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A discussion is given of waveguides in photonic crystals and branching network geometries of waveguides
formed by joining several waveguide channels into conducting circuits for the transmission of light in photonic
crystals. We shall refer to these structures in general as photonic crystal circuits. These conducting networks,
which transport light, are an optical analogy to electrical circuits, which transport electrons through electrical
networks. Photonic crystal circuits, however, unlike most electrical circuits, exhibit a variety of interference
effects in their transport properties. The interference effects are related to the nondiffusive nature of the optical
transport. The transport properties of light in a variety of circuit geometries are studied. Emphasis is placed on
network geometries, which include barriers formed by the addition of dielectric materials to waveguide chan-
nels, bends in waveguide channels, closed loops, and interconnecting branched networks. Results for the
transmission and reflection properties of photonic circuit modes are presented as functions of the mode fre-
guencies and the dielectric constants of the materials forming the waveguide channels. A comparison is made
of the properties of photonic crystal circuits with those of layered optical systems.

[. INTRODUCTION been used by these authors to study bends in photonic crystal

There has been considerable recent interest in photoniwaveguides as well as in other seminal studies of photonic
crystal waveguide$:** These are waveguide structures crystal waveguides$.
formed in photonic crystals by the addition of a line of site  Most theoretical studies of photonic crystal waveguides
impurities to the photonic crystal. Electromagnetic wave-and their branching networks have been based on supercell
guide modes then propagate along the line of site impuritiescomputer simulations methods and have focused on systems
The interest in these structures has been in their use for theith waveguide channels formed by removing rows of di-
efficient transportation of electromagnetic energy and in theslectric rods from photonic crystals. These studies are lim-
channeling of the motion of electromagnetic energy througthted in two ways: First, they are limited in the size of the
space-? Photonic crystal waveguides are designed to consystems that can be treated by supercell computations, and
duct propagating electromagnetic modes along the length afecond, they are limited in the types of waveguide channels
the waveguide material at frequencies that occur in the stofhat have been treated. In this paper we will present a theory
gaps of the photonic crystal. Waveguide modes at stop-gafat is not limited by either of these conditions.
frequencies of the photonic crystal are found to be very In this paper we study the theory of branching structures
stable against radiative loss from the waveguide channel anof photonic waveguides using a method based on Green’s
tend to efficiently move electromagnetic energy along wavefunctions. The method is not restricted by network size limi-
guide channels even in the presence of bends or junctions tations and can be applied to general network geometries in
the channel:>*~®A recent review of waveguide structures in photonic crystals of any dimensionality. In addition, the
photonic crystals has been given by Joannoposetas.? as ~ Green'’s function method can be easily applied to waveguide
well as in an earlier bodkdevoted to the topic of photonic channels formed from different dielectric materials or mate-
crystals. In some more recent work, we have investigated theals that have a number of different interconnecting wave-
existence in nonlinear photonic crystals of static and propaguide channels all formed from different types of dielectric
gating intrinsic localized modés:* materials. In this approach, Green'’s functions techniques are

One interest in waveguides has been in forming fromapplied®* to particular types of photonic crystal
them branching waveguide structures in photonic cry$tals.waveguides for which the equations describing the propaga-
We refer to these networks as photonic crystal circuits. Theyion of light in the waveguide channels reduce to a set of
are systems of two or more waveguides that join together tdifference equations. These difference equations are treated
form conducting paths for the transportation of electromagusing standard methods to obtain analytic closed-form ex-
netic energy in space in a manner analogous to the transpgoressions for the propagation characteristics of photonic
tation of electrical current through space in electrical circuitscrystal circuits.
A very interesting recent work on these types of problems We illustrate the difference equation techniques by apply-
has appeared in Ref. 8, which presents studies of a circuihg them to a variety of photonic crystal circuits in two-
consisting of two parallel waveguide channels that are linkedlimensional photonic crystals. We emphasize, however, that
by a short segment of waveguide. The waveguide channetbe difference equations can be directly applied to circuits in
are formed by removing rods from a two-dimensional pho-three-dimensional photonic crystals so that the dimensional-
tonic crystal, and the modes of the system are determineitly of the circuit network does not restrict the mathematics of
using techniques of supercell computer simulafi@imilar  the theory. For the two-dimensional photonic crystal a square
computer simulations based on supercell methods had earliattice array of infinitely long dielectric rods is considered.
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The rods are of circular cross section with axes parallel to theoherence and path multiplicity in these networks is dis-
zaxis and form a square lattice with lattice constanin the  cussed. For finite closed-loop systems the bound state reso-
x-y plane. The waveguide channels of the photonic crystanant modes and their resonant frequencies are determined. In
circuits are formed by replacing rows of rods in the photonicSec. V, conclusions are given.

crystal by rods containing impurity dielectric media. Only

modes propagating in thr-y plane with electric fieldE Il. DIFFERENCE EQUATIONS FOR PHOTONIC

polarized parallel to the axis are studied. For circuits with CRYSTAL WAVEGUIDES

input and output waveguide lines, results for the transmission

and reflection coefficients in these lines as a function of fre- As in Ref. 13, we consider thE-polarized electromag-

; : : etic modes of a two-dimensional photonic crystal formed as
uency in the stop band of the photonic crystal are obtained. . A . i
gor cirycuits with cl?losed loops opr circuits tr}:at are finite iso—a square lattice array of infinitely long, parallel, identical

: dielectric rods>*®1"The rods, which are of circular cross
lated waveguide segments, the resonant mode frequencies

and field distributions of the modes bound to these types O§ectlon, are charact%%ed by a _dle_lect_rlc co_nstaand are

structures are obtained. embedded in vacuunt:—The perlodlc d|eAIect[|c constant of
The problem of photonic crystal circuits is closely relatedth® System as a function of positian,=xi+yj, in thex-y

to another important problem in optics: layered optical me-Plane is then

dia. A long straight photonic crystal waveguide exhibits

many of the properties of layered systems, e.g., stop- and - . | & IFH—naciA—maCﬂsR for n and m integers
pass-band, transmission, and reflection characteristics. A di-f(r\l)_ 1, otherwise
electric barrier placed in a photonic crystal waveguide exhib- (1)

its transmission and reflection features similar to dielectric

barriers in layered systems. Photonic crystal circuits, howwherea, is the lattice constant of the square lattice, d&d
ever, are higher-dimensional systems than are one<a is the radius of the dielectric rods. THepolarized
dimensional layered systems, and due to their branching neglectromagnetic modes of the photonic crystal that propagate
works exhibit a wider variety of physical phenomena than don the x-y plane are solutions of the matrix eigenvalue
layered optical media. A circuit with a number of intercon- equatior®

necting sidebranches shows multiple phase coherence effects

due to the multiplicity of paths light can travel. The new w?

phase coherence shows up in the complex reflection andle+é“)2e(|2|||é‘||w)=—2 Z ;(G||—é'\|)e(i2|\|é'\||w)-
transmission coefficient properties of photonic crystals cir- (el
cuits with input and output channels. An additional feature of (2

photonic crystal circuits is that they, unlike Iayered_ me.d'a'Here the eigenvalue?/c? gives the frequency of the elec-
can close upon themselvés.g, make a closed-loop circlit i - : .
and these structure can bind resonant modes similar to thof@magnetic mode@, is a reciprocal-lattice vector of the
found in cavity resonators. square Iatticee(rH)=E(§He(GH)e'GH'rH, ande(k |G| ) are

