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Electron correlation energies from scaled exchange-correlation kernels:
Importance of spatial versus temporal nonlocality
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Within density functional theory, a coordinate-scaling relation for the coupling-constant dependence of the
exchange-correlation kernelf xc(r ,r 8;v) is utilized to express the correlation energy of a many-electron system
in terms of f xc . As a test of several of the available approximations for the exchange-correlation kernel, or
equivalently the local-field factor, we calculate the uniform-gas correlation energy. While the random phase
approximation (f xc 5 0! makes the correlation energy per electron too negative by about 0.5 eV, the adiabatic
local-density approximation@ f xc 5 f xc(q 5 0,v 5 0!# makes a comparable error in the opposite direction. The
adiabatic nonlocal approximation@ f xc 5 f xc(q,v 5 0!# reduces this error to about 0.1 eV, and inclusion of the
full frequency dependence@ f xc 5 f xc(q,v)] in an approximate parametrization reduces it further to less than
0.02 eV. We also report the wave-vector analysis and the imaginary-frequency analysis of the correlation
energy for each choice of kernel.
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I. INTRODUCTION

The treatment of electron-electron correlations in ma
electron systems has been a long-standing problem.
known that long-range correlations can be described wi
the framework of the random phase approximation~RPA!.1

Such calculations have been carried out not only for the u
form electron gas2,3 but also for inhomogeneous system
such as jellium surfaces.4

The RPA, however, does not give a good description
short-range correlations. As a result, RPA ground-state e
gies by themselves are not very accurate. In the unifo
electron gas, at least the second-order exchange energy
be added to the RPA correlation energy in order to provid
useful estimate of the total correlation energy. In small fin
systems, where short-range contributions are even more
portant than in extended systems, we cannot expect
RPA to be a good approximation. This is confirmed by c
culations for atoms and molecules5,6 which treat the short-
range contribution to the correlation energy in a dens
functional framework using generalized gradient approxim
tions. ~Interestingly, however, the RPA appears to give
curate atomization energies for molecules.5,6!

Density functional theory7,8 ~DFT! has proven an ex
tremely successful method in electronic-structure calcu
tions of atoms, molecules, and solids. The central quantit
DFT is the exchange-correlation~xc! energy, which may be
split into exchange and correlation terms, and the succes
DFT is based on the construction of reliable approximatio
for the xc energy. A systematic way of finding such appro
mations is provided by the adiabatic connection formula,9–11

since for an arbitrary system it exactly expresses the
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change energy in closed form and the correlation energ
terms of the xc kernelf xc , which is defined in the context o
time-dependent density functional theory~TDDFT!.12 For
the uniform gas, a nice introductory discussion~which ig-
nores the frequency dependence off xc) is given in Secs. II
and IV of Ref. 13. For nonuniform systems, however, ve
few approximations forf xc are available. Except for the ex
plicitly orbital-dependent formula suggested by Petersil
Gossmann, and Gross~PGG!,14,15 the only way of construct-
ing f xc is to apply the uniform-gas quantityf xc

hom(q,v) in
some way to the inhomogeneous system of interest.

Directly connected tof xc
hom(q,v) is the local-field factor

G(q,v), which has often been used to express correction
the RPA in the uniform electron gas:

G~q,v!52
q2

4pe2 f xc
hom~q,v!. ~1!

In spite of several decades of intensive research, we are
lacking complete knowledge of the local-field factor. Most
the effort16–22,13,23–28went into the determination of the
static local-field factorG(q)5G(q,v 5 0!. Thereby, many
exact properties ofG(q) have been found, and parametriz
tions have been given. The most recent work includes
Monte Carlo study by Moroni, Ceperley, and Senatore27 and
the parametrization thereof given by Corradiniet al.28 The
frequency dependence of the local-field factor has recei
less attention; some studies have explored the limit of lo
wavelengths,29–33 but work has also been done for the fu
range of arguments (q,v).34–38

