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Dephasing in disordered conductors due to fluctuating electric fields

Axel Völker and Peter Kopietz
Institut für Theoretische Physik der Universita¨t Göttingen, Bunsenstrasse 9, D-37073 Go¨ttingen, Germany

~Received 13 October 1999; revised manuscript received 27 December 1999!

We develop an eikonal expansion for the cooperon to study the effect of space- and time-dependent electric
fields on the dephasing rate of disordered conductors. For randomly fluctuating fields with arbitrary covariance
we derive a general expression for the dephasing rate that is free of infrared divergencies in reduced dimen-
sions. For time-dependent external fields with finite wavelength and sufficiently small amplitude we show that
the dephasing rate is proportional to the square root of the electromagnetic power coupled into the system, in
agreement with data by Wang and Lindelof@Phys. Rev. Lett.59, 1156~1987!#.
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I. INTRODUCTION

The dephasing timetf of a particle in a quantum system
is the time over which its wave function maintains pha
coherence. For diffusive systems in dimensionsd51 andd
52 the dephasing time can be obtained experimentally fr
the weak-localization correction to the conductivity in
magnetic field. Recently Mohanty, Jariwala, and Webb1 used
this method to measuretf as a function of the temperatureT
in gold wires. They found that at sufficiently low temper
turestf approaches a finite value. This is in disagreem
with the generally accepted point of view2 that in thermal
equilibrium tf should diverge asT2p, p.0, for T→0. A
proposal that the observed saturation oftf is an intrinsic
ground-state property of interacting electrons in a rand
potential3 has been heavily criticized.4 Until now, there is no
general agreement on the microscopic mechanism for
observed saturation oftf at low temperatures.

One possible reason for this saturation might be exte
microwave radiation that is unintentionally coupled into t
system.5 According to Ref. 6 the dephasing rate 1/tAC due to
a time-dependent but spatially constant electric field is p
portional to the microwave powerP absorbed by the system
for small P, and crosses over to aP1/5 law for larger P.
Experimentally the effect of microwaves on weak localiz
tion has been studied by several authors.7–10Most of the data
by Wang and Lindelof7 can be fitted with 1/tAC}P1/2. Below
we shall offer a simple explanation for this behavior. Mo
recent data by Webbet al.10 are consistent with aP1/5 law at
high powersP, but in this experiment the microwaves see
to heat the sample, an effect that has not been taken
account in Ref. 6, and that we will neglect as well.

Following Altshuler et al.,6,11 we define the dephasin
rate in the diffusive regime via the weak localization corre
tion ds to the static conductivity. In the presence of an e
ternal electric fieldds can be written as6,11,12

ds52
s0

pnd
E

tel

`

dt lim
T0→`

1

2T0
E

2T0

T0
dt0CS r ,r ,

t

2
,2

t

2
,t0D ,

~1!

wheres0 is the Drude conductivity,nd is thed-dimensional
density of states, andtel is the momentum relaxation time
The cooperonC satisfies12–14
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$] t1DP̂r
21G01 i @V~r ,t01t !2V~r ,t02t !#%C~r ,r 8,t,t8,t0!

5d~r2r 8!d~ t2t8!, ~2!

whereP̂r52 i¹ r is the momentum operator,D is the diffu-
sion coefficient, and the phenomenological cutoffG0 de-
scribes dephasing due to processes that are not expli
treated in our calculation, such as inelastic electron-pho
scattering or electron-electron scattering with energy tra
fers uvu*T. The potentialV(r ,t) is related to the longitudi-
nal electric field viaeE(r ,t)5¹ rV(r ,t), where 2e is the
charge of the electron. ForG05V50 thet integration in Eq.
~1! diverges ind<2 at the upper limit, but for finiteG0 or V
the integration is cut off at some finite time, the so-call
dephasing time.