_ The order of this paper will be as follows: In Sec. I, We related to the electric fieIcE(F“lw), of the mode of fre-
discuss the network geometry and forms of electromagnenauencyw by
solutions in photonic crystal circuits. The derivation of the
difference equations describing the waveguide modes is pre- . .. P
sented. This derivation is essentially a generalization of the E(rH|w)=Z e(K|Gjlw)e' it N, ©)
derivation of the difference equations found in Ref. 13, to G|
treat branching network geometries and waveguide channels
containing sections with different types of dielectric mate- A waveguide impurity is formed in the system defined in
rial. The remainder of the paper is devoted to obtaining soEd. (1) by adding impurity material to a row of rods along
lutions of these equations for particular networks. In Sec. Ill,one of the directions of the square lattide> Waveguides of
a discussion is given of waveguides that are of finite lengthpoth infinite and finite lengths in the photonic crystal can be
terminate at a point in the photonic crystal, contain dielectrionade is this way, and we now discuss these two types. Im-
barriers, or have channels with bends in space. Explicit angsurity material can be added to an infinite number of rods in
lytic expressions are given for the transmission and reflectio@ row of rods in the photonic crystal so as to form an infi-
characteristics of these geometries. In Sec. IV, systems dfitely long waveguide. For example, an infinite waveguide is
branched waveguidebranching networksare treated, and formed when impurity material is added to the sites
the characteristics of the propagation of electromagneti¢(nra;,nsa,)}, wherer and s are fixed integers and=
waves are determined. In a first case a waveguide junction in, ...,—2,—1,0,1,2 ... o ranges over the integers. Im-
which a semi-infinite waveguide is joined at a single site ofpurity material can also be added to a finite number of rods
an infinitely long waveguide is treated. This is next generalin a row of rods of the photonic crystal so as to form a
ized to consider a U-shaped waveguide that joins at two sitefinite-length waveguide segment. For example, such a finite
onto an infinitely long waveguide. The final two systemssegment is formed for the case in which impurity material is
studied are one formed from two infinitely long parallel added to the site§(nra.,nsa)}, wherer ands are fixed
waveguides that are joined together by a short segment andtegers anch=0,1,2 ... m wherem is an integer. One can
the case of a closed-loop waveguide. The complex behavidhen form a branching system of waveguidphotonic cir-
in the reflection and transmission coefficients due to phaseuits) by piecing together various waveguide segments.
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The total dielectric constant of a waveguide segmentjn the sum in Eq(7) m runs over the integers denoting the
ET(FH)’ is given byET(FH)ZE(FH)Jr 56(FH)’ whereée(FH) is Wa\_/eguide channel sites, andis _the frequency of the im-
the change in the dielectric constant of the photonic crystaPurity mode. For our purposes will be chosen to be in one
upon the addition of impurity dielectric material. For a wave- Of the stop gaps of the photonic crystal described in (Ep.
guide segment composed of an array of identical single-siterom Eqgs.(7) and(8) we then have
impurities of square cross-sectional area in xag plane,

>\ 13
56(”‘) 1S Enr,ns:A E Bnr,ns;mr,msEmr,mS! (9)
mr,ms
€, |X—nrag|,|ly—nsg|=<t for {n} integers . . . .
56(FH)= e | _°| ly &l {n} g where A= de, and againde is the value of the dielectric
0, otherwise constant of the impurity material minus of the photonic

crystal rods. Equatiof®) determines the fields in the impu-

wherer ands are fixed integers, the length of the waveguide'ity rods forming the photonic crystal waveguide. As we
segment depends on the range of the consecutive integet2ll see in the next sections, E¢#. and(9) are easily and
{n}, and 2 is the length of a side of one of the single-site Naturally generalized to obtain from E) a series of inter-
impurities. For the impurities we considet2R<a,. [At ~ connecting difference equations describing more general
this point, we emphasize thak in Eq. (4) is the value of the ~Photonic circuits. o
dielectric constant of the impurity material minus the dielec- Following the discussion in Refs. 11 through 14, the
tric constant of the material forming the pure dielectric rodsmathematics of our treatment is simplified by restricting the
of the photonic crysta).We now turn to a discussion of the 'ecursion relation in Eq(9) to consider only same-site and
electric fields associated with such waveguide segments arftfarest-neighbor site couplings. We do this as the couplings,
the photonic circuits formed by piecing them together. as seen in Eq(8), are related to the Green's function
We assume that the electric field of the modes associate@(r |, ,r’|||w), which decays with increasirigu—r’m for w
with waveguide segments and their branchings is of the fornin a stop gap of the photonic crystal. For directions of high
Miller indices this decay is expected to be large. We refer the
E(FH|t)= EO(FH ,w)exp( —iwt). (5) reader to Refs. 11 through 14 for a more detailed discussion
) , 13 L of this approximation, which has also been used there. The
Using standard techniqués™™ the electric field of wave- reader will see, however, that the restrictions to same-site
guide segments and their branchings is expressed as an inlg;q nearest-neighbor site couplings just simplifies the math-
gral equation given by ematics of our treatment below. Further-neighbor couplings
2 can be included. These only make the mathematics in the
EO(FH @)= f d2r|"G(FH ,F'||w)5e(F’||)<2> EO(F’H ), following sections a little tedious. With this provision EH§)
c becomes

> . . . . Enrns= 0,0E, nst a(r,s)(E
wherede(r ) is the change in the photonic crystal dielectric nrns= Y00 Enrnst a(r,8) By (s 1)s
constant due to all of the waveguide Eegfnents and their +E(m-1)r,(n-1)9) - (10
branchings in the photonic crystal. He&r |, ,r’|||w) is the

— 2 — 2
Green’s function of the Helmholtz operator for the photonicHerea(O’o)_ Boo,00/(41), a(r,)=Bo oy s/ (41%), wherer

, , 5 - 5 ands are defined in Eq4), andy=4t%5e. The electromag-
crystal in Eq.(1), i.e., V=+ e(r))(w/C)*. netic mode solutions of Eq10) that are bound to the wave-
As in Ref. 13 we assume thais small enough so that the iqe are obtained by first choosirgto be a frequency in
electromagnetic field at each square cross-section rod of injg,, stop band of the photonic crystal and computr@,0)
purity material is constant over that volume of the impurityand a(r,s). Equation(10) can then be solved fofE,, nd
material. This assumption allows us to rewrite E).for the y (i.,e. 425¢) characterizing these modes. nr.ns
fields in the rods as a difference equation. For example, con- We nO\}v turn to a discussion of the evaluation of this

sider de(r)) as defined in Eq(4) for a waveguide segment theory for a variety of different geometries. In this discussion
formed from identical single-site impurities. Let the electric ye present closed-form analytic expressions for the fields of
field in the rod of impurity material of the waveguide labeled the modes, the mode frequencies, and the transmission and
by (nr,ns) in Eq. (4) be denoted by, s, whereE,, ns  reflection coefficients of a variety of systems that are of in-
=E°(n(ri +s])a.,»); then we obtain from Eq(6) for this  terest. We will offer plots illustrating the results from some
segment the difference equation of these expressions for a particular realization of a two-
dimensional photonic crystaft! For the particuI%ﬁtwo-
A A dimensional photonic crystal used in our illustratror,the
E””‘S:% Burnsmr,msO€(M(ri +S))ac)Emrms (7) plots presented in the text and those the reader may wish to
generate for the other systems considered in this paper can be
Here easily produced on a pocket calculator using the equations in
, the text and the numerical results for the coefficienfs,s)
_) f d2r given in the Appendix. Finally, we note here that the differ-
c (mr,ms)th impurity I ence equations studied in this paper are closely related, in the
o R absence of a Kerr nonlinearity, to those studied in Ref. 13.
X G(n(ri +sj)ac,r|||w), (8) An essential difference in the difference equations studied

w

Bnr,ns;mr,ms:
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here is that they are for branched networks, whereas the difvhere k= 7N/(I+2) for N an integer for the values of
ference equations in Ref. 13 were for infinitely long straightthat are needed to support impurity modes of frequemacy

waveguide channels. The fields{E,, s are obtained as the eigenvectors for a
given eigenvaluey=4t?5e. In general, we see that a finite
IIl. FINITE LENGTH AND SEMI-INFINITE WAVEGUIDES, isolated waveguide of lengihbinds to it a series of resonant
DIELECTRIC BARRIERS, AND BENDS modes. The modes occur at a discrete set of frequencies and
o wave numbers that are the solution of E¢k2) or (15) and
A. Finite length (16) or (20) for fixed y=4t?3e. It is interesting to see that

Equation(10) can be used to treat a finite length of wave- by tuning y=4t>5e we can adjust the series of resonant
guide embedded in a photonic crystal. We shall start by conmodes of the finite length of waveguide.
sidering the simplest case of a single-site impurity and then The evaluation of the structures described by K@),
generalized this to the study of a finite length segment of15), (16), and (20) is quite simple. Once the(r,s) have

single-site impurities. been evaluated at a frequency in the stop band for a given
For a single impurity site>® located at ir,ns)=(0,0), photonic crystal, the solution for the change in dielectric
we have from Eq(10) constantde to have a resonance mode at this frequency is
easily obtained from Eq$12), (15), (16), and(20). We have
Eo,0= ya(0,0Eqp. (1) discussed this evaluation in detail in the case of impurity

clusters of highly symmetric geometry in Ref. 9. This dis-
cussion can be directly taken over to the new types of impu-
rities considered above. To assist the reader, however, we
y=a(0,0°1 (12) give a discussion in the Appendix of the evaluation of the
impurity equations given above.

