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Dephasing in disordered conductors due to fluctuating electric fields

Axel Volker and Peter Kopietz
Institut fir Theoretische Physik der Universit&attingen, Bunsenstrasse 9, D-37073ttBwen, Germany
(Received 13 October 1999; revised manuscript received 27 December 1999

We develop an eikonal expansion for the cooperon to study the effect of space- and time-dependent electric
fields on the dephasing rate of disordered conductors. For randomly fluctuating fields with arbitrary covariance
we derive a general expression for the dephasing rate that is free of infrared divergencies in reduced dimen-
sions. For time-dependent external fields with finite wavelength and sufficiently small amplitude we show that
the dephasing rate is proportional to the square root of the electromagnetic power coupled into the system, in
agreement with data by Wang and Linde[&hys. Rev. Lett59, 1156(1987)].

|. INTRODUCTION {8+ DP2+ T +i[V(r,to+1) = V(I to— O T}C(r. 1" Lt o)

The dephasing time,, of a particle in a quantum system =46(r—r")s(t—t'), (2
is the time over which its wave function maintains phase
coherence. For diffusive systems in dimensidrsl andd  whereP,= —iV, is the momentum operatoB is the diffu-

=2 the dephasing time can be obtained experimentally frongjon coefficient, and the phenomenological cutbff de-

the weak-localization correction to the CondUCtiVity in a scribes dephasing due to processes that are not exp||c|t|y
magnetic field. Recently Mohanty, Jariwala, and Welnted  treated in our calculation, such as inelastic electron-phonon
this method to measurg; as a function of the temperatufe  scattering or electron-electron scattering with energy trans-
in gold wires. They found that at sufficiently low tempera- fers|w|=T. The potential(r,t) is related to the longitudi-
tures 7, approaches a finite value. This is in disagreemenhg| electric field viaeE(r,t)=V,V(r,t), where —e is the

with the generally accepted point of viéwhat in thermal  charge of the electron. Fé,=V =0 thet integration in Eq.
equilibrium 7, should diverge a3 ", p>0, for T=0. A (1) diverges ind<2 at the upper limit, but for finitd, or V
proposal that the observed saturationgf is an intrinsic  the integration is cut off at some finite time, the so-called
ground-state property of interacting electrons in a randonyephasing time.

potentiaf has been heavily criticizetUntil now, there is no
general agreement on the microscopic mechanism for the
observed saturation af, at low temperatures. Il. EIKONAL EXPANSION
_One possible reason for this saturation might be external o1y Eq.(2) looks like the differential equation for
microwave radiation that is unintentionally coupled into the,o imaginary-time single-particle Green's function of an

system: According to Ref. 6 the dephasing ratedd due o glectron in a fluctuating external potential
a time-dependent but spatially constant electric field is pro-

portional to the microwave powéd? absorbed by the system
for small P, and crosses over to BY® law for larger P.
Experimentally the effect of microwaves on weak localiza-
tion has been studied by several authoréMost of the data  The real time version of this problem has been discussed
by Wang and Lindeldfcan be fitted with I#,cx PY2 Below  extensively in the quantum field theory literatdreBy
we shall offer a simple explanation for this behavior. Moremeans of a simple modification of the method developed by
recent data by Webet al1 are consistent with 85 law at ~ Fradkin'® (see also Ref. J8ve obtain the solution of Eq2)
high powersP, but in this experiment the microwaves seemin the following form??
to heat the sample, an effect that has not been taken into
account in Ref. 6, and that we will neglect as well.

Following Altshuler et al,®* we define the dephasing  ¢(r,r’,t,t’,ty)=0O(t—t')
rate in the diffusive regime via the weak localization correc- (2m)¢
tion So to the static conductivity. In the presence of an ex-

Vi (H ) =i[V(r,to+t) = V(r,to—t)]. ©)

ik-(r—1") o= (Tg+Dk3) (t—t") —F(k,t—t';r,t
ternal electric fieldSo can be written #5112 x el =g (ot PO =H ",
4
5 70 (" gy lfTOdtC Lol N
=- Im AT rlr’_’ - _1 1 . . - . -
M Toox2To) -1y 20 20 where the functiorF satisfies the eikonal equation
(1)
. o . . 52 & .

