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Photonic crystal circuits: A theory for two- and three-dimensional networks
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A discussion is given of waveguides in photonic crystals and branching network geometries of waveguides
formed by joining several waveguide channels into conducting circuits for the transmission of light in photonic
crystals. We shall refer to these structures in general as photonic crystal circuits. These conducting networks,
which transport light, are an optical analogy to electrical circuits, which transport electrons through electrical
networks. Photonic crystal circuits, however, unlike most electrical circuits, exhibit a variety of interference
effects in their transport properties. The interference effects are related to the nondiffusive nature of the optical
transport. The transport properties of light in a variety of circuit geometries are studied. Emphasis is placed on
network geometries, which include barriers formed by the addition of dielectric materials to waveguide chan-
nels, bends in waveguide channels, closed loops, and interconnecting branched networks. Results for the
transmission and reflection properties of photonic circuit modes are presented as functions of the mode fre-
quencies and the dielectric constants of the materials forming the waveguide channels. A comparison is made
of the properties of photonic crystal circuits with those of layered optical systems.
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I. INTRODUCTION

There has been considerable recent interest in phot
crystal waveguides.1–14 These are waveguide structur
formed in photonic crystals by the addition of a line of s
impurities to the photonic crystal. Electromagnetic wav
guide modes then propagate along the line of site impurit
The interest in these structures has been in their use fo
efficient transportation of electromagnetic energy and in
channeling of the motion of electromagnetic energy throu
space.1,2 Photonic crystal waveguides are designed to c
duct propagating electromagnetic modes along the lengt
the waveguide material at frequencies that occur in the s
gaps of the photonic crystal. Waveguide modes at stop-
frequencies of the photonic crystal are found to be v
stable against radiative loss from the waveguide channel
tend to efficiently move electromagnetic energy along wa
guide channels even in the presence of bends or junction
the channel.1,2,4–6A recent review of waveguide structures
photonic crystals has been given by Joannopouloset al.,2 as
well as in an earlier book1 devoted to the topic of photoni
crystals. In some more recent work, we have investigated
existence in nonlinear photonic crystals of static and pro
gating intrinsic localized modes.13,14

One interest in waveguides has been in forming fr
them branching waveguide structures in photonic crysta8

We refer to these networks as photonic crystal circuits. T
are systems of two or more waveguides that join togethe
form conducting paths for the transportation of electrom
netic energy in space in a manner analogous to the trans
tation of electrical current through space in electrical circu
A very interesting recent work on these types of proble
has appeared in Ref. 8, which presents studies of a cir
consisting of two parallel waveguide channels that are lin
by a short segment of waveguide. The waveguide chan
are formed by removing rods from a two-dimensional ph
tonic crystal, and the modes of the system are determ
using techniques of supercell computer simulation.8 Similar
computer simulations based on supercell methods had ea
PRB 610163-1829/2000/61~19!/13235~15!/$15.00
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been used by these authors to study bends in photonic cr
waveguides as well as in other seminal studies of photo
crystal waveguides.2

Most theoretical studies of photonic crystal waveguid
and their branching networks have been based on supe
computer simulations methods and have focused on sys
with waveguide channels formed by removing rows of
electric rods from photonic crystals. These studies are l
ited in two ways: First, they are limited in the size of th
systems that can be treated by supercell computations,
second, they are limited in the types of waveguide chann
that have been treated. In this paper we will present a the
that is not limited by either of these conditions.

In this paper we study the theory of branching structu
of photonic waveguides using a method based on Gre
functions. The method is not restricted by network size lim
tations and can be applied to general network geometrie
photonic crystals of any dimensionality. In addition, th
Green’s function method can be easily applied to wavegu
channels formed from different dielectric materials or ma
rials that have a number of different interconnecting wa
guide channels all formed from different types of dielect
materials. In this approach, Green’s functions techniques
applied3,9–14 to particular types of photonic crysta
waveguides for which the equations describing the propa
tion of light in the waveguide channels reduce to a set
difference equations. These difference equations are tre
using standard methods to obtain analytic closed-form
pressions for the propagation characteristics of photo
crystal circuits.

We illustrate the difference equation techniques by app
ing them to a variety of photonic crystal circuits in two
dimensional photonic crystals. We emphasize, however,
the difference equations can be directly applied to circuits
three-dimensional photonic crystals so that the dimensio
ity of the circuit network does not restrict the mathematics
the theory. For the two-dimensional photonic crystal a squ
lattice array of infinitely long dielectric rods is considere
13 235 ©2000 The American Physical Society
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13 236 PRB 61ARTHUR R. McGURN
The rods are of circular cross section with axes parallel to
z axis and form a square lattice with lattice constantac in the
x-y plane. The waveguide channels of the photonic cry
circuits are formed by replacing rows of rods in the photo
crystal by rods containing impurity dielectric media. On
modes propagating in thex-y plane with electric fieldE
polarized parallel to thez axis are studied. For circuits with
input and output waveguide lines, results for the transmiss
and reflection coefficients in these lines as a function of
quency in the stop band of the photonic crystal are obtain
For circuits with closed loops or circuits that are finite is
lated waveguide segments, the resonant mode frequen
and field distributions of the modes bound to these type
structures are obtained.

The problem of photonic crystal circuits is closely relat
to another important problem in optics: layered optical m
dia. A long straight photonic crystal waveguide exhib
many of the properties of layered systems, e.g., stop-
pass-band, transmission, and reflection characteristics. A
electric barrier placed in a photonic crystal waveguide exh
its transmission and reflection features similar to dielec
barriers in layered systems. Photonic crystal circuits, ho
ever, are higher-dimensional systems than are o
dimensional layered systems, and due to their branching
works exhibit a wider variety of physical phenomena than
layered optical media. A circuit with a number of interco
necting sidebranches shows multiple phase coherence ef
due to the multiplicity of paths light can travel. The ne
phase coherence shows up in the complex reflection
transmission coefficient properties of photonic crystals
cuits with input and output channels. An additional feature
photonic crystal circuits is that they, unlike layered med
can close upon themselves~e.g, make a closed-loop circuit!,
and these structure can bind resonant modes similar to t
found in cavity resonators.

The order of this paper will be as follows: In Sec. II, w
discuss the network geometry and forms of electromagn
solutions in photonic crystal circuits. The derivation of t
difference equations describing the waveguide modes is
sented. This derivation is essentially a generalization of
derivation of the difference equations found in Ref. 13,
treat branching network geometries and waveguide chan
containing sections with different types of dielectric ma
rial. The remainder of the paper is devoted to obtaining
lutions of these equations for particular networks. In Sec.
a discussion is given of waveguides that are of finite leng
terminate at a point in the photonic crystal, contain dielec
barriers, or have channels with bends in space. Explicit a
lytic expressions are given for the transmission and reflec
characteristics of these geometries. In Sec. IV, system
branched waveguides~branching networks! are treated, and
the characteristics of the propagation of electromagn
waves are determined. In a first case a waveguide junctio
which a semi-infinite waveguide is joined at a single site
an infinitely long waveguide is treated. This is next gener
ized to consider a U-shaped waveguide that joins at two s
onto an infinitely long waveguide. The final two system
studied are one formed from two infinitely long parall
waveguides that are joined together by a short segment
the case of a closed-loop waveguide. The complex beha
in the reflection and transmission coefficients due to ph
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coherence and path multiplicity in these networks is d
cussed. For finite closed-loop systems the bound state r
nant modes and their resonant frequencies are determine
Sec. V, conclusions are given.

II. DIFFERENCE EQUATIONS FOR PHOTONIC
CRYSTAL WAVEGUIDES

As in Ref. 13, we consider theE-polarized electromag-
netic modes of a two-dimensional photonic crystal formed
a square lattice array of infinitely long, parallel, identic
dielectric rods.13,15–17The rods, which are of circular cros
section, are characterized by a dielectric constante and are
embedded in vacuum.13,15The periodic dielectric constant o
the system as a function of position,rW uu5x î1y ĵ , in thex-y
plane is then

e~rW uu!5H e, urW uu2nacî 2macĵ u<R for n and m integers

1, otherwise
~1!

whereac is the lattice constant of the square lattice, andR
,ac is the radius of the dielectric rods. TheE-polarized
electromagnetic modes of the photonic crystal that propag
in the x-y plane are solutions of the matrix eigenvalu
equation13,15

~kW uu1GW uu!
2e~kW uuuGW uuuv!5

v2

c2
(
GW 8uu

ê~GW uu2GW 8uu!e~kW uuuGW 8uuuv!.

~2!

