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Analysis of negative magnetoresistance: Statistics of closed paths. I. Theory
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Statistics of closed paths in two-dimensional~2D! systems, which just determines the interference quantum
correction to conductivity and anomalous magnetoconductance, has been studied by computer simulation of a
particle motion over the plane with randomly distributed scatterers. Both ballistic and diffusion regimes have
been considered. The results of simulation have been analyzed in the framework of diffusion approximation.
They are used for calculation of the magnetic-field dependence of magnetoconductance in the model 2D
system. It is shown that the anomalous magnetoconductance can be, in principle, described by the well-known
expression, obtained in the diffusion approximation, but with the prefactor less than unity and phase breaking,
which differs from true value.
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I. INTRODUCTION

It is well known that the interference of electron wav
scattered along closed trajectories in opposite directions
duces a quantum correction to the conductivity. An exter
magnetic field applied perpendicular to the two-dimensio
~2D! layer destroys the interference and suppresses the q
tum correction. This results in anomalous negative mag
toresistance, which is experimentally observed in many
systems. This phenomenon can be described in the fra
work of quasiclassical approximation, which is justified u
der the conditionkFl @1, wherekF is the Fermi wave vector
l is the mean-free path. In this case the conductivity corr
tion is usually expressed through the classical quasiproba
ity for an electron to return to the area of the orderlFl
(lF52p/kF) around the start point1–4

ds52s0

lFl

p
W, ~1!

where s05e2kFl /(2p\), and W stands for the quasiprob
ability density of return~quasi- means thatW includes not
only the classical probability density, but the effects of int
ference destruction due to an external magnetic field
inelastic scattering processes!. In order to calculate a mag
netic field dependence of negative magnetoresistance
quasiprobabilityW is represented as a sum of contributio
of closed paths withN collisions,WN . Then, Eq.~1! can be
rewritten as

ds522p l 2G0 (
N53

`

WN , ~2!

where G05e2/(2p2\). Here, only paths withN>3 are
taken into account, because the paths withN51,2 have zero
areas and their contributions are not influenced by the m
netic field.

The expression~2! for backscattering quantum correctio
is true for an arbitrary magnetic field, any anisotropy of sc
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tering and distribution of scatterers, and various relations
between phase and momentum relaxation times,tw and t,
respectively. The sum~2! is usually calculated by means o
diagrammatic technique.5,6 Analytical expressions for nega
tive magnetoresistance have been obtained this way for
dom distribution of scatterer in the following cases:~i! arbi-
trary scattering anisotropy for low magnetic fieldB,Btr ,7

whereBtr5\c/(2el2); ~ii ! isotropic scattering forB@Btr .4

In the diffusion approximation, i.e., when the number of c
lisions for actual trajectories is much greater than unity, t
procedure gives5

Ds~b!5ds~b!2ds~0!

5aG0FcS 1

2
1

g

bD2cS 1

2
1

1

bD2 ln gG , ~3!

where g5t/tw , b5B/@(11g)2Btr #, c(x) is a digamma
function, anda is so called prefactor, which is equal to uni
according to the theory. Forx@1 c(1/21x). ln(x), and the
expression~3! coincides with that obtained in Ref. 6. Th
calculations ofds(b) beyond the diffusion limit3,5 show that
ds(b) markedly deviates from this theory if the number
collisions for actual trajectories is not very large. The role
nonbackscattering contribution to magnetoconductance
been studied in Ref. 4. This contribution has been found
cause the reduction of scattering at arbitrary angles and
contrast to the coherent backscattering, the conductivity
creasing. In the diffusion limit the nonbackscattering con
bution is negligible small, but in the case of a strong ma
netic fieldB.Btr it should be taken into account.

It is usual to analyze experimental data by means of
~3!. If this equation describes the magnetic-field depende
of negative magnetoresistance satisfactorily, it is possible
determinetw and its temperature dependence.

In our two papers presented back-to-back we put forw
a approach to calculation and analysis of negative mag
toresistance. By representing the quasiprobabilityW as a sum
of contributions from trajectories with given areas we e
13 164 ©2000 The American Physical Society
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PRB 61 13 165ANALYSIS OF NEGATIVE . . . . I. . . .
press the negative magnetoresistance in terms of area d
bution function of closed pathsW(S) and area dependenc
of their average lengthsL̄(S). It is shown that these ar
precisely the statistic characteristics that can been obta
from the analysis of experimental data~see the following
paper!. In the present paper, the statistics of closed path
studied theoretically by using computer simulation. Th
method allows to obtain the statistic characteristics of clo
paths beyond the diffusion approximation without any
striction on the scattering anisotropy and impurity distrib
tion when analytical expressions cannot be derived.

