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Analysis of negative magnetoresistance: Statistics of closed paths. 1. Theory
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Statistics of closed paths in two-dimensiof2D) systems, which just determines the interference quantum
correction to conductivity and anomalous magnetoconductance, has been studied by computer simulation of a
particle motion over the plane with randomly distributed scatterers. Both ballistic and diffusion regimes have
been considered. The results of simulation have been analyzed in the framework of diffusion approximation.
They are used for calculation of the magnetic-field dependence of magnetoconductance in the model 2D
system. It is shown that the anomalous magnetoconductance can be, in principle, described by the well-known
expression, obtained in the diffusion approximation, but with the prefactor less than unity and phase breaking,
which differs from true value.

[. INTRODUCTION tering and distribution of scatterers, and various relationship
between phase and momentum relaxation timgsand 7,

It is well known that the interference of electron wavesrespectively. The sun®) is usually calculated by means of
scattered along closed trajectories in opposite directions pratiagrammatic technique® Analytical expressions for nega-
duces a quantum correction to the conductivity. An externative magnetoresistance have been obtained this way for ran-
magnetic field applied perpendicular to the two-dimensionatlom distribution of scatterer in the following casé3:arbi-
(2D) layer destroys the interference and suppresses the quaimary scattering anisotropy for low magnetic il B,, ,’
tum correction. This results in anomalous negative magnewhereB,, =#%c/(2el?); (ii) isotropic scattering foB>B,, .*
toresistance, which is experimentally observed in many 20n the diffusion approximation, i.e., when the number of col-
systems. This phenomenon can be described in the framésions for actual trajectories is much greater than unity, this
work of quasiclassical approximation, which is justified un-procedure gives
der the conditiorkgl>1, wherekg is the Fermi wave vector,
| is the mean-free path. In this case the conductivity correc- Aca(b)=8a(b)— 8c(0)
tion is usually expressed through the classical quasiprobabil-

ity for an electron to return to the area of the ordei _ 1 Y 1 4
(Ag=2m/kg) around the start poitit* =aGo 'f/’(z ol TS T nyl,  ©
Sz — o M ) Where y=r/7,, b=B/[(1+7)°By], ¥(X) is a digamma
TmT o0 @ function, anda is so called prefactor, which is equal to unity

according to the theory. For=>1 (1/2+x)= In(x), and the
where oo=e’kel/(27i), and W stands for the quasiprob- expression(3) coincides with that obtained in Ref. 6. The
ability density of return(quasi- means thatV includes not  cajculations ofso(b) beyond the diffusion limit® show that
only the classical probability density, but the effects of inter- 55(1h) markedly deviates from this theory if the number of
ference destruction due to an external magnetic field angollisions for actual trajectories is not very large. The role of
inelastic scattering procesgen order to calculate a mag- nonbackscattering contribution to magnetoconductance has
netic field dependence of negative magnetoresistance thgsen studied in Ref. 4. This contribution has been found to
quasiprobabilityW is represented as a sum of contributionscayse the reduction of scattering at arbitrary angles and, in
of closed paths withN collisions, Wy . Then, Eq.(1) can be  contrast to the coherent backscattering, the conductivity in-
rewritten as creasing. In the diffusion limit the nonbackscattering contri-
bution is negligible small, but in the case of a strong mag-
netic field B> B,, it should be taken into account.

It is usual to analyze experimental data by means of Eq.
(3). If this equation describes the magnetic-field dependence
where Gy=e?/(27?%). Here, only paths withN=3 are of negative magnetoresistance satisfactorily, it is possible to
taken into account, because the paths With1,2 have zero determiner, and its temperature dependence.
areas and their contributions are not influenced by the mag- In our two papers presented back-to-back we put forward
netic field. a approach to calculation and analysis of negative magne-

The expressiori2) for backscattering quantum correction toresistance. By representing the quasiprobabilitgs a sum
is true for an arbitrary magnetic field, any anisotropy of scat-of contributions from trajectories with given areas we ex-

©

So=— 27TI2G0Nz3 Wy, 2
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press the negative magnetoresistance in terms of area distri-  1¢° F3
bution function of closed path#/(S) and area dependence F

of their average length&(S). It is shown that these are
precisely the statistic characteristics that can been obtained
from the analysis of experimental datsee the following 107'F
papej. In the present paper, the statistics of closed pathsis = |
studied theoretically by using computer simulation. This
method allows to obtain the statistic characteristics of closed E
paths beyond the diffusion approximation without any re- 102k
striction on the scattering anisotropy and impurity distribu- b
tion when analytical expressions cannot be derived.