Here the eigenvaluev2/c2 gives the frequencyv of the elec-
tromagnetic mode,GW uu is a reciprocal-lattice vector of the
square lattice,e(rW uu)5(GW uu

ê(GW uu)e
iGW uu•rW uu, ande(kW uuuGW uuuv) are

related to the electric field,E(rW uuuv), of the mode of fre-
quencyv by

E~rW uuuv!5(
GW uu

e~kW uuuGW uuuv!ei (kW uu1GW uu)•rW uu. ~3!

A waveguide impurity is formed in the system defined
Eq. ~1! by adding impurity material to a row of rods alon
one of the directions of the square lattice.13,15Waveguides of
both infinite and finite lengths in the photonic crystal can
made is this way, and we now discuss these two types.
purity material can be added to an infinite number of rods
a row of rods in the photonic crystal so as to form an in
nitely long waveguide. For example, an infinite waveguide
formed when impurity material is added to the sit
$(nrac ,nsac)%, where r and s are fixed integers andn5
2`, . . . ,22,21,0,1,2, . . . ,̀ ranges over the integers. Im
purity material can also be added to a finite number of ro
in a row of rods of the photonic crystal so as to form
finite-length waveguide segment. For example, such a fi
segment is formed for the case in which impurity materia
added to the sites$(nrac ,nsac)%, where r and s are fixed
integers andn50,1,2, . . . ,m wherem is an integer. One can
then form a branching system of waveguides~photonic cir-
cuits! by piecing together various waveguide segments.
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The total dielectric constant of a waveguide segme
eT(rW uu), is given byeT(rW uu)5e(rW uu)1de(rW uu), wherede(rW uu) is
the change in the dielectric constant of the photonic cry
upon the addition of impurity dielectric material. For a wav
guide segment composed of an array of identical single-
impurities of square cross-sectional area in thex-y plane,
de(rW uu) is13

de~rW uu!5H de, ux2nracu,uy2nsacu<t for $n% integers

0, otherwise
~4!

wherer ands are fixed integers, the length of the wavegui
segment depends on the range of the consecutive inte
$n%, and 2t is the length of a side of one of the single-s
impurities. For the impurities we consider 2t!R,ac . @At
this point, we emphasize thatde in Eq. ~4! is the value of the
dielectric constant of the impurity material minus the diele
tric constant of the material forming the pure dielectric ro
of the photonic crystal.# We now turn to a discussion of th
electric fields associated with such waveguide segments
the photonic circuits formed by piecing them together.

We assume that the electric field of the modes associ
with waveguide segments and their branchings is of the fo

E~rW uuut !5E0~rW uu ,v!exp~2 ivt !. ~5!

Using standard techniques,3,9–13 the electric field of wave-
guide segments and their branchings is expressed as an
gral equation given by

E0~rW uu ,v!5E d2r uu8G~rW uu ,rW8uuuv!de~rW8uu!S v

c D 2

E0~rW8uu ,v!,

~6!

wherede(rW uu) is the change in the photonic crystal dielect
constant due to all of the waveguide segments and t
branchings in the photonic crystal. HereG(rW uu ,rW8uuuv) is the
Green’s function of the Helmholtz operator for the photon
crystal in Eq.~1!, i.e., ¹21e(rW uu)(v/c)2.

As in Ref. 13 we assume thatt is small enough so that th
electromagnetic field at each square cross-section rod of
purity material is constant over that volume of the impur
material. This assumption allows us to rewrite Eq.~6! for the
fields in the rods as a difference equation. For example, c
siderde(rW uu) as defined in Eq.~4! for a waveguide segmen
formed from identical single-site impurities. Let the elect
field in the rod of impurity material of the waveguide label
by (nr,ns) in Eq. ~4! be denoted byEnr,ns , whereEnr,ns

5E0
„n(r î 1s ĵ)ac ,v…; then we obtain from Eq.~6! for this

segment the difference equation

Enr,ns5(
m

Bnr,ns;mr,msde„m~r î 1s ĵ!ac…Emr,ms. ~7!

Here

Bnr,ns;mr,ms5S v

c D 2E
(mr,ms)th impurity

d2r uu

3G„n~r î 1s ĵ!ac ,rW uuuv…, ~8!
t,
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in the sum in Eq.~7! m runs over the integers denoting th
waveguide channel sites, andv is the frequency of the im-
purity mode. For our purposesv will be chosen to be in one
of the stop gaps of the photonic crystal described in Eq.~1!.
From Eqs.~7! and ~8! we then have

Enr,ns5A (
mr,ms

Bnr,ns;mr,msEmr,ms, ~9!

where A5de, and againde is the value of the dielectric
constant of the impurity material minuse of the photonic
crystal rods. Equation~9! determines the fields in the impu
rity rods forming the photonic crystal waveguide. As w
shall see in the next sections, Eqs.~7! and~9! are easily and
naturally generalized to obtain from Eq.~6! a series of inter-
connecting difference equations describing more gen
photonic circuits.

Following the discussion in Refs. 11 through 14, t
mathematics of our treatment is simplified by restricting t
recursion relation in Eq.~9! to consider only same-site an
nearest-neighbor site couplings. We do this as the coupli
as seen in Eq.~8!, are related to the Green’s functio
G(rW uu ,r 8W uuuv), which decays with increasingurW uu2rW8uuu for v
in a stop gap of the photonic crystal. For directions of hi
Miller indices this decay is expected to be large. We refer
reader to Refs. 11 through 14 for a more detailed discuss
of this approximation, which has also been used there.
reader will see, however, that the restrictions to same-
and nearest-neighbor site couplings just simplifies the m
ematics of our treatment below. Further-neighbor couplin
can be included. These only make the mathematics in
following sections a little tedious. With this provision Eq.~9!
becomes

Enr,ns5g@a~0,0!Enr,ns1a~r ,s!~E(n11)r ,(n11)s

1E(n21)r ,(n21)s!#. ~10!

Herea(0,0)5B0,0;0,0/(4t2), a(r ,s)5B0,0;r ,s /(4t2), wherer
ands are defined in Eq.~4!, andg54t2de. The electromag-
netic mode solutions of Eq.~10! that are bound to the wave
guide are obtained by first choosingv to be a frequency in
the stop band of the photonic crystal and computinga(0,0)
and a(r ,s). Equation~10! can then be solved for$Enr,ns%
andg ~i.e., 4t2de) characterizing these modes.

We now turn to a discussion of the evaluation of th
theory for a variety of different geometries. In this discussi
we present closed-form analytic expressions for the fields
the modes, the mode frequencies, and the transmission
reflection coefficients of a variety of systems that are of
terest. We will offer plots illustrating the results from som
of these expressions for a particular realization of a tw
dimensional photonic crystal.9,11 For the particular two-
dimensional photonic crystal used in our illustration,9,11 the
plots presented in the text and those the reader may wis
generate for the other systems considered in this paper ca
easily produced on a pocket calculator using the equation
the text and the numerical results for the coefficientsa(r ,s)
given in the Appendix. Finally, we note here that the diffe
ence equations studied in this paper are closely related, in
absence of a Kerr nonlinearity, to those studied in Ref.
An essential difference in the difference equations stud
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13 238 PRB 61ARTHUR R. McGURN
here is that they are for branched networks, whereas the
ference equations in Ref. 13 were for infinitely long straig
waveguide channels.

III. FINITE LENGTH AND SEMI-INFINITE WAVEGUIDES,
DIELECTRIC BARRIERS, AND BENDS

A. Finite length

Equation~10! can be used to treat a finite length of wav
guide embedded in a photonic crystal. We shall start by c
sidering the simplest case of a single-site impurity and t
generalized this to the study of a finite length segment
single-site impurities.

For a single impurity site1,2,9 located at (nr,ns)5(0,0),
we have from Eq.~10!

E0,05ga~0,0!E0,0. ~11!

Computing a(0,0) for v in the stop gap of the photoni
crystal, we find that

g5a~0,0!21 ~12!

determines the value ofg54t2de needed to obtain an impu
rity mode of frequencyv bound to the impurity site materia
For a two-site impurity at, for example, sites located at (0
and (r ,s), the two equations obtained from Eq.~10! are

E0,05g@a~0,0!E0,01a~r ,s!Er ,s# ~13!

and

Er ,s5g@a~0,0!Er ,s1a~r ,s!E0,0#. ~14!

From a(0,0) anda(r ,s) evaluated at the impurity mod
frequencyv, we find two solutions forg:

g5@a~0,0!1a~r ,s!#21 ~15!

and

g5@a~0,0!2a~r ,s!#21. ~16!

These solutions give the values ofg54t2de at which impu-
rity modes are observed at the frequencyv.