Computing «(0,0) for w in the stop gap of the photonic
crystal, we find that

determines the value of=4t?>Se needed to obtain an impu-
rity mode of frequency» bound to the impurity site material. B, Terminated waveguides, waveguides containing barriers,
For a two-site impurity at, for example, sites located at (0,0) and bends

and (,s), the two equations obtained from Hq.0) are In Refs. 11-14 we have treated waveguides with infi-

Eoo= Y[ @(0,0Eq o+ a(r,s)E, <] (13)  hitely long uniform waveguide channels formed from both

’ ’ ' linear and Kerr nonlinear impurity dielectric media. In the

and following subsection, we shall extend the ideas in Refs.
11-14 to consider the properties of new varieties of

Ers=a(0,0E s+ a(r,s)Eqg]. (14 waveguides, which include semi-infinite waveguides termi-

From «(0,0) anda(r,s) evaluated at the impurity mode nated.ir_1 the_photo_nic crystal and infiniftely long WaveguiQes
frequencyw, we find two solutions fory: containing dielectric barriers. We restrict our considerations

to linear impurity dielectric media.

y=[a(0,00+ a(r,s)]"* (15) A semi-infinite waveguide that terminates in the photonic
crystal is a waveguide with a long straight channel that ends
and at some point in the photonic crystal. This system can be
Y=[a(0.0—a(r.9)] L (16 described from Eq(6) in our model by the following set of

difference equations:

These solutions give the values pf 4t?Se at which impu-
rity modes are observed at the frequengy

The considerations above based on Ef) can be ex- _
tended to the treatment of a segment 6fl sites, wherd Bir is= M (0.0ir jst a(r,S) (B -1y, (i-1)s
>1, located atif ,is) fori=0,1,...|. Proceeding as above +Eg+1yri+ns) ] (22
for «(0,0) anda(r,s) evaluated at the impurity mode fre-
guency w, we find that they needed to observe impurity
modes at are obtained from the matrix eigenvalue problem
of the tridiagonal matrix defined by

Eo.0= Y[ @(0,00Eq ot a(r,S)E; ], (21)

wherei=1,2,3... . Thewaveguide channel terminates at the
site (0,0) and comes in linearly in space to (0,0) from the
(r,s) direction.

To solve the system of equations in E¢&1) and(22) we
Eo o= @(0,00Eq ot a(r,s)E, o], (17) computea(0,0) anda(r,s) at the impurity frequencw and
' ' ' assume a solution of Eq&1) and(22) of the form

Eiris= Y[ @(0,0Ej; is+ a(r,S)(E(i—1yr (i-1)s

T arns)] 18 for 1=0,1,2..., wherek is the wave number that gives the
wherei=1,2,...1-1, and phase change iE, |s from site to site along the waveguide
channel. Substituting in Eq§21) and (22) we find

E|ry|S=e”k+be7”k (23)

Eiris= Y @(0,0E s+ a(r,S)Eq_1yr,1-1s]- (19

_ _ y=[a(0,00+2a(r,s)cosk] ! (24)
The solution of Eqs(17) through(19) gives

and b=—e 2k The waveguide modes are just standing
y=[a(0,0)+2a(r,s)cosk] 1, (200  wave modes that are trapped in the waveguide channel be-
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cause their frequencies are in the stop gaps of the photonighere | =—(n+1),—(n+2),... . Substituting EQgs.(29)
crystal; each mode is formed from two oppositely movingand(31) into Eq. (25) we find that
waves that are phase shifted byFor a fixed dielectric dif-
ferencede and a fixed valued of, the solution of Eq(24)
for fixed y=4t?5e gives the frequencies and wave numbers Yo=[ @(0,0)+ 2a(r,s)cosk] 1, (32
k of the mode solutions. In the Appendix results tefr,s)
are given for a particular realization of a photonic crystal. o ] .
These can be used to map out the solutions of(E4). and substituting E¢30) in Eq. (26) we find that
Next we consider an infinitely long, straight waveguide
that contains a dielectric barrier. A dielectric barrier is cre-
ated in the waveguide by changing the dielectric impurity y1=[a(0,0)+2a(r,s)cosq] ™. (33
material in 21+1 consecutive sites in the channel of the
dielectric waveguide to a new type of impurity material. . . . . .
(This is the analogy in the optics of layered systems to Con[Equatlons(32) and (33) give the possible dielectric con-
sidering normal incidence of light on a dielectric shabhe
difference equations describing this system are from(Ex.

in our model propagating waveguide mode of frequeney with wave

numberk in the waveguide channel outside of the barrier,
and wave numbeq in the waveguide channel inside of the
Eiris= 7ol @(0,0Eyr 15+ a(r,8) (B4 1yr 0 +1)s barrier material. In the following, it is assumed ttkat q so
that yy# ;. Using Eqs(27) and(28) to match the boundary
+E(_ _ , 25 07 /1 , .
(-r.0-ns)] @9 conditions at the edge of the barrier, we obtain
wherel=*(n+2),£(n+3), ...,

Eiris= vl @(0,0Ej; is+ a(r,S)(E(i+ 1yr i +1)s fl |by bylld
= : (34)
+Ei—1yri-1)s)])s (26) al |b3 bi||eg
wherei=0,£1,... +(n—1),
where
Einrcns= Vl[a(O-O)Etnr,tns+ a(rvS)Ei(nfl)r,i(nfl)s]
*70a(S)Ba (i s, @7 b= — KN+ ) g Zian[ ] _ g-itkra2
Ei(n+1)r,i(n+l)sz 70[‘1(0!0)Ei(n+l)r,i(n+l)s _eZiqn[l_e—i(k—q)]z)/(4Sinksinq) (35)
+a’(rys)Et(n+2)r,t(n+2)s]
+')’1a(r-s)Etnr,:ns- (28 and
In the above equationg, andy, reflect the difference in the
impurity_ dielectric constant of the matgrial_ forming. the b= — (e 2971 — g i(k+a)]
waveguide channel and the new material inserted in the
waveguide channel forming the barrier in the waveguide Xx[1—e &= D]—c.c)/(4 sink sing). (36)
channel.

In solving the difference equations in E25)—(28) we

stants, respectively, of the impurity materials in the wave-
guide channel and the barrier for the system to support a

first choose the frequenay of the modes of the waveguide  Equation(34) represents a transform between the states in

with the barrier system. The frequency is chosen to be in thggs. (29) and (31) on opposite sides of the barrier. This

stop band of the photonic crystal. The constan{8,0) and  transform conserves the total energy flux along the length of
a(r,s) are evaluated for this and the resulting difference the waveguide. As an example, to treat a scattering problem

equations are solved for tH&,, md, o, andy; using stan-  involving a wave incident on the barrier from the right we
dard techniques. Note that the values of bothand y;  can evaluate Eq(34) for d=1 ande,=0. This gives the

needed to support a mode of frequeneyare restricted and incident wave amplitudef,=b,, and the reflected wave am-

must be determined from the set of difference equations.