This paper is organized as follows. In the next section
give the necessary formulas and definitions. In Sec. III
details of simulation procedure are presented. The statis
of closed paths obtained from the simulation is given in S
IV. The results are compared with those obtained in
framework of the diffusion theory. In Sec. V the magnet
field dependence of negative magnetoresistance of the m
2D system are presented and analyzed. Both coherent b
scattering and nonbackscattering contributions to magn
conductance are considered.

II. BASIC EQUATIONS

Let us introduce the valuewN(S) in such a way that
wN(S)dS gives the probability density of return afterN col-
lisions following a trajectory, which encloses the area in
range (S,S1dS). In this case Eq.~2! for conductivity cor-
rection in a magnetic field is written as follows

ds~b!522p l 2G0 (
N53

` E
2`

`

dSwN~S!cosF ~11g!2bS

l 2 G .

~4!

In order to take into account inelastic processes destro
the phase coherence we include the factor exp(2L/lw) in Eq.
~4!, wherel w is the phase breaking length connected withtw

through the Fermi velocity,l w5vFtw and replace the sum
mation overN by integration over the path lengthL. Then,
Eq. ~4! takes the form

ds~b!522p l 2G0E
0

` dL

l H expS 2
L

l w
D

3E
2`

`

dSw~S,L !cosF ~11g!2bS

l 2 G J . ~5!

Here,w(S,L)dSgives the density probability of return alon
a trajectory with the lengthL and area in the interval (S,S
1dS). Let us introduce the average lengthL̄ of closed paths
with a given area in such a way:

expF2
L̄~S!

l w
G5

1

W~S!
E

0

` dL

l
w~S,L !expS 2

L

l w
D , ~6!

where

W~S!5E
0

` dL

l
w~S,L !. ~7!

In this case Eq.~5! can be rewritten as follows
tri-
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ds~b!522p l 2G0E
2`

`

dSH W~S!expS 2
L̄~S!

l w
D

3cosF ~11g!2bS

l 2 G J . ~8!

Thus, the area distribution functionW(S) and functionL̄(S)
play a decisive part in the magnetic field dependence ofds.
It is clearly seen that these functions can be extracted f
experimentalds(b) curves by using Fourier transformation
To understand what these statistic characteristics are le
turn now to theoretical study of statistics of closed pa
through the computer simulation of a particle motion ov
2D plane with randomly distributed scatterers.

III. SIMULATION DETAILS

The model 2D system is conceived as a plain with ra
domly distributed scattering centers with a given total cro
section. It is represented as a latticeM3M . The scatterers
are placed in a part of the lattice sites with the use o
random number generator. We assume that a particle m
with a constant velocity along straight lines, which happen
be terminated by collisions with the scatterers.8 The follow-
ing algorithm has been realized in computer to obtained
information about the statistics of closed paths:

~1! A start point is chosen to coincide with some scatte
near the center of the lattice.

~2! We consider a particle suffers the first collision in th
start point and begins to move in a random direction~see
inset in Fig. 1!.

~3! If the particle passes in the vicinity of some scatte
at a distance less thans/2, wheres is the total cross section
of the scatterer, the collision is considered to take place.

~4! Then a scattering angle is randomly generated and
particle begins to move in the new direction until the ne
collision occurs. The distances between two sequential c
sions are stored in order to calculate the mean-free path

~5! If the trajectory of the particle passes near the s

FIG. 1. The quantity 2p l 2WN as a function of collision numbe
N. Circles are the result of simulation. The line is theoretical cal
lation using Eq.~10!. The inset shows schematically one of th
paths which pass through the start point vicinity afterN58 colli-
sions.
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13 166 PRB 61G. M. MINKOV et al.
point at the distance less thand/2 ~whered is a prescribed
value, which is small enough!, it is perceived as being
closed. Its lengthL, the number of collisionsN, the angleu
between the first and the last segments of the trajectory,
the enclosed algebraic area, calculated according to

S5 (
j 51

N21
yj 111yj

2
~xj 112xj !1

yN1y1

2
~xN2x1!, ~9!

wherexj , yj stand for coordinates ofj th collision, are kept
in memory. Then, the particle continues moving in the sa
direction. Notice that multireturned trajectories are taken i
account. Their length and area are calculated beginning
the start point.