For the construction of approximate xc energy function
on the basis of the adiabatic connection formula, it is of vi
13 431 ©2000 The American Physical Society
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13 432 PRB 61MANFRED LEIN, E. K. U. GROSS, AND JOHN P. PERDEW
interest to assess the quality of the approximations forf xc
that enter the construction. The purpose of this article is
test the available parametrizations off xc by calculating the
resulting uniform-gas correlation energies. In particular,
will answer the question: How important are the wave-vec
dependence and frequency dependence of the xc kernel?
answer will support the pioneering studies of Singwi a
others,19,13 which provided realistic estimates for the corr
lation energy of the uniform electron gas by taking acco
of theq dependence off xc

hom while ignoring itsv dependence
We believe that our conclusions extend to nonuniform s
tems as well: The nonzero range off xc(r ,r 8;v) must be
taken into account in any accurate calculation of the xc
ergy, while its frequency dependence is less important.

The evaluation of the correlation energy requires as in
the xc kernel for all values of the Coulomb coupling const
between 0 and 1. This is the motivation for the study
coordinate scaling in Sec. II, which directly relates the d
pendence on the coupling constant to the density dep
dence.

II. SCALING OF THE EXCHANGE-CORRELATION
KERNEL

In this section, we use time-dependent density functio
theory and dynamic scaling to derive Eq.~17!, which shows
how to find the coupling-constant dependence of
frequency-dependent xc kernel in any system from a kno
edge of its density dependence at full coupling strength.
the uniform electron gas, however, we shall need only
simple and readily anticipated Eq.~22!.

The Hamiltonian of a many-electron system subject t
time-dependent external potentialv(r ,t) is given by

Ĥ~ t !5T̂1ŴClb1E d3r n̂~r !v~r ,t !, ~2!

where the operatorsT̂, ŴClb , and n̂ represent the kinetic
energy, the electron-electron Coulomb interaction, and
electron density. We consider the case thatv(r ,t) is time-
independent fort<0. At t50, the system is in the initia
stateC0 with densityn0(r ). For t.0, the system evolves
with a time-dependent densityn(r ,t). In TDDFT, the Kohn-
Sham~KS! potentialvs(r ,t) is defined such that the densi
n(r ,t) is reproduced by a system of noninteracting partic
moving in the potentialvs. The KS initial stateCs0 is cho-
sen such that it reproduces the initial densityn0(r ) and the
initial time derivative of the density.39 The Hamiltonian of
this KS system reads

ĤKS~ t !5T̂1E d3r n̂~r !vs~r ,t !. ~3!

The definition of the xc potentialvxc(r ,t) follows from the
decomposition of the KS potential into

vs~r ,t !5v~r ,t !1vH~r ,t !1vxc~r ,t !, ~4!

where the Hartree potentialvH is defined as

vH~r ,t !5e2 E d3r 8
n~r 8,t !

ur2r 8u
. ~5!
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By virtue of the Runge-Gross theorem,40 the quantities
v(r ,t) and vs(r ,t) can be considered as functionals of t
time-dependent density and the initial state:

v~r ,t !5v@n,C0# ~r ,t !, ~6!

vs~r ,t !5vs @n,Cs0# ~r ,t !. ~7!

~The existence of the Kohn-Sham potential can be prove
the case that the system is stationary fort<0.39! It follows
from Eqs.~4!–~7! that

vxc~r ,t !5vxc @n,Cs0,C0# ~r ,t !. ~8!

The same formalism can be written down for a system w
reduced Coulomb coupling strengthle2 (0<l<1) and den-
sity n(r ,t). The external potential and the xc potential
such a system, as functionals of the density and the in
states C0 and Cs0, are denoted asvl@n,C0# (r ,t) and
vxc

l @n,C0 ,Cs0#(r ,t), respectively. It has been shown41 that
the xc potential at coupling constantl is related to the xc
potential atl51 by the scaling relation~including the de-
pendence on the initial states!

vxc
l @n,C0 ,Cs0# ~r ,t !5l2 vxc @n8,C08 ,Cs08 # ~lr ,l2t !,

~9!

with

C (s)08 ~$r j%!5l23N/2 C (s)0~$r j /l%!, ~10!

n8~r ,t !5l23 n~r /l,t/l2!. ~11!