where oy is the Drude conductivityyy is the d-dimensional [d,+d+D(P+2k-P) JF(K, 7r,t)
density of states, and, is the momentum relaxation time. A
The cooperor® satisfied2-14 = Vi, (1O +DIPF (K, 71, )]% ®)
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with the boundary conditior(k,0;r,t)=0. Although in  Here
general Eq(5) cannot be solved exactly, we can easily ob- . A
tain an expansion of in powers of the potentia‘{/to(r,t). Vto(q,w)=i[e"‘“tOV(q,w)—e"”tOV(q,—w)] (8)

Setting . .
is the Fourier transform df/to(r,t), where

o

F(k,7ir,t)= 2> Fn(k,7ir,), (6) o
n=1 V(q,w)=f er dte” '@ r=eby(r t). 9

whereF, involves by definitionn powers of\/to, successive

terms may be calculated recursivékt5 6 For our purpose From Eq.(5) we find that the quadratic term is related to the

we need only the first two terms. The linear term is linear one via
dogdo ., = — | o(DPP+2DKP + ) (7 —7)
Fl(k,r;r,t)=f—(ZqT)dHe'(qr “OV (q,) Fao(k,7ir,t)= fodr e t
1— e [D(@+2k-)~iw]7 XD[ﬁ’rFl(k,T’;r,t)]z. (10
—. (7 . o
D(g?+2k-q)—iw The explicit calculation yields
dqide; [ dgdw; | o
Fz(k,T;r,t)Zf (277-)d+1f (Zw)d+1e'[(Q1+Q2) r (w1+w2)]tvt0(qlrwl)vto(quwz)

(Dql.qz)e—{D[(q1+q2)2+2k~(q1+q2)]—i(w1+w2)}f efDI(ar+a)%+2k-(ay + )] —i(wy + @)} |
[D(Q§+2k-q1)—iwl][D(Q§+2k-q2)—iwz] DL(1+2)2+ 2k (g1 +02) ]~ i (w1 + wy)

@D dr_q  @lD(Gi+2k-grt20;-a)—iwglT_ 1 g[D(G5+2k-Gpt20p-ap) ~iwglT_ |

(11)

2D01- G D(q2+2K G +201-0p)—iw;  D(Ga+2K- G+ 20+ 0y) — i wp)

Because we have made the diffusion approximation, the moA/e now perform a linked cluster expansion B{k,t) in
mentum integrations in Eqs7) and (11) are restricted to powers of the correlatay(q, ). To first order we find
lal,|a1],]gz2] <1N=1/(ve7e), and the frequency integrals to
|owl],|wq],|w,| <1l7g. Herel is the elastic mean free path and
ve is the Fermi velocity. For brevity we have not explicitly
written out these cutoffs in the above expressions.

3

I'(k,t)=T1(k,t) +T»(k,t), (15

where

I1l. DEPHASING DUE TO RANDOM FIELDS
1
A. General case Fl(k,t):—E(Ff(k,t;r,t/Z)), (16)
We now assume that the potenti(r,t) is a random
function with zero average and general covariance

<V(q,w)V(q’,w’)>=(2w)d“5(q+q’)5(w+w’)g(q,rz)l),z)

Lok, )= (Fo(K,t;r,t/2)). (17)

- . _ 2 . -
where(- - -) denotes averaging over the probability distribu- Introducing the notatiof, (q) =D (q”+ 2k-q) we obtain

tion of V. The dephasing rate is then defined in terms of the
average( do) of Eq. (1). Using the fact that after the aver- dqde
aging the cooperon is independent of the titpewe obtain ri(k,t)y= f ﬁg(q,w)
from Egs.(1) and (4), (27)
[1_e[Ek(q)iw]t 1— e [Ex(-a)+ia]t
Ex(a)—iw Ex(—a)tie
1— e [E@—i0lt 1 _ g~ [E(-0)-ialt
Ex(@) —iw Ex(-a)-iw
I'(k,t)=—In{e Flktrt2)y (14 (18

(sy=—2° [ gt _dK gtk Tk (13
Tel (2m)° ’

TVy

_e—ia)t

where
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23—d

Cq (24

T 22— d)(4—d)