II. EIKONAL EXPANSION

Formally Eq. ~2! looks like the differential equation fo
the imaginary-time single-particle Green’s function of
electron in a fluctuating external potential

Vt0
~r ,t !5 i @V~r ,t01t !2V~r ,t02t !#. ~3!

The real time version of this problem has been discus
extensively in the quantum field theory literature.15 By
means of a simple modification of the method developed
Fradkin15 ~see also Ref. 16! we obtain the solution of Eq.~2!
in the following form:12

C~r ,r 8,t,t8,t0!5Q~ t2t8!E dk

~2p!d

3eik•(r2r8)e2(G01Dk2)(t2t8)2F(k,t2t8;r ,t),

~4!

where the functionF satisfies the eikonal equation

@]t1] t1D~P̂r
212k•P̂r !#F~k,t;r ,t !

5Vt0
~r ,t !1D@P̂rF~k,t;r ,t !#2, ~5!
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with the boundary conditionF(k,0;r ,t)50. Although in
general Eq.~5! cannot be solved exactly, we can easily o
tain an expansion ofF in powers of the potentialVt0

(r ,t).
Setting

F~k,t;r ,t !5 (
n51

`

Fn~k,t;r ,t !, ~6!

whereFn involves by definitionn powers ofVt0
, successive

terms may be calculated recursively.12,15,16For our purpose
we need only the first two terms. The linear term is

F1~k,t;r ,t !5E dqdv

~2p!d11
ei (q•r2vt)Vt0

~q,v!

3
12e2[D(q212k•q)2 iv] t

D~q212k•q!2 iv
. ~7!
m

o
d

ly

u-
th
r-
-
Here

Vt0
~q,v!5 i @e2 ivt0V~q,v!2eivt0V~q,2v!# ~8!

is the Fourier transform ofVt0
(r ,t), where

V~q,v!5E drE dte2 i (q•r2vt)V~r ,t !. ~9!

From Eq.~5! we find that the quadratic term is related to t
linear one via

F2~k,t;r ,t !52E
0

t

dt8e(DP̂r
2
12Dk"P̂r1] t)(t82t)

3D@P̂rF1~k,t8;r ,t !#2. ~10!

The explicit calculation yields
F2~k,t;r ,t !5E dq1dv1

~2p!d11E dq2dv2

~2p!d11
ei [(q11q2)•r2(v11v2)] tVt0

~q1 ,v1!Vt0
~q2 ,v2!

3
~Dq1•q2!e2$D[(q11q2)212k•(q11q2)] 2 i (v11v2)%t

@D~q1
212k•q1!2 iv1#@D~q2

212k•q2!2 iv2#
H e$D[(q11q2)212k•(q11q2)] 2 i (v11v2)%t21

D@~q11q2!212k•~q11q2!#2 i ~v11v2!

1
e2Dq1•q2t21

2Dq1•q2
2

e[D(q1
2
12k•q112q1•q2)2 iv1] t21

D~q1
212k•q112q1•q2!2 iv1

2
e[D(q2

2
12k•q212q2•q1)2 iv2] t21

D~q2
212k•q212q2•q1!2 iv2

J . ~11!
Because we have made the diffusion approximation, the
mentum integrations in Eqs.~7! and ~11! are restricted to
uqu,uq1u,uq2u,1/l[1/(vFtel), and the frequency integrals t
uvu,uv1u,uv2u,1/tel . Herel is the elastic mean free path an
vF is the Fermi velocity. For brevity we have not explicit
written out these cutoffs in the above expressions.

III. DEPHASING DUE TO RANDOM FIELDS

A. General case

We now assume that the potentialV(r ,t) is a random
function with zero average and general covariance

^V~q,v!V~q8,v8!&5~2p!d11d~q1q8!d~v1v8!g~q,v!,
~12!

where^•••& denotes averaging over the probability distrib
tion of V. The dephasing rate is then defined in terms of
averagê ds& of Eq. ~1!. Using the fact that after the ave
aging the cooperon is independent of the timet0, we obtain
from Eqs.~1! and ~4!,

^ds&52
s0

pnd
E

tel

`

dtE dk

~2p!d
e2(G01Dk2)t2G(k,t), ~13!

where

G~k,t !52 ln^e2F(k,t;r ,t/2)&. ~14!
o-

e

We now perform a linked cluster expansion ofG(k,t) in
powers of the correlatorg(q,v). To first order we find

G~k,t !'G1~k,t !1G2~k,t !, ~15!

where

G1~k,t !52
1

2
^F1

2~k,t;r ,t/2!&, ~16!