The considerations above based on Eq.~10! can be ex-
tended to the treatment of a segment ofl 11 sites, wherel
.1, located at (ir ,is) for i 50,1, . . . ,l . Proceeding as abov
for a(0,0) anda(r ,s) evaluated at the impurity mode fre
quencyv, we find that theg needed to observe impurit
modes atv are obtained from the matrix eigenvalue proble
of the tridiagonal matrix defined by

E0,05g@a~0,0!E0,01a~r ,s!Er ,s#, ~17!

Eir ,is5g@a~0,0!Eir ,is1a~r ,s!~E( i 21)r ,(i 21)s

1E( i 11)r ,(i 11)s!#, ~18!

wherei 51,2, . . . ,l 21, and

Elr ,ls5g@a~0,0!Elr ,ls1a~r ,s!E( l 21)r ,(l 21)s#. ~19!

The solution of Eqs.~17! through~19! gives

g5@a~0,0!12a~r ,s!cosk#21, ~20!
if-
t

n-
n
f

)

where k5pN/( l 12) for N an integer for the values ofg
that are needed to support impurity modes of frequencyv.
The fields $Enr,ns% are obtained as the eigenvectors for
given eigenvalueg54t2de. In general, we see that a finit
isolated waveguide of lengthl binds to it a series of resonan
modes. The modes occur at a discrete set of frequencies
wave numbers that are the solution of Eqs.~12! or ~15! and
~16! or ~20! for fixed g54t2de. It is interesting to see tha
by tuning g54t2de we can adjust the series of resona
modes of the finite length of waveguide.

The evaluation of the structures described by Eqs.~12!,
~15!, ~16!, and ~20! is quite simple. Once thea(r ,s) have
been evaluated at a frequency in the stop band for a g
photonic crystal, the solution for the change in dielect
constantde to have a resonance mode at this frequency
easily obtained from Eqs.~12!, ~15!, ~16!, and~20!. We have
discussed this evaluation in detail in the case of impu
clusters of highly symmetric geometry in Ref. 9. This d
cussion can be directly taken over to the new types of im
rities considered above. To assist the reader, however,
give a discussion in the Appendix of the evaluation of t
impurity equations given above.

B. Terminated waveguides, waveguides containing barriers,
and bends

In Refs. 11–14 we have treated waveguides with in
nitely long uniform waveguide channels formed from bo
linear and Kerr nonlinear impurity dielectric media. In th
following subsection, we shall extend the ideas in Re
11–14 to consider the properties of new varieties
waveguides, which include semi-infinite waveguides term
nated in the photonic crystal and infinitely long waveguid
containing dielectric barriers. We restrict our consideratio
to linear impurity dielectric media.

A semi-infinite waveguide that terminates in the photon
crystal is a waveguide with a long straight channel that e
at some point in the photonic crystal. This system can
described from Eq.~6! in our model by the following set of
difference equations:

E0,05g@a~0,0!E0,01a~r ,s!Er ,s#, ~21!

Eir ,is5g@a~0,0!Eir ,is1a~r ,s!~E( i 21)r ,(i 21)s

1E( i 11)r ,(i 11)s!#, ~22!

wherei 51,2,3, . . . . Thewaveguide channel terminates at th
site (0,0) and comes in linearly in space to (0,0) from t
(r ,s) direction.

To solve the system of equations in Eqs.~21! and~22! we
computea(0,0) anda(r ,s) at the impurity frequencyv and
assume a solution of Eqs.~21! and ~22! of the form

Elr ,ls5eilk1be2 i lk ~23!

for l 50,1,2, . . . , wherek is the wave number that gives th
phase change inElr ,ls from site to site along the waveguid
channel. Substituting in Eqs.~21! and ~22! we find

g5@a~0,0!12a~r ,s!cosk#21 ~24!

and b52e22ik. The waveguide modes are just standi
wave modes that are trapped in the waveguide channel
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cause their frequencies are in the stop gaps of the phot
crystal; each mode is formed from two oppositely movi
waves that are phase shifted byb. For a fixed dielectric dif-
ferencede and a fixed valued oft, the solution of Eq.~24!
for fixed g54t2de gives the frequencies and wave numbe
k of the mode solutions. In the Appendix results fora(r ,s)
are given for a particular realization of a photonic cryst
These can be used to map out the solutions of Eq.~24!.

Next we consider an infinitely long, straight wavegui
that contains a dielectric barrier. A dielectric barrier is c
ated in the waveguide by changing the dielectric impur
material in 2n11 consecutive sites in the channel of t
dielectric waveguide to a new type of impurity materia
~This is the analogy in the optics of layered systems to c
sidering normal incidence of light on a dielectric slab.! The
difference equations describing this system are from Eq.~6!
in our model,

Elr ,ls5g0@a~0,0!Elr ,ls1a~r ,s!~E( l 11)r ,(l 11)s

1E( l 21)r ,(l 21)s!#, ~25!

wherel 56(n12),6(n13), . . . ,

Eir ,is5g1@a~0,0!Eir ,is1a~r ,s!~E( i 11)r ,(i 11)s

1E( i 21)r ,(i 21)s!#, ~26!

wherei 50,61, . . . ,6(n21),

E6nr,6ns5g1@a~0,0!E6nr,6ns1a~r ,s!E6(n21)r ,6(n21)s#

1g0a~r ,s!E6(n11)r ,6(n11)s , ~27!

E6(n11)r ,6(n11)s5g0@a~0,0!E6(n11)r ,6(n11)s

1a~r ,s!E6(n12)r ,6(n12)s#

1g1a~r ,s!E6nr,6ns . ~28!

In the above equationsg0 andg1 reflect the difference in the
impurity dielectric constant of the material forming th
waveguide channel and the new material inserted in
waveguide channel forming the barrier in the wavegu
channel.

In solving the difference equations in Eqs.~25!–~28! we
first choose the frequencyv of the modes of the waveguid
with the barrier system. The frequency is chosen to be in
stop band of the photonic crystal. The constantsa(0,0) and
a(r ,s) are evaluated for thisv and the resulting difference
equations are solved for the$Emr,ms%, g0, andg1 using stan-
dard techniques. Note that the values of bothg0 and g1
needed to support a mode of frequencyv are restricted and
must be determined from the set of difference equations

Let us assume a solution of Eqs.~25!–~28! of the form

Elr ,ls5 f e2 ikl1aeikl , ~29!

wherel 5(n11),(n12), . . . ,

Elr ,ls5be2 iql1ceiql , ~30!

wherel 50,61,62, . . . ,6n,

Elr ,ls5de2 ikl1e0eikl , ~31!
ic

s

.

-

-

e
e

e

where l 52(n11),2(n12), . . . . Substituting Eqs.~29!
and ~31! into Eq. ~25! we find that

g05@a~0,0!12a~r ,s!cosk#21, ~32!

and substituting Eq.~30! in Eq. ~26! we find that

g15@a~0,0!12a~r ,s!cosq#21. ~33!

Equations~32! and ~33! give the possible dielectric con
stants, respectively, of the impurity materials in the wav
guide channel and the barrier for the system to suppo
propagating waveguide mode of frequencyv, with wave
numberk in the waveguide channel outside of the barri
and wave numberq in the waveguide channel inside of th
barrier material. In the following, it is assumed thatkÞq so
thatg0Þg1. Using Eqs.~27! and~28! to match the boundary
conditions at the edge of the barrier, we obtain

U f

a
U5U b1 b2

b2* b1*
UU d

e0
U, ~34!

where

b152e2ik(n11)~e22iqn@12e2 i (k1q)#2

2e2iqn@12e2 i (k2q)#2!/~4 sink sinq! ~35!

and

b252~e22iqn@12e2 i (k1q)#

3@12ei (k2q)#2c.c.!/~4 sink sinq!. ~36!

