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Importance of spatial versus temporal nonlocality

Manfred Lein
Institut fir Theoretische Physik, UniversttaVirzburg, Am Hubland, D-97074 Waburg, Germany
and Institut fur Physikalische Chemie, Universit®/irzburg, Am Hubland, D-97074 Waburg, Germany

E. K. U. Gross
Institut fir Theoretische Physik, UniversitaVirzburg, Am Hubland, D-97074 Waburg, Germany

John P. Perdew
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118
(Received 11 November 1999

Within density functional theory, a coordinate-scaling relation for the coupling-constant dependence of the
exchange-correlation kerngl(r,r’; ) is utilized to express the correlation energy of a many-electron system
in terms off,.. As a test of several of the available approximations for the exchange-correlation kernel, or
equivalently the local-field factor, we calculate the uniform-gas correlation energy. While the random phase
approximation f,. = 0) makes the correlation energy per electron too negative by about 0.5 eV, the adiabatic
local-density approximatioff,. = f,.(q = 0,0 = 0)] makes a comparable error in the opposite direction. The
adiabatic nonlocal approximatidt,. = f,.(q, = 0)] reduces this error to about 0.1 eV, and inclusion of the
full frequency dependendd,. = f,.(q,»)] in an approximate parametrization reduces it further to less than
0.02 eV. We also report the wave-vector analysis and the imaginary-frequency analysis of the correlation
energy for each choice of kernel.

[. INTRODUCTION change energy in closed form and the correlation energy in
terms of the xc kernel,., which is defined in the context of
The treatment of electron-electron correlations in manytime-dependent density functional theofyDDFT).12 For
electron systems has been a long-standing problem. It i¢he uniform gas, a nice introductory discussi@vhich ig-
known that long-range correlations can be described withimores the frequency dependencefg is given in Secs. I
the framework of the random phase approximatig®A).!  and IV of Ref. 13. For nonuniform systems, however, very
Such calculations have been carried out not only for the unifew approximations foff,. are available. Except for the ex-
form electron g&&® but also for inhomogeneous systems plicitly orbital-dependent formula suggested by Petersilka,
such as jellium surfacés. Gossmann, and Gro$BGG),**°the only way of construct-
The RPA, however, does not give a good description ofing f,. is to apply the uniform-gas quantitg)“xgm(q,w) in
short-range correlations. As a result, RPA ground-state enesome way to the inhomogeneous system of interest.
gies by themselves are not very accurate. In the uniform Directly connected tdﬂg”‘(q,w) is the local-field factor
electron gas, at least the second-order exchange energy m@{q, ), which has often been used to express corrections to
be added to the RPA correlation energy in order to provide @he RPA in the uniform electron gas:
useful estimate of the total correlation energy. In small finite
systems, where short-range contributions are even more im- a“ Lo
portant than in extended systems, we cannot expect pure G(q,0)=~ 7—=fc"(0,0). ()
RPA to be a good approximation. This is confirmed by cal-
culations for atoms and molecutéswhich treat the short- In spite of several decades of intensive research, we are still
range contribution to the correlation energy in a densitylacking complete knowledge of the local-field factor. Most of
functional framework using generalized gradient approximathe effort®-241323-28yyent into the determination of the
tions. (Interestingly, however, the RPA appears to give ac-static local-field factoiG(q) =G(q,» = 0). Thereby, many
curate atomization energies for moleculés. exact properties o6(qg) have been found, and parametriza-
Density functional theo? (DFT) has proven an ex- tions have been given. The most recent work includes the
tremely successful method in electronic-structure calculaMonte Carlo study by Moroni, Ceperley, and Senatbend
tions of atoms, molecules, and solids. The central quantity ithe parametrization thereof given by Corradatial?® The
DFT is the exchange-correlatidrc) energy, which may be frequency dependence of the local-field factor has received
split into exchange and correlation terms, and the success &#ss attention; some studies have explored the limit of long
DFT is based on the construction of reliable approximationsvavelength$?=23 but work has also been done for the full
for the xc energy. A systematic way of finding such approxi-range of argumentsg(w).34-38
mations is provided by the adiabatic connection forniafa, For the construction of approximate xc energy functionals
since for an arbitrary system it exactly expresses the exen the basis of the adiabatic connection formula, it is of vital
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interest to assess the quality of the approximationsffgr By virtue of the Runge-Gross theoréththe quantities
that enter the construction. The purpose of this article is t@(r,t) andv(r,t) can be considered as functionals of the
test the available parametrizations fgf by calculating the time-dependent density and the initial state:

