the variations of the dielectric constant, the charge and the

permanent dipole densities in E@8), the variation of en- o
D. Voltage variation

ergy is
During the variation of the voltage applied to the elec-
1 ij it k trodes, the electric field in the insulator changes. Assuming
oW= ZJ EiEj Xy ouydv Zf i EiE X dv that the displacement of charges and dipoles in the material

is negligible, and thus the electric fieklproduced by these
8p (95Uk 07P| L. . . e P .
— f V—5dev—f pV dv+f E,— éu,dv distributions is not modified, the electric fiel in the in-
IXk IXk Xk sulator submitted to an extra voltay&t) can be deduced
from Eq. (2) by

(75Uk

+ J' Ei PinU. (40) N N N
K E'=E+V(1)& (46)

Terms having partial derivative of the displacement can . . : I ,
be integrated by parts in order to yield volume and surfaceS orvl\\//llth (lgrsl gépreritse'?]na:f the electric field, Maxwell's ten-
integrals. Since the potential and the electric field tend rap- ki wh
idly towards zero as one goes to infinity, surface integrals are _ 1
equal to zero. Thus M= (&;E;+ P)Ex— 3 (iji + dkieij) EiE;

TV (e Ej+Pi) ék—aiju Ej

5W:lj E-Eﬁ&u dv+lfwgu dv
2] T gk TR T2 x| k —&ij&i(OaEj— 6 ]
oV JE +V2()[ ey € 6 3 (A + Suei) il (47)
+f pxﬁukdv—f Piﬁéukdv. (41)
K K

As expected the application of an extra voltage modifies
Maxwell’s tensor. It becomes the sum of the static Max-
well’s tensor, of a term proportional to the extra voltage, and
of a third term proportional to the square of the extra voltage.
If the static electric fieldE is much larger than the electric
. deij Ik EiE)) +pE+ p_a_E" field produced by the extra voltage, the squared term can be
Fax IX| KX neglected. It can be noticed that the term under the integral
(42)  of Eq. (25), which is the signal obtained in the case of the

. . pressure-wave-propagation method, is equal to the term pro-
_ The result obtained in such a manner leads to an expregortional to the extra voltage times the partial derivative of
sion of the force density that is valid anywhere in space anqjk over x,. This shows the great similarity between the

in particular inside 'the finite size dielectrics. The abovepressure-wave-propagation method and the electro-acoustic
terms, from left to right, are the components of the forceyathod.

densities due to the variation of the dielectric constant, to the

effect of electrostriction, and to the presence of charge and

permanent dipole densities in an electric field. The effect of

electrostriction is negligible when the electric field is almost  The electrostatic forces are compensated by elastic forces.

uniform whereas it is significant when the electric field is The elastic force densities are given by the divergence of the

diverging since its variation with space becomes important.stress tensor,,. Hooke’s law specifies that the stress tensor
In order to benefit from the general properties of tensorsT,, is proportional to the deformatio; :

we use Eq(42) to determine the Maxwell tensavl,,, re-

CaIIing that TklzcklijSij , (48)

Finally, the two expressions ofW can be compared
[Egs.(33) and(41)] leading to

fk: _%EiE

1
2

E. Wave equation
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wherecy;; is the elastic stiffness tensor. Taking into account Pu,  d au;
the relation between the acceleration and the sum of all forcemuw—z a_x, Ckan
densities, it turns out that !
€k Jejj a(aijklEigj)}
Pu, 9Ty M V)| péxt Pim——Ei§———
M = ax||d+ ax:( +0x, 49 S "
. » . 1| @ik €i€) Jejj
where O, represents all other static force densities, for in- —5V4(t) x| +&§; x| (54)

stance the gravityt is the time, andi, is the displacement

along the directior. When no extra voltage is "’?pp"ed_ © 1 the term proportional to the extra voltage a first source
the sample, the forces in the insulator are all static. DeﬁmngS proportional to the space charge density and is in the di-

“,? as the static material displacement in such an equilibriumetion of the electric field as if the insulator were free of
situation, one has charges and dipoles. A second source is proportional to the
dipole density. This source exists only as long as the electric
field, in the insulator free of charges and dipoles, is nonuni-
form at the position of the dipole. A third source depends on
1 the variation of the dielectric constant and a fourth source
~2(@jj1 + dweij ) BiEj ]+ Ok depends on the variation of the electric field amplitude. This

=0. (50) last source may be very important when the electric field is

diverging.
When an extra voltage is applied, the material displace- This wave equation can be applied to various materials,
ment is the sum of the static material displacemgrand of ~ for instance isotropic solids or fluids.