Equation~34! represents a transform between the state
Eqs. ~29! and ~31! on opposite sides of the barrier. Th
transform conserves the total energy flux along the length
the waveguide. As an example, to treat a scattering prob
involving a wave incident on the barrier from the right w
can evaluate Eq.~34! for d51 and e050. This gives the
incident wave amplitude,f 5b1, and the reflected wave am
plitude, a5b2* , on the right of the barrier for there to be
unit transmitted wave on the left of the barrier. Specifical
for a unit transmitted flux on the left of the barrier the rel
tive intensity of the incident flux on the right of the barrie
is u f u25$(12coskcosq)21sin2 ksin2 q2@cosq2cosk#2

cos@(4n12)q#%/@2 sin2 qsin2 k#, and the relative intensity o
the reflected flux on the right of the barrie
is uau25$(12coskcosq)22sin2 ksin2 q2@cosq2cosk#2

cos@(4n12)q#%/@2 sin2 ksin2 q#. The transmission coefficient
defined as the ratio of the transmitted to incident power fl
is then given by
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T5
2 sin2 q sin2 k

~12cosk cosq!21sin2 k sin2 q2~cosq2cosk!2 cos„~4n12!q…
, ~37!
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and the reflection coefficient isR512T.
To illustrate the results for the transmission of elect

magnetic waveguide modes though the dielectric barrier,
have plotted in Fig. 1 results for the barrier transmiss
coefficient, Eq.~37!, versus the frequencyv in the stop band
of a square lattice photonic crystal. These results are
tained from the evaluation of Eqs.~32!, ~33!, and~37!. The
photonic crystal we study is an array of cylindrical dielect
rods of dielectric constante59 and radiusR50.37796ac ,
where ac in the lattice constant of the square lattice. T
dielectric rods are surrounded by vacuum. This particu
photonic crystal has a stop band at 0.425,vac/2pc
,0.455. The waveguide channel is taken to be in the@10#
direction and is formed from impurity materials witht
50.01ac . The impurities forming the waveguide channel a
taken to have a nearest-neighbor separation of a lattice
stant so that in Eqs.~32! and ~33! a(r ,s)5a(1,0), and for
the results presented in Fig. 1 we have takenn510. We refer
the reader to the Appendix for a more detailed discussion
the generation of Fig. 1 from the equations in the text. In F
1 and the remaining figures presented in the text, we
only show results obtained from the evaluation of the eq
tions generated in the body of the text. We will indicate
the text which equations are used to generate the figures
will refer the interested reader to the Appendix for a detai
discussion of the particulars as to the generation of the
ures from the text materials.

The plots in Fig. 1 are obtained by fixing the values ofg0
andg1 and varying the waveguide mode frequency over
stop gap of the photonic crystal. To obtain plots that sam
as much of the parameter space available for study in
model as possible, we have chosen values ofg0 andg1 for
these plots, which give a diverse selection of values ofq and
k at the mid-stop-band frequency. Specifically, if we den
the values ofq and k at the mid-stop-band frequency
vac/2pc50.440, by qc and kc , we present plots for the
pairs (qc ,kc)5(p/2,p), (p/2,p/100), (p/10,p/2),
(p/10,p/4), (p,p/4), and (p,p/2). From Eq.~A3! in the
Appendix, we see that these correspond tog0 /g151.20,
0.86, 1.16, 1.04, 0.74, and 0.83, respectively. The value
(qc ,kc) we treat then sample regions in which the ratio
the wave vectors in the barrier medium and in the wavegu
channel medium are large or small forqc taken at the bottom
of the band (qc'0), at the center of the band (qc5p/2), and
at the top of the band (qc5p). In general, the transmissio
coefficients in Fig. 1 as functions of the frequency of t
modes are found to exhibit a roughly periodic series of
terference maxima and minima related to the interferenc
the transmitted and reflected waves at the barrier surfa
This is the type of behavior observed in barrier reflection
layered optical systems. It is interesting to note that the
riod in frequency of the maxima and minima of the transm
sion coefficient is relatively insensitive to the values
(qc ,kc). In addition, the transmission coefficients are seen
-
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be nonzero over different frequency intervals of the s
band. This is due to the different dispersion characteristic
the waveguide channels for different values ofg0 andg1.

The barrier region in which l 52n,2(n11), . . . ,
21,0,1, . . . ,n21,n does not have to be made from mater
that conducts electromagnetic waves@i.e., has a plane-wave
waveguide mode solution of the form in Eq.~30!# for the
frequencyv. If we analytically continue Eqs.~30!, ~33!,
~35!, and~36! by replacingq by 2 iq, then the solution in the
barrier becomes from Eq.~30!

Elr ,ls5be2ql1ceql, ~38!

which is a nonpropagating form. From Eq.~33! we find that
g1 supporting these modes is given by

g15@a~0,0!12a~r ,s!coshq#21, ~39!

and a new Eq.~34! relating f ,a to d,e0 for this system is
found by similarly replacingq by 2 iq. If we perform an
analytical continuation by replacingq by 2 iq1p, then the
nonpropagating solutions in the barrier becomes from
~30!

Elr ,ls5~21! l@be2ql1ceql#, ~40!

whereg1 supporting these modes is given by

g15@a~0,0!22a~r ,s!coshq#21, ~41!

and a new Eq.~34! relatinga, f to d,e0 for this case is found
by similarly replacingq by 2 iq1p. Equations~33!, ~39!,
and~41! then account for all possible values2`<g1<` of
interest in the barrier problem.

Another geometry of interest is that of an infinitely lon
waveguide with a bend. We shall treat the case of a rig
angle bend in a square lattice photonic crystal with one p
of the waveguide on the negativex axis and the other part on
the positivey axis. From Eq.~6!, in the small-t approxima-
tion, we obtain a set of difference equations given below
is interesting to note here, however, that if we only consi
the case of such a waveguide with nearest-neighbor inte
tions, there is no difference in the difference equations
the cases of a waveguide with or without a bend. Differen
arise, however, when further than nearest-neighbor inte
tions occur in the system. Consequently, we shall trea
system with nearest- and next-nearest-neighbor interact
for a right-angle waveguide. The waveguide channel we c
sider is formed of a single type of dielectric impurity mat
rial.

Consider the geometry in Fig. 2~a!. The difference equa-
tions defining the waveguide are from Eq.~6!, using the
notation of Eq.~10!,

Elr ,05g0@a~0,0!Elr ,01a~r ,0!~E( l 11)r ,01E( l 21)r ,0!#,
~42!

wherel 522,23,24, . . . ,
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E0,lr 5g0@a~0,0!E0,lr 1a~0,r !~E0,(l 11)r1E0,(l 21)r !#,
~43!

wherel 52,3,4, . . . ,

E2r ,05g0@a~0,0!E2r ,01a~r ,0!~E22r ,01E0,0!

1a~r ,r !E0,r #, ~44!

E0,05g0@a~0,0!E0,01a~r ,0!E2r ,01a~0,r !E0,r #, ~45!

and

E0,r5g0@a~0,0!E0,r1a~r ,0!~E0,01E0,2r !1a~r ,r !E2r ,0#.

~46!

FIG. 1. Results for the barrier problem. Plots for the transm
sion coefficient versus frequency in units ofvac/2pc are shown for
(qc ,kc)5 ~a! (p/2,p) ~solid! and (p/2,p/100) ~dashed!, ~b!
(p/10,p/2) ~solid! and (p/10,p/4) ~dashed!, ~c! (p,p/4) ~solid!
and (p,p/2) ~dashed!.
Here by symmetrya(r ,0)5a(0,r ), and the impurity dielec-
tric material on the sites (0,lr ) for l 50,1,2,3, . . . and (lr ,0)
for l 521,22,23, . . . ischaracterized byg0.

We look for a solution of this set of equations of the for

Elr ,05aeikl1be2 ikl , ~47!

-

FIG. 2. Schematic drawings of waveguide channels of photo
crystal circuits. A representation is given in thex-y plane of a
two-dimensional photonic crystal formed on a square lattice,
that defined in Eq.~1!. In this representation of the waveguide ci
cuits only the rods of the waveguide channel are shown and
remaining rods of the square lattice photonic crystal that are
part of the waveguide channel are not shown. Thex axis is hori-
zontal and they axis is vertical. The nearest-neighbor separation
the rods forming the waveguide channels in thex andy directions
are integer multiples of the photonic crystal lattice constant, i.e.,
Eq. ~4!. In these drawings different circles represent rods contain
different types of impurity materials.~a! The waveguide with a
right angle bend: In this plot the field at the center of the right-an
bend is labeledE0,0, and Eq.~42! relates the fields in the horizonta
row of rods and Eq.~43! relates the fields in the vertical row o
rods.~b! The waveguide junction: The fieldE0,0 is at the connection
of the two channels~the circle with the large inside circle!, and Eq.
~55! relates the fields in the horizontal row of rods and Eq.~56!
relates the fields in the vertical row of rods.~c! The infinite wave-
guide with a U-shaped attachment: The field in the site at the lo
left corner of the rectangle isE0,0, and Eqs.~83! and~85! relate the
fields in the lower and upper horizontal row of solid sites, Eq.~80!
relates the fields in the vertical row of open circle sites, and Eq.~84!
relates the fields in the vertical row of solid sites.~d! Two infinite
parallel waveguide with a single short joint between them: In t
figure, the fields in the lower horizontal row of sites are related
Eq. ~102!, the fields in the upper horizontal row of sites are relat
by Eq. ~103!, and the field in the join site between the two wav
guide channels is given by Eq.~106!.-
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wherel 521,22, . . . ,

E0,lr 5ceikl1de2 ikl , ~48!

wherel 51,2, . . . , and

E0,05s. ~49!