resulting uniform-gas correlation energies. In particular, we

will answer the question: How important are the wave-vector v(r,)=v[n¥ol(r,n), ©
dependence and frequency dependence of the xc kernel? Our

answer will support the pioneering studies of Singwi and v ) =vs[n,Weo] (r,1). )
others'®*® which provided realistic estimates for the corre- (The existence of the Kohn-Sham potential can be proved in

lation energy of the uniform electron gas by taking accounthe case that the system is stationary tfe0 2% It follows
of theq dependence df“;(gm while ignoring itsw dependence. from Egs.(4)—(7) that

We believe that our conclusions extend to nonuniform sys-

tems as well: The nonzero range Bf(r,r';w) must be Vel 1) =vxe [N, W0, Wo] (1,1). (8)
taken into account in any accurate calculation of the xc ens

o . : he same formalism can be written down for a system with
ergy, while its frequency dependence is less important.

i 2(0s\< -
The evaluation of the correlation energy requires as inpu educed Coulomb coupling strengte” (0= =1) and den

the xc kernel for all values of the Coulomb coupling constant ity n(r,t). The external potential and the xc potential of
between 0 and 1. This is the motivation for the study Ofsuch a system, as functionals of the density and the initial

N
coordinate scaling in Sec. Il, which directly relates the de-States Vo and W, are denoted aw7[n,Wo](r,) and

)\ .
pendence on the coupling constant to the density deper‘l’ﬂ[n’wo’qfsoj(r't)’ respectively. It has been shoffrthat
dence the xc potential at coupling constantis related to the xc

potential at\=1 by the scaling relatioincluding the de-

pendence on the initial stajes
Il. SCALING OF THE EXCHANGE-CORRELATION

KERNEL 03 [N W0, Wso] (1) =N?0,c [N, W5, W] (Ar\2),
In this section, we use time-dependent density functional ©

theory and dynamic scaling to derive EG7), which shows  with
how to find the coupling-constant dependence of the

frequency-dependent xc kernel in any system from a knowl- W ioo{riH =N "3N2w o o({r; N}, (10)
edge of its density dependence at full coupling strength. For
the uniform electron gas, however, we shall need only the n'(r,t)=x"3n(r/\,t/\?). (11

simple and readily anticipated E(R2).

The Hamiltonian of a many-electron system subject to aTo prove Eq.(9), one first shows that

time-dependent external potentiglr,t) is given by oM N, Wol (r,)=A2u[n’, W] (Ar,\2) (12)
H<t>=?+\7vc|b+f d® n(ru(r,t), 2 vs [N Peol (=A2vs [N, Wil (Ar N2, (13
A A - ~and
where the operator$, W¢y,, andn represent the kinetic
energy, the electron-electron Coulomb interaction, and the vﬁ[n](r,t)z)\zvH[n’]()\r,)\Zt). (14)

electron density. We consider the case that,t) is time- )
independent fot<0. At t=0, the system is in the initial 1hen, Eq.(9) follows from Eq.(4), taken at coupling con-
state W, with densityny(r). For t>0, the system evolves Stant\. o _ _

with a time-dependent density(r,t). In TDDFT, the Kohn- Now we specialize to the following case: For tines0,
Sham(KS) potentialv (r,t) is defined such that the density the system with coupling constaxtis in its ground stateq
n(r,t) is reproduced by a system of noninteracting particlegVith densityn(r). We assume that the ground state is non-
moving in the potentiabs. The KS initial state¥ g is cho- ~ degenerate. We apply the above scaling, E4@) and (1),
sen such that it reproduces the initial densitfr) and the and find that the scaled wave functigiff, is the ground state

initial time derivative of the density? The Hamiltonian of  ©Of the system with full couplingX = 1) and scaled ground-
this KS system reads state densityr’. This can easily be checked by inspection of

the stationary Schdinger equation. Then, according to the
Hohenberg-Kohn theorem for ground statesl, and v

are density functionals. The same is true B, and ¥,
under the assumption that the densityr) can be ob-
tained as the ground-state density of a noninteracting system.
Thus, the initial-state dependence can now be dropped from