Pug 9

m —_—
v gtz ax

au?
Cklij_ax_
i

1%
+ (9_)(|[(8|JEJ+ P|)Ek

the dynamic material displacemant. Introducing Eqgs(50) (i) In isotropic solids, the wave equation is simplified by
into (49) and using expressio@7) for Maxwell’'s tensor, the taking as the dielectric constant and the electrostrictive ten-
elastic wave propagation equation becomes sor the values of Eq26). The stress tensor is
Pu, 9 u; J Ciji = 3 (C11— C12) (8 5y + 81 Sjk) + €128 Oy - (55)
M, —2= = | Criii s +V(t)a_x[5il(8ijEj+Pi)§k ) . o o
! ] ' (i) In fluids, the wave equation is even more simplified

—aijEj&— e &(04Ej— 8 EQ)] issfngcit\a/:#;yagqa(gdl)cn= Cq». In that case the coefficielat; |

J
+VA(1) (?—)(I[Eljfjfk_ 3 (@i + Sué & &1

(51)

V. APPLICATION OF THE GENERAL THEORY TO
SIMPLE GEOMETRIES

. . . . A. Comparison with existing situations
This equation does not exhibit any coupling between the

electric field and the material displacement. We can see that It IS of interest to apply the general theory presented
the terms depending on the extra voltage are the force defPove to simple geometries for which many detailed calcu-
sities that create the elastic sources. Thus introducing thitions have been reported and that have been extensively
Green’s functionG;(M,M’,t) connecting the displacement experimentally studiett’/1%1®21This allows verifying the

u; at the positiorM to the force density &t the positiorM’ th_eory z_;md also to point out qlis_crepancies with prese_zntly ?‘d'
tﬁe solution of Eq(51) is ' mitted interpretations. We limit ourselves to situations in

which the dielectric constant is uniform and no permanent
. . dipoles are present.

ui(M,t)zjj ,Gi(M,M’,t—t’)-f(M’,t’)dv’dt’.

vV (52) B. Planar sample geometry

In planar geometry, the value of all subscripts present in

In this expressionV" represents the entire space from g 5p5ye equations is 1. The sample thicknegskasd the
which M’ is taken and’ all times. If the Green’s function is electrode surface iS

unknown, this equation must be solved by applying the con-
tinuity of the displacement and superficial tensions through 1. Pressure-wave-propagation method
interfaces as boundary conditions. Introducifig and M, _ .
as the stress and the Maxwell's tensor on the other side of the "€ ;lgnal produced by the pressure-wave-propagation
interface having the unit normal vector, the continuity of method is calculated from E¢25). One has

superficial tension can be written as P

u Ju
(E+P)§— —auEé—|dx.  (56)

d
AQ,=S
(Ta— T+ (Mg — My )n=0. (53 N2 J0

Calculating the terms depending on the extra voltage ap- The normalized electric fielé is uniform in the insulator.
plied to the sample in Eq51), the propagation equation is When the current is picked up from the electrode that im-
also expressed as poses the high voltage, as illustrated in Fig. 5, the normalized
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electrodes 1 and 2. The Green’s functiGifx; ,x,t) giving
the pressure at a poixi produced by a force density at a
positionx in the insulator &

Electrode 1 —¥ \im(t)
im(t) ®
X 2nd+x
i G(x X ) =372 myz)“{ 5|t — )
} > n=0 | s
0 d
h X 2(n+1)d—x
FIG. 5. Pressure-wave-propagation setup for a planar sample. 720\ 1= U_|_ Vs ' (60)

electric field is—1/d. The derivative of the displacement whered(x) is the Dirac functiony, andv are, respectively,
along the sample thickness is equivalent to the opposite ahe speed of sound in electrode 1 and in the insulatorf &nd
the pressur® in the sample over Young's modulsIf the  the time. The coefficien} at the front of Eq(60) represents
sample contains no permanent dipoles and has a uniforihe radiating diagram. The energy of the elastic sources is
dielectric constant, the variation of char§€), on electrode indeed separated in two equal parts, the first giving a wave
1 becomes propagating forward and the other a wave propagating back-
ward. We callH the coefficient that gives the amplitude of
the signal produced by the transducer for a given pressure at
the positionx; . Then the signal amplitudg(t) measured on
the transducer is

Introducing the capacitZ, of the sample at rest and the
coefficientG(e)=1—a; /e, one finds finally the usual ex- ) L OM(Xt)
pression of the currerit,(t) in the measuring circuft® S(t):Hﬁ,JX,G(Xt*X =t )de dt’.

(61)

S(s— d
AQ1=(8Y—dall)joEP dx (57)

i) C,G(e) JdEﬁPd 59
i =— —dx.
" Y o dt Moreover at each interface of force discontinuity, that is

to say in this case at the interface between the insulator and
2 Electro-acoustic method the electrodes, the signal depends on the superficial tensions.