To prove Eq.~9!, one first shows that

vl@n,C0# ~r ,t !5l2 v@n8,C08# ~lr ,l2t !, ~12!

vs @n,Cs0# ~r ,t !5l2 vs @n8,Cs08 # ~lr ,l2t !, ~13!

and

vH
l @n#~r ,t !5l2 vH@n8#~lr ,l2t !. ~14!

Then, Eq.~9! follows from Eq. ~4!, taken at coupling con-
stantl.

Now we specialize to the following case: For timest<0,
the system with coupling constantl is in its ground stateC0
with densityn(r ). We assume that the ground state is no
degenerate. We apply the above scaling, Eqs.~10! and ~11!,
and find that the scaled wave functionC08 is the ground state
of the system with full coupling (l 5 1! and scaled ground
state densityn8. This can easily be checked by inspection
the stationary Schro¨dinger equation. Then, according to th
Hohenberg-Kohn theorem for ground states,42 C0 and C08
are density functionals. The same is true forCs0 and Cs08
under the assumption that the densityn(r ) can be ob-
tained as the ground-state density of a noninteracting sys
Thus, the initial-state dependence can now be dropped f
Eq. ~9!.

The xc kernel is defined as the functional derivative of t
xc potential:

f xc
l @n# ~r ,t;r 8,t8!5

dvxc
l @n# ~r ,t !

dn~r 8,t8!
. ~15!
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By taking the functional derivative of Eq.~9!, we arrive at
the desired scaling relation for the xc kernel:

f xc
l @n# ~r ,t;r 8,t8!5l4f xc @n8# ~lr ,l2t;lr 8,l2t8!.

~16!

If we further specialize to the situation where the syst
always remains infinitesimally close to its initial ground sta
with density n(r ), then the xc kernel describes the tim
dependent linear response of the density and depends o
difference (t2t8) only. Hence we can evaluate the Fouri
transform of Eq.~16! with respect to (t2t8):

f xc
l @n# ~r ,r 8;v!5l2 f xc @n8# ~lr ,lr 8; v/l2!. ~17!

In the uniform electron gas, the density is constant
space and the xc kernel depends only on the differe
(r2r 8). Then Fourier transformation of Eq.~17! with re-
spect to (r2r 8) yields

f xc
l @n# ~q,v!5l21 f xc@n/l3# ~q/l, v/l2!. ~18!

Finally, we use the relation between local-field factor and
kernel,

Gl~q,v!52
q2

4ple2
f xc

l ~q,v!, ~19!

to obtain the scaling of the local-field factor:

Gl@n# ~q,v!5G@n/l3# ~q/l,v/l2!. ~20!

Equation~20! shows that the limitl→0 is closely connected
to the high-density limit ofG(q,v). This becomes even
more apparent if we write the local-field factor as a functi
of r s, q/kF , andv/vF , with

4p

3
~r sa0!35

1

n
, kF

353p2n, vF5
\kF

2

2m
, ~21!

wherea05\2/(me2). Then

Gl~r s,q/kF ,v/vF!5G ~lr s,q/kF ,v/vF!. ~22!

Note that Eq. ~22! becomes independent ofl in the
exchange-only or high-density limit (r s→0), and also in the
strong-coupling or low-density limit (r s→`) if such a limit
exists forG.

III. CORRELATION ENERGY FROM APPROXIMATE
EXCHANGE-CORRELATION KERNELS

In any many-electron system, the adiabatic connec
formula9,10 allows us to write the correlation energyEc in
terms of the xc kernelf xc

l and the density-density respon
function xl ~see, e.g., Ref. 11!:

Ec52
\

2pE d3r E d3r 8
e2

ur2r 8u

3E
0

1

dl E
0

`

du@xl~r ,r 8; iu !2x0~r ,r 8; iu !#. ~23!
the

n
e

c

n

In the coupling-constant integration overl, the density is
held fixed at the densityn(r ) of the fully interacting system.
The response function obeys the Dyson-type equation12

xl~r ,r 8;v!2x0~r ,r 8;v!