~6! Steps~3!–~5! are repeated until the particle goes out
the lattice or a number of collisions exceeds some large
scribed valueNm .

~7! Then, another particle is launched from the start po
in a random direction, and steps~3!–~6! are repeated.

~8! After a thousand of starts, a new start point is chos
and steps~2!–~7! are repeated, for tens of times.

~9! Then a new ensemble of scatterers is randomly ge
ated and the whole procedure is done over and over aga

The procedure described allows to find the probabilityT
for the trajectory to pass at a distance less thand/2 near the
start point, instead of the probability density of returnW,
which stands in Eq.~1!. But it can be shown~see Appendix!
that for d! l these values are connected through the sim
relationshipW5(dl)21T.

All the results presented in the paper have been obta
using the following parameters: the lattice dimension
650036500, the total number of scatterers is about
3104, Nm5103, s57, andd51 ~hereafter all the lengths
and areas are given in units of lattice parameter and la
parameter squared, respectively!. The total number of starts
I s , is about 1062107. The mean free path computed for su
a system is 77.8. It is close to theoretical estimation of m
free pathl 5(Nss)21, whereNs is a density of scatterers
The calculations were carried out also with other parame
M and s differed 223 times. It has been shown that th
leads only to a change in the value ofl, but does not influ-
ence the dependence of magnetoconductance on the red
magnetic fieldb5B/Btr .

In order to illustrate the 2D system, which can correspo
to our model in reality, let us set the lattice constant equa
0.5 nm. In this case our model provides an example of
system with the concentration of scatterers 7.531011 cm22,
mean free pathl 538.9 nm, andBtr.0.2 T.

IV. STATISTICS OF CLOSED PATHS

A. Simulation results

It has been shown in Ref. 3 that if we decompose
probability density of return to the originW as a sum of
contributions of paths withN collisionsWN for each partial
contribution a simple expression is valid:

2p l 2WN5~N22!21, N>3. ~10!

We emphasize that Eq.~10! is exact. It has been obtained fo
random distribution of scatterers of zeroth radius. Cor
nd
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sponding simulation results for our model system are p
sented in Fig. 1. As is clearly seen the power law works w
in the whole range ofN. The value ofWN is really propor-
tional to (N22)a with a5(21.0560.02) which is close to
the theoretical valuea521. The slight difference results
from a specific feature of our system. The matter is that
scatterers are placed discretely rather than continuously a
the theoretical approach. They cannot lie closer than one
cell of the lattice. This leads to the fact that unlike the theo
a distance between two sequential collisions in our mode
always greater than some critical value of the order of latt
constant. From this point of view, our model system m
closely corresponds to real 2D system, where the ioni
impurity distribution is discrete and correlated to some e
tent due to Coulomb repulsion at growth temperature. I
easy to show in the framework of theoretical approach Re
that the cutoff of short free paths results in more ste
WN(N) relationship as compared with Eq.~10!.

The length distribution function for closed paths,W(L), is
presented in Fig. 2. The functionW(L) is defined in such a
way that the valueW(L)dL is the probability density of
return to the origin following a trajectory with the lengt
belonging to the interval fromL up to L1dL. As is seen
W(L) is inversely related to trajectory length. A drastic d
crease ofW(L) for L*7.53104 results from the restriction
on maximal number of collisions per one trajectory in o
algorithm. As a consequence of this restriction the proba
ity of a closed path to have the length exceeding the va
Nml .83104 is negligible small.

Figure 3 shows the area distribution function obtain
from our numerical simulation. Since the results of calcu
tions are identical for positive and negative algebraic are
hereafter we present theoretical curves in the positive a
range only. It is reasonable thatW(S) is a diminishing func-
tion. As is seen it is difficult to describeW(S) curve by a
power function in the whole range of areas. However,
large S the power functionS21 is a good asymptotic of
W(S).

The results of our calculation ofL̄(S) for different values
of l w are presented in Fig. 4. As is seen the smaller the va
of g, i.e., the greaterl w , the greater is the average length

FIG. 2. Length distribution function of closed pathsW(L). The
solid curve is the result of simulation, the dotted curve showsL21

function.
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closed paths with a given area. For large area valuesS* l 2,
the area dependence ofL̄ can be described by the powe
functionSb with b slightly depending on the value ofg. As
g changes from 0.1 to 0.01, the value ofb varies from 0.55
to 0.62.