Let us assume a solution of Eq25)—(28) of the form

plitude, a=b% , on the right of the barrier for there to be a
unit transmitted wave on the left of the barrier. Specifically,
for a unit transmitted flux on the left of the barrier the rela-

Eys=fe +aek, 29 tive intensity of the incident flux on the right of the barrier
wherel =(n+1),(n+2), ..., is | f|2={(1— cosk cosqg)*+sir? k sin* g—[cosq—cosk]?
cog(4n+2)qJ}/[2 sirf gsirfk], and the relative intensity of
E, s=be ' +ced, (300 the reflected flux on the right of the barriers
is |a|?={(1— cosk cosq)?—sir?ksir? g—[cosg—cosk]?
wherel=0,+1,+2,...,%n, cog(4n+2)ql}/[2 sirfksir?g]. The transmission coefficient,
defined as the ratio of the transmitted to incident power flux
E, s=de K +epe, (31) s then given by
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2 sirf qsirfk
T= ; , : (37
(1—cosk cosq)?+ sir? k sir? g— (cosgq— cosk)? cod(4n+2)q)
|
and the reflection coefficient R=1-T. be nonzero over different frequency intervals of the stop

To illustrate the results for the transmission of electro-band. This is due to the different dispersion characteristics of
magnetic waveguide modes though the dielectric barrier, wéhe waveguide channels for different valuesygfand y;.
have plotted in Fig. 1 results for the barrier transmission The barrier region in whichl=—n,—(n+1),...,
coefficient, Eq(37), versus the frequenay in the stop band —1,0,1...n—1,n does not have to be made from material
of a square lattice photonic crystal. These results are ophat conducts electromagnetic wayee., has a plane-wave
tained from the evaluation of Eqé32), (33), and(37). The ~ Waveguide mode solution of the form in E®O)] for the
photonic crystal we study is an array of cylindrical dielectric requency w. If we analytically continue Egs(30), (33),
rods of dielectric constant=9 and radiusR=0.3779@,, (39, and(36) by replacingy by —iq, then the solution in the
wherea, in the lattice constant of the square lattice. TheParrier becomes from E¢30)
dielectric rods are surrounded by vacuum. This particular E, <=be 9+cel! (39)
photonic crystal has a stop band at 0.42ba./27wc '
<0.455. The waveguide channel is taken to be in[th@] ~ Which is a nonpropagating form. From E&3) we find that
direction and is formed from impurity materials with Y1 supporting these modes is given by
=0.01a.. The impurities forming the waveguide channel are -~ 1
taken to have a nearest-neighbor separation of a lattice con- 71=[(0,0+2a(r,s)coshq] (39)
stant so that in Eqe32) and (33) «(r,s)=«(1,0), and for and a new Eq(34) relating f,a to d,e, for this system is
the results presented in Fig. 1 we have takenl0. We refer  found by similarly replacingy by —iq. If we perform an
the reader to the Appendix for a more detailed discussion ofinalytical continuation by replacingby —iq+ 7, then the
the generation of Fig. 1 from the equations in the text. In Fignonpropagating solutions in the barrier becomes from Eqg.
1 and the remaining figures presented in the text, we wil(30)
only show results obtained from the evaluation of the equa- el |
tions generated in the body of the text. We will indicate in Eiris=(=1)[be +ce?], (40)
the text which equations are used to generate the figures b, ; P
will refer the interested reader to the Appendix for a detailed*’{;hereyl supporting these modes is given by
discussion of the particulars as to the generation of the fig- y1=[(0,0)— 2a(r,s)coshq] %, (41)
ures from the text materials.

The plots in Fig. 1 are obtained by fixing the valuesygf ~and a new Eq(34) relatinga, f to d, e, for this case is found
andy; and varying the waveguide mode frequency over thedy similarly replacingq by —iq+ 7. Equations(33), (39),
stop gap of the photonic crystal. To obtain plots that samplénd(41) then account for all possible valueso< y; << of
as much of the parameter space available for study in thigiterest in the barrier problem.
model as possible, we have chosen valueggpand y, for Another geometry of interest is that of an infinitely long
these plots, which give a diverse selection of valuegafid ~ Waveguide with a bend. We shall treat the case of a right-
k at the mid-stop-band frequency. Specifically, if we denoteangle bend in a square lattice photonic crystal with one part
the values ofq and k at the mid_stop_band frequency, of the Waveguide on the negatixeaxis and the other part on
wa./2mc=0.440, byq. and k., we present plots for the the positivey axis. From Eq(6), in the smallt approxima-
pairs  (Qc,ko)=(7/2,m), (w/2,7/100), (w/10./2), tion, we obtain a set of difference equations given below. It
(w/10,m/4), (ar,ml4), and @r,7/2). From Eq.(A3) in the i interesting to note here, however, that if we only consider
Appendix, we see that these correspondyigy,=1.20, t_he case of guch a yvaveguid_e with n_earest-neighbor interac-
0.86, 1.16, 1.04, 0.74, and 0.83, respectively. The values dfons, there is no difference in the difference equations for
(q.,k.) we treat then sample regions in which the ratio Ofthg cases of a waveguide with or without a bend. Dlﬁgrences
the wave vectors in the barrier medium and in the waveguidérise, however, when further than nearest-neighbor interac-

channel medium are large or small fps taken at the bottom ~ tions occur in the system. Consequently, we shall treat a
of the band g.~0), at the center of the band{= m/2), and system with nearest- and next-nearest-neighbor interactions

at the top of the bandg.= ). In general, the transmission [OF & right-angle waveguide. The waveguide channel we con-
coefficients in Fig. 1 as functions of the frequency of theSider is formed of a single type of dielectric impurity mate-
modes are found to exhibit a roughly periodic series of in-f1al o _

terference maxima and minima related to the interference of Consider the geometry in Fig(&@. The difference equa-
the transmitted and reflected waves at the barrier surfacelions defining the waveguide are from E(), using the
This is the type of behavior observed in barrier reflection innotation of Eq.(10),

layered optical systems. It is interesting to note that the pe- _

riod in frequency of the maxima and minima of the transmis- Eir 0= Yol (0.0 Byr o+ a(r.0)(Eq+ 10t E('*l)flO)]’(42
sion coefficient is relatively insensitive to the values of
(gc.,Kke)- In addition, the transmission coefficients are seen tawherel = —-2,—3,—4,...,
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FIG. 1. Results for the barrier problem. Plots for the transmis-
sion coefficient versus frequency in unitsw./27c are shown for
(9¢.ke)= (@ (m/2,m) (solid) and (7/2,77/100) (dashed, (b)
(7/10,m/2) (solid) and (7/10,m/4) (dashedl (c) (,w/4) (solid)
and (7, 7/2) (dashed

Eoyr = ol @(0,0)Eq + a(0r) (Eq g+ 1) T Eo g-1)r)] ,(43)

wherel=2,3/4...,

E_r 0=l a(0,0E_, o+ a(r,00(E_, o+ Ego

+a(r,rEo,], (44

Eo.0= Yol @(0,00Eq o+ a(r,0E_; o+ a(0r)Eq,], (45
and

Eor=vol@(0,00Eq;+ a(r,0)(Eg gt Ega) +a(r,r)E_; o].
(46)
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FIG. 2. Schematic drawings of waveguide channels of photonic
crystal circuits. A representation is given in tixey plane of a
two-dimensional photonic crystal formed on a square lattice, i.e.,
that defined in Eq(1). In this representation of the waveguide cir-
cuits only the rods of the waveguide channel are shown and the
remaining rods of the square lattice photonic crystal that are not
part of the waveguide channel are not shown. Xhexis is hori-
zontal and they axis is vertical. The nearest-neighbor separation of
the rods forming the waveguide channels in thandy directions
are integer multiples of the photonic crystal lattice constant, i.e., see
Eq. (4). In these drawings different circles represent rods containing
different types of impurity materialg@ The waveguide with a
right angle bend: In this plot the field at the center of the right-angle
bend is labeled, 5, and Eq.(42) relates the fields in the horizontal
row of rods and Eq(43) relates the fields in the vertical row of
rods.(b) The waveguide junction: The fiel, ,is at the connection
of the two channelgthe circle with the large inside cirgleand Eq.

(55) relates the fields in the horizontal row of rods and Esf)
relates the fields in the vertical row of rods) The infinite wave-
guide with a U-shaped attachment: The field in the site at the lower
left corner of the rectangle 5, o, and Eqs(83) and(85) relate the
fields in the lower and upper horizontal row of solid sites, (Bf)
relates the fields in the vertical row of open circle sites, and&4).
relates the fields in the vertical row of solid sitéd) Two infinite
parallel waveguide with a single short joint between them: In this
figure, the fields in the lower horizontal row of sites are related by
Eq. (102), the fields in the upper horizontal row of sites are related
by Eq. (103, and the field in the join site between the two wave-
guide channels is given by E¢L06).-

Here by symmetry(r,0)=«(0r), and the impurity dielec-
tric material on the sites (10, for =0,1,2,3... and (r,0)
for|=—1,—2,—3,... ischaracterized byy,.