This paper is organized as follows. In the next section we
give the necessary formulas and definitions. In Sec. Il the 103k i e, R
details of simulation procedure are presented. The statistics 1 10 100 1000
of closed paths obtained from the simulation is given in Sec. -

IV. The results are compared with those obtained in the g 1. The quantity 212Wy as a function of collision number
framework of the diffusion theory. In Sec. V the magnetic- N_ Circles are the result of simulation. The line is theoretical calcu-
field dependence of negative magnetoresistance of the modgtion using Eq.(10). The inset shows schematically one of the
2D system are presented and analyzed. Both coherent bagkaths which pass through the start point vicinity after8 colli-
scattering and nonbackscattering contributions to magnetaions.

conductance are considered.

- L(S
Il. BASIC EQUATIONS So(b)=—2l ZGOJ ds| W(S)exp( - |( )>
o v
Let us introduce the valuevy(S) in such a way that
wy(S)dS gives the probability density of return aftircol- (1+7v)%bS
lisions following a trajectory, which encloses the area in the X co 2 ' ®

range §,S+d9). In this case Eq(2) for conductivity cor-

rection in a magnetic field is written as follows Thus, the area distribution functioh(S) and functionL (S)
o (1+7)%bS plgy a decisive part in the magnefcic field dependencéoaf

Sa(b)=—27l 2602 J dSw\,(S)coa{ Y _ It is clearly seen that these functions can be extracted from
N=3 J-o |2 experimentaldo(b) curves by using Fourier transformation.
(4)  To understand what these statistic characteristics are let us
turn now to theoretical study of statistics of closed paths
%rough the computer simulation of a particle motion over
2D plane with randomly distributed scatterers.

In order to take into account inelastic processes destroyin
the phase coherence we include the factor exg,) in Eq.
(4), wherel , is the phase breaking length connected with
through the Fermi velocityl,,=vg7, and replace the sum-
mation overN by integration over the path length Then, 1. SIMULATION DETAILS

Eq. (4) takes the form The model 2D system is conceived as a plain with ran-

- dL L dom_ly distr_ibuted scattering centers with a given total cross
so(b)=— 2l ZGOI o ex;{ _ _) section. It is represented as a lattieeX M. The scatterers
o | le are placed in a part of the lattice sites with the use of a
random number generator. We assume that a particle moves

” (1+7)°bS with a constant velocity along straight lines, which happen to
. fdeV\(S,L)COﬁ{ 2 ® " pe terminated by collisions with the scatter&Ehe follow-
ing algorithm has been realized in computer to obtained the

Here,w(S,L)dS gives the density probability of return along information about the statistics of closed paths:

a trajectory with the length. and area in the interval(S (1) A start point is chosen to coincide with some scatterer
+d9). Let us introduce the average lendttof closed paths near the center of the lattice.
with a given area in such a way: (2) We consider a particle suffers the first collision in the
start point and begins to move in a random directieae
L(S) 1 < dL L inset in Fig. 2.
exp — IWL TW(S,L)GXD< - r), (6) (3) If the particle passes in the vicinity of some scatterer
® ¢ at a distance less thai2, wheres is the total cross section
where of the scatterer, the collision is considered to take place.
(4) Then a scattering angle is randomly generated and the
© dL particle begins to move in the new direction until the next
W(S)= fo TW(S"—)- (7) " collision occurs. The distances between two sequential colli-

sions are stored in order to calculate the mean-free path.
In this case Eq(5) can be rewritten as follows (5) If the trajectory of the particle passes near the start



13 166 G. M. MINKQV et al. PRB 61

point at the distance less tha2 (whered is a prescribed )
value, which is small enoughit is perceived as being i ]
closed. Its length., the number of collision§, the angled o
between the first and the last segments of the trajectory, and 10 3 3
the enclosed algebraic area, calculated according to i

N-1 L N 107 3

=3 D) M o, @ 2

=1 & 1070 ]
wherex;, y; stand for coordinates gth collision, are kept i ]
in memory. Then, the particle continues moving in the same S
direction. Notice that multireturned trajectories are taken into 10 3 , , , 3
account. Their length and area are calculated beginning with 10" 102 10° 10* 10°

the start point.
(6) Steps(3)—(5) are repeated until the particle goes out of L

the lattice or a number of collisions exceeds some large pre- FiG. 2. Length distribution function of closed pat4L). The

scribed valueN,, . solid curve is the result of simulation, the dotted curve shaws
(7) Then, another particle is launched from the start poinfunction.

in a random direction, and stef®)—(6) are repeated.