Although the particle motion in our model 2D system is
special case of the random walker problem, which is stud
well enough, to our knowledge there is no analytical solut
of this problem in a wide range of path lengths and are
involving nondiffusion motion. There is no theory that cou
describe analytically the statistics of closed paths with sm
number of collisions. Below we analyze the simulation
sults in the framework of diffusion theory.

B. Comparison with diffusion theory

Let us now calculate within the diffusion approximatio
the quantitiesw(S,L),W(S), andL̄(S) introduced in Sec. II
to describe statistical properties of a random walk. A parti
trajectory is regarded as being diffusive when its length
greater than the mean free path, associated with the tran
scattering time. According to the diffusion theory the pro

FIG. 3. Area distribution function of closed pathsW(S). The
solid curve is the result of simulation; the dashed and dot-das
curves are the diffusion and improved diffusion approximatio
respectively; the dotted curve showsS21 function.

FIG. 4. The area dependence ofL̄ for different g values. Solid
curves are the simulation results, dashed and dot-dashed curve
the results of calculation within the diffusion and improved diff
sion approximations, respectively~see text!.
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ability density of finding a particle in the vicinity of the poin
r at the momentt, P(r ,t), does not depend on the initial an
final velocity directions and obeys the usual diffusion equ
tion

]P

]t
2DDP5d~ t !d~r !, ~11!

whereD is the diffusion coefficient. A solution of the diffu
sion equation can be written in the form of the Wiener pa
integral as~see, e.g., Ref. 2!

P~r ,t !5E
r (0)50

r (t)5r
Dr ~t!expF2E

0

t

dt
ṙ2~t!

4D G . ~12!

With help of this formalism we calculate the probability de
sity P for a diffusive walk with a constant velocityvF and
the lengthL5vFt to enclose the algebraic areaS

P~S,L !5K dFS2
1

2E0

t5L/vF
dtr 2~t!u̇~t!G L

P(0,t)

.

Here, the symbol̂ . . . &P(0,t) stands for averaging with the
Wiener measure~12! over all closed trajectories. The expre
sion for P(S,L) can be obtained by making use of relatio
between this quantity and density of states of a fictitio
quantum particle with the massm5\(2D)21 in a magnetic
field:9

P~S,L !5
p

2lL
cosh22S pS

lL D . ~13!

When obtaining Eq.~13! we have used the expression for th
diffusion coefficientD5vF

2t/2, and normalizedP(S,L) to
unity

E
2`

`

dSP~S,L !51. ~14!

The function w(S,L), which is connected withP(S,L)
through the diffusion density probability of return, by th
following relationship

w~S,L !5
1

4pDt
P~S,L !5

1

2p lL
P~S,L !, ~15!

is shown in Fig. 5 for differentL values. In the same figure
the results of simulation are presented, too. As would
expected, the diffusion theory describes only the statistic
long trajectories~see corresponding curves labeled 50l and
500l in Fig. 5!. For ballistic trajectories, there is no agre
ment between the simulation data and the above theory.

To calculate the functionW(S), which is given by the Eq.
~7!, we choosel as the lower cutoff in the integral, becaus
the ballistic trajectories are not described within the diffusi
approximation. Using Eqs.~13! and ~15! we immediately
obtain

4p l 2W~S!5
1

S
tanhS pS

l 2 D . ~16!

In Fig. 3, the results of calculations of the functio
4p l 2W(S) are presented by the dashed line. As is seen

ed
,
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13 168 PRB 61G. M. MINKOV et al.
large areasS. l 2, the simple diffusion theory describes th
simulation results perfectly. ForS, l 2 the theory gives the
values ofW smaller than the simulation data.

In the framework of the diffusion approximation we ha
calculated the area dependence of the average length o
jectoriesL̄, introduced by Eq.~6!. The results of numerica
calculation are presented in Fig. 4 by the dashed curve.
evident that the theoretical and simulation results are in g
agreement only forS.10l 2.