G2~k,t !5^F2~k,t;r ,t/2!&. ~17!

Introducing the notationEk(q)5D(q212k•q) we obtain

G1~k,t !5E dqdv

~2p!d11
g~q,v!

3H 12e2[Ek(q)2 iv] t

Ek~q!2 iv

12e2[Ek(2q)1 iv] t

Ek~2q!1 iv

2e2 ivt
12e2[Ek(q)2 iv] t

Ek~q!2 iv

12e2[Ek(2q)2 iv] t

Ek~2q!2 iv J ,

~18!
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G2~k,t !5E dqdv

~2p!d11
g~q,v!

2Dq2

Ek~q!2 iv H 1

Ek~2q!1 iv F t

1
12e22Dq2t

2Dq2
2

12e2[Ek(q)2 iv] t

Ek~q!2 iv

2
12e2[Ek(2q)1 iv] t

Ek~2q!1 iv G2
1

Ek~2q!2 iv Fsin~vt !

v

1eivtS 12e22Dq2t

2Dq2
2

12e2[Ek(q)1 iv] t

Ek~q!1 iv

2
12e2[Ek(2q)1 iv] t

Ek~2q!1 iv D G J . ~19!

B. Nyquist noise

As a special case let us assume that the potentialV is
generated by equilibrium fluctuations of the electric field d
to the thermal motion of the electrons~Nyquist noise!. Then
g(q,v) is determined by the fluctuation-dissipation theore
which implies11

g~q,v!52 f qcothS v

2TD Im e21~q,v!, ~20!

wheref q is the Fourier transform of the bare Coulomb inte
action, and the dielectric function of the system is in t
diffusive regime given by

e~q,v!511 f qnd

Dq2

Dq22 iv
. ~21!

The corresponding dephasing rate ind51,2,3 was calculated
by Altshuleret al.11 with the help of a Feynman path-integr
representation of the solution of Eq.~2!. It is instructive to
reproduce the results of Ref. 11 within our eikonal expa
sion, treatingd as a continuous parameter. It is important
note that in the derivation of Eq.~2! the electromagnetic field
is treated classically,11,14 so that our calculation takes onl
into account low-frequency Fourier components of t
screened Coulomb interaction, withuvu&T. The correlator
g(q,v) in Eqs.~18! and ~19! can then be approximated by

g~q,v!'Q~T2uvu!
2T

ndDq2
. ~22!

Because the momentum integrals in the following analy
will be infraredandultraviolet convergent, no further cutoff
are needed in our approach.

The dephasing rate is determined by the long-time beh
ior of G(t)[G(k50,t). In d,2 we find for t@1/T,

G~ t !;Cd

Tt22d/2

ndDd/2
, ~23!

where the numerical constantCd is given by
e

,

-

is

v-

Cd5
232d

pd/2~22d!~42d!
. ~24!

BecauseG(t) grows for larget faster than linear, the term
G0t in Eq. ~13! is negligible, and the dephasing rate may
defined byG(tf)51, which yields

1

tf
5F CdT

ndDd/2G 2/(42d)

. ~25!

In d52 we find for t@1/T,

G~ t !;
ln~Tt!Tt

2pn2D
, ~26!

so thattf satisfies

1

tf
5

ln~Ttf!T

2pn2D
. ~27!