We look for a solution of this set of equations of the form

E, o=a€X +be

(47)
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wherel=-1,—-2,..., are the incident and reflected power flux giving rise to a unit
" i transmitted power flux through the bend and that energy is
Eo)=ce“ +de™ ™, (48) conserved along the waveguide.

wherel=1,2,..., and
IV. BRANCHED WAVEGUIDES AND CIRCUITS

Fog=s 49 One can make a branched waveguide by attaching a semi-
Substituting Eqs(47) and (48) into Egs.(42) and (43), we infinite waveguide at a site of an infinite waveguid&ee
find that yo=[«(0,0)+2a(r,0)cosk] . This gives the Fig. 2b).] We shall assume that the channels of these two
value of y, needed to observe a waveguide mode of frewaveguides are of different types of impurity materials and
quencyw and wave numbek, wherea(0,0) anda(r,0) are  the point of attachment is made of a third type of impurity
evaluated at. Substituting Eqs(47)—(49) into Egs.(44)— material.
(46) allows us to relate the coefficienssb to c,d. After a The difference equations describing such a branched
little algebra, we find that the solution forms before and aftefwaveguide are, from Eq6) using the notation of Eq.10):
the bend can be related by

al |ay ayllc Eir 0= v1[a(0,0E; ot a(r,0(Eq-1) 0t Eq+1yr0) ],
bl |ay ay|d’ 0 (55
2 T wherel=2,3/4...,
where
X Eojr = vol (0,0 Eqy + a(r,00(Eg g1y + Eo,g+ 1)) 1s
a(r,r) ok ik (56
2———cosk+1| e?k—e 2
|\ a(r,0) 51 wherel=+2,+3,+4, ...,
a‘ll_ a(r,r) 1 ( )
2i sin Zk( za(r 0) cosk+1 Eo,0= 722(0,00Eq ot yoa(r,00(Eg, +Eo 1)
2 + y1a(r,0E; o, (57)
(2M005k+ 1] -1
B a(r,0) 52 Eo«r=vola(0,0Eq++ a(r,0)Eq 2]+ y22(r,0 Eqp,
ap= o a(r,l’) ! (58)
2i sin2k 2a(r 0) cosk+1 and
ay=al,, (53 E; 0= 71l a(0,0E; o+ a(r,00Ey o] + y2(r,0 Eg . 59
and We assume a solution of these equations of the form
az2=a;- (54) Eor=ae ' +bek (60)

The matrix equation in Eq50) is such that the net power for 1=1,2.3
transfer through the bend is conserved along the waveguide, e
and in the limit thata(r,r) =0 Eq.(50), as expected, yields Eoy =ce ¥+deX (61)
a=c andb=d. Evaluating Eq.(50) for the casec=1 and

d=0 gives the amplitudes of the incident wawes=a,;, forl=-1,-2,-3,...,

and the reflected wavdy=a3,, for a unit amplitude wave

— —iql iql
to be transmitted through the bend. It is readily seen Eiro=ee T +Te (62
that in this caséa|?—|b|?=1 where for1=1,2,3..., and
rr 2 2 —
|a]?= Za(r 0; cosk+1 —1} Eoo=h. (63
o, Substituting Eqs(60), (61), and(62) in Egs. (55) and (56),
a(r,r) we find that
+4 sir? 2k(2 o) COsk
a(r,0 vo=[@(0,0)+2a(r,0)cosk] (64)
2 rr 2
+1 asie 2k 220 ok 1 and
a(r,0)
and y1=[(0,0)+2a(r,0)cosq] *, (65)
) which give the impurity dielectric constants in terms of the
Ib|2= 2a(r’r)cosk+ 1 mode frequencw andk andq wave numbers in the different
[ Za(r,0) branches of the waveguide junction for propagating wave-
) ) guide modes to exist at frequeney. The three boundary
1 4sir?2k(2a(r'r)cosk+1 condition equations in Eqi57)—(59) then give the matrix
a(r,0) equations
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e ik gk gk gtk Y1 ig Yig y22(0,0—1| 1 o

Yo Yo Yoe(r,0) b

1 1 0 0 0 0 _r c
y

° d| =o. (66)

o 0 1 1 0 0 _r2 e
Yo

f

0o 0 0 © 1 1 L h
Y1

The solution of the scattering problem for a wave of unita ,=a,,=az= —e*/(cosk+3isink) and a;,=a,=aj;

amplitude incident on the branch from (Oy) is obtained
by solving Eq.(66) for the case in whicla=0, e;=0, and
d=1.

The equations in Eq66) can be rewritten as

a;; app apzf| a b
ay azp axgl|d|=|c|. (67)
dz; Az asgl | € f

=az;= ayz= az,=2i sink/(cosk+3i sink). Sending, in this
limit, a unit amplitude flux(e.g.,d=1, a=0, andey;=0)
into the junction then from Eq.(67) gives b=f

=2i sink/(cosk+3i sink), c=—e'*/(cosk+3i sink) for the
amplitudes of the flux flows away from the junction. We see
explicitly that |d|?=|b|2+|c|?+]|f|2, where |b|?>=]|f|?

=4 sirfk/(cog k+9sirfk) and |c|2=1/(cogk+9sirfk) are
the power transmitted and reflected from the junction for a
unit incident flux, and consequently flux is conserved at the

Here junction. Defining the reflection and transmission coeffi-
cients as the ratios of the reflected and transmitted flux, re-
a :d1(2003k+e‘q+ J’za(0,0)—l) (68) spectively, to the incident flux, we find for the reflection
oo y2(r,0) /) coefficient
a  ya(0,0—1 1
ay=d, 1( 2 cosk+ed+ ~“————| (69) R~ (79)
v2a(r,0) co< k+ 9sirtk
el ik i, Y2001 and for the transmission coefficients in each of the two
agg=dy | 2e+e 1+ Yoa(r,0) )’ (70) branches leaving the vertex
a;,= —dg 2i sink, (71) 4sirf k
T=— (79
cog k+9sirfk
ax=apy, (72
In Fig. 3 we present plots df in Eq. (79) versusw for the
171, branched junction in which all of the waveguide channels are
a;3= —dg 1 —2i sinq, 73 .
13 % v q (73 formed from the same material. The plots are made for the
photonic crystal studied in Fig. 1 and for a set of waveguide
1. Yo channels in which the impurities forming the channels have a
az;= —d; “2i —sink, (74)
Y1
0.5 T T T T T T T
azs=—0y 21 sing, @ L osl ]
0 3
% 0.3 5 (d)
o 03 F Y b
as,= —dy 121 Lsink, (76) S |
71 S \
and go2f |
& ‘:
L ya(0,0—-1 AR ‘: .
do=—2ek—ed— ——— 7 ':
0 ¥2a(1,0 {77 | |
0 1 L | 1 1! 1 1
Equation (67) then expresses the amplitudes of the waves 042 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46

leaving the vertex If,c,f) in terms of the waves traveling
towards the vertexd,d,eg).

An interesting limiting case is the case in whigkk,
Yo=v1="7Y2=v=[(0,0)+2a(r,0)cosk] L. In this limit

frequency

FIG. 3. Results for the junction problem. Plots for the transmis-
sion coefficient versus frequency in unitswé /2mc are shown for
k.= (@ /2, (b) , (c) #/100, (d) 37/4.
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nearest-neighbor separation of a lattice constant. In this phavherel #0 or n+1 otherwise ranges over the integers, and
tonic crystale=9, R=0.37796., and in the waveguide two equations connecting the channel to the U-shaped chan-
channelt=0.01a.. Curves are generated from E§9) in  nel

conjunction with the dispersion relationy=[«(0,0)

+2a(1,0)] "%, and are presented as a function of mode fre-Eo.0= Yol @(0,0Eq ot a(r,0)(Eq; +Eo )]+ y12(r,0)E, o,
qguency for a variety of fixed values of. The y studied are (82
chosen so that the value kfwhich we denote ak;, forthe  and

midband frequencya./27c=0.440 assume a set of repre-

sentative valuek.= m, 3/4, w2, and7/100 correspond-  Eon+1)r= Yol @(0,0Eq n+ 1)r + @(r,0)(Eq (n+2)r + Eopr) ]

ing, respectively, toy=0.342, 0.323, 0.284, and 0.243. The

reader is again referred to the Appendix for a more detailed T 71a(LOE iy (82)
account of the treatment of E¢79) and the dispersion rela- There are seven equations that describe the U-shaped chan-
tion in the generation of the plots in Fig. 3. nel. These are