5E d3xE d3x8 x0~r ,x;v! f hxc
l ~x,x8;v!xl~x8,r 8;v!,

~24!

with

f hxc
l ~x,x8;v!5

le2

ux2x8u
1 f xc

l ~x,x8;v!. ~25!

One way45 of calculatingEc is to approximatexl and f xc
l

independently of each other on the right-hand side of
~24! and then substitute into Eq.~23!. In another approach
one chooses a given approximation forf xc

l and solves the
integral equation~24! for xl. While the solution of the
Dyson equation is demanding in general, it becomes triv
in the case of the uniform electron gas where we have

xl~q,v!5
x0~q,v!

12x0~q,v! f hxc
l ~q,v!

, ~26!

with the well-known Lindhard functionx0(q,v). Thus, the
correlation energy per electronec follows from Eq.~23! and
Eq. ~26!:

ec52
\e2

p2n
E

0

`

dqE
0

1

dlE
0

`

du
@x0~q,iu !#2f hxc

l ~q,iu !

12x0~q,iu ! f hxc
l ~q,iu !

.

~27!

The Lindhard function at imaginary frequencyiu is known
exactly:3

x0~q,iu !5
mkF

2p2\2 S Q22ũ221

4Q
ln

ũ21~Q11!2

ũ21~Q21!2

211ũarctan
11Q

ũ
1ũarctan

12Q

ũ
D , ~28!

with

Q5
q

2kF
, ũ5

mu

\qkF
. ~29!

Therefore, in Eq.~27! only the xc kernel has to be approx
mated. Owing to Eq.~18!, it is sufficient to have the xc
kernel at coupling constantl51.

In the following, we give a list of approximations that w
have tested.

(a) RPA. f xc[0.
(b) ALDA ~Adiabatic local-density approximation!. This

is the long-wavelength limit of the static xc kernel:

f xc
ALDA 5 lim

q→0
f xc

hom~q,v50!. ~30!

It can readily be expressed in terms of the xc energy
electronexc :

f xc
ALDA 5

d2

dn2 @nexc~n!#. ~31!



e
ta

t

or

w

rs

’s

-

n

ay

f

n
d
em.

e

e

he
m-
s
l.
rify

en-

ss
rgy
ini

er
za-
to

es an
y

er-
i-

13 434 PRB 61MANFRED LEIN, E. K. U. GROSS, AND JOHN P. PERDEW
(c) Parametrization by Corradini et al. (Ref. 28) for th
static xc kernel. This is a fit to the quantum Monte Carlo da
published by Moroni, Ceperley, and Senatore,27 and it satis-
fies the known asymptotic small-q and large-q limits. It in-
terpolates between different values ofr s. Therefore it can be
evaluated for arbitrary values of the density, in contrast
the original parametrization given in Ref. 27.

(d) Parametrization of Richardson and Ashcroft (RA) f
the xc kernel at imaginary frequencies.This approximation
is based, not upon Monte Carlo data, but upon results
numerical calculations done by RA.37 It is constructed to
satisfy many known exact conditions. The formula that
use for the xc kernel is related to RA’s quantitiesGn and
spin-symmetric13 Gs by

f xc
RA~q,iu !52

4pe2

q2 @Gs~Q,iU !1Gn~Q,iU !#, ~32!

with

Q5
q

2kF
, U5

u

4vF
. ~33!

We have replaced Eqs.~39! and ~40! of RA’s article by the
following equations, which correct typographical erro
there:

la
(0)1ln

(0)512
3

2 S 2p

3 D 2/3

r s

]2

]z2 ec , ~RA:39!

and

ls
(`)5

3

5
2

2pa

5 S r s
2 ]

]r s
ec12r secD . ~RA:40!