(8) After a thousand of starts, a new start point is chosen . . .
$ponding simulation results for our model system are pre-

and stepg2)—(7) are repeated, for tens of times. g .
(9) Then a new ensemble of scatterers is randomly geneIs_ented in Fig. 1. As is clearly seen the power law works well
in the whole range oN. The value ofW, is really propor-

ated and the whole procedure is done over and over again.. o - S
The procedure described allows to find the probability tional to (N—2)% with a=(~1.05£0.02) which is close to

for the trajectory to pass at a distance less ttiéhnear the ]Ehe theoreti(_:fr?ll ;/alue)zz ; 1. The slight ﬁifference. reiultsh
start point, instead of the probability density of retum rom a specific feature of our system. The matter is that the

which stands in Eq(1). But it can be showitsee Appendix scatterers are placed discretely rather than continuously as in

that for d<I| these values are connected through the simpléhe theoreticql apprqach. They cannot lie closgr than one unit
relationshipw= (d1) 17, cell of the lattice. This leads to the fact that unlike the theory

Al the results presented in the paper have been obtaine® distance between two sequential collisions in our model is
using the following parameters: the lattice dimension isalways greater than some critical value of the order of lattice

6500 6500 the total number of scatterers is about gconstant. From this point of view, our model system most
«10* N 2’103 s=7, andd=1 (hereafter all the lengths closely corresponds to real 2D system, where the ionized
i) m 1 1

and areas are given in units of lattice parameter and latticnPUrty distribution is discrete and correlated to some ex-

parameter squared, respectiyelyhe total number of starts, tent due to Cpulomb repulsion at grovvth temperature. It is
I,., is about 16— 107. The mean free path computed for such easy to show in the framework of theoretical approach Ref. 3

a system is 77.8. It is close to theoretical estimation of meaﬁlr\]/at the cutoff of short free paths results in more steep

free pathl=(Ngs) 1, where N is a density of scatterers. n(N) relationship as compared with ECLO).

; ; : The length distribution function for closed pathg(L), is
The calculations were carried out also with other parameters T : ; . .
M and s differed 2—3 times. It has been shownpthat this presented in Fig. 2. The functio(L) is defined in such a

leads only to a change in the valuelptbut does not influ- way that the valuew(L)dL is the probability density of

ence the dependence of magnetoconductance on the redut{)&ﬁ“m _to the ongin following a trajectory with the length
magnetic fieldo=B/B elonging to the interval fronh up toL+dL. As is seen
=B/B,, . JIN _ _
In order to iIIustrater the 2D system, which can corresponc}N(L) Is inversely related to trajectory length. A dra§t|<? de-
to our model in reality, let us set the lattice constant equal t&"€a5€ OW(L) for L=7.5x 10° results from the restriction

0.5 nm. In this case our model provides an example of 20" m.aximal number of collisions per one trajectory in our
—2 algorithm. As a consequence of this restriction the probabil-

system with the concentration of scatterers<71®'! cm=2, .
mean free path=38.9 nm, and,~0.2 T. ity of a closeq path_tq have the length exceeding the value
Nl =8x 10 is negligible small.
Figure 3 shows the area distribution function obtained
IV. STATISTICS OF CLOSED PATHS from our numerical simulation. Since the results of calcula-
A. Simulation results tions are identical for positive and negative algebraic areas,
hereafter we present theoretical curves in the positive area

It has been shown in Ref. 3 that if we decompose theynge only. It is reasonable thak(S) is a diminishing func-
probability density of return to the origitV as a sum of 5" aq'is seen it is difficult to describa/(S) curve by a

contributions of paths wittN collisionsWy for each partial - nq\er function in the whole range of areas. However, for
contribution a simple expression is valid: large S the power functionS™! is a good asymptotic of
W(S).