, , The interfacial signaB(t) produced by a tension at the po-
In the case of the electro-acoustic technique, the propagg;iion X=Xg iS

tion equation in a one-dimensional plate sample is

Ju_ aT oM ou S(t)=Hf G(X¢,Xg,t—t")M(Xg,t")n(xg)dt’, (62
[ p— _ 1 = (N , 1170 0 0 ’
m”W (9X+ I with T cll&x and t

B N o2 wheren(X,) is the unit normal vector outwards the interface.
M=(e—a,)EEV(1)+PEV(D) +32(s —a1) EVA(D). The useful signal, which is the first measured signal, comes
(59 from the direct propagation of elastic waves and not from the
reflected waves on the insulator boundaries. If the extra volt-
age is applied to the sample at tirtee O, the first signal is
the pressure stress to which it is submitted. When a hig ;%ii‘;ide?éé;gz;? g)r:da&de ?;g&?;f;;{rgm.rm: ilrr:ttgrrff:_ce
voltage is applied to electrode 2, as shown in Fig. 6, the .

normalized electric field is-1/d. We suppose that elastic %IS%I) ;sr;?(;laElqlss (%tz);tfmned by introducing definitioriS9) and

waves come only from the sample, i.e., the electrodes are 0
infinite thickness and the transducer is perfectly matched.

A transducer, at a distancg from the insulator on the
side of the electrode 1, produces a sigh@) proportional to

The transmission coefficient of elastic waves from the insu- S(t)=iHr| (e —ayy) V(t=x/v)) E(x=0)
lator to electrode 1 is;. vy, and vy, are, respectively, the d
reflection coefficients of elastic waves from the insulator to V2
1 (t—Xt/U|)
—ie—a)—gp |- (63)

Transducer

Electrode 1 Since the dielectric constant is uniform in the insulator,

the electric field derivative over space is ajge. Hence the
signal produced by the direct sources in the insulator, at

Insulator 7 Electrode 2 times x,/v,<t<x,/v,+d/vg, is obtained by introducing
/ “ )I definitions (59) and (60) into Eq. (61):
t
> —a d
X S(t):—HMf V(t—x, /o1~ Xl g) p(x)dX.
2ed 0

FIG. 6. Electro-acoustic setup for a planar sample. (64)
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Outer electrode  Inner electrode

72

(Ground) (20 kV) ,////,/

‘ .

Electrode 1 \lm(t) ea /,,
surement / 7
; Z

() i ///

o Gle) =1

7 '¢4
.

Ge)=13
| [ Gm=te /

/
b
Y

Electrode 2

W,
W,
i

FIG. 7. Pressure-wave-propagation setup for a coaxial sample.

Im(t) (Normalized amplitudes)
N\

The interfacial signal produced by the other interface lo-
calized at the positiorx=d and taking place at time 1 ‘ :
=X;/v,+dlvg is obtained by introducing definitiongs9) 5 3 Ti
and (60) into Eq. (62): 0 : tme (hs)

FIG. 8. Comparison between the analytical expressions and the
_ real signal in a coaxial sample in the case of the pressure-wave-
E(x=d) .
propagation method.

V(t—x/v,—dlvs)

S(t)=3H7 (1~ y,)| (e —ayy) d

V2(t—x/v,—dlvg)

65) tions assumea,;=a, as is the case in fluids. Such an ap-
dZ

proximation may not be justified for some solid dielectrics.

In fluids the divergence of the displacement is the opposite
As expected, the theory applied to this simple case leadsf the pressur® times the compressibility. In that case the

to the usually reported results' in which electrostriction is  variation of chargeAQ; on the electrode 1 is

taken into account.

AQ = — 2T JbEPd+2 be d
C. Coaxial sample geometry Qu= In(b/a) R E a free afl uar

In coaxial geometry the electric fiel;, the normalized (69)
electric field&;, the dipolesP;, and the material displace-

mentu; are all supposed radial. If the sample has a lehgth efficient G(s)=1—ay, /e, and exchanging the limits of the

an inner radiusg, and an outer ra_dluls, the signal produced integrals, the currerit,(t) in the measuring circuit is
by the pressure-wave-propagation method calculated from

—3(e—ay)

Introducing the capacitZ, of the sample at rest, the co-

Eq. (25) is ) a JP aE du
i (H)=C, G(s))(f E—tdr+2f ——edrf. (70
AQ,=2 |Jb( Erpye aEe g Ees " e
=27 & ——apEé——apEé—
! a gr TS TRy Finally an additive term has to be added to the usual

expressioff corresponding to the first term of E(0). This

- squ rdr. (66)  additive term makes the signal vanish when no space charge
r is in the insulator and whea,,= 0, except during the defor-

mation of the electrodes of the sample. The experimental

The normalized electric field is proportional to the in- oq its exposed in the next section show that(Z6). is more
verse of the radius. When the current is picked up from the iiaple than the formerly reported expressions.