@In both equations,ec is expressed in Rydbergs, as in RA
article. For Eq.~RA:39!, compare Eq.~2.21! of Ref. 22 and
Eq. ~2.13! of Ref. 43. For Eq.~RA:40!, see Eqs.~1.1!, ~2.23!,
~4.11!, and~D9b! of Ref. 23.# The RA formula requires the
on-top pair distributiong(0), for which we use the param
etrization by Perdew and Wang given in Ref. 44.

We also test the static limit off xc
RA(q,iu),

f xc
static RA~q!5 f xc

RA~q,0!, ~34!

in order to compare with the static Corradini approximatio
~For a comparison of the RA and Monte Carlof xc in the
static limit, see Fig. 3 of Ref. 27.!

As a dynamic but spatially local approximation we m
use the long-wavelength limit off xc

RA(q,iu),

f xc
local RA~ iu !5 f xc

RA~0,iu !, ~35!

which we refer to as ‘‘local RA.’’
(e) PGG.This formula was derived14,15 in the context of

the time-dependent optimized effective potential method.46 It
is a frequency-independent exchange-only approximation
inhomogeneous systems. Its real-space version reads

f x
PGG~r ,r 8;v!52

2e2

ur2r 8u

u(
k

f kfk~r !fk* ~r 8!u2

n~r !n~r 8!
, ~36!
o

of

e

.

or

where fk and f k are the KS orbitals and their occupatio
numbers~0 or 1!. This approximation, unlike the ones liste
above, is readily applicable to any inhomogeneous syst
In the uniform gas, transformation toq space yields

f x
PGG~q,v!52

3pe2

10kF
2 H S 2

Q
210QD ln

11Q

u12Qu

1~2Q4210Q2!lnF S 11
1

QD U12
1

QUG
11112Q2J , ~37!

where Q5q/(2kF). Due to its exchange-only nature, th
PGG kernel, taken at coupling constantl, is simply propor-
tional to l.

Wherever the xc energyexc is required as input, we us
the parametrization by Perdew and Wang47 of the
Ceperley-Alder48 diffusion Monte Carlo data.

IV. RESULTS AND DISCUSSION

We expect that RA’s parametrization will be close to t
exact uniform-gas xc kernel and that the Corradini para
etrization will be close to the exact static limit. The ALDA i
the exact long-wavelength limit of the static xc kerne
Hence, a comparison between these three cases will cla
the importance of both wave-vector and frequency dep
dence of the xc kernel.

We calculate the correlation energyec from Eq. ~27! and
subtract the ‘‘exact’’ correlation energyec

(exact) ~from the pa-
rametrization of Ref. 47!. The result forr s 5 0–15 is shown
in Fig. 1. The RA curve differs from the exact curve by le
than 0.02 eV, i.e., it reproduces the exact correlation ene
perfectly. With a deviation of less than 0.1 eV, the Corrad
approximation gives a good estimate ofec

(exact) as well. We
note that the result of thestatic version of the RA formula
lies almost on top of the Corradini curve. From this we inf
that the small error produced by the Corradini parametri
tion is in fact due to its static nature. Thus we are able
conclude that neglecting the frequency dependence caus
error typically smaller than 0.1 eV.~The greatest uncertaint
in the ‘‘exact’’ correlation energy occurs aroundr s51,
where the parametrization of Ref. 47 gives21.63 eV, in

FIG. 1. r s-dependent deviation of approximate correlation en
gies from the ‘‘exact’’ correlation energy per electron of the un
form electron gas~Ref. 47!.
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good agreement with the older released-node diffus
Monte Carlo value of Ceperley and Alder48 (21.62 eV!, but
not so close to the newer fixed-node value of Ortiz, Har
and Ballone49 (21.53 eV!. Although released-node value
should be more accurate in principle, the newer fixed-n
values are based upon much larger electron numbers.
recent backflow fixed-node result of Kwon, Ceperley, a
Martin50 (21.64 eV! is, however, very close to our ‘‘exact’
value.!