Keeping in mind that in a good metal 2pn2D@1, this im-
plies to leading order

1

tf
5

ln~2pn2D !T

2pn2D
, ~28!

in agreement with Ref. 11. Finally, ind.2 the long-time
behavior ofG(t) is dominated by the term proportional tot
in the second line of Eq.~19!. The total dephasing rate in
d.2 can then be written as

1

tf
5G01E dqdv

~2p!d
g~q,v!F 1

p

Dq2

~Dq2!21v2G
5G01C̃dTd/2/~ndDd/2!, ~29!

where

C̃d5
222d

pd/2~d22!GS d

2D sinS d

4
p D . ~30!

Note that ford→2 both prefactorsCd and C̃d diverge as
p21ud22u21, signaling logarithmic corrections ind52.
The term in the large square brackets of Eq.~29! is the dy-
namic structure factor of the diffusing electrons in the regi
uvu&T, where the detailed balance factore2v/T can be re-
placed by unity. This term agrees with the semiclassi
dephasing rate derived by Chakravarty and Schmid,17 see
also Ref. 18. It should be kept in mind, however, that E
~29! is only valid in d.2, where the integral is finite. Dia
grammatically Eq.~29! ignores vertex corrections in th
Bethe-Salpeter equation for the cooperon, which becom
important ind<2. In this case Eq.~29! should be replaced
by the more general expressions~18! and ~19!, which are
free of infrared divergencies.

Our G(t) corresponds precisely to the functionf d(t) in-
troduced recently by Golubev and Zaikin.19 To make contact
with this work, let usassumethat Eq.~2! remains valid for
potentialsV(r ,t) due to Nyquist noise with frequencies i
the rangeuvu,1/tel , so that in Eqs.~18! and ~19! we may
approximateg(q,v)'Q(tel

212uvu)v coth(v/2T)/(ndDq2).
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Then we obtain in the quantum regimeTt!1 in quasi-one
dimension to leading orderG(t);A2p21tel

21/2t/(n1D1/2),
which agrees with the leading term in the expansion of
function f 1(t) given in Eq.~28! of Ref. 19. Moreover, also
the subleading corrections tof 1(t) given by Golubev and
Zaikin19 can be obtained within our eikonal expansion12

Hence, at least ind51 we can completely reproduce th
behavior of the functionf d(t) discussed in Ref. 19,if we
assume that the differential equation~2! for the cooperon
remains valid when the classical potential is replaced by
quantum field mediating the Coulomb interaction.This re-
placement has been claimed by Golubev and Zaikin to
consistent with a fully quantum-mechanical calculation. It
the origin for the discrepancies between their work a
Ref. 11.

IV. DEPHASING DUE TO EXTERNAL FIELDS

In the experiments7,10 microwaves are coupled into th
system via an antenna attached to a suitable waveguide,
that alternating longitudinal currents are induced in
sample. Keeping in mind that the precise way in which
microwaves couple into the system is not known, we assu
for simplicity that the electrons feel a longitudinal electr
field of the form

E~r ,t !5E0cos~q0•r2v0t !, ~31!

wherev0 is the microwave frequency and the wave vec
q0 depends on the geometry of the waveguide and the
tenna. The corresponding potential in Eq.~2! is

V~r ,t !5V0sin~q0•r2v0t !, ~32!

with E05q0V0 /e. Let us emphasize that this is the tot
screened potential, which is the sum of the external poten
and the induced potential. Of course, the Maxwell equat
inside a metal contains a dissipative term, so that the fi
inside the metal is not given by a simple propagating wav20

In general, we expect that the field distribution inside t
n.
ng
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metal depends on the boundary conditions and on the pre
manner in which the microwaves are coupled into the s
tem. Such a calculation is beyond the scope of this wo
However, if the spatial variation of the field is sufficient
slow ~i.e., q0 is sufficiently small! the field inside the meta
can still be approximated by a plane wave. To estimate
upper limit forq0 where this approximation is correct, let u
assume that the external potential applied to the electron
Vext(r ,t)5V0

extsin(q0•r2v0t). The total potential is then

V~r ,t !5V0
ext Im@e21~q0 ,v0!ei (q0•r2v0t)#, ~33!

where the longitudinal dielectric function in the diffusiv
regime is given in Eq.~21!. Screening can be ignored in th
regime wheree(q0 ,v0) can be approximated by unity. From
Eq. ~21! it is easy to see that ind51 this is the case when

q0!Av0

D
, ~34!

while in d52 the external field is effectively not screened

q0!
v0

2pe2n2D
. ~35!