inner electrode, on which the high voltage is supposed to be
applied as shown in Fig. 7, the normalized electric field

S D. Signals from divergent field geometry
along the radius is
In this section measurements on divergent electric field
1 samples are exposed. In the first experiment the pressure-
&= rin(b/a)’ (€7 wave-propagation method is used on a coaxial sample in

order to validate expressidi0) of the signal. In the second
If the sample contains no permanent dipoles and has experiment the pressure-wave-propagation and the electro-
uniform dielectric constant, the signal becomes acoustic methods are used and compared on the same

sample.
2l b Jdu u Ju apu Figure 8 shows a measurement using the pressure-wave-
AQi=irora) | |eB or— 7) 3k r H o 7] ar i hod ial polyethy le havi
In(b/a) Ja. a r ar apr propagation method on a coaxial polyethylene sample having

(6g8)  No space charge and submitted to 20 kV. This sample has a

5.1-mm inner-radius electrode and an 11.7 mm outer-radius

This equation is slightly different from those reported in electrode. Close to the inner electrode the deviation of the
the literature'™® This is due to the fact that previous calcula- measured signal, in the solid line of Fig. 8, is due to the
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. Electro-acoustic VI. CONCLUSION
Wire method

/
Electrode ,'n Electrode —V
I Al A
Deviation

due to the -« Pressure-wave-
electrostriction propagation method

In this paper, the pressure-wave-propagation method and
the electro-acoustic method have been analyzed in crystals,
isotropic solids or fluids in the case of complex electric field
distributions. The solutions proposed show the great similar-
ity of these two methods and are in good agreement with the
experiments. The usual expressions already reported in the
literature are justified in the case of simple sample geom-
etries such as planar and coaxial geometries. In this later
geometry, the solutions proposed predict some changes in
the usual formulation of the pressure-wave-propagation

FIG. 9. Effect of a divergent electric field for both the pressure-method signal. These changes have been physically ex-
wave-propagation and the electro-acoustic methods. plained and experimentally verified. In more complex geom-
etries, there is a non-negligible signal in regions containing

variation of the electric field in the insulator. As one can sed!0 charges but where the electric field is diverging. This is
the usual estimation does not fit properly the signal in thidhe effect of electrostriction, which has been demonstrated

region whereas the analytical expressid) fits quite well ~ 10f Poth pressure-wave-propagation method and electro-

the experimental data taking,;= —0.3¢, which is nearly acoustic method.

the electrostrictive coefficient of polyethylefie However The general theory proposed makes it possible to study

close to the outer electrode the models do not follow Com_the behavior of insulators submitted to complex electric field
distributions, for instance insulators including water trees,

pletely the experimental signal. This is due to the fact thaHefects, wires, or needles electrodes. It can be applied to the

calculations have been carried out with a purely coaxial ressure-wave-propagation method and to the electro-
wave contrary to that used in the experiment. Indeed the g stic method.

wave is initiated from a portion representing 8% of the cyl-
inder perimeter so that diffraction occurs resulting in the APPENDIX
modification of the pressure wave profile.

Figure 9 illustrates measurements on a very divergené
electric field sample. Both the pressure-wave-propagatiope
and the electro-acoustic methods have been used on the sa
sample. This sample has two planar electrodes connected fp
ground enclosing the insulator. A Z@n-diameter wire em-
bedded in the insulator and submitted to a high voltage pro-
duces the divergence of the electric field. It can be seen on f pAVde:j paVadv. (A1)
each measurement that, before the wave reaches the wire, a__ . . . )
large negative signal is detected whereas one would expect | i relation can easily be demonstrated by replacing the
the interfacial electric field on the wire to induce a positive POtential by its expression in terms of charge:
signal. This deviation is not produced by the presence of (M)
charge but by the effect of electrostriction. As expected the V(M)= f —_—
divergence of the electric field produces nonnegligible sig- Ame(M)MM
nals that have comparable shapes for both the pressure-wawehere MM’ is the distance from the charge at the position

AN\

Signal (Normalized amplitude)

AN AN\

Z

The Gauss identity connects two equilibrium stafesnd

by an integral equation involving the charges and the po-

ntial V of each staté? If p denotes a set of any kinds of
rges, for instance in a volume, on a surface, on a curve or

a point, one has

du, (A2)

propagation method and the electro-acoustic method. M’ to the positionM where the potential is calculated.
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