It is known and also visible in Fig. 1 that in the RPA th
correlation energy is too negative. One may hope tha
simple approximate xc kernel can roughly fix this deficien
We recognize, however, that the simplest choice, the ALD
severely overcorrectsec , so that the absolute deviation from
the exact correlation energy remains about the same as i
RPA. ~A similar trend was previously observed for th
exchange-only version of the ALDA,45 and for an approxi-
mately scaled ALDA for exchange and correlation,51 in the
uniform gas.! Further, Fig. 1 shows that the local RA~dy-
namic approximation! performs better than the ALDA, bu
worse than Corradini or static RA. Therefore, it seems t
the wave-vector dependence of the xc kernel must no
neglected, or in other words, that the xc kernel is very n
local.

The PGG approximation behaves somewhat differently
that it yields an underestimate for smallr s and an overesti-
mate for larger s. It is a very good approximation in th
ranger s 5 5–10. Its behavior nearr s 5 0 indicates that the
PGG kernel differs from the exact exchange-only kern
since exchange should dominate in the high-density limi

To gain further insight into the effects of theq depen-
dence and theu dependence off xc in Eq. ~27!, we analyze
the correlation energy into contributions from density flu
tuations of different wave vectorsq and imaginary frequen
ciesu. Equation~27! naturally defines a wave-vector analys
ec(q) if only the q integration is written explicitly while the
other integrations are incorporated inec(q):

ec5E
0

`

ec~q! dS q

2kF
D . ~38!

The exact wave-vector analysis is essentially given by
Fourier transform of the exact coupling-constant avera
correlation-hole densitynḡc(r ):

ec
(exact)~q!5

2e2kF

p
nḡc~q!, ~39!

where

ḡc~q!5E d3r ḡc~r !exp~2 iq"r !. ~40!

A parametrization ofḡc(r ) has been given by Perdew an
Wang.44 Although this parametrization misses the nona
lytic behavior of ḡc(q) at q52kF , it is otherwise almost
‘‘exact.’’ A recent comparison@Paola Gori-Giorgi~private
communication!# of the Perdew-Wanggc

l51(q) for r s54
with that from the diffusion Monte Carlo simulation of Re
49 demonstrates full agreement within the numerical nois
the simulation.
n

,

e
he
d

a
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,
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t
e
-

n

l,

-

e
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-
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In Fig. 2 we compare approximate and ‘‘exact’’ wav
vector analyses forr s 5 4. While the RPA curve is too
negative for allq, we note that the ALDA is quite correct fo
small q. The ALDA overcorrection toec comes from posi-
tive contributions at largeq. To a much smaller extent, th
Corradini curve also exhibits this behavior. In general, ho
ever, it is close to the exact wave-vector analysis, as are
and static RA. In the case of PGG, we note a substantial e
cancellation between small and largeq values.

As a complement to the wave-vector analysis, we defi
the imaginary-frequency analysisec(u) of the correlation en-
ergy by writing Eq.~27! as an integral overu:

ec5E
0

`

ec~u! dS u

vp
D , ~41!

with the plasma frequencyvp given by

vp
25

4pe2n

m
. ~42!

Sinceec(u) is not known exactly, we must restrict ourselv
to a comparison among different approximations, as d
played in Fig. 3~low u) and Fig. 4~high u) for r s 5 4. In all

FIG. 2. Wave-vector analysis@Eq. ~38!# of the correlation en-
ergy per electron of the uniform gas atr s54. Approximations are
compared to the ‘‘exact’’ wave-vector analysis of Ref. 44.