HKS(t)zﬂf d3rn(r)vgr.t). ©)

The definition of the xc potential,(r,t) follows from the
decomposition of the KS potential into

_ Eqg. (9).
D @ The xc kernel is defined as the functional derivative of the
where the Hartree potential, is defined as XC potential:

’ S A ,
vH(r,t)zezfd?’r’ﬂ(i—r’,t). (5) fﬁc[n](r,t;r’,t’)z%. (15)
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By taking the functional derivative of Eq9), we arrive at
the desired scaling relation for the xc kernel:

fr (N1 (e t) =N [n']T (A N2 N2,
(16)

If we further specialize to the situation where the system
always remains infinitesimally close to its initial ground state
with density n(r), then the xc kernel describes the time-
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In the coupling-constant integration ovir the density is
held fixed at the densityi(r) of the fully interacting system.
The response function obeys the Dyson-type equdtion

XN w) = XO(r ' w)
=f dgxf d3x" X0(r, % @) Fh X, X s ) XNX F s ),

(24)

dependent linear response of the density and depends on the
difference (—t’) only. Hence we can evaluate the Fourier With

transform of Eq.(16) with respect to (—t'):

fr . [n](rr ;)=\t [N T(NFNF; 0/N2). (17)

In the uniform electron gas, the density is constant in.
space and the xc kernel depends only on the differenc

(r—r"). Then Fourier transformation of Eq17) with re-
spect to (—r') yields

f3dn] (q,@) =Nt [n/\3] (a/N, 0/\?).  (18)

Finally, we use the relation between local-field factor and xc

kernel,

2

X _ A
G (q,w)——mfxc(q,w), (19
to obtain the scaling of the local-field factor:
GMn](q,@)=G[n/\%] (g/\,w/\?). (20)

Equation(20) shows that the limih — 0 is closely connected

2

[x=x'|

One way?® of calculatingE, is to approximatey and f,

fh XX @)= + (%X ). (25)

independently of each other on the right-hand side of Eq.

4) and then substitute into E23). In another approach,
one chooses a given approximation ﬂ(j;g and solves the
integral equation(24) for x*. While the solution of the
Dyson equation is demanding in general, it becomes trivial
in the case of the uniform electron gas where we have

YERSE—C
I 0) Ty a,0)
with the well-known Lindhard functiory®(q,w). Thus, the

correlation energy per electran follows from Eq.(23) and
Eq. (26):

(26)

fe?
6C: -
°n

w 1 w 9(q,iu)12fpJa,iu
dqf d’\f du[x(q ?] hhc(q.).
o Jo Jo 1-x%aq,iu)fi(a,iu)

(27)

to the high-density limit ofG(q,w). This becomes even The Lindhard function at imaginary frequenay is known
more apparent if we write the local-field factor as a functionexact|y_3

of rg, g/kg, andw/ wg, with

4m A U z

3 (1) = Ke=37"n, wp=7_, (21
whereay=%2/(me?). Then

G}‘(rs,q/k,:,w/w,:)ZG()\rs,q/k,:,a)/w,:). (22)

Note that Eq.(22) becomes independent of in the
exchange-only or high-density limit {—0), and also in the
strong-coupling or low-density limitrg— o) if such a limit
exists forG.

Ill. CORRELATION ENERGY FROM APPROXIMATE
EXCHANGE-CORRELATION KERNELS

O(quiu) = mke QZ—E2—1IPEZ+(Q+1)2
A I NG EE
1+Q

~ ~ 1-
—1+uarctar—=—+ uarctaHN—Q , (28
u u

with

g ~ mu
Q=%k Y= gk

Therefore, in Eq(27) only the xc kernel has to be approxi-
mated. Owing to Eq(18), it is sufficient to have the xc
kernel at coupling constant=1.

In the following, we give a list of approximations that we
have tested.