Becausel'(t) grows for larget faster than linear, the term

2D¢? 1 .
Ex(@)—iw |Ex(—g)+iew

1—e 200°t | _ g [Ea)-ialt

dqd
r2<k,t>=f(23?‘ilg<q,w>

+ > E — I'ot in Eq. (13) is negligible, and the dephasing rate may be
2Dq o) ~—ie defined byI'(74)=1, which yields
1—e [E(—a)+ie]t 1 sin(wt) 1 C,T 2/(4—d)
Ev(—qg)+iw Ev(—g)—iw| o 7'_¢,_ m (25
[1-e 20t 1 g [E@ el In d=2 we find fort>1/T,
+elwt i
2Dq” Edla)+ie IN(Tt)Tt
1— e [E(-a)tio]t It~ 2mwv,D (26)
- - . (19 -
Ex(—ag)+iow so thatr, satisfies
1 In(Try)T
B. Nyquist noise T_¢ = W (27

As a special case let us assume that the poteNtis S : L o
generated by equilibrium fluctuations of the electric field dueKl?:spltgg|elng;:ndo:3:: in a good metatrid,D>1, this im
to the thermal motion of the electroflyquist nois¢. Then P 9

9(q, ) is determined by the fluctuation-dissipation theorem, 1 In(27v,D)T

. . . l
which implies ro " Zmv,D (28)
1) . in agreement with Ref. 11. Finally, id>2 the long-time
9(a,w)=—fqcoth o= |Im e~ %(q,w), (200 pehavior ofl'(t) is dominated by the term proportional to

in the second line of Eq(19). The total dephasing rate in
wheref is the Fourier transform of the bare Coulomb inter-d>2 can then be written as
action, and the dielectric function of the system is in the

diffusive regime given by _r dgdw 1 Dq?
T =lot | ——9(Q0)| ———"—
, P (27) (DO +w
Dq ~
€(qw)=1+fqrg———-. (21) =T+ CyT¥%(v4D9?), (29

Dg°—iw
where
The corresponding dephasing ratalirs 1,2,3 was calculated
by Altshuleret al1* with the help of a Feynman path-integral 22-d

representation of the solution of E). It is instructive to Cy= d d (30
E) sin( Z 77)

reproduce the results of Ref. 11 within our eikonal expan- w92(d—2)I"

sion, treatingd as a continuous parameter. It is important to

note that in the derivation of E?) the electromagnetic field ngte that ford—2 both prefactor<C4 and C4 diverge as

is treated classically*'* so that our calculation takes only 7 Yd—2|~L, signaling logarithmic dcorrectidons =2

into account Iow-frgquency Fou_rier components of thetha term in ,the large square brackets of E29) is the dy-

screened Coulomb interaction, withh|<T. The correlator  amic structure factor of the diffusing electrons in the regime

9(q,») in Egs.(18) and(19) can then be approximated by || <T, where the detailed balance facer®'T can be re-

placed by unity. This term agrees with the semiclassical

2T dephasing rate derived by Chakravarty and Schihisee

vDQ?’ (22)  also Ref. 18. It should be kept in mind, however, that Eq.
d (29) is only valid ind>2, where the integral is finite. Dia-

Because the momentum integrals in the following analysigrammatically Eq.(29) ignores vertex corrections in the
will be infraredand ultraviolet convergent, no further cutoffs Sethe-Salpeter equation for the cooperon, which becomes
are needed in our approach. important ind<2. In this case Eq(29) should be replaced

The dephasing rate is determined by the long-time beha/2y the more general expressio(®8) and (19), which are

9(q,0)~0(T—|w|)

ior of T'(t)=T'(k=0,t). In d<2 we find fort>1/T, free of infrared divergencies. o
Our I'(t) corresponds precisely to the functidg(t) in-

troduced recently by Golubev and ZaikihiTo make contact
with this work, let usassumehat Eq.(2) remains valid for
potentialsV(r,t) due to Nyquist noise with frequencies in
the rangd w|<1/7, so that in Eqs(18) and(19) we may
approximateg(q, )~ 0 (75— | w|) ® coth@/2T)/(v4Dg?).

2—d/2

F(t)“‘cdm, (23

where the numerical consta@, is given by
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Then we obtain in the quantum reginié<1 in quasi-one metal depends on the boundary conditions and on the precise
dimension to leading ordeF (t)~ 27 '7,Y%/(»,D¥?),  manner in which the microwaves are coupled into the sys-
which agrees with the leading term in the expansion of thdem. Such a calculation is beyond the scope of this work.
function f,(t) given in Eq.(28) of Ref. 19. Moreover, also However, if the spatial variation of the field is sufficiently
the subleading corrections ty(t) given by Golubev and slow (i.e., g, is sufficiently small the field inside the metal
Zaikin'® can be obtained within our eikonal expanstén. can still be approximated by a plane wave. To estimate the
Hence, at least il=1 we can completely reproduce the upper limit forq, where this approximation is correct, let us
behavior of the functiorf4(t) discussed in Ref. 19f we  assume that the external potential applied to the electrons is
assume that the differential equatid®) for the cooperon  V&(r,t)=Vg“sin(gy:r — wet). The total potential is then
remains valid when the classical potential is replaced by a ,