Keeping in mind that in a good metal 2pe2n2.1/l , we see
that Eqs.~34! and ~35! together withv0,1/tel are more
restrictive than the conditionq0,1/l , which has to be satis
fied in order to use the semiclassical equation~2!. We as-
sume thatq0 is sufficiently small so that the inequalities~34!
and ~35! are valid. From Eq.~8! we then obtain

Vt0
~q,v!5

V0
ext

2
~2p!d11@d~v2v0!2d~v1v0!#

3@e2 iv0t0d~qÀq0!1eiv0t0d~q¿q0!#. ~36!

This expression is now inserted into the general results gi
in Eqs.~7! and ~11!. For F1 we get
F1~k,t;r ,t !52 i
eE0

q0

3H ei (q0•r2v0t0)ImS 12e2D(q0
2
12k"q0)teiv0t

D~q0
212k"q0!2 iv0

e2 iv0tD 1e2 i (q0•r2v0t0)ImS 12e2D(q0
2
22k"q0)teiv0t

D~q0
222k"q0!2 iv0

e2 iv0tD J .

~37!
Performing the analogous calculation for the functionF2

given in Eq.~11! would result in a rather lengthy expressio
Since in the following we are only interested in the leadi
terms of an expansion in powers ofq0, it is more convenient
to first expandF1 and then use Eq.~10! to obtainF2.

If we take the limitq0→0 keepingE0 constant we obtain
a spatially constant field, which has been considered in R
6. In this limit the microwaves do not affect the density
the electrons. For finiteq0, however, the electric field in
f.

duces a density modulation with amplituder05E0q0 /(4p).
We now show that for sufficiently small microwave powerP
this leads to a dephasing rate 1/tAC proportional toP1/2, as
observed in Ref. 7. Note that the microwave powerP
coupled into the sample can be estimated as5,10

P5
~E0L !2

2Rtot
}E0

2 , ~38!
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whereL is the effective sample length including leads a
Rtot is the total resistance.

According to Eqs.~1! and ~4! the weak localization cor-
rection ds is determined by F(k,t;r ,t/2). In the
experiments7,10 the wavelength of the microwaves is larg
than the size of the sample, so that we may exp
F(k,t;r ,t/2) in powers ofq0. From Eq.~37! we obtain

F1~k,t;r ,t/2!52DeE0v0
22g1~v0t !$2kisin~v0t0!

1q0cos~v0t0!@ i ~122Dki
2t !12r iki#%

1O~E0q0
2!, ~39!

whereki5k•q0 /q0 , r i5r•q0 /q0, and

g1~x!5x cosS x

2D22 sinS x

2D . ~40!

Inserting this result into Eq.~10! yields

F2~k,t;r ,t/2!54D~eE0!2v0
23g2~v0t !sin2~v0t0!

1O~E0
2q0! ~41!

with

g2~x!5x1
x

2
cos~x!2

3

2
sin~x!. ~42!