In Fig. 3 the transmission coefficients for different values
of y are seen to be nonzero over different regions of the stop  Eir,0= 71l @(0,0Eyr o a(r,00(E(+1yr,0T Eq-1yr0 ],
band. This is due to the different propagation characteristics (83
of waveguide channels with differemt In general, the trans- wherel=2,3,...1,—1,
mission coefficient is fairly constant over the range of fre-
quencies for which it exists. However, the results for all four Eir,ir = vl @(0,00E, ¢ j + a(r,00(E| ¢ 1+ 1) T Ei v -1y ],
cases considered display regions of frequencies over which (84
the transmission coefficient rapidly goes to zero. Conse\'/vherelzlz 3...n
guently, in these regions small changes in the incident wave ey
frequency can be L_lsed to open and shut the trans_mission of Eir i+ 1yr = Y2l @(0,0Ejy (1) + a(r,0)(
energy though the junction. All of the systems exhibit a fre-
quency for which the transmission through the junction is a TEq-1yr.m+ny) ] (85
maximum so that by tuning the frequency of the mode on herel=2,3...Jo—1
can optimize the transmission of energy though the junction. ' ’

Following our discussior_1 of the waveguide with a barri_er, Ejr.0= vl @(0,0E) ot a(r,0)(Ey . +Eq,-1yr0],
we can choose the,; material so as to have nonpropagating (86)
(non-plane-wave waveguide mode solutions. This is done
by re_placi.ngq by —iq in Egs.(62), (65), and(§f3)—(77) so Eyyr.ne 1= YL @(0,0E| ¢ (ne 1y
that in this casey;=[«(0,0)+2a(r,0)coshg]™". Alterna-
tively, q can be replaced by-iq+ 7 in Egs.(62), (65), and +a(r,0(E 0t Eqg—1yr,(nr1)) ], (87)
(68)—(77) so that y;=[a(0,0)—2a(r,0)coshy] . These
two cases along with theylz[a(Q,O)+ 2a(r,0)cosq] ! E, o= v1[@(0,0 E; o+ a(r,0)Ey, o] + yoa(r,0)Eqy,
case of Eq.(65) exhaust the possible values efeo<y, (88)
=< in this sidebranch.

Once branching structures can be treated, circuits similef?nd
to those involved in the transport of electricity can now be
formed for the conduction of photons. As an example of the
use of branchings to form a simple photonic circuit, we now + voa(r,0)Eq (n+1yr - (89
treat a waveguide that contains a closed Id&ge Fig. 2c).]

Consider an infinitely long straight waveguide in a square We look for a solution of this system of difference equa-
lattice photonic crystal with the impurity sites of the wave- tions of the form
guide channel labeled by (@y), wherem ranges over the Zikl il
integers. The waveguide is formed of only one type of im- Eoir=ae " +be, (90)
purity material. Now attach to the waveguide channel at thgyherel=1,2,3... n,

(0,0) and(0,(n+1)r) sites forn>1 a U-shaped channel of

impurities. The impurity material forming the channel of the Eoir=ce +de¥, (91)
U can be different from the impurity material forming the
channel of the infinitely long waveguide channel. Let us us
the gbove formul_atipn to compute Fhe transnjisgion and re- Ey o= eoe—iql_'_feiql’ (92)
flection characteristics of a waveguide mode incident on the ’

U channel from (05 ). wherel=1,2,...1,,

The set of difference equations that describe this branch-
ing geometry consists of ten separate equations. The equa-
tions associated with the infinitely long straight waveguide _

) . wherel=1,2,3...n,
channel are given by the channel equation

E(+ 1), (nrayr

Er,(n+1)r: y1[ @(0,0) Er,(n+1)r + a(r -0)E2r,(n+1)r]

é/vherel =-1-2,-3,...,

Ei i =€pe 9ot 4 feialloth, (93
o'

E(IO+1—I)r,(n+1)r:eoe_iq(|0+n+l)+feiq(|0+n+l)v (94)
Eoyr = ol @(0,0)Eq), + a(r,0)(Eq g+ 1)r T Eo,q—1)r)]
(800 wherel=1,2,...1,,
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EO,OZ h’ (95) 1 T T T T T T
0.9 (@ A
EO,(n+1)r:h,, (96) £ 081 ]
é 07} .
and § o6 L i
Eoj =re +sd", (97 s 08r 1
2 04 F _
wherel=n+2n+3n+4,.... Substituting these forms in % 03 L 4
Egs. (80)—(89) above, we find a system of ten algebraic F ool i
equations that can be used to relate,c,d,e,f,h,h’,r,s to o1 b |
one another. '0 . L
An interesting case of these equations is to use them to 0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46
relate the coefficients,d to r,s. This then gives the trans- frequency
mission and reflection of the waveguide modes from the U 1 LT . — .
loop. If we assume that the waveguide channel of the infi- 0.9 {b) -
nitely long channel and the U-shaped channel resonate at the = 08 -
same frequency(i.e., yo=[«(0,0)+2a(r,0)cosk] ! and g o7t _
71=[a(Q,0)+ 2a(r,0)cosg]Y), then following a little alge- 8 o6l N
bra we find S o5k |
o =
c A agl|r 8 é 04T ]
= g 03 -
dl |al, aijls = 02 L 4
where 011 | 7
0 1 1 1 1 1 1
e ik(n+1) sink sing 2 0.42 0.425 0.43 0'43?regig1 Cch.445 0.45 0.455 0.46
= . + =
i do ((smk(nJrl) sinq(2ly+n+1) 1 — ———T
" sinkn sing(2lg+n) \? 2'2 I © 1
sink(n+1) sinq(2l,+n+1)/ |’ 5.1 |
(99 § 06 | i
glk(n+1) sink sing 2 2 g'i I |
= - + - = . - -
12 do [(smk(n+ 1)  sinq(2lp+n+1) % os L i
" sinkn sinq(2lo+n) |? T oo2r T
€ T Sink(n+1) sinq(2lo+n+1)| |’ 0'; L M IR
0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46
(100) frequency
and FIG. 4. Results for the U-loop problem. Plots for the transmis-
sink sin sion coefficient versus frequency in unitswé./27c are shown for
do= 2 sink( B L +1))_ (Ge k)= @ (w/2,7), (b) (wl2,12), (©) (/2,m/10).
sink(n sing(2ly+n

(109 =[(0,0)+ 2a(1,0)cok] % the dispersion relations in the U
For there to be a unit transmitted flux in the region above théoop, y;=[a(0,0)+2a(1,0)coxy] %; and the transmission
U loop, we needr=0 ands=1 in Eq. (98). The relative coefficientT=1/a;,|?.
intensities of the incident and reflected flux in the region As in our discussion of the dielectric barrier, we have
below the U loop are thefa;,|? and|a;,|?, respectively. choseny, and y, in the plots in Fig. 4 so as to represent as

In Fig. 4 we present results for the U-loop system withdiverse parameter space as possible in as few figures as pos-

n=1,=10. We plot the transmission coefficienfl  sible. This is done by selecting them to fix a set of values of
=1/|a;4)%, defined as the ratio of the transmitted to incident(q.,k.), whereq, andk, are the wave numbers in the U
flux, versus the frequency in the stop gap. We use the loop and the waveguide channel at the mid-stop-band fre-
parameters of the=9, R=0.37796 square lattice photo- quency, wa./2wc. We have chosen q¢,k.)=(7/2,7),
nic crystal. The waveguide channels of the circuit are taker{#/2,7/2), (w/2,7/10), respectively, for the plots in Figs.
to havet=0.01a, with a nearest-neighbor impurity separa- 4(a), 4(b), and 4c). For these plots we have from EGA3)
tion equal to the lattice constant of the square lattice. They,/y,=0.83, 1.00, and 1.16, respectively. For the frequency
reader is referred to the Appendix for a detailed discussion ofegions in which mode solutions are found in the system, we
the generation of the plots in Fig. 4 from the equations forsee that the transmission coefficient as a function of fre-
the dispersion relations in the infinitely long channgl,  quency exhibits an extremely complex behavior. All systems
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display rapid oscillations between values near zero and val- 0.3 . . . . . . .
ues near one. This is due the phase interference between the
waves traveling in the U loop and the waveguide upon their
merger on the outgoing or transmitted wave side of the loop.
The complex behavior of the transmission coefficient with
frequency is unlike the transmission behavior in the wave-
guide barrier problem or in the problem of layered optical
systems. In the barrier problem and the layered optical sys-
tems the transmission coefficient exhibits a periodic modula-
tion as a function of frequency, related to the barrier length,
which contains fewer number of harmonics than do the
higher-dimensional(higher that one-dimensionalcircuits 0 L L L L L L L
such as that for the results in Fig. 4, possible in photonic 042 0425 043 043 Doncy 4% 045 0455 048

crystal circuit systems. This is an interesting aspect of pho-

tonic circuits not seen in analogous electrical circuits where FIG. 5. Results from the parallel line problem. Plots for the
the transport is of a diffusive rather that a propagating waveeflection coefficient versus frequency in units @ /2mc are