quantum field mediating the Coulomb interactidrhis re- V(r,t)=VeImLe (g, wp)e' T~ wat)], (33
placement has been claimed by Golubev and Zaikin to be

consistent with a fully quantum-mechanical calculation. It iswh?rrne tihe i'\?nr?'it:(lizm?zllt)iIesletr:tn%i:‘uncuﬁnbmi trr:er déffil:]s;\ée
the origin for the discrepancies between their work and ©9IMe IS give die-). Screening can be ignore ©

Ref. 11 regime wheres(gy,wg) can be approximated by unity. From
T Eq. (2)) it is easy to see that id=1 this is the case when
IV. DEPHASING DUE TO EXTERNAL FIELDS \/w\
In the experiments'® microwaves are coupled into the Go<Vp (39

system via an antenna attached to a suitable waveguide, such o . )
that alternating longitudinal currents are induced in thewhile in d=2 the external field is effectively not screened if
sample. Keeping in mind that the precise way in which the

microwaves couple into the system is not known, we assume < o

for simplicity that the electrons feel a longitudinal electric do 27e?y,D’
field of the form

(35

Keeping in mind that in a good metat2?v,>1/1, we see
E(r,t)=Eocoddo I — wot), (3D that Eqgs.(34) and (35 together withwo<1/7, are more

where w, is the microwave frequency and the wave Vectorrgstrictive than the conditioqo_< 1/I,_which has to be satis-

qo depends on the geometry of the waveguide and the arfied in order to use the semiclassical equatigh We as-

tenna. The corresponding potential in E2) is sume thaty is sufficiently small so that the inequaliti€34)
and (35) are valid. From Eq(8) we then obtain

V(r,t)=Vgsin(gg-r— wqt), (32 ot
with Eg=q¢Vo/e. Let us emphasize that this is the total V, (0,0)= —0(27r)d+1[8(w—w0)—5(w+wo)]
screened potential, which is the sum of the external potential ° 2
and the induced potential. Of course, the Maxwell equation X[~ 0o 5(q—qo) + €0 s(q+qo)]. (36)

inside a metal contains a dissipative term, so that the field
inside the metal is not given by a simple propagating wAve. This expression is now inserted into the general results given
In general, we expect that the field distribution inside thein Egs.(7) and(11). For F; we get

e
Fl(k,r;r,t)=—i—EO
o

1—e" D(d +2k-dg) Tal 007

e—iwot +e—i(qo-r—woto)|m

X [ el (do T~ woto) |m

1—e- D (g3~ 2k-dg) Taloor
5 - 5 - e_lwot .
D(qg+2k-go) —iwg D(dg—2k-0o) —iwg

(37

Performing the analogous calculation for the functiep  duces a density modulation with amplitugdg=Eyqq/(4).
given in Eq.(11) would result in a rather lengthy expression. We now show that for sufficiently small microwave powirer
Since in the following we are only interested in the leadingthis leads to a dephasing raterd4 proportional toP? as
terms of an expansion in powers @, it is more convenient observed in Ref. 7. Note that the microwave power
to first expandF; and then use Eq10) to obtainF,. coupled into the sample can be estimatetas

If we take the limitgy— 0 keepingE, constant we obtain
a spatially constant field, which has been considered in Ref.
6. In this limit the microwaves do not affect the density of p= < E2 (39)
the electrons. For finitg,, however, the electric field in- 2Ry
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wherelL is the effective sample length including leads and I

Ryt is the total resistance. Y=
According to Eqs(1) and(4) the weak localization cor-

rection do is determined by F(k,t;r,t/2). In the Note that after thep integration the integral in Eq43) is

experiments'® the wavelength of the microwaves is larger real, so that we may replace the integrand by its real part,

than the size of the sample, so that we may expandvhich is independent of the sign &j. This is the reason

(47)

(1)0.