Substituting Eqs.~47! and ~48! into Eqs.~42! and ~43!, we
find that g05@a(0,0)12a(r ,0)cosk#21. This gives the
value of g0 needed to observe a waveguide mode of f
quencyv and wave numberk, wherea(0,0) anda(r ,0) are
evaluated atv. Substituting Eqs.~47!–~49! into Eqs.~44!–
~46! allows us to relate the coefficientsa,b to c,d. After a
little algebra, we find that the solution forms before and af
the bend can be related by

Ua
b
U5Ua11 a12

a21 a22
UUc

d
U, ~50!

where

a115

S 2
a~r ,r !

a~r ,0!
cosk11D 2

e2ik2e22ik

2i sin 2kS 2
a~r ,r !

a~r ,0!
cosk11D , ~51!

a125

S 2
a~r ,r !

a~r ,0!
cosk11D 2

21

2i sin 2kS 2
a~r ,r !

a~r ,0!
cosk11D , ~52!

a215a12* , ~53!

and

a225a11* . ~54!

The matrix equation in Eq.~50! is such that the net powe
transfer through the bend is conserved along the wavegu
and in the limit thata(r ,r )50 Eq. ~50!, as expected, yields
a5c and b5d. Evaluating Eq.~50! for the casec51 and
d50 gives the amplitudes of the incident wave,a5a11,
and the reflected wave,b5a12* , for a unit amplitude wave
to be transmitted through the bend. It is readily se
that in this caseuau22ubu251 where

uau25H F S 2
a~r ,r !

a~r ,0!
cosk11D 2

21G2

14 sin2 2kS 2
a~r ,r !

a~r ,0!
cosk

11D 2J Y F4 sin2 2kS 2
a~r ,r !

a~r ,0!
cosk11D 2G

and

ubu25F S 2
a~r ,r !

a~r ,0!
cosk11D 2

21G2Y F4sin22kS 2
a~r ,r !

a~r ,0!
cosk11D 2G
-

r

e,

n

are the incident and reflected power flux giving rise to a u
transmitted power flux through the bend and that energ
conserved along the waveguide.

IV. BRANCHED WAVEGUIDES AND CIRCUITS

One can make a branched waveguide by attaching a s
infinite waveguide at a site of an infinite waveguide.@See
Fig. 2~b!.# We shall assume that the channels of these
waveguides are of different types of impurity materials a
the point of attachment is made of a third type of impur
material.

The difference equations describing such a branc
waveguide are, from Eq.~6! using the notation of Eq.~10!:

Elr ,05g1@a~0,0!Elr ,01a~r ,0!~E( l 21)r ,01E( l 11)r ,0!#,
~55!

wherel 52,3,4, . . . ,

E0,lr 5g0@a~0,0!E0,lr 1a~r ,0!~E0,(l 21)r1E0,(l 11)r !#,
~56!

wherel 562,63,64, . . . ,

E0,05g2a~0,0!E0,01g0a~r ,0!~E0,r1E0,2r !

1g1a~r ,0!Er ,0 , ~57!

E0,6r5g0@a~0,0!E0,6r1a~r ,0!E0,62r #1g2a~r ,0!E0,0,

~58!
and

Er ,05g1@a~0,0!Er ,01a~r ,0!E2r ,0#1g2a~r ,0!E0,0.
~59!

We assume a solution of these equations of the form

E0,lr 5ae2 ikl1beikl ~60!

for l 51,2,3, . . . ,

E0,lr 5ce2 ikl1deikl ~61!

for l 521,22,23, . . . ,

Elr ,05e0e2 iql1 f eiql ~62!

for l 51,2,3, . . . , and

E0,05h. ~63!

Substituting Eqs.~60!, ~61!, and~62! in Eqs. ~55! and ~56!,
we find that

g05@a~0,0!12a~r ,0!cosk#21 ~64!

and

g15@a~0,0!12a~r ,0!cosq#21, ~65!

which give the impurity dielectric constants in terms of t
mode frequencyv andk andq wave numbers in the differen
branches of the waveguide junction for propagating wa
guide modes to exist at frequencyv. The three boundary
condition equations in Eq.~57!–~59! then give the matrix
equations
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Ue2 ik eik eik e2 ik g1

g0
e2 iq

g1

g0
eiq

g2a~0,0!21

g0a~r ,0!

1 1 0 0 0 0 2
g2

g0

0 0 1 1 0 0 2
g2

g0

0 0 0 0 1 1 2
g2

g1

UU a

b

c

d

e0

f

h

U50. ~66!
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The solution of the scattering problem for a wave of u
amplitude incident on the branch from (0,2`) is obtained
by solving Eq.~66! for the case in whicha50, e050, and
d51.

The equations in Eq.~66! can be rewritten as

Ua11 a12 a13

a21 a22 a23

a31 a32 a33

UU a

d

e0

U5Ub

c

f
U . ~67!

Here

a115d0
21S 2 cosk1eiq1

g2a~0,0!21

g2a~r ,0! D , ~68!

a225d0
21S 2 cosk1eiq1

g2a~0,0!21

g2a~r ,0! D , ~69!

a335d0
21S 2eik1e2 iq1

g2a~0,0!21

g0a~r ,0! D , ~70!

a1252d0
212i sink, ~71!

a215a12, ~72!

a1352d0
21 g1

g0
2i sinq, ~73!

a3152d0
212i

g0

g1
sink, ~74!

a2352d0
21 g1

g0
2i sinq, ~75!

a3252d0
212i

g0

g1
sink, ~76!

and

d0522eik2eiq2
g2a~0,0!21

g2a~r ,0!
. ~77!

Equation ~67! then expresses the amplitudes of the wa
leaving the vertex (b,c, f ) in terms of the waves traveling
towards the vertex (a,d,e0).

An interesting limiting case is the case in whichq5k,
g05g15g25g5@a(0,0)12a(r ,0)cosk#21. In this limit
t

s

a115a225a3352eik/(cosk13i sink) and a125a215a13
5a315a235a3252i sink/(cosk13i sink). Sending, in this
limit, a unit amplitude flux~e.g., d51, a50, ande050)
into the junction then from Eq. ~67! gives b5 f
52i sink/(cosk13i sink), c52eik/(cosk13i sink) for the
amplitudes of the flux flows away from the junction. We s
explicitly that udu25ubu21ucu21u f u2, where ubu25u f u2

54 sin2 k/(cos2 k19 sin2 k) and ucu251/(cos2 k19 sin2 k) are
the power transmitted and reflected from the junction fo
unit incident flux, and consequently flux is conserved at
junction. Defining the reflection and transmission coe
cients as the ratios of the reflected and transmitted flux,
spectively, to the incident flux, we find for the reflectio
coefficient

R5
1

cos2 k19sin2k
~78!

and for the transmission coefficients in each of the t
branches leaving the vertex

T5
4sin2 k

cos2 k19 sin2 k
. ~79!

In Fig. 3 we present plots ofT in Eq. ~79! versusv for the
branched junction in which all of the waveguide channels
formed from the same material. The plots are made for
photonic crystal studied in Fig. 1 and for a set of wavegu
channels in which the impurities forming the channels hav

FIG. 3. Results for the junction problem. Plots for the transm
sion coefficient versus frequency in units ofvac/2pc are shown for
kc5 ~a! p/2, ~b! p, ~c! p/100, ~d! 3p/4.
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13 244 PRB 61ARTHUR R. McGURN
nearest-neighbor separation of a lattice constant. In this p
tonic crystal e59, R50.37796ac , and in the waveguide
channelt50.01ac . Curves are generated from Eq.~79! in
conjunction with the dispersion relationg5@a(0,0)
12a(1,0)#21, and are presented as a function of mode f
quency for a variety of fixed values ofg. Theg studied are
chosen so that the value ofk, which we denote askc , for the
midband frequencyvac/2pc50.440 assume a set of repr
sentative valueskc5p, 3p/4, p/2, andp/100 correspond-
ing, respectively, tog50.342, 0.323, 0.284, and 0.243. Th
reader is again referred to the Appendix for a more deta
account of the treatment of Eq.~79! and the dispersion rela
tion in the generation of the plots in Fig. 3.