02

0.1 | —

Reflection Coefficient

nature. show fork.= (a) m, (b) #/2, (c) «/10.
Next let us consider the case of two infinitely long straight
parallel waveguides that are joined by a short perpendicular Epo=t. (113

channel.[See Fig. 2d).] This is reminiscent of a branched
system recently treated in Ref. 8. The impurity material
forming the channels will be taken to be the same for all
channels. The difference equations for this system are

Following a little algebra we find a matrix equation relating
a,b,h,n toc,d,q,f,

a ai; app Az Ayl |C
Eir 0= Y @(0,0E o+ a(r,0(Eq 11y 0t Eq-1)r 01 b _ |81 82z B A d (114
(10 h ag; ag; agz Aaggl Q]
wherel==*=1,£2,%£3,..., n Ay A Ags agl | f
Eira= Y a’(oao)Elr,Zr +a(r 10)(E(I+1)r,2r+ E(Ifl)r,Zr)]a where
(103
sink[2 sin 2k +i]
wherel=*1,+2,+3,..., =
117 5 cosk(1—cos %)’ (115
Eoo= Y[ @(0,0Eq ot a(r,00(E, g+ Eo +E_; 0], o
(104 i sink
(116)

812”5 Cosk(1—cos X) ’
Eo2=Ya(0,0Eqx+a(r,0(E, x+Eq+E_; )], . . e
(105 and aj;;=az,=agz=ay,, a;p=a;zTap=ay=ay=ay

= 831= Agp= Az4= A= A= AJ3.

and If a unit transmitted flux is present in the lower right-hand
— branch[See Fig. 2d).] for an incident flux only in the lower
Eor=71a(0.0Bo, +a(r,0/(EootEoz)l. (106 left-hand branch, then=1, n=0, c=0, b=0 in Eq.(114).
We assume a solution of the form Solving Eq. (114 for this case givesa=f=d=—i/
i i (i—2sinX), g=2(i —sin X)/(i—2sin X). The relative in-
Eirz=a€"+be ™, (107 tensity of the incident flux in the lower left branch ig|?
wherel=12.3 ..., =4(1+sin22k)/(_1+4sir122k). The relative intensity of the
reflected flux in the lower left branch igf|?=1/(1
E, »=ce'+de ¥ (108 +4 sirf 2k). The relative transmitted intensity of flux in the
’ upper branches ig|2=|d|?=1/(1+ 4 sirf 2k). We find that
wherel=-1-2,-3,..., |g|?=]a|?+d|?+|f|?+|h|? so that the total energy flux is
i i conserved in the network.
Eio=g€X+fe (109 In Fig. 5 plots of the reflection coefficient in the lower
wherel=—1,—-2,—3,..., left-hand branchR=|f/g|?, for a flux incident in the lower
left-hand branch are shown as functionswofThese plots are
E; o=heX+ne (110  from the square lattice photonic crystal represented in Figs.
1, 3, and 4 and for waveguide channels with nearest-
wherel=123..., neighbor impurity separations equal to the lattice constant of
Eon="ro, (111) the square lattice. We refer the reader to the Appendix for a

more detailed discussion of the generation of Fig. 5 from the

112 equations of the text. Results are presentedfer0.342,
0.284, 0.244 corresponding, respectively, ko=, 7/2,

and /10 where we defin&, as in our previous plots in Fig. 3.

Eo’r =S,
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We see from Fig. 5 that the reflection from the circuit is
strongly dependent on the frequency so that there are fre-
qguencies that minimize the reflection coefficient. At these
frequencies the transmission to the lower right-hand branc
is maximized. The results in Fig(l® are particularly inter-

esting as there are two frequencies corresponding to refle
tion minimum and two frequencies corresponding to reflec-

tion maxima.

As a final interesting case, we consider a closed-circui
waveguide that has a rectangular channel. The equations d

scribing this system are

Er,lr: ')’[a(oao)Er,lr"' a(rvo)(Er,(l+1)r+Er,(lfl)r)]v

(117
wherel=2,3,...n—1,

Er,nr: ol a(OaO)Er,nr+ a(r ao)(Er,(n—l)r + E2r,nr)]:
(118

Elr,nr= Y[ «(0,0) Elr,nr+ a(r 10)(E(I+1)r,nr+ E(I —l)r,nr)]
(119
wherel=2,3,...1p—1,

Elor,nr: ')’[a(oao)Elor,nr"' a(r 10)(E(I0—1)r,nr+ Elor,(n—l)r)]v
(120

Eigrir =YL @(0,0E, i +a(r,00(E  q+1)+Eir -1yl
(121

wherel=n—1n-2,...,2,

Elor,r: ’)’[CY(O,O)E|Or,r+ a(ruo)(Elor,2r+ E(Io—l)r,r)]a
(122

Ei = ’y[a'(0,0)E”,,‘I- a(rvo)(E(l+l)r,r+E(I—l)r,r)]v

(123
wherel=1y—1l,—1,...,2,
Er,r: V[Q(OvO)Er,r +a(r 10)(Er,2r+ E2r,r)]- (124
Assuming a solution of the form
E, ,=ae “+be¥, (125
wherel=1,2,...n,
Elr nr:ae—ik(ﬂ+|—1)+ beik(”H_l), (126)
wherel=1,2,3...],,
E,, , =ae K@n+lo=I=1) 4 pek@n+lo=I=1)  (197)
0 ) 1
wherel=1,2,...n, and
E, ,=ae K@n+2o-1-2) pgk2n+2o-1-2)  (19g)

where 1=1,2,3...]5, we find upon substitution in Egs.
(117—(124) that the condition for modes to exist in the cir-

cuit is that y=[a(0,0)+2a(r,0)cosk] ! and k=N/(n
+19—2) whereN is an integer.
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V. CONCLUSIONS

We have studied the propagation of electromagnetic
waves in various types of waveguide circuits in photonic
crystals and have demonstrated that under certain conditions
0 a set of difference equations. The treatment is reminiscent
of that of light in layered medi¥ but the photonic
yvaveguides and the richer topology they offer in their inter-
(é(_)nnection branching networks give them a more interesting
physics than that of layered media. As we have seen in the
text, the phase coherent effects in photonic circuits can cause
the transmission and reflection coefficients of photonic cir-
cuits to be complicated functions of the mode frequencies. In
addition, photonic circuits that have no input or output wave-
guide lines can exhibit a variety of bound state resonator
modes that are tuned by the circuit geometry.

A feature of our theory is that very complicated and ex-
tended branching waveguide circuits can be treated and their
physics is described by closed-form mathematical expres-
sions involving elementary functions of mathematical phys-
ics. The photonic crystal circuits are described by a set of
difference equations that can be quickly generated and
solved. Using the evaluation techniques discussed in the Ap-
pendix, plots of the transmission and reflection coefficients,
as well as the waveguide mode field geometries can be easily
generated for a great variety of photonic circuits. This is also
true in the study of the mode frequencies of resonant modes
in closed-loop circuits.

An additional interesting physical feature of photonic
crystal circuits is that they represent an optical analogy to
electronic circuits. In electronic circuits, electrons diffuse
through the network of the circuit. In photonic circuits, light
propagates in a nondiffusive manner though the network.
Consequently, the optical system exhibits a variety of inter-
esting interference effects not seen in the energy transport in
electronic circuits.

We hope that the simple models we have studied in this
paper will be useful in understanding more complicated
waveguide systems and systems formed from more general
types of single-site impurities.