(29

In any many-electron system, the adiabatic connection (a) RPA f,.=0.

formula® allows us to write the correlation enerdy; in

(b) ALDA (Adiabatic local-density approximatiopnThis

terms of the xc kernef}, and the density-density response is the long-wavelength limit of the static xc kernel:

function y* (see, e.g., Ref. 21

e2

fi
Ec=—=— d3rf d3r’
¢ 2w lr—r'|

led)\ Jwdu[)("(r,r’;iu)—XO(r,r’;iu)]. (23
0 0

fAPA= lim 7o g, w=0).
q~>0

(30

It can readily be expressed in terms of the xc energy per
electrone,:

2

d
et =gz nex(n].

(31)
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(c) Parametrization by Corradini et al. (Ref. 28) for the T ' I '
static xc kernelThis is a fit to the quantum Monte Carlo data
published by Moroni, Ceperley, and Senattfrand it satis-
fies the known asymptotic smail-and largeq limits. It in-

terpolates between different valuesrgf Therefore it can be

ALDA

Corr;’idini local RA static RA

(e~ ™) V)
o]

evaluated for arbitrary values of the density, in contrast to N i PGG 1
the original parametrization given in Ref. 27. o ’0'2__ ]
(d) Parametrization of Richardson and Ashcroft (RA) for 04k RPA _
the xc kernel at imaginary frequenciebhis approximation 5 j
is based, not upon Monte Carlo data, but upon results of g . ; : 1'0 . s

numerical calculations done by RA.It is constructed to
satisfy many known exact conditions. The formula that we
use for the xc kernel is related to RA’s quantiti&s and
spin-symmetrit® G by

r (au.)

FIG. 1. r+dependent deviation of approximate correlation ener-
gies from the “exact” correlation energy per electron of the uni-
o2 form electron gasRef. 47).
q° [C(QIVI+Ga(QiU)]. (39 where ¢ and f, are the KS orbitals and their occupation
numbers(0 or 1). This approximation, unlike the ones listed
above, is readily applicable to any inhomogeneous system.
In the uniform gas, transformation tpspace yields

fRA(qiu)=—

with

q u
=—, U=—. 33
%2k Awr % oo 3me? (| 2 1+Q
We have replaced Eq$39) and (40) of RA’s article by the R aw)=- 10k2 [(6—10Q)In |[1-Q|
following equations, which correct typographical errors
: 1 1
there: +(2Q%-10Q?)In| | 1+ = ‘1— —H
2/3 2 Q Q
32 1%
xg°>+ng>>:1——(—) re=z€, (RA39
2\ 3 g +11+ 2Q2}, (37)
and
where Q=q/(2kg). Due to its exchange-only nature, the
o 3 27a d PGG kernel, taken at coupling constantis simply propor-
S ):g_ = r§£50+ 2rsec). (RA40)  tional to ).

Wherever the xc energy,. is required as input, we use
[In both equationse, is expressed in Rydbergs, as in RA’'s the parametrization by Perdew and Wahgof the
article. For Eq(RA:39), compare Eq(2.21) of Ref. 22 and  Ceperley-Aldef® diffusion Monte Carlo data.
Eq. (2.13 of Ref. 43. For Eq(RA:40), see Eqs(1.1), (2.23),

(4.1, an(Ij(DIQb)' of Ref. 23] The R_A formula requires the IV. RESULTS AND DISCUSSION
on-top pair distributiong(0), for which we use the param-
etrization by Perdew and Wang given in Ref. 44. We expect that RA’s parametrization will be close to the
We also test the static limit o (q.iu), exact uniform-gas xc kernel and that the Corradini param-
etrization will be close to the exact static limit. The ALDA is
fSRiCRA q) =RA(q,0), (34  the exact long-wavelength limit of the static xc kernel.

Hence, a comparison between these three cases will clarify

in order to compare with the static Corradini approximation.the importance of both wave-vector and frequency depen_
(For a comparison of the RA and Monte Cafflg. in the  dence of the xc kernel.

static limit, see Fig. 3 of Ref. 2). We calculate the correlation energy from Eq.(27) and
As a dynamic but spatially local approximation we may syptract the “exact” correlation energ®™®® (from the pa-
use the long-wavelength limit dfi/\(q,iu), rametrization of Ref. 47 The result for ¢ = 0—15 is shown
local RA. - RA. - in Fig. 1. The RA curve differs from the exact curve by less
i FAGU) = 13204, (35 than 0.02 eV, i.e., it reproduces the exact correlation energy

which we refer to as “local RA.” perfectly. With a deviation of less than 0.1 eV, the Corradini