In Fig. 3 the transmission coefficients for different valu
of g are seen to be nonzero over different regions of the s
band. This is due to the different propagation characteris
of waveguide channels with differentg. In general, the trans
mission coefficient is fairly constant over the range of f
quencies for which it exists. However, the results for all fo
cases considered display regions of frequencies over w
the transmission coefficient rapidly goes to zero. Con
quently, in these regions small changes in the incident w
frequency can be used to open and shut the transmissio
energy though the junction. All of the systems exhibit a f
quency for which the transmission through the junction i
maximum so that by tuning the frequency of the mode o
can optimize the transmission of energy though the junct

Following our discussion of the waveguide with a barri
we can choose theg1 material so as to have nonpropagati
~non-plane-wave! waveguide mode solutions. This is don
by replacingq by 2 iq in Eqs. ~62!, ~65!, and~68!–~77! so
that in this caseg15@a(0,0)12a(r ,0)coshq#21. Alterna-
tively, q can be replaced by2 iq1p in Eqs.~62!, ~65!, and
~68!–~77! so that g15@a(0,0)22a(r ,0)coshq#21. These
two cases along with theg15@a(0,0)12a(r ,0)cosq#21

case of Eq.~65! exhaust the possible values of2`<g1
<` in this sidebranch.

Once branching structures can be treated, circuits sim
to those involved in the transport of electricity can now
formed for the conduction of photons. As an example of
use of branchings to form a simple photonic circuit, we n
treat a waveguide that contains a closed loop.@See Fig. 2~c!.#

Consider an infinitely long straight waveguide in a squ
lattice photonic crystal with the impurity sites of the wav
guide channel labeled by (0,mr), wherem ranges over the
integers. The waveguide is formed of only one type of i
purity material. Now attach to the waveguide channel at
(0,0) and„0,(n11)r … sites forn.1 a U-shaped channel o
impurities. The impurity material forming the channel of th
U can be different from the impurity material forming th
channel of the infinitely long waveguide channel. Let us u
the above formulation to compute the transmission and
flection characteristics of a waveguide mode incident on
U channel from (0,2`).

The set of difference equations that describe this bran
ing geometry consists of ten separate equations. The e
tions associated with the infinitely long straight wavegu
channel are given by the channel equation

E0,lr 5g0@a~0,0!E0,lr 1a~r ,0!~E0,(l 11)r1E0,(l 21)r !#
~80!
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wherelÞ0 or n11 otherwise ranges over the integers, a
two equations connecting the channel to the U-shaped c
nel

E0,05g0@a~0,0!E0,01a~r ,0!~E0,r1E0,2r !#1g1a~r ,0!Er ,0 ,

~81!
and

E0,(n11)r5g0@a~0,0!E0,(n11)r1a~r ,0!~E0,(n12)r1E0,nr!#

1g1a~r ,0!Er ,(n11)r . ~82!

There are seven equations that describe the U-shaped c
nel. These are

Elr ,05g1@a~0,0!Elr ,01a~r ,0!~E( l 11)r ,01E( l 21)r ,0!#,
~83!

wherel 52,3, . . . ,l 021,

El 0r ,lr 5g1@a~0,0!El 0r ,lr 1a~r ,0!~El 0r ,(l 11)r1El 0r ,(l 21)r !#,
~84!

wherel 51,2,3, . . . ,n,

Elr ,(n11)r5g1@a~0,0!Elr ,(n11)r1a~r ,0!~E( l 11)r ,(n11)r

1E( l 21)r ,(n11)r !#, ~85!

wherel 52,3 . . . ,l 021,

El 0r ,05g1@a~0,0!El 0r ,01a~r ,0!~El 0r ,r1E( l 021)r ,0!#,
~86!

El 0r ,(n11)r5g1@a~0,0!El 0r ,(n11)r

1a~r ,0!~El 0r ,nr1E( l 021)r ,(n11)r !#, ~87!

Er ,05g1@a~0,0!Er ,01a~r ,0!E2r ,0#1g0a~r ,0!E0,0,
~88!

and

Er ,(n11)r5g1@a~0,0!Er ,(n11)r1a~r ,0!E2r ,(n11)r #

1g0a~r ,0!E0,(n11)r . ~89!

We look for a solution of this system of difference equ
tions of the form

E0,lr 5ae2 ikl1beikl , ~90!

wherel 51,2,3, . . . ,n,

E0,lr 5ce2 ikl1deikl , ~91!

wherel 521,22,23, . . . ,

Elr ,05e0e2 iql1 f eiql , ~92!

wherel 51,2, . . . ,l 0,

El 0r ,lr 5e0e2 iq( l 01 l )1 f eiq( l 01 l ), ~93!

wherel 51,2,3, . . . ,n,

E( l 0112 l )r ,(n11)r5e0e2 iq( l 01n1 l )1 f eiq( l 01n1 l ), ~94!

wherel 51,2, . . . ,l 0,
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E0,05h, ~95!

E0,(n11)r5h8, ~96!

and

E0,lr 5re2 ikl1seikl , ~97!

where l 5n12,n13,n14, . . . . Substituting these forms in
Eqs. ~80!–~89! above, we find a system of ten algebra
equations that can be used to relatea,b,c,d,e, f ,h,h8,r ,s to
one another.

An interesting case of these equations is to use them
relate the coefficientsc,d to r ,s. This then gives the trans
mission and reflection of the waveguide modes from the
loop. If we assume that the waveguide channel of the i
nitely long channel and the U-shaped channel resonate a
same frequency„i.e., g05@a(0,0)12a(r ,0)cosk#21 and
g15@a(0,0)12a(r ,0)cosq#21

…, then following a little alge-
bra we find

Uc
d
U5Ua11 a12

a12* a11*
UUr

s
U, ~98!

where

a115
e2 ik(n11)

d0
H S sink

sink~n11!
1

sinq

sinq~2l 01n11! D
2

2S eik2
sinkn

sink~n11!
2

sinq~2l 01n!

sinq~2l o1n11! D
2J ,

~99!

a125
eik(n11)

d0
H S sink

sink~n11!
1

sinq

sinq~2l 01n11! D
2

2Ueik2
sinkn

sink~n11!
2

sinq~2l 01n!

sinq~2l 01n11!
U2J ,

~100!

and

d0522i sinkS sink

sink~n11!
1

sinq

sinq~2l 01n11! D .

~101!

For there to be a unit transmitted flux in the region above
U loop, we needr 50 and s51 in Eq. ~98!. The relative
intensities of the incident and reflected flux in the regi
below the U loop are thenua11u2 and ua12u2, respectively.

In Fig. 4 we present results for the U-loop system w
n5 l 0510. We plot the transmission coefficient,T
51/ua11u2, defined as the ratio of the transmitted to incide
flux, versus the frequencyv in the stop gap. We use th
parameters of thee59, R50.37796ac square lattice photo
nic crystal. The waveguide channels of the circuit are ta
to havet50.01ac with a nearest-neighbor impurity separ
tion equal to the lattice constant of the square lattice. T
reader is referred to the Appendix for a detailed discussio
the generation of the plots in Fig. 4 from the equations
the dispersion relations in the infinitely long channel,g0
to

-
the

e

t

n

e
of
r

5@a(0,0)12a(1,0)cosk#21; the dispersion relations in the U
loop, g15@a(0,0)12a(1,0)cosq#21; and the transmission
coefficientT51/ua11u2.

As in our discussion of the dielectric barrier, we ha
choseng0 andg1 in the plots in Fig. 4 so as to represent
diverse parameter space as possible in as few figures as
sible. This is done by selecting them to fix a set of values
(qc ,kc), whereqc and kc are the wave numbers in the U
loop and the waveguide channel at the mid-stop-band
quency, vac/2pc. We have chosen (qc ,kc)5(p/2,p),
(p/2,p/2), (p/2,p/10), respectively, for the plots in Figs
4~a!, 4~b!, and 4~c!. For these plots we have from Eq.~A3!
g0 /g150.83, 1.00, and 1.16, respectively. For the frequen
regions in which mode solutions are found in the system,
see that the transmission coefficient as a function of
quency exhibits an extremely complex behavior. All syste

FIG. 4. Results for the U-loop problem. Plots for the transm
sion coefficient versus frequency in units ofvac/2pc are shown for
(qc ,kc)5 ~a! (p/2,p), ~b! (p/2,p/2), ~c! (p/2,p/10).
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display rapid oscillations between values near zero and
ues near one. This is due the phase interference betwee
waves traveling in the U loop and the waveguide upon th
merger on the outgoing or transmitted wave side of the lo
The complex behavior of the transmission coefficient w
frequency is unlike the transmission behavior in the wa
guide barrier problem or in the problem of layered optic
systems. In the barrier problem and the layered optical s
tems the transmission coefficient exhibits a periodic modu
tion as a function of frequency, related to the barrier leng
which contains fewer number of harmonics than do
higher-dimensional~higher that one-dimensional! circuits
such as that for the results in Fig. 4, possible in photo
crystal circuit systems. This is an interesting aspect of p
tonic circuits not seen in analogous electrical circuits wh
the transport is of a diffusive rather that a propagating w
nature.