FIG. 3. Imaginary-frequency analysis@Eq. ~41!# of the correla-
tion energy per electron of the uniform gas atr s54 in various
approximations~low-u regime!.



to
ra
ar
t
en
te

rra
gh

b
t
m
r-
th

b
ie
p
,
r
W
e
un
n

o-

,
ela-
-

t
rre-

f
y-
ve-
p-

ho-
t not
n-

a-
d
to
rt-
the
r

s
n

an
t in

m
TO

with
.S.
8-
ants
ons
ft

13 436 PRB 61MANFRED LEIN, E. K. U. GROSS, AND JOHN P. PERDEW
cases,ec(u) starts with a finite negative value atu 5 0 and
then smoothly approaches zero. As before, the RPA is
negative everywhere. For small frequencies, ALDA, Cor
dini, and RA results are practically equal; the differences
located atu*vp . In the ALDA, ec(u) becomes positive a
u'1.5vp . PGG exhibits a slight error cancellation betwe
small and largeu, yet it appears to have a very accura
frequency analysis in the high-u regime if we take RA as
standard. In consistency with our earlier findings, the Co
dini curve is very close to the static RA curve. In a rou
estimate, the latter starts to deviate from the dynamic RA
aboutu;vp .

Note that an accurate hybrid kernel may be constructed
using the Corradini kernel at smallu and the PGG kernel a
largeu.52 Then, a generalization to inhomogeneous syste
would require modification of only the static Corradini ke
nel, which has a much simpler analytical structure than
fully frequency-dependent RA kernel.

V. CONCLUSION

In summary, we have demonstrated how to scale availa
xc kernels for the purpose of calculating correlation energ
In the uniform electron gas, we found that the nonzero s
tial range of the kernelf xc(r ,r 8;v) cannot be neglected
while the frequency dependence is less important, as fa
the accuracy of the correlation energy is concerned.
therefore expect that the use of a static xc kernel of nonz
spatial range can yield reasonably good energies in non
form systems as well. The imaginary-frequency depende

FIG. 4. Imaginary-frequency analysis@Eq. ~41!# of the correla-
tion energy per electron of the uniform gas atr s54 in various
approximations~high-u regime!.
o
-
e

-

at

y

s

e

le
s.
a-

as
e
ro
i-

ce

of the xc kernel also appears to be weak in the tw
dimensional electron gas; see Fig. 1 of Ref. 53.

By Eq. ~15!, the xc kernelf xc(r ,t;r 8,t8) describes the
linear response of the xc potentialvxc at postionr and timet
to an electron-density fluctuation localized atr 8 and t8. The
spatial rangeur2r 8u of f xc is the range of the xc hole itself
and so cannot be neglected in the calculation of the corr
tion energy~as it would be in a spatially local approxima
tion!. The temporal ranget2t8 is, however, somewha
shorter than typical time scales that contribute to the co
lation energy, makingf xc almost local in time~static or adia-
batic!.

The Richardson-Ashcroft37 expression for the xc kernel o
the uniform electron gas performs well; its imaginar
frequency dependence yields a small but significant impro
ment in the correlation energy relative to the static RA a
proximation.

Very accurate ground-state energy calculations for in
mogeneous densities may require a method that is correc
only for slowly varying densities, as are the local spin de
sity ~LSDA! and generalized gradient~GGA! approxima-
tions, but also at the level of the random phase approxim
tion @ f xc

l 50 in Eqs.~23!–~25!#, which treats exchange an
long-range correlation exactly. One way to achieve this is
make a RPA Kohn-Sham calculation, treating the sho
range correction to the RPA as an extra energy term in
LSDA or GGA.6 A second possibility, suggested by ou
present work, is the approximation

f xc
l ~r ,r 8;v!5 f xc

hom,l
„@n~r !1n~r 8!#/2,ur2r 8u,v…, ~43!

where f xc
hom,l(n,ur2r 8u,v) is the kernel of the homogeneou

gas. According to Appendix A of Ref. 6, this approximatio
will correctly make the correlation hole density around
electron integrate to zero. The average density argumen
Eq. ~43! is chosen as in Ref. 54. Equation~43! may also be
useful for the calculation of excitation energies.14
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