H H ; ; xact)
(e) PGG.This formula was derivéd'5in the context of approximation gives a good estimate ei? as well. We

the time-dependent optimized effective potential metifgy.  note that the result of thstatic version of the RA formula

is a frequency-independent exchange-only approximation fofes almost on top of the Corradini curve. Fro.m. this we infer
inhomogeneous systems. Its real-space version reads that the small error produced by the Corradini parametriza-
tion is in fact due to its static nature. Thus we are able to

conclude that neglecting the frequency dependence causes an
) |>) fed(r) ik (r'))? error typically smaller than 0.1 e\(The greatest uncertainty
f)'?GG(r,r/;w):_ 2e K . (36) in the “exact” correlation energy occurs around=1,
Ir—r’| n(ryn(r’) where the parametrization of Ref. 47 givesl.63 eV, in
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good agreement with the older released-node diffusion

Monte Carlo value of Ceperley and Ald&(—1.62 eV}, but ]

not so close to the newer fixed-node value of Ortiz, Harris,

and Balloné® (—1.53 e\}. Although released-node values

should be more accurate in principle, the newer fixed-node —~ 05

values are based upon much larger electron numbers. The @

recent backflow fixed-node result of Kwon, Ceperley, and ) — exact ]

in50 ; “ 8 = ---- RPA

Martin> (—1.64 e\j is, however, very close to our “exact w --- ALDA

Va|ue) -l == Corradini| ]|
It is known and also visible in Fig. 1 that in the RPA the S N p - l:{;ic RA|

correlation energy is too negative. One may hope that a — PGG

simple approximate xc kernel can roughly fix this deficiency. -5 R /, . [ . 7]

We recognize, however, that the simplest choice, the ALDA, 0 0.5 1 15

severely overcorrects., so that the absolute deviation from q/(2k)

the exact correlation energy remains about the same as in the
RPA. (A similar trend was previously observed for the FIG. 2. Wave-vector analysi€q. (38)] of the correlation en-
exchange-only version of the ALD®, and for an approxi- €rgy per electron of the uniform gas f=4. Approximations are
mately scaled ALDA for exchange and correlatidrin the compared to the “exact” wave-vector analysis of Ref. 44.
uniform gas) Further, Fig. 1 shows that the local R@ly- ) )
namic approximationperforms better than the ALDA, but [N Fig. 2 we compare approximate and “exact” wave-
worse than Corradini or static RA. Therefore, it seems tha¥ector analyses forg = 4. While the RPA curve is too
the wave-vector dependence of the xc kernel must not bBegative for alig, we note that the ALDA is quite correct for
neglected, or in other words, that the xc kernel is very nonSmalld. The ALDA overcorrection tae; comes from posi-
local. tive contributions at large. To a much smaller extent, the
The PGG approximation behaves somewhat differently ifcorradini curve also exhibits this behavior. In general, how-
that it yields an underestimate for smalland an overesti- ©€Ver, it is close to the exact wave-vector analysis, as are RA
mate for larger.. It is a very good approximation in the and static RA. In the case of PGG, we note a substantial error
ranger = 5-10. Its behavior near, = 0 indicates that the Cancellation between small and largevalues. _
PGG kernel differs from the exact exchange-only kernel, AS @ complement to the wave-vector analysis, we define
since exchange should dominate in the high-density limit. the imaginary-frequency analysig(u) of the correlation en-
To gain further insight into the effects of tredepen- €9y Py writing Eq.(27) as an integral oveu:
dence and ther dependence of,. in Eq. (27), we analyze

the correlation energy into contributions from density fluc- €= f OCEC(U) d(i , (41)
tuations of different wave vectorgand imaginary frequen- 0 wp
ciesu. Equation(27) naturally defines a wave-vector analysis .
e.(q) if only the q integration is written explicitly while the With the plasma frequency,, given by
other integrations are incorporatedédg(q): , 4me?n
wy= . (42
m

* q
e[ et d(Z_kF) (38

The exact wave-vector analysis is essentially given by t
Fourier transform of the exact coupling-constant average

correlation-hole densitpgu(r): :