Next let us consider the case of two infinitely long straig
parallel waveguides that are joined by a short perpendic
channel.@See Fig. 2~d!.# This is reminiscent of a branche
system recently treated in Ref. 8. The impurity mater
forming the channels will be taken to be the same for
channels. The difference equations for this system are

Elr ,05g@a~0,0!Elr ,01a~r ,0!~E( l 11)r ,01E( l 21)r ,0!#,
~102!

wherel 561,62,63, . . . ,

Elr ,2r5g@a~0,0!Elr ,2r1a~r ,0!~E( l 11)r ,2r1E( l 21)r ,2r !#,
~103!

wherel 561,62,63, . . . ,

E0,05g@a~0,0!E0,01a~r ,0!~Er ,01E0,r1E2r ,0!#,
~104!

E0,2r5g@a~0,0!E0,2r1a~r ,0!~Er ,2r1E0,r1E2r ,2r !#,
~105!

and

E0,r5g@a~0,0!E0,r1a~r ,0!~E0,01E0,2r !#. ~106!

We assume a solution of the form

Elr ,2r5aeikl1be2 ikl , ~107!

wherel 51,2,3, . . . ,

Elr ,2r5ceikl1de2 ikl , ~108!

wherel 521,22,23, . . . ,

Elr ,05geikl1 f e2 ikl , ~109!

wherel 521,22,23, . . . ,

Elr ,05heikl1ne2 ikl , ~110!

wherel 51,2,3, . . . ,

E0,2r5r 0 , ~111!

E0,r5s, ~112!

and
l-
the
ir
p.

-
l
s-
-
,

e

c
-

e
e

t
ar

l
ll

E0,05t. ~113!

Following a little algebra we find a matrix equation relatin
a,b,h,n to c,d,g, f ,

Ua

b

h

n

U5Ua11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

UU c

d

g

f

U , ~114!

where

a115
sink@2 sin 2k1 i #

2 cosk~12cos 2k!
, ~115!

a125
i sink

2 cosk~12cos 2k!
, ~116!

and a115a22* 5a335a44* , a125a135a145a21* 5a23* 5a24*
5a315a325a345a41* 5a42* 5a43* .

If a unit transmitted flux is present in the lower right-han
branch@See Fig. 2~d!.# for an incident flux only in the lower
left-hand branch, thenh51, n50, c50, b50 in Eq.~114!.
Solving Eq. ~114! for this case givesa5 f 5d52 i /
( i 22 sin 2k), g52(i 2sin 2k)/(i22 sin 2k). The relative in-
tensity of the incident flux in the lower left branch isugu2

54(11sin2 2k)/(114 sin2 2k). The relative intensity of the
reflected flux in the lower left branch isu f u251/(1
14 sin2 2k). The relative transmitted intensity of flux in th
upper branches isuau25udu251/(114 sin2 2k). We find that
ugu25uau21udu21u f u21uhu2 so that the total energy flux is
conserved in the network.

In Fig. 5 plots of the reflection coefficient in the lowe
left-hand branch,R5u f /gu2, for a flux incident in the lower
left-hand branch are shown as functions ofv. These plots are
from the square lattice photonic crystal represented in F
1, 3, and 4 and for waveguide channels with neare
neighbor impurity separations equal to the lattice constan
the square lattice. We refer the reader to the Appendix fo
more detailed discussion of the generation of Fig. 5 from
equations of the text. Results are presented forg50.342,
0.284, 0.244 corresponding, respectively, tokc5p, p/2,
p/10 where we definekc as in our previous plots in Fig. 3

FIG. 5. Results from the parallel line problem. Plots for t
reflection coefficient versus frequency in units ofvac/2pc are
show forkc5 ~a! p, ~b! p/2, ~c! p/10.
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We see from Fig. 5 that the reflection from the circuit
strongly dependent on the frequency so that there are
quencies that minimize the reflection coefficient. At the
frequencies the transmission to the lower right-hand bra
is maximized. The results in Fig. 5~b! are particularly inter-
esting as there are two frequencies corresponding to re
tion minimum and two frequencies corresponding to refl
tion maxima.

As a final interesting case, we consider a closed-circ
waveguide that has a rectangular channel. The equation
scribing this system are

Er ,lr 5g@a~0,0!Er ,lr 1a~r ,0!~Er ,(l 11)r1Er ,(l 21)r !#,

~117!
wherel 52,3, . . . ,n21,

Er ,nr5g@a~0,0!Er ,nr1a~r ,0!~Er ,(n21)r1E2r ,nr!#,
~118!

Elr ,nr5g@a~0,0!Elr ,nr1a~r ,0!~E( l 11)r ,nr1E( l 21)r ,nr!#

~119!
wherel 52,3, . . . ,l 021,

El 0r ,nr5g@a~0,0!El 0r ,nr1a~r ,0!~E( l 021)r ,nr1El 0r ,(n21)r !#,
~120!

El 0r ,lr 5g@a~0,0!El 0r ,lr 1a~r ,0!~El 0r ,(l 11)r1El 0r ,(l 21)r #,
~121!

wherel 5n21,n22, . . . ,2,

El 0r ,r5g@a~0,0!El 0r ,r1a~r ,0!~El 0r ,2r1E( l 021)r ,r !#,
~122!

Elr ,r5g@a~0,0!Elr ,r1a~r ,0!~E( l 11)r ,r1E( l 21)r ,r !#,

~123!
wherel 5 l 021,l 021, . . . ,2,

Er ,r5g@a~0,0!Er ,r1a~r ,0!~Er ,2r1E2r ,r !#. ~124!

Assuming a solution of the form

Er ,lr 5ae2 ikl1beikl , ~125!

wherel 51,2, . . . ,n,

Elr ,nr5ae2 ik(n1 l 21)1beik(n1 l 21), ~126!

wherel 51,2,3, . . . ,l 0,

El 0r ,lr 5ae2 ik(2n1 l 02 l 21)1beik(2n1 l 02 l 21), ~127!

wherel 51,2, . . . ,n, and

Elr ,r5ae2 ik(2n12l 02 l 22)1beik(2n12l 02 l 22), ~128!

where l 51,2,3, . . . ,l 0, we find upon substitution in Eqs
~117!–~124! that the condition for modes to exist in the ci
cuit is that g5@a(0,0)12a(r ,0)cosk#21 and k5Np/(n
1 l 022) whereN is an integer.
e-
e
h

c-
-

it
de-

V. CONCLUSIONS

We have studied the propagation of electromagne
waves in various types of waveguide circuits in photon
crystals and have demonstrated that under certain condit
the mathematics describing this propagation can be redu
to a set of difference equations. The treatment is reminisc
of that of light in layered media,18 but the photonic
waveguides and the richer topology they offer in their int
connection branching networks give them a more interes
physics than that of layered media. As we have seen in
text, the phase coherent effects in photonic circuits can ca
the transmission and reflection coefficients of photonic c
cuits to be complicated functions of the mode frequencies
addition, photonic circuits that have no input or output wav
guide lines can exhibit a variety of bound state resona
modes that are tuned by the circuit geometry.

A feature of our theory is that very complicated and e
tended branching waveguide circuits can be treated and
physics is described by closed-form mathematical exp
sions involving elementary functions of mathematical ph
ics. The photonic crystal circuits are described by a se
difference equations that can be quickly generated
solved. Using the evaluation techniques discussed in the
pendix, plots of the transmission and reflection coefficien
as well as the waveguide mode field geometries can be e
generated for a great variety of photonic circuits. This is a
true in the study of the mode frequencies of resonant mo
in closed-loop circuits.

An additional interesting physical feature of photon
crystal circuits is that they represent an optical analogy
electronic circuits. In electronic circuits, electrons diffu
through the network of the circuit. In photonic circuits, lig
propagates in a nondiffusive manner though the netwo
Consequently, the optical system exhibits a variety of int
esting interference effects not seen in the energy transpo
electronic circuits.

We hope that the simple models we have studied in
paper will be useful in understanding more complicat
waveguide systems and systems formed from more gen
types of single-site impurities.