The results of our calculation &f(S) for different values
We emphasize that E¢LO) is exact. It has been obtained for of | , are presented in Fig. 4. As is seen the smaller the value
random distribution of scatterers of zeroth radius. Correof v, i.e., the greater,, the greater is the average length of

2m1PWy=(N—-2)"1, N=3. (10
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ability density of finding a particle in the vicinity of the point

r at the moment, P(r,t), does not depend on the initial and
final velocity directions and obeys the usual diffusion equa-
tion

JP
E—DAP=5(t)5(r), (11
whereD is the diffusion coefficient. A solution of the diffu-

sion equation can be written in the form of the Wiener path
integral as(see, e.g., Ref.)2

x> W(S)

e r()=r ' r2(r)
10° 10° 1] 10° 10° P(r‘t)_ﬁ(o)_opr“)ex _fo 774D

. (12

With help of this formalism we calculate the probability den-
ity P for a diffusive walk with a constant velocityr and
e lengthL =vt to enclose the algebraic ar&a

closed paths with a given area. For large area vafires’, >p(o,t) '

the area dependenpe bf can be .descrlbed by the power pare the symbol . . . )p(oy Stands for averaging with the

function S” with 43 slightly depending on the value of As  \viener measurél2) over all closed trajectories. The expres-
y changes from 0.1 to 0.01, the value @ivaries from 0.55  jon for P(S,L) can be obtained by making use of relation
to 0.62. between this quantity and density of states of a fictitious

Although the particle motion in our model 2D system is aguantum particle with the mass=7%(2D) ! in a magnetic
special case of the random walker problem, which is studiegg|q-2

well enough, to our knowledge there is no analytical solution

of this problem in a wide range of path lengths and areas, T T

involving nondiffusion motion. There is no theory that could P(S,L)= ECOS*‘Z(T)- (13
describe analytically the statistics of closed paths with small

number of collisions. Below we analyze the simulation re-When obtaining Eq(13) we have used the expression for the

FIG. 3. Area distribution function of closed path¥(S). The
solid curve is the result of simulation; the dashed and dot-dashe
curves are the diffusion and improved diffusion approximations,
respectively; the dotted curve sho®s? function.

1 (t=L/vg 5 .
P(S,L)=<§[S—§fo d7re(7)6(7)

sults in the framework of diffusion theory. diffusion coefficientDzvﬁr/Z, and normalizedP(S,L) to
unity
B. Comparison with diffusion theory .
Let us now calculate within the diffusion approximation J_ dSP(S,L)=1. (14

the quantitiesv(S,L),W(S), andL(S) introduced in Sec. Il

to describe statistical properties of a random walk. A particleThe function w(S,L), which is connected withP(S,L)
trajectory is regarded as being diffusive when its length ighrough the diffusion density probability of return, by the
greater than the mean free path, associated with the transpd@llowing relationship

scattering time. According to the diffusion theory the prob-

1 1
W(S,L):mP(S,L):mP(S,L), (15)

is shown in Fig. 5 for different values. In the same figure
the results of simulation are presented, too. As would be
expected, the diffusion theory describes only the statistics of
long trajectoriegsee corresponding curves labeled 30d
500 in Fig. 5. For ballistic trajectories, there is no agree-
ment between the simulation data and the above theory.

To calculate the functiolV(S), which is given by the Eqg.
(7), we choosd as the lower cutoff in the integral, because
the ballistic trajectories are not described within the diffusion
approximation. Using Eqs(13) and (15 we immediately
obtain

=

1 7S
_ 2 — _
FIG. 4. The area dependenceloffor different y values. Solid 47 "W(S) Stan}‘( |2 ) ) (16)

curves are the simulation results, dashed and dot-dashed curves are . . )
the results of calculation within the diffusion and improved diffu- In Fig. 3, the results of calculations of the function
sion approximations, respectivelyee text 47r1?W(S) are presented by the dashed line. As is seen for
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S FIG. 6. The interference quantum correction to the conductivity

in zero magnetic field as a function ¢f The solid curve shows the

FIG. 5. The quantityw as a function oSfor differentL values.  simulation results, the dashed line is the results of calculation ac-
Solid lines represent the simulation data. Dashed and dot-dashe@rding Eq.(19).