Note that the second line in Eq.~39! is the leading correction
for finite q0 and smallE0. It can be shown12 that in the limit
q0→0, all higher-order termsFn , n>3 in our eikonal ex-
pansion vanish, so that the exact solution of the eiko
equation~5! is given byFq0505@F11F2#q050. The fact that
in a spatially constant field the cooperon can be calcula
exactly is obvious in a gauge where the electric field is r
resented in terms of a vector potential.6 It is reassuring to see
that our eikonal expansion reproduces the exact solution
different gauge. Substituting Eqs.~39! and ~41! into Eq. ~4!
and performing thek integration, we obtain for the wea
localization correction to the static conductivity

ds52
s0

pnd

v0
d/221

~4pD !d/2Ev0tel

` dx

xd/2
e2ag3(x)2gx

3
1

p E
0

p

dw
eag3(x)cos(2w)2 ibg1(x)cosw

A122ibg1~x!cosw
, ~43!

where

g3~x!5x1sinx2
8

x
sin2S x

2D , ~44!

and we have introduced the dimensionless parameters

a5
D~eE0!2

v0
3

, ~45!

b5
2DueE0uq0

v0
2

, ~46!
d

al

d
-

a

g5
G0

v0
. ~47!

Note that after thew integration the integral in Eq.~43! is
real, so that we may replace the integrand by its real p
which is independent of the sign ofE0. This is the reason
why in the definition~46! of b only the absolute value ofE0
appears. Note thatb is proportional to the absolute value o
the amplituder05E0q0 /(4p) of the density wave associ
ated with the longitudinal electric field.

The order of magnitude of the nonequilibrium dephas
rate 1/tAC can be estimated as 1/tAC'v0 /xc , wherexc is
the effective large-x cutoff for the integration in Eq.~43!.
For simplicity we now setg50. Depending on the ratio
a/b5ueE0u/(2v0q0)5uV0u/(2v0), we obtain different be-
haviors for 1/tAC . In the limit a/b→` we recover the re-
sults of Ref. 6. In this case 1/tAC}v0a for a!1, and
1/tAC}v0a1/5 for a@1. Note thata is proportional the mi-
crowave powerP}E0

2 absorbed by the system, whileb is
proportional toP1/2. Obviously, for sufficiently smallP we
always haveb@a. Then the cutoff for thex integration in
Eq. ~43! is determined byb, and we can seta50 to deter-
mine xc . The x integration is effectively cut off where the
integrand starts to oscillate. Thus we estimatexc from the
condition bg1(xc)'1. For b!1 the effective cutoffxc is
large compared with unity, so that with Eq.~44! we obtain
1/xc}b. This implies

1

tAC
}v0b, for a!b!1. ~48!

On the other hand, forb@1 the x integration is cut off at
small x and we approximateg1(x)'2x3/12. This yields

1

tAC
}v0b1/3, for a!b and b@1. ~49!

Hence, for sufficiently smallP the dephasing rate 1/tAC is
proportional toP1/2. Moreover, in this regimev0 /tAC should
be independent ofv0 as long as the dispersion of the long
tudinal density wave~i.e., the dependence ofq0 on v0) can
be neglected. Note that the conditionb@a@g where 1/tAC
should exhibit aP1/2 dependence can also be written as

Dq0
2@

v0

uV0u
G0@G0 . ~50!

Thus, for finiteG0 the value ofq0 must be sufficiently large
to observe theP1/2 law. Keeping in mind that according to
the conventional point of view4–6 the intrinsic dephasing rate
G0 should vanish forT→0, we conclude that at sufficiently
low temperatures and smallV0 Eq. ~50! can be satisfied for
experimentally relevant wave vectorsq0. Note that according
to Ref. 5 the observed saturation of the dephasing ti
which is typically of the order of a few nanoseconds, is d
to some external noise. If this is correct, then the experim
tally observed saturation value of the dephasing rate sho
not be identified withG0. The same arguments apply for th
condition uV0u@G0 that follows from Eq.~50! together with
Eqs. ~34! and ~35!. For low enough temperatures this in
equality should always be satisfied.~Most recent experimen
tal data21 indicate G0→0 for T→0 in narrow Ag wires.
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These probes therefore seem to be suitable to test our
ings.! In conclusion, in the limitT→0, the only relevant
restriction following from Eq.~50! should beuV0u!v0.