Let us suggest some improvement of the above the
which could allow one to describe the statistic of ballis
trajectories as well. As is seen from Fig. 5, at some value
S5Sc ~marked by arrows in Fig. 5! each curve obtained
from the simulation procedure reveals a step-like behav
there are no paths withS.Sc . Such a behavior ofw(S,L) is
quite clear. A closed path with the lengthL cannot enclose
the area larger than the area of a circle with the rad
L/(2p). This fact, which has not been taken into accou
above, does not play an essential role within the diffus
regime, because the value ofSc is much greater than the are
enclosed by almost all the trajectories. In the ballistic regim
Sc is found to be equal to the areas enclosed by the m
probable trajectories~see Fig. 5, curves corresponding toL
51l ,5l ). Not counting the existence ofSc in this case the
function P(S,L) @andw(S,L) too# is found to be underesti
mated forS,Sc owing to the normalization ofP(S,L) ac-
cording to Eq. ~14!. The artificial cutoff of the function
P(S,L) obtained in the framework of diffusion approxima
tion ~13! @i.e., P(S,L)50 for uSu.L2/(4p)] and following
normalization~14! of this function gives

P~S,L !5
p

2lL
tanh21S L

4l D cosh22S pS

lL DQS L2

4p
2uSu D ,

~17!

whereQ(x) is Heaviside step function. The use of this e
pression allows to describew(S,L) behavior for the ballistic
trajectories much better than Eq.~13! ~see the dash-dotte
curve in Fig. 5!. The results of numerical calculation o

FIG. 5. The quantityw as a function ofS for differentL values.
Solid lines represent the simulation data. Dashed and dot-da
lines show the results of calculation using Eqs.~13! and ~17!, re-
spectively. Arrows indicate the critical area value as it is obtain
from the simulation procedure.
ra-
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W(S) and L̄(S) obtained in the framework of the improve
theory are presented by the dash-dotted curves in Figs. 3
4, respectively. A good agreement with simulation results
evident forW(S) in the whole area range. However, such
approach is too rough to describeL̄-vs-S curves .

Thus, the theoretical analysis shows that the simulat
procedure works correctly and allows to use it for analyzin
among other things, the interference quantum correction
the conductivity.

V. NEGATIVE MAGNETORESISTANCE

Before the discussion of negative magnetoresistance le
consider the results of calculation ofds for b50. This will
allow us to realize the restrictions of our model in view
the finite size of matrix used and limited number of col
sions per one trajectory and to analyze for whatg range the
simulation results can be applied to interpret experimen
data for macroscopic samples~when the sample dimension
are much greater than the phase breaking length!.

To calculateds we use Eq.~1! assuming that each close
path gives a contribution 1/I s ~whereI s is a total number of
paths! to the probability of return. Each contribution i
weighted by the factor exp(2li /lw) to take into account the
interference distortion by inelastic processes. The final fo
of the expression fords in the case ofb50 looks as follows

ds

G0
52

2p l

I sd
(

i
expS 2

l i

l w
D , ~18!

where summation runs over all closed trajectories. Figur
shows the results of our simulation ofds as a function of
g5 l / l w and, for comparison, the results of theoretical calc
lation obtained through the well-known exact formula

ds

G0
5 ln~11g21!. ~19!

As is seen forg*1022 the simulation and theoretical dat
are almost the same. A strong deviation is observed fog
,1023 where just the trajectories with lengthsL;Lw

5g21l .Nml have to give an essential contribution tods

ed

d

FIG. 6. The interference quantum correction to the conductiv
in zero magnetic field as a function ofg. The solid curve shows the
simulation results, the dashed line is the results of calculation
cording Eq.~19!.
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value. These trajectories are not considered in our mo
Thus, we believe that forg5 l / l w.1022 our model system is
equivalent to an unbounded 2D system and the simula
gives correct results.

A. Backscattering contribution

Now we are in position to discuss the magnetocond
tance anomaly due to suppression of quantum interfere
corrections by a magnetic field. To calculate a magnetic-fi
dependence ofds for our model system we follow the ordi
nary way: the contribution of each closed trajectory tods is
multiplied by the factor, which allows for the interferenc
distortion by the magnetic field. The final expression
ds(b) takes the form

ds~b!

G0
52

2p l

I sd
(

i
cosF ~11g!2bSi

l 2 GexpS 2
l i

l w
D .

~20!

This formula is not meaningful from the experimental po
of view, because the absolute value of quantum correctio
not a measurable quantity. The magnetoconducta
Ds(b)5s(b)2s(0)5ds(b)2ds(0) is usually experi-
mentally available.