%he mathematics describing this propagation can be reduced

APPENDIX

In this appendix we show how some of the circuit models
studied in this paper can be evaluated for a realization of a
photonic crystal. We consider a two-dimensional photonic
crystal, though the theory in the text is quite general and can
handle both two- and three-dimensional photonic crystals.
The two-dimensional photonic crystal we consider is an ar-
ray of cylindrical rods of radiu®R, arranged on a square
lattice of lattice constang., such thatR=0.37796.. The
rods have dielectric constart=9 and are surrounded by
vacuum. For electromagnetic waves propagating in the plane
of the square lattice with an electric field vector polarized
parallel to the axes of the rods, a stop band occurs for fre-
guenciesw with 0.425< wa /27wc<0.455. (This particular
photonic crystal and field polarization comprise the system
used by us in Ref. 11 to illustrate the waveguide modes of an
infinitely long waveguide in a two-dimensional photonic
crystal and in Ref. 9 to present results on finite clusters of
impurities in photonic crystals.
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In the circuit examples considered in the text, we take the Yo=[a(0,0)+ 2a(1,0)cosk] * (A4)

waveguide channels to be oriented along the seft16X,

[01] directions of the square lattice. Along these directions

«(0,0) anda(1,0), for the photonic crystal described in the for one waveguide channel and

above paragraph, are dominant. Consequently, in the evalu-

ation of the mathematical expression in this paper related to

photonic circuits,a(0,0) and «(1,0) as functions of fre-

quency in the stop bands are all that are needed. These can y1=[«(0,0)+2a(1,0)cosq] ! (A5)
easily be obtained from the numerical results in Refs. 9 and

11.

As the stop bands of the photonic crystal generally extendor a second waveguide channel. Equati¢Ad) and (A5)
over very narrow bands of frequencies, in any given stopelate the dielectric parametefise., throughyy and y4) in
band one finds to a good approximation two different waveguide channels of a photonic circuit to the

mode frequencye, which occurs ina(0,0) anda/(1,0) and
to the waveguide wave numbékr q in each channe[An
@(0,00= a¢(0,0) +as(x—xc) (A1) example of this is the barrier problem in Sec. Il B. In the
and barrier problem Eqs(32) and (33) relate the dielectric con-
stant in the waveguide channel and in the channel segment
containing the barrier material to the mode frequency and
a(1,00= a(1,00 + by (X—X.), (A2) wave number and are of the form of Eq#4) and (A5)
above] The values ofy, and y;, which give channel modes
wherex= wa./27c ranges over the frequencies of the stopof frequencyw. for wave numbersk, and g, are obtained
band x.= w.a./27c for w. the frequency at the center of the from Eqgs.(A4) and(A5) by evaluatinge(0,0) anda/(1,0) in
stop band(0,0) is the value of(0,0) atw., anda,(1,0)  Egs.(Al) and(A2) at x,= w.a./2wc. Once these values of
is the value ofa(1,0) atw.. For the model described in the +, and y, are fixed for givenw., q., k., then from Egs.
previous paragraph with the 0.42%<0.455 stop band and (A1)—(A5) we find
for waveguides witht=0.0la, we find to a very good
approximation that, in units ofaﬁ, a.(0,0)=3.52, a;
=41.82, a(1,0)=0.300, b;=6.03, andx.=0.440. These

parameters when used in the relatioy=[«(0,0) —ay(X—X¢)+ 2a(1,00cosk,
+2a(1,0)cok]?* give cosk= A aa(1,0) F by (X—x0)] (AB)
wac and
y=13.52+41.8 —0.440
27C
2/0.300+ 6 oa( 3 o a0 |cosk] . (A3
+40 “M2me coskj -, (A3) —a,(X—X) +2a.(1,0)cosq

cosq= (A7)

2La(1L,0+by(X=x)]
which reproduces the plot given in Fig. 4 of Ref. Iilote:
In comparing the results from E@A3) with the results in
Fig. 4 of Ref. 11, it is important to note thAtin the notation where Eq. (A6) relates k to the mode frequencyw
in Ref. 11 is the same agin the notation used in this papgr. =2wcx/a; and Eq.(A7) relatesq to the mode frequency
These results are from fitting the numerical data in Ref. 1lw=2wcx/a.. Equations(A6) and (A7) relatek andq to w
for the a(r,s). As explained in Ref. 11 the results obtained for channels with fixedy, and y,. We shall now use the
there are computed from the numerical solutions for theelations in Eqs(A6) and(A7) to evaluate some of the pho-
modes of the photonic crystal and are essentially exact.  tonic circuits considered in this paper.
For the simple systems of Sec. Il A, which consist of
finite-length segments of waveguide, EGs1) and(A2) can
be used directly in Eq$12), (15), and(16), or (20) to obtain 1. Barrier
the resonant modes. For fixgdEqgs.(12), (15), and(16), or
(20) with Egs.(Al) and (A2) give the resonant frequencies  The case of a dielectric barrier in an infinitely long
found in the stop bands at which bound state modes arstraight waveguide in treated in Eq25)—(37) of the text.
observed. Related types of cluster systems were treated by &gjuations(32) and (33) which give the dispersion in the
in Ref. 9. We now discuss the more complicated circuit netwaveguide and the barrier material have been discussed in
work geometries of Secs. IlIB and IV. Egs.(A1)—(A7) above, and we will refer to these results in
The circuits treated in this paper generally are formedour discussion below.
from two or more different waveguide channels. For the dis- For a unit incident flux on the barrier, the discussion in
cussions involving more than one waveguide channelthe text gives a transmission coefficient through the barrier
«(0,0) anda(1,0) often occur in expressions of the form  from Eq. (37) of
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T 2 sirfksirf q
(1—cosk cosq)?+ sir? k sir? g— (cosq— cosk)?cog (4n+2)q]

(A8)

and a reflection coefficierR=1—T. One can obtain a plot Oncek is related towa./27c through Eqs(A11) and(A12)

of T or R versuswa./27c by using Eqs(A6) and (A7) to  the reflection and transmission coefficients can be obtained
obtaink andq as a function otwa./2c for fixed k. andq. . from Eqgs.(78) and(79) of the text.

The valuek. andq, are fixed by Eqs(A4) and(A5) so that

3. U loo
1 702e(0,0 | P

COSkC:Z—(lO) (A9) In the U loop discussed in Eq&80)—(101) the values of
Yol vo andk in the infinitely long waveguide channel are related

and by vo=[«(0,0)+2a(1,0)cosk] * and the values of, and

q in the U loop are related by y,=[«(0,0)
cosq _ 177400 (AL0) +2a(1,0)cogy] L. These are essentially the same relation-

¢ 2y,a(1,00 ships encountered in the discussion given above for the bar-

rier problem. The same discussion used for the barrier prob-

where yy and vy, are constants. Notice that and y; only . . i
depend on the values of the dielectric constant of the mat lem can be applied to these equations for the U-loop system

rial forming the channel of the photonic crystal circuit and 0 obtaink andq as functions olway/2ac from Eqs. (A6)

the fixed geometry of that material. Not all valuesygfand and (A7). Oncek and q are determined as functions of
will give solutions of Eqs(A9) aﬁd(AlO) for k. and wa /2mwc, Egs. (99) and (100 of the text can be used to
Y1 Witg q ¢ 9e- compute the transmission coefficiefie., T=1/a;;|%) and
the reflection coefficient of a wave coming from infinity and
2. Branched system incident on the U loop.
The branched system described in EG&H)—(79) can be
evaluated for the case in whichy=vy;=vy,=7y=[«(0,0) 4. Two parallel waveguides with a connection
+2a(1,0)cok] ! by using Eqs(A1)—(A7) to obtaink as a
function of wa./27c for fixed yo=7 or k.. We find the
dispersion relation

The system in Eq9102—(116) can be treated by solving
the relationy=[ a(0,0)+ 2a(1,0)coxk] * for k as a function
of wa /27c using the same approach discussed above for the

—ay(X—Xo) + 2a(1,0)cosk, branched system. Onéds known as a function aba./27c
cosk= g 1.0+ byx—x0] (A11) the amplitudes of the waves in the various branches of the
e 1 ¢ photonic circuit are give in terms & Specifically, from the
where discussions in the paragraph below E#16) we have the
reflection coefficienR=1/4(1+ 4 sirf 2k) and the transmis-
cosk.— 1-7yac(0,0 (A12)  Sion coefficients in each of the three lines leading away from
¢ 2vya(1,0 the vertexT=1/4(1+ 4 sirf 2K).
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