For convenience, let us summarize the assumptions m
in our derivation of the dephasing time due to external m
crowave radiation in this section. First of all, we have a
sumed that the microwave field inside the metal can be
proximated by a propagating wave with wave vectorq0,
frequencyv0, and amplitudeE05q0V0 /e. We have argued
that this approximation is valid in a regime where the diel
tric function of the bulk system can be approximated
unity, which is possible ifq0!Av0 /D in d51 and q0
!v0 /(2pe2n2D) in d52. Throughout this work we have
assumed diffusive dynamics and calculated the weak lo
ization correction to the conductivity from the semiclassi
equation~2!, which is of course only correct for sufficientl
small wave vectors (q0,1/l ) and frequencies (v0,1/tel).
Note that the latter inequality sets the upper limit for t
microwave frequency where our approach remains valid
these restrictions are satisfied, then the dephasing rate d
microwaves is

1

tAC
}5

v0
2/5P1/5 for uV0u@v0 and D~eE0!2@v0

2

v0
22P for uV0u@v0 and D~eE0!2!v0

2

~q0v0!1/3P1/6 for uV0u!v0 and DueE0uq0@v0
2

q0v0
21AP for uV0u!v0 and DueE0uq0!v0

2 ,
~51!

whereP}E0
2 is the microwave power absorbed by the sy

tem andV05eE0 /q0.

V. COMPARISON WITH EXPERIMENTS AND SUMMARY

Some time ago Wang and Lindelof7 have measured 1/tAC
as a function ofP in magnesium films. Their data from Re
7~a! are reproduced in Fig. 1. Atv0 /2p50.66 GHz our
predictionv0 /tAC}P1/2 is in good agreement with the ex
periment. Although the data atv0 /2p53.61 GHz cannot
be fitted by a straight line through the origin, the da
roughly scale as 1/tAC}v0

21 for fixed and smallP. One
should keep in mind, however, that in the experiments7 the
precise value of the microwave power coupled into the s
tem was not measured, and the power axis for the two se
data was rescaled differently. Further evidence for theP1/2

law can be found in Fig. 19 of Ref. 7~b!.
Recent measurements of 1/tAC by Webbet al.10 suggest a

P1/5 law for largeP in a limited range of frequencies. Ou
calculation shows that theP1/5 law should hold as long a
a@max$b,1%, while for b@max$a,1% we predict 1/tAC

}b1/3}P1/6. Keeping in mind thata/b}v0
21 we predict a
s

d-

de
-
-
p-

-

l-
l

If
to

-

-
of

crossover from aP1/5 via a P1/6 to a P1/2 behavior as the
frequency is increased. The data shown in Fig. 6 of Ref.
are consistent with the existence of such a crossover.

In summary, by means of an eikonal expansion for
cooperon in a slowly varying scalar potential, we have d
rived a general expression for the dephasing rate due to
tuating electric fields in disordered metals. Our method i
physically transparent alternative to the path-integral
proach used in Ref. 11. For randomly fluctuating fields w
zero average and arbitrary covariance the dephasing rate
be obtained from Eqs.~18! and~19!. These expressions tak
vertex corrections into account and remain finite in reduc
dimensions, where the well-known17,18 semiclassical resul
Eq. ~29! is infrared divergent for some physically releva
g(q,v). For example, in the case of 1/f noise,18 where
g(q,v)}1/v, the integral in Eq.~29! is divergent ind<2,
while our more general result@Eqs. ~18! and ~19!# is finite.
We have also studied dephasing due to external elec
fields, and have proposed an explanation for the data of
7. Finally, we point out that our eikonal method can also
used to calculate the diffusion in a fluctuating electric fie
which is of current interest in several contexts.22
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FIG. 1. Data forv0 /tAC as function ofP1/2 from Fig. 3 of Ref.
7~a!. HereP is the microwave power coupled into the system. T
solid line is a fit of the data atv0 /2p50.66 GHz to our prediction
v0 /tAC}P1/2, which is valid for smallP.
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