F(k,t;r,t/2) in powers ofqy. From Eq.(37) we obtain why in the definition(46) of 8 only the absolute value d&,
appears. Note thak is proportional to the absolute value of
Fl(k,t;r,t/2)=2DeEowgzgl(wot){ZkHsir‘(woto) the amplitudepy=Eqqo/(47) of the density wave associ-
. 2 ated with the longitudinal electric field.
+0oCOS woto)[1(1—2Dkjt) +2ryk I} The order of magnitude of the nonequilibrium dephasing
2 rate 1/ac can be estimated as 7~ wg/X;, wherex. is
+O(Eoo). 39 the effective largec cutoff for the integration in Eq(43).
wherek =k-do/do, r|=r-do/do, and For simplicity we now sety=0. Depending on the ratio
al B=|eEy|/(2wgo) = |Vol/(2wy), we obtain different be-
X X haviors for 1fc. In the limit a/ B—o we recover the re-
gl(x)=xcos<§)—23|r<§). (40 guits of Ref. 6. In this case 4{cxwoa for a<1, and

. . _ _ 17 pc* woa™® for a>1. Note thate is proportional the mi-
Inserting this result into E¢(10) yields crowave powerPxE2 absorbed by the system, whif is
. /2 B . .
) _ 2 _3 . proportional toP2. Obviously, for sufficiently smalP we
Fa(k,t;r,t/2) = 4D (eEp)*wq *ga( wot)Sir(woto) always haveB> «. Then the cutoff for thex integration in
+O(E§qo) (41) Eq. (43) is deter.mmed pﬁ, .and we can ser=0 to deter-
mine X.. The x integration is effectively cut off where the
with integrand starts to oscillate. Thus we estimagefrom the
condition Bg;(x.)~1. For B<1 the effective cutoffx; is

X 3 large compared with unity, so that with E@4) we obtain
92(X) =X+ 5C08X) — 5SIN(X). (42 1. This implies

Note that the second line in E@9) is the leading correction 1

for finite g, and smallE,. It can be showi? that in the limit T %woB, for a<p<l. (48)
0o— 0, all higher-order term&,, n=3 in our eikonal ex- AC

pansion vanish, so that the exact solution of the eikonaPn the other hand, fop>1 the x integration is cut off at
equation(5) is given byFq _o=[F1+F]q . The fact that ~ smallx and we approximatg;(x)~ —x/12. This yields

in a spatially constant field the cooperon can be calculated 1

exactly is obvious in a gauge where the electric field is rep- —oxweBY3  for a<B and B>1. (49)
resented in terms of a vector potenfidt.is reassuring to see TAC

that our eikonal expan;ion reproduces the exact solution in Alence, for sufficiently smalP the dephasing rate 4/c is
different gauge. Substituting Eq89) and (41) into Eq.(4)  proportional toP2. Moreover, in this regime, / 7ac should

and performing thek integration, we obtain for the weak pg independent ab, as long as the dispersion of the longi-

localization correction to the static conductivity tudinal density wavei.e., the dependence of, on wy) can

41 be neglected. Note that the conditiB® o>y where 1lf,c

g 000 f” %e*aga(X)*vx should exhibit aP*? dependence can also be written as

TVy (47TD)d/2 “)OTeIXd/Z "
2> —O =
1 (=  ee9a()cos(2)—ifg;(xcose Ddo> 7, To>To- (50)
x> f de , SO . .

7 Jo V1—2iBg;(x)cose Thus, for finitel" the value ofgy must be sufficiently large

to observe the?? law. Keeping in mind that according to

the conventional point of viefv® the intrinsic dephasing rate

8 " I’y should vanish folT —0, we conclude that at sufficiently

g3(X) =X+sinx— —sin2<—), (44)  low temperatures and small, Eq. (50) can be satisfied for

X 2 experimentally relevant wave vectagg. Note that according
to Ref. 5 the observed saturation of the dephasing time,
which is typically of the order of a few nanoseconds, is due
to some external noise. If this is correct, then the experimen-

where

and we have introduced the dimensionless parameters

2
a= D(eE) ' (45) tally observed saturation value of the dephasing rate should
wg not be identified with"y. The same arguments apply for the
condition|V|>T; that follows from Eq.(50) together with
2D|eE|qo Egs. (34) and (35). For low enough temperatures this in-
p=——F— (46)  equality should always be satisfigtlost recent experimen-

wo tal dat&® indicate I',—0 for T—0 in narrow Ag wires.