lines show the results of calculation using E¢E3) and (17), re-
spectively. Arrows indicate the critical area value as it is obtaine

from the simulation procedure. O\N(S) andL(S) obtained in the framework of the improved

theory are presented by the dash-dotted curves in Figs. 3 and

large areasS>12, the simple diffusion theory describes the 4, _respectlvely. A good agreement with simulation results is
. . X 2 : evident forW(S) in the whole area range. However, such an
simulation results perfectly. Fd&8<I“ the theory gives the ) i
values ofW smaller than the simulation data. approach is too rough to describevs-S curves . _ _
In the framework of the diffusion approximation we have 1S, the theoretical analysis shows that the simulation
calculated the area dependence of the average length of trlRiocedure works correctly and allows to use it for analyzing,

jectoriesf, introduced by Eq(6). The results of numerical among other things, the interference quantum corrections to

calculation are presented in Fig. 4 by the dashed curve. It itshe conductivity.

evident that the theoretical and simulation results are in good
agreement only fo6>1012,

Let us suggest some improvement of the above theory, Bgefore the discussion of negative magnetoresistance let us
wh_|ch cguld allow one.to describe the statistic of ballistic consider the results of calculation 6& for b=0. This will
trajectories as well. As is seen from Fig. 5, at some value ofjioy ys to realize the restrictions of our model in view of

S=S, (marked by arrows in Fig. )5each curve obtained he finjte size of matrix used and limited number of colli-
from the simulation procedure reveals a step-like behaviorgjy,g per one trajectory and to analyze for whatnge the
there are no paths with>S, . Such a behavior o(S,L) IS gimylation results can be applied to interpret experimental
quite clear. A closed path with the Iengthcann_ot enclose_ data for macroscopic sampléshen the sample dimensions
the area larger than the area of a circle with the radius, e much greater than the phase breaking longth
L/(2). This fact, which has nqt been ta'ke'n into a.ccognt To calculateso we use Eq(1) assuming that each closed
abqve, does not play an essentlal role within the dn‘fusmrbath gives a contribution Il (wherel , is a total number of
regime, because the value$fis much greater than the area nathg to the probability of return. Each contribution is
enclosed by almost all the trajectories. In the ballistic regimeyyeighted by the factor exp(;/I,) to take into account the

i ¢.
Sc is found to be equal to the areas enclosed by the moSherference distortion by inelastic processes. The final form

probable trajectoriessee Fig. 5, curves correspondinglio ot the expression fodo in the case ob=0 looks as follows
=11,5l). Not counting the existence @&; in this case the

V. NEGATIVE MAGNETORESISTANCE

function P(S,L) [andw(S,L) too] is found to be underesti- So 27 l;
mated forS<S, owing to the normalization of(S,L) ac- o T d > exp — ik (18
cording to Eq.(14). The artificial cutoff of the function 0 s ¢

P(S,L) obtained in the framework of diffusion approxima- where summation runs over all closed trajectories. Figure 6

tion (13) [i.e., P(S,L)=0 for |S|>L?%(4m)] and following  shows the results of our simulation éf- as a function of

normalization(14) of this function gives y=I/l, and, for comparison, the results of theoretical calcu-
lation obtained through the well-known exact formula

1= o 0( 21
P(S.L)= i tanh | Z0] cosh | 1= O -~ S]],
(17)

where®(x) is Heaviside step function. The use of this ex- As is seen fory=102 the simulation and theoretical data
pression allows to describve(S,L) behavior for the ballistic are almost the same. A strong deviation is observedyfor
trajectories much better than E(L3) (see the dash-dotted <10 2 where just the trajectories with lengthis~L,,
curve in Fig. 5. The results of numerical calculation of =+ >N, have to give an essential contribution &or

oo
_ -1
G, In(1+y~1). (19
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FIG. 7. The magnetic-field dependence & for different y

values. Solid curves are the results of simulation, dashed curves are FIG. 8. The magnetlc-f_leld dt_apendencemd for y=0.1. Solid
the diffusion limit (3). Only backscattering contribution is taken curves are the results of simulation. Dashed curves are the results of

into account fitting procedure with the use of E¢3) made within two different
' ranges of magnetic field<1 (a) andb<5 (b). The fitting param-

. . . . ters are the followinga=0.49, v;=0.087 (a) and a=0.65,
value. These trajectories are not considered in our modeii.0 12 (b) g & @ &

Thus, we believe that fop=1/1,> 102 our model system is
equivalent to an unbounded 2D system and the simulation

gives correct results. As discussed abovsee Sec.)IEq. (3) is widely used by

experimenters to extract the values pfirom experimental

data. Two fitting parameters are available in such a data pro-
A. Backscattering contribution cessing: just as the value of so the prefactoa. To check