APPENDIX

In this appendix we show how some of the circuit mod
studied in this paper can be evaluated for a realization o
photonic crystal. We consider a two-dimensional photo
crystal, though the theory in the text is quite general and
handle both two- and three-dimensional photonic cryst
The two-dimensional photonic crystal we consider is an
ray of cylindrical rods of radiusR, arranged on a squar
lattice of lattice constant,ac , such thatR50.37796ac . The
rods have dielectric constante59 and are surrounded b
vacuum. For electromagnetic waves propagating in the pl
of the square lattice with an electric field vector polariz
parallel to the axes of the rods, a stop band occurs for
quenciesv with 0.425,vac/2pc,0.455. ~This particular
photonic crystal and field polarization comprise the syst
used by us in Ref. 11 to illustrate the waveguide modes o
infinitely long waveguide in a two-dimensional photon
crystal and in Ref. 9 to present results on finite clusters
impurities in photonic crystals.!
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In the circuit examples considered in the text, we take
waveguide channels to be oriented along the set of@10#,
@01# directions of the square lattice. Along these directio
a(0,0) anda(1,0), for the photonic crystal described in th
above paragraph, are dominant. Consequently, in the ev
ation of the mathematical expression in this paper relate
photonic circuits,a(0,0) and a(1,0) as functions of fre-
quency in the stop bands are all that are needed. These
easily be obtained from the numerical results in Refs. 9
11.

As the stop bands of the photonic crystal generally ext
over very narrow bands of frequencies, in any given s
band one finds to a good approximation

a~0,0!5ac~0,0!1a1~x2xc! ~A1!

and

a~1,0!5ac~1,0!1b1~x2xc!, ~A2!

wherex5vac/2pc ranges over the frequencies of the st
band,xc5vcac/2pc for vc the frequency at the center of th
stop band,ac(0,0) is the value ofa(0,0) atvc , andac(1,0)
is the value ofa(1,0) atvc . For the model described in th
previous paragraph with the 0.425,x,0.455 stop band and
for waveguides witht50.01ac we find to a very good
approximation that, in units ofac

2 , ac(0,0)53.52, a1

541.82, ac(1,0)50.300, b156.03, andxc50.440. These
parameters when used in the relationg5@a(0,0)
12a(1,0)cosk#21 give

g5H 3.52141.82S vac

2pc
20.440D

12F0.30016.03S vac

2pc
20.440D GcoskJ 21

, ~A3!

which reproduces the plot given in Fig. 4 of Ref. 11.@Note:
In comparing the results from Eq.~A3! with the results in
Fig. 4 of Ref. 11, it is important to note thatD in the notation
in Ref. 11 is the same asg in the notation used in this paper#
These results are from fitting the numerical data in Ref.
for the a(r ,s). As explained in Ref. 11 the results obtain
there are computed from the numerical solutions for
modes of the photonic crystal and are essentially exact.

For the simple systems of Sec. III A, which consist
finite-length segments of waveguide, Eqs.~A1! and~A2! can
be used directly in Eqs.~12!, ~15!, and~16!, or ~20! to obtain
the resonant modes. For fixedg Eqs.~12!, ~15!, and~16!, or
~20! with Eqs. ~A1! and ~A2! give the resonant frequencie
found in the stop bands at which bound state modes
observed. Related types of cluster systems were treated b
in Ref. 9. We now discuss the more complicated circuit n
work geometries of Secs. III B and IV.

The circuits treated in this paper generally are form
from two or more different waveguide channels. For the d
cussions involving more than one waveguide chann
a(0,0) anda(1,0) often occur in expressions of the form
e

s

lu-
to

an
d

d
p

1

e

re
us

t-

d
-
l,

g05@a~0,0!12a~1,0!cosk#21 ~A4!

for one waveguide channel and

g15@a~0,0!12a~1,0!cosq#21 ~A5!

for a second waveguide channel. Equations~A4! and ~A5!
relate the dielectric parameters~i.e., throughg0 and g1) in
two different waveguide channels of a photonic circuit to t
mode frequency,v, which occurs ina(0,0) anda(1,0) and
to the waveguide wave numbersk or q in each channel.@An
example of this is the barrier problem in Sec. III B. In th
barrier problem Eqs.~32! and ~33! relate the dielectric con-
stant in the waveguide channel and in the channel segm
containing the barrier material to the mode frequency a
wave number and are of the form of Eqs.~A4! and ~A5!
above.# The values ofg0 andg1, which give channel modes
of frequencyvc for wave numberskc and qc are obtained
from Eqs.~A4! and~A5! by evaluatinga(0,0) anda(1,0) in
Eqs. ~A1! and ~A2! at xc5vcac/2pc. Once these values o
g0 and g1 are fixed for givenvc , qc , kc , then from Eqs.
~A1!–~A5! we find

cosk5
2a1~x2xc!12ac~1,0!coskc

2@ac~1,0!1b1~x2xc!#
~A6!

and

cosq5
2a1~x2xc!12ac~1,0!cosqc

2@ac~1,0!1b1~x2xc!#
, ~A7!

where Eq. ~A6! relates k to the mode frequencyv
52pcx/ac and Eq.~A7! relatesq to the mode frequency
v52pcx/ac . Equations~A6! and ~A7! relatek andq to v
for channels with fixedg0 and g1. We shall now use the
relations in Eqs.~A6! and~A7! to evaluate some of the pho
tonic circuits considered in this paper.

1. Barrier

The case of a dielectric barrier in an infinitely lon
straight waveguide in treated in Eqs.~25!–~37! of the text.
Equations~32! and ~33! which give the dispersion in the
waveguide and the barrier material have been discusse
Eqs. ~A1!–~A7! above, and we will refer to these results
our discussion below.

For a unit incident flux on the barrier, the discussion
the text gives a transmission coefficient through the bar
from Eq. ~37! of
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T5
2 sin2 k sin2 q

~12cosk cosq!21sin2 k sin2 q2~cosq2cosk!2cos@~4n12!q#
~A8!
t

at
nd

ned

ed

n-
bar-
ob-
tem

f

d

the

the

om
and a reflection coefficientR512T. One can obtain a plo
of T or R versusvac/2pc by using Eqs.~A6! and ~A7! to
obtaink andq as a function ofvac/2pc for fixed kc andqc .
The valueskc andqc are fixed by Eqs.~A4! and~A5! so that

coskc5
12g0ac~0,0!

2g0ac~1,0!
~A9!

and

cosqc5
12g1ac~0,0!

2g1ac~1,0!
, ~A10!

whereg0 andg1 are constants. Notice thatg0 andg1 only
depend on the values of the dielectric constant of the m
rial forming the channel of the photonic crystal circuit a
the fixed geometry of that material. Not all values ofg0 and
g1 will give solutions of Eqs.~A9! and~A10! for kc andqc .

2. Branched system

The branched system described in Eqs.~55!–~79! can be
evaluated for the case in whichg05g15g25g5@a(0,0)
12a(1,0)cosk#21 by using Eqs.~A1!–~A7! to obtaink as a
function of vac/2pc for fixed g05g or kc . We find the
dispersion relation

cosk5
2a1~x2xc!12ac~1,0!coskc

2@ac~1,0!1b1~x2xc!#
, ~A11!

where

coskc5
12gac~0,0!

2ga~1,0!
. ~A12!
e-

Oncek is related tovac/2pc through Eqs.~A11! and~A12!
the reflection and transmission coefficients can be obtai
from Eqs.~78! and ~79! of the text.

3. U loop

In the U loop discussed in Eqs.~80!–~101! the values of
g0 andk in the infinitely long waveguide channel are relat
by g05@a(0,0)12a(1,0)cosk#21 and the values ofg1 and
q in the U loop are related by g15@a(0,0)
12a(1,0)cosq#21. These are essentially the same relatio
ships encountered in the discussion given above for the
rier problem. The same discussion used for the barrier pr
lem can be applied to these equations for the U-loop sys
to obtaink and q as functions ofvac/2pc from Eqs.~A6!
and ~A7!. Once k and q are determined as functions o
vac/2pc, Eqs. ~99! and ~100! of the text can be used to
compute the transmission coefficient~i.e., T51/ua11u2) and
the reflection coefficient of a wave coming from infinity an
incident on the U loop.

4. Two parallel waveguides with a connection

The system in Eqs.~102!–~116! can be treated by solving
the relationg5@a(0,0)12a(1,0)cosk#21 for k as a function
of vac/2pc using the same approach discussed above for
branched system. Oncek is known as a function ofvac/2pc
the amplitudes of the waves in the various branches of
photonic circuit are give in terms ofk. Specifically, from the
discussions in the paragraph below Eq.~116! we have the
reflection coefficientR51/4(114 sin2 2k) and the transmis-
sion coefficients in each of the three lines leading away fr
the vertexT51/4(114 sin2 2k).
. t.
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