Sincee(u) is not known exactly, we must restrict ourselves
hdo a comparison among different approximations, as dis-
@Iayed in Fig. (low u) and Fig. 4(highu) forrg= 4. In all

I T T T T T r
-0.51
2e’ke — I
e q)=——ngd(a), (39 aF
where o —1.5_—
L
a7
- — ©) L
QC(Q):J' dargc(r)qu_iQ'r)- (40) w® =25 —_l.-"/ , - l%;nadini .
— 3 .-"! R P static RA| ]
A parametrization ofg(r) has been given by Perdew and ~F — PGG ]
Wangf14 Although this parametrization misses the nonana- 35 ]
lytic behavior ofg.(q) at q=2kg, it is otherwise almost (; . 0{1 L 0'.2 . 0{3 . 0{4 —

“exact.” A recent comparisorfPaola Gori-Giorgi(private
communicatioh] of the Perdew-Wangy}~*(q) for re=4
with that from the diffusion Monte Carlo simulation of Ref.  FIG. 3. Imaginary-frequency analydigq. (41)] of the correla-
49 demonstrates full agreement within the numerical noise ofion energy per electron of the uniform gasrate4 in various
the simulation. approximationglow-u regime.
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FT T T T T T of the xc kernel also appears to be weak in the two-
dimensional electron gas; see Fig. 1 of Ref. 53.

By Eg. (15), the xc kernelf,(r,t;r’,t") describes the
linear response of the xc potentia). at postionr and timet
to an electron-density fluctuation localizedratandt’. The
spatial rangédr —r’| of f,. is the range of the xc hole itself,
and so cannot be neglected in the calculation of the correla-
{5 A Corradini| - tion energy(as it would be in a spatially local approxima-

/’ — RA tion). The temporal rangd—t’ is, however, somewhat

A IS)“‘GECRA 1 shorter than typical time scales that contribute to the corre-

/ lation energy, makingd,. almost local in timestatic or adia-

i batic).

05 1 15 2 25 3 35 4 The Richardson-Ashcrdftexpression for the xc kernel of
u/o the uniform electron gas performs well; its imaginary-

frequency dependence yields a small but significant improve-

FIG. 4. Imaginary-frequency analydigq. (41)] of the correla-  ment in the correlation energy relative to the static RA ap-
tion energy per electron of the uniform gasrat=4 in various  proximation.
approximationghigh-u regime. Very accurate ground-state energy calculations for inho-

mogeneous densities may require a method that is correct not
casesgd(u) starts with a finite negative value at= 0 and  only for slowly varying densities, as are the local spin den-
then smoothly approaches zero. As before, the RPA is tosity (LSDA) and generalized gradiedfGGA) approxima-
negative everywhere. For small frequencies, ALDA, Corra-tions, but also at the level of the random phase approxima-
dini, and RA results are practically equal; the differences areion [ f}.=0 in Eqgs.(23)—(25)], which treats exchange and
located atu= w,. In the ALDA, €(u) becomes positive at |ong-range correlation exactly. One way to achieve this is to
u~1.5w,. PGG exhibits a slight error cancellation betweenmake a RPA Kohn-Sham calculation, treating the short-
small and largeu, yet it appears to have a very accuraterange correction to the RPA as an extra energy term in the
frequency analysis in the high-regime if we take RA as LSDA or GGA® A second possibility, suggested by our
standard. In consistency with our earlier findings, the Corrapresent work, is the approximation
dini curve is very close to the static RA curve. In a rough
estimate, the latter starts to deviate from the dynamic RA at 2 (r,r’;w)=f20"*([n(r)+n(r")1/2)r—r'],»), (43
aboutu~ w,.

Note that an accurate hybrid kernel may be constructed byherefie™ (n,|r—r’|,w) is the kernel of the homogeneous
using the Corradini kernel at smalland the PGG kernel at gas. According to Appendix A of Ref. 6, this approximation
large u.%? Then, a generalization to inhomogeneous systemwiill correctly make the correlation hole density around an
would require modification of only the static Corradini ker- electron integrate to zero. The average density argument in
nel, which has a much simpler analytical structure than thd=q. (43) is chosen as in Ref. 54. Equatio#3) may also be
fully frequency-dependent RA kernel. useful for the calculation of excitation energiés.
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