The results of calculation ofDs(b) for the model system
are presented in Fig. 7 for severalg values. They are in
excellent agreement with the results of numerical calcu
tions carried out beyond the diffusion approximation in R
5. This lends support to the correctness of parameters ch
for our model system: the set of parameters used turns o
be suitable to simulate adequatelyDs(b) in the ranges ofb
andg under consideration.

In the same figure the results of calculation ofDs(b) in
the framework of diffusion approximation with the expre
sion ~3! are presented too. It is seen that this formula d
not describe the simulatedDs(b) curves. Even in the case o
g50.01, when the conditiong!1 is seemingly fulfilled and
the diffusion theory should work well, the formula~3! gives
the value ofDs substantially larger than the simulation da
for b50.1 the difference is about 25%.

FIG. 7. The magnetic-field dependence ofDs for different g
values. Solid curves are the results of simulation, dashed curve
the diffusion limit ~3!. Only backscattering contribution is take
into account.
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As discussed above~see Sec. I! Eq. ~3! is widely used by
experimenters to extract the values ofg from experimental
data. Two fitting parameters are available in such a data
cessing: just as the value ofg so the prefactora. To check
the validity of this method in the case when the diffusi
approximation does not work, we have performed the fitt
procedure forDs(b) curves simulated. In Fig. 8 the resul
of fitting procedure ofDs(b) made forg50.1 within two
different ranges of magnetic fieldb<1, andb<5 are pre-
sented by dotted and dashed curves, respectively. As is
the simulated curve is best described by Eq.~3! in low-
magnetic field range. However, in both cases the ratiot/tw

found from the fitting procedure and designated asg f
slightly differs from the value ofg used in the simulation.
The difference is about 10% forb<1 fitting range and 20%
for b<5. The value of prefactor is found to be significant
less than unity.

The results of such a data treatment for severalg values
are presented in Fig. 9. It is clearly seen that the differe
10–30 % betweeng f andg takes place for allg values. The
value of prefactora is always less than unity, and increas
with decreasingg.

B. Nonbackscattering contribution

Up to this point, we considered the coherent backscat
ing correction to conductivity. The coherent paths for bac
scattering contribution are schematically depicted in F
10~a!. In this case the interference takes place when
pointsA, 1, N, andB are close to one line. However, as it
shown in Ref. 4 there is one more variant of coherent pa
for the same configuration of scatterers, when the finish p
B lies close to the line passing through the points 1 and
@see Fig. 10~b!#. In the latter case the one of the two inte
fering waves is scattered twice by the scatterer 1~which is
regarded in this paper as a starting point!, while the other one
passes the point 1 without scattering. This provides so ca
nonbackscattering contribution to conductivity. It was sho
in Ref. 4 that both contributions are related to the probabi

are FIG. 8. The magnetic-field dependence ofDs for g50.1. Solid
curves are the results of simulation. Dashed curves are the resu
fitting procedure with the use of Eq.~3! made within two different
ranges of magnetic field:b<1 ~a! andb<5 ~b!. The fitting param-
eters are the following:a50.49, g f50.087 ~a! and a50.65, g f

50.12 ~b!.
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of return to the starting point for a given trajectory, the co
ductivity correction due to nonbackscattering processe
positive. In our case such processes can be easily taken
account by multiplying each term in Eq.~20! by the factor
@12 cos(ui)#, whereu i is the angle between the first and la
segments of thei th closed path:

Ds~b!

G0
52

2p l

I sd
(

i
@ . . . #@12 cos~u i !#. ~21!

Shown in Fig. 11 are the magnetic field dependencies
Ds, calculated for differentg values with the help of Eq

FIG. 9. The parametersa ~a! andg f ~b! as a function ofg value
fed into the simulation. Open and solid circles are the results
fitting of Ds(b), obtained without nonbackscattering contributio
to Eq.~3! in the rangesb<1 andb<5, respectively. Solid lines are
the guide for an eye, the dashed line showsg5g f function.

FIG. 10. Two types of coherent paths and corresponding
grams relevant in the first order in (kFl )21, which are responsible
for backscattering~a! and nonbackscattering~b! contributions to
weak localization, for given configuration of scatterers.
-
is
nto

of

~21!. For comparison, the results computed with the form
~20! are presented too. It is clearly seen that both types
calculations give close results in the low magnetic field ran
b&0.5. For higher magnetic fields the inclusion of nonbac
scattering contribution leads to a decrease in magneto
ductance. Such a behavior of the magnetoconductance is
good agreement with the results of numerical calculatio
presented in Ref. 4.