Now we are in position to discuss the magnetoconducthe validity of this method in the case when the diffusion

tance anomaly due to suppression of quantum interferenc@Proximation does not work, we have performed the fitting
corrections by a magnetic field. To calculate a magnetic-fieldProcedure forAo(b) curves simulated. In Fig. 8 the results
dependence oo for our model system we follow the ordi- Of fitting procedure ofAo(b) made fory=0.1 within two

nary way: the contribution of each closed trajectoryteis  different ranges of magnetic field<1, andb=<5 are pre-
multiplied by the factor, which allows for the interference sented by dotted and dashed curves, respectively. As is seen

distortion by the magnetic field. The final expression forthe simulated curve is best described by Eg). in low-
do(b) takes the form magnetic field range. However, in both cases the ratig,

found from the fitting procedure and designated gs

slightly differs from the value ofy used in the simulation.
x;{ _|_|) The difference is about 10% fdr<1 fitting range and 20%

lo) for b<5. The value of prefactor is found to be significantly
(200 less than unity.

The results of such a data treatment for severahlues
This formula is not meaningful from the experimental pointare presented in Fig. 9. It is clearly seen that the difference
of view, because the absolute value of quantum correction i$0—-30 % betweery; andy takes place for ally values. The
not a measurable quantity. The magnetoconductancealue of prefactom is always less than unity, and increases
Aco(b)=0c(b)—o(0)=dc(b)—da(0) is usually experi- with decreasingy.
mentally available.

The results of calculation afo(b) for the model system
are presented in Fig. 7 for several values. They are in
excellent agreement with the results of numerical calcula- Up to this point, we considered the coherent backscatter-
tions carried out beyond the diffusion approximation in Ref.ing correction to conductivity. The coherent paths for back-
5. This lends support to the correctness of parameters chosepattering contribution are schematically depicted in Fig.
for our model system: the set of parameters used turns out tt0(a). In this case the interference takes place when the
be suitable to simulate adequatélyr(b) in the ranges ob pointsA, 1, N, andB are close to one line. However, as it is
and y under consideration. shown in Ref. 4 there is one more variant of coherent paths

In the same figure the results of calculationfof(b) in  for the same configuration of scatterers, when the finish point
the framework of diffusion approximation with the expres- B lies close to the line passing through the points 1 and 2
sion (3) are presented too. It is seen that this formula doe$see Fig. 1(b)]. In the latter case the one of the two inter-
not describe the simulateflo(b) curves. Even in the case of fering waves is scattered twice by the scattergwhich is
vy=0.01, when the conditiory<1 is seemingly fulfilled and regarded in this paper as a starting ppinthile the other one
the diffusion theory should work well, the formu(@) gives  passes the point 1 without scattering. This provides so called
the value ofA o substantially larger than the simulation data: nonbackscattering contribution to conductivity. It was shown
for b=0.1 the difference is about 25%. in Ref. 4 that both contributions are related to the probability

so(b) 2wl (1+v)%bS
G, > ﬁ{—lz

B. Nonbackscattering contribution
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FIG. 11. The magnetic field dependencefaf for different y

FIG. 9. The parametems(a) andy; (b) as a function ofy value values. De}shed and solid curves are the results of ca]culation with-
fed into the simulation. Open and solid circles are the results oPUt @nd with non-backscattering contribution, respectively.
fitting of Aa(b), obtained without nonbackscattering contribution,
to Eq.(3) in the ranged=<1 andb=<5, respectively. Solid lines are (21). For comparison, the results computed with the formula
the guide for an eye, the dashed line showsy; function. (20) are presented too. It is clearly seen that both types of

calculations give close results in the low magnetic field range

of return to the starting point for a given trajectory, the con-b=<0.5. For higher magnetic fields the inclusion of nonback-
ductivity correction due to nonbackscattering processes iscattering contribution leads to a decrease in magnetocon-
positive. In our case such processes can be easily taken inttuctance. Such a behavior of the magnetoconductance is in a
account by multiplying each term in EQRO) by the factor good agreement with the results of numerical calculations
[1— cos(@)], where#, is the angle between the first and last presented in Ref. 4.

segments of théth closed path:

Ao, calculated for differenty values with the help of Eg.

Ao(b) 2l

Id

> [...][1— cog 6)].