PRB 61 DEPHASING IN DISORDERED CONDUCTORS DUE TO. .. 13513

These probes therefore seem to be suitable to test our finc 100 . .

ings) In conclusion, in the limitT—0, the only relevant 0 0,27=3.61GHz d
restriction following from Eq(50) should be|Vy|< wy,. @ /2m=0.66GHz
For convenience, let us summarize the assumptions mad 80 o ]

in our derivation of the dephasing time due to external mi-
crowave radiation in this section. First of all, we have as- __
sumed that the microwave field inside the metal can be ap,, 60 1
proximated by a propagating wave with wave vectpy %
frequencywg, and amplitudeEg=qyVy/e. We have argued =
that this approximation is valid in a regime where the dielec- & 0| 1
tric function of the bulk system can be approximated by 50
unity, which is possible ifgp<ywqe/D in d=1 and qq
<wq/(2me?v,D) in d=2. Throughout this work we have
assumed diffusive dynamics and calculated the weak local
ization correction to the conductivity from the semiclassical . .
equation(2), which is of course only correct for sufficiently % 10 ., 20 30
small wave vectorsd,<1/l) and frequenciesdo<1/7e). P [arb. unit]

Note that the latter inequality sets the upper limit for the
microwave frequency where our approach remains valid. |
these restrictions are satisfied, then the dephasing rate due
microwaves is

¢ FIG. 1. Data forwg /¢ as function ofP*2 from Fig. 3 of Ref.

% ). HereP is the microwave power coupled into the system. The
solid line is a fit of the data ab,/27=0.66 GHz to our prediction
wo ! Tac PY2, which is valid for smallP.

2/51/5 s 25,2 ) )
wy P for |Vo|>w, and D(eEp)*> wp crossover from & via a PY® to a P2 behavior as the
1 wgzP for |Vo|>wo and D(eE0)2<w§ frequency is increased. The data shown in Fig. 6 of Ref. 10
— 1/351/6 3 o2 are consistent with the existence of such a crossover.
Tac | (dowo) P for [Vo|<wo and DleEy|qo> wp In summary, by means of an eikonal expansion for the
Jowo VP for |Vo|<wo and D|eEy|qy<wj,  cooperon in a slowly varying scalar potential, we have de-

(51 rived a general expression for the dephasing rate due to fluc-
tuating electric fields in disordered metals. Our method is a
physically transparent alternative to the path-integral ap-
proach used in Ref. 11. For randomly fluctuating fields with
zero average and arbitrary covariance the dephasing rate can
V. COMPARISON WITH EXPERIMENTS AND SUMMARY be obtained from Eq$18) and(19). These expressions take
vertex corrections into account and remain finite in reduced
dimensions, where the well-knowh'® semiclassical result

where PocE(z) is the microwave power absorbed by the sys-
tem andVy=eE,/qo.

Some time ago Wang and Lindeldfave measured /¢

as a function o in magnesium films. Their data from Ref. . . ;
7(a) are reproduced in Fig. 1. Ab/27=0.66 GHz our Eqg. (29) is infrared divergent for some physically relevant

prediction wo/ 7ac PY2 is in good agreement with the ex- 9(d:@). For example, in the case of fl;hoise}g. where
periment. Although the data aéy/27=3.61 GHz cannot 9(d:@)*1/w, the integral in Eq(29) is divergent ind<2,

be fitted by a straight line through the origin, the datahile our more general resulEgs. (18) and (19)] is finite.
roughly scale as 1‘Ac°<w51 for fixed and smallP. One We have also studied dephasing due to external electric

should keep in mind, however, that in the experimétite fields, and have proposed an explanation for the data of Ref.

precise value of the microwave power coupled into the sys-7' Finally, we point out that our eikonal method can also be

tem was not measured, and the power axis for the two sets &S?d t(.) calculate the diffusi_on in a fluctuating electric field,
i . which is of current interest in several conteXs.

data was rescaled differently. Further evidence for Ri&

law can be found in Fig. 19 of Ref/([d).

Recent measurements ofri4 by Webbet al1° suggest a
P> law for largeP in a limited range of frequencies. Our ~ We thank P. E. Lindelof and P. Mohanty for their com-
calculation shows that thBY® law should hold as long as ments and for helping us to understand the experin?e]l’?ts.
a>maxXB,1}, while for B>maxa,1} we predict 1f,c  This work was supported by the DFG via the Heisenberg
« B3 P16, Keeping in mind thai/Bxw,* we predict a Programm and SFB 345.
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