As in the previous subsection we have attacked the si
lated data as experimental ones, i.e.Ds(b) curves have been
fitted to the calculated with Eq.~3! values. The fitting results
are presented in Fig. 12. As one would expect, the value
a and g f obtained from the low magnetic field fitting (b
<1) are very close to corresponding values in Fig. 9. T
obviously results from the fact that the solid and dash
curves in Fig. 11 are close together for theseb values. As for
the parameters obtained from the whole magnetic field ra
fitting, taking into account of the nonbackscattering con
bution results in decreasing botha andg f values.

Thus, the standard method of experimental data proc
ing with the use of Eq.~3! allows to extract the phase brea
ing time ~or length! with the accuracy (10230) % in wide
ranges ofg andb. The prefactora obtained this way is found
to take the values from 0.3 to 0.7, i.e. substantially less t

f

-

FIG. 11. The magnetic field dependence ofDs for different g
values. Dashed and solid curves are the results of calculation w
out and with non-backscattering contribution, respectively.

FIG. 12. The parametersa ~a! and g f ~b! as a function ofg
value fed into the simulation. Non-backscattering contribution
taken into account. All designations are the same as in Fig. 9.
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unity. This reveals a possible reason of small value of p
actor obtained from different experimental data treatme
This need not be a consequence of an electron-electron
teraction as discussed in some papers, but can result from
fact that in real 2D systems the rigorous conditions of dif
sion approximation are not fulfilled even in the case of rat
small g andb.

VI. CONCLUSION

This paper is intended to demonstrate the possibility
obtaining the information about the statistics of closed pa
from the analysis of anomalous magnetoconductance in
systems. In particular, we have shown explicitly that the s
tistic characteristics such as the area distribution function
closed paths and area dependence of their average le
determine the magnetic-field dependence of magnetocon
tance. These functions have been studied by using the c
puter simulation method. It has been shown that in the b
listic regime the area distribution function of closed pa
deviates fromS21 power law, which holds in the diffusion
regime. The theoretical analysis of simulation results
shown that such a behavior ofW(S) is mainly connected
with the existence of critical area value, which correspon
to the maximal area enclosed by a path with a fixed length
has been shown that the area dependence of the ave
length of closed paths, introduced through Eq.~6!, can be
well described by the power function,L̄}Sb, with b varying
in the range 0.5520.62, wheng5t/tw changes from 0.1 to
0.01.

The results of simulation have been used to calculate
magnetoresistance of the model 2D system. Both ba
scattering and nonbackscattering processes have been
into account. The calculated magnetic field dependencie
Ds have been processed as experimental ones by a stan
manner with the help of Eq.~3!. It has been shown that th
fitting procedure givest/tw ratio, which differs from that
used in the simulation by the factor 0.821.3. The value of
prefactor obtained this way is always less than unity.
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APPENDIX

For the sake of simplicity, we suppose here that the s
point coincides with the origin. For the value of probabilityT
that a trajectory passes near the origin at the distance
than some prescribed valued/2 we can write

T5 (
N53

Nm

TN , ~A1!

whereTN is the probability of return afterN collisions. The
value ofTN can be expressed through the probability dens
to experience the (N21)th collision in the point r ,
WN21(r ):

TN5E drP~r !WN21~r !, ~A2!

whereP(r ) is the probability that the particle moves witho
collisions from the pointr to the circle of the radiusd/2
around the origin. It is easy to show that

P~r !5
1

p
arctanS d

2r DexpS 2
r

l D . ~A3!

Then, forTN we have

TN5
1

pE dr arctanS d

2r DexpS 2
r

l DWN21~r !. ~A4!

For d! l , the inverse tangent in Eq.~A4! can be replaced by
its argument. Analysis shows that ford/ l 51022 ~it is true
for our case! this gives an error in calculation ofTN less than
0.1% for N>3. Thus, the expression for the probabilityT
becomes

T.
d

2p (
N53

Nm E dr

r
expS 2

r

l DWN21~r !. ~A5!

Comparing Eq.~A5! with the expression for the probabilit
densityW ~Refs. 3 and 5!

W5
1

2p l (
N53

Nm E dr

r
expS 2

r

l DWN21~r !, ~A6!

we can conclude that

W.~ ld !21T. ~A7!
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