As in the previous subsection we have attacked the simu-
lated data as experimental ones, Aex(b) curves have been

(21)

fitted to the calculated with Eq3) values. The fitting results
are presented in Fig. 12. As one would expect, the values of

a and y; obtained from the low magnetic field fittingo (
Shown in Fig. 11 are the magnetic field dependencies ofs1) are very close to corresponding values in Fig. 9. This

obviously results from the fact that the solid and dashed

curves in Fig. 11 are close together for theselues. As for

the parameters obtained from the whole magnetic field range
fitting, taking into account of the nonbackscattering contri-
bution results in decreasing bo#hand y; values.

Thus, the standard method of experimental data process-
ing with the use of Eq(3) allows to extract the phase break-
ing time (or length with the accuracy (10 30) % in wide
ranges ofy andb. The prefactore obtained this way is found
to take the values from 0.3 to 0.7, i.e. substantially less than

0.7

0.6

® 05

04

b

03%

10*

FIG. 10. Two types of coherent paths and corresponding dia-

grams relevant in the first order itkgl) ", which are responsible
for backscattering@) and nonbackscattering) contributions to
weak localization, for given configuration of scatterers.

Y

10"

FIG. 12. The parameters (a) and y; (b) as a function ofy
value fed into the simulation. Non-backscattering contribution is
taken into account. All designations are the same as in Fig. 9.
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unity. This reveals a possible reason of small value of prefTAS through Grant No. 97-1342, and the Programiver-
actor obtained from different experimental data treatmentsity of Russiahrough Grant No. 420.

This need not be a consequence of an electron-electron in-

teraction as discussed in some papers, but can result from the APPENDIX

fact that in real 2D systems the rigorous conditions of diffu-

. S _ . For the sake of simplicity, we suppose here that the start
sion approximation are not fulfilled even in the case of rathe

boint coincides with the origin. For the value of probabilify

small y andb. that a trajectory passes near the origin at the distance less
than some prescribed valu#2 we can write
VI. CONCLUSION N
m
This paper is intended to demonstrate the possibility of T= 2 TN, (A1)
obtaining the information about the statistics of closed paths N=3

from the analysis of anomalous magnetoconductance in 2Rhere 7y, is the probability of return afteN collisions. The

systems. In particular, we have shown explicitly that the stayajye of 7y, can be expressed through the probability density
tistic characteristics such as the area distribution function ofy experience the N—1)th collision in the pointr

closed paths and area dependence of their average IengWN_l(r):
determine the magnetic-field dependence of magnetoconduc-

tance. These functions have been studied by using the com- B

puter simulation method. It has been shown that in the bal- 77\'_1 drP(r)Wy-1(r), (A2)
listic regime the area distribution function of closed paths . o : .
deviatesg fromS™* power law, which holds in the diffusrijon Whe.“?P(r) Is the probgblllty that thg particle moves without
regime. The theoretical analysis of simulation results haé:O"'S'%ntsh frO”.‘ _theltpomtr totthehcwclﬁ ct)f the radiusi/2
shown that such a behavior 8(S) is mainly connected around the origin. it 1S €asy o show tha

with the existence of critical area value, which corresponds 1 d r

to the maximal area enclosed by a path with a fixed length. It P(r)= ;arCta'EE exr{ - I_> : (A3)
has been shown that the area dependence of the average

length of closed paths, introduced through E8), can be  Then, for7y we have

well described by the power functiohec S#, with 8 varying 1 d
in the range 0.550.62, wheny= 7/1, changes from 0.1 to TN=;f dr arctaréz—
0.01.

. exr{ — :—)WNl(r). (A4)

The results of simulation have been used to calculate thEor d<I, the inverse tangent in EGA4) can be replaced by
magnetoresistance of the model 2D system. Both backits argument. Analysis shows that fdfl =102 (it is true
scattering and nonbackscattering processes have been takenour casgthis gives an error in calculation @f less than
into account. The calculated magnetic field dependencies @.1% for N=3. Thus, the expression for the probabilify
Ao have been processed as experimental ones by a standdreécomes
manner with the help of Eq3). It has been shown that the T .
fitting procedure givesr/ 7, ratio, which differs from that Y ar _r
used in the simulation by¢the factor 0:8.3. The value of 7= 2m Nzg f r ex;{ I)W’\“l(r)' (AS)

prefactor obtained this way is always less than unity. Comparing Eq(A5) with the expression for the probability

densityW (Refs. 3 and b
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