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Quantum dot lattice embedded in an organic medium: Hybrid exciton state and optical response
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Physics Department, The City College, City University of New York, Convent Avenue at 138 Street, New York, New York 10
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We propose a model to implement organic exciton–semiconductor exciton hybridization by embedding a
semiconductor quantum dot array into an organic medium. A Wannier-Mott transfer exciton is formed when
the exciton in each semiconductor dot interacts via multipole-multipole coupling with other excitons in the
different dots of the array. A hybrid exciton appears in the system owing to strong dipole-dipole interaction of
the Frenkel exciton of the organic molecules with the Wannier-Mott transfer exciton of the quantum dot array.
This hybrid exciton has both a large oscillator strength~Frenkel-like! and a large exciton Bohr radius
~Wannier-like!. At resonance between these two types of excitons, the optical nonlinearity is very high and can
be controlled by changing parameters of the system such as dot radius and dot spacing.
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I. INTRODUCTION

The possibilities of using organic materials to emb
semiconductor heterostructures led us to the expectatio
having some system with unique physical properties. It
already been noted that a different type of excitonic st
could be obtained by mixing Wannier-Mott and Frenkel e
citons. In Refs. 1–4 the authors proposed structures of la
with organic-inorganic quantum wells, and parallel organ
inorganic quantum wires, where the Wannier and Fren
excitons in neighboring layers interact with each other
form a type of exciton that has both the very large oscilla
strength of the Frenkel exciton, and the high polarizability
an external field of a Wannier exciton. Recently, in Ref
the interesting model of a single semiconductor quantum
with an organic shell was also proposed and strong enha
ment of the nonlinearity was found for the weak confinem
regime in the limit of dot radiusRD@aB ~exciton Bohr ra-
dius!.

At present, quantum dots—which are three-dimension
confined nanostructures—have been studied intensi
theoretically and experimentally.5–9 As a model for hetero-
structures where the resonant mixing of Wannier-Mott a
Frenkel excitons can appear, we propose here the system
semiconductor quantum dot array embedded in a medium
organic material. Such structures are reported to have b
fabricated by several authors.10,16 It is already known11 that
when many quantum dots are arranged together in an a
due to the multipole interaction of excitons in different do
an exciton inside a quantum dot can be considered as
localized in that dot, but it can propagate through the latt
via the mechanism of exciton transfer processes. In
model, when we place such a dot array in an organic m
rial, due to the interaction of this propagating exciton w
the medium, a hybrid exciton will appear in the system. T
hybrid exciton, which is a mixed state of the transfer excit
and the Frenkel exciton of the medium when these are
resonance, also has a large exciton radius~because of the
large Wannier-Mott exciton radius! and a large oscillator
strength~because of the large oscillator strengths of both
Frenkel and transfer Wannier-Mott excitons!. The small
mass of the transfer exciton then leads to a large coher
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length of the system. This fact, as well as the hybridizati
will give us a very large optical nonlinearity.

In Sec. II we present our model to get the hybrid excit
Hamiltonian. The hopping coefficient of the exciton in di
ferent dots and the Wannier-Frenkel exciton coupling c
stant are described in Secs. III and IV. The nonlinear opt
susceptibility and its dependence upon the system param
are obtained in Sec. V, along with an estimate of the mag
tude of the nonlinear coefficient for a typical system.

II. THE MODEL

We consider a three-dimensional array of semiconduc
quantum dots placed into some organic material as a
medium. The size of the system should be considera
smaller than the wavelength of light that corresponds to
transition between excited and ground state.3 As an approxi-
mation, we will consider here the ideal array with dots of t
same radiusR and the same dot-dot spacingd.

The total Hamiltonian of the system will be taken as fo
lows:

H5(
nW ,l

EnW l
W

anW l
†

anW l1(
kW ,m

Em
F ~kW !bkWm

†
bkWm1 (

mlnW kW
glm~rWnW ,kW !

3~anW l
†

bkWm1anW lbkWm
†

!1 (
nW nW 8 l l 8

tnW nW 8 l l 8~anW l
†

anW 8 l 81H.c.!, ~1!

whereanW l
† (anW l) are creation~annihilation! operators of Wan-

nier excitons in quantum dots. The indexl labels the exciton
states andnW indicates the sites of the dot in the dot lattic
Here we assume that the dots are distributed on sites
three-dimensional lattice with the positionnW 5(nx ,ny ,nz) of
each site in (x,y,z) coordinates, where the distance betwe
the sites~the ‘‘lattice’’ constant! equalsd. For simplicity, we
assume a cubic array, i.e., the number of dots in each di
tions Nx ,Ny ,Nz is the same,Nx5Ny5Nz5N. bkWm

† (bkWm)
are creation~annihilation! operators for the Frenkel excito
in the organic medium with wave vectorkW in themth exciton
state.EnW l

W and EkWm
F are the excitation energies of Wanni

excitons in the dots and the Frenkel exciton in the mediu
13 131 ©2000 The American Physical Society
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13 132 PRB 61NGUYEN QUE HUONG AND JOSEPH L. BIRMAN
respectively. For Wannier excitons confined to a dot,
quantum sphere, the oscillator strengths are concentr
mainly in the low excited states. So, with no loss of gen
ality, and in order to simplify, we will consider only th
interaction of the lowest states of excitons~the ground state
and the lowest excited state!. Also we assume that the energ
difference between the energy levelsEF and EW is much
smaller than the distance to other bands.glm(rWnW ,kW ) is the
coupling constant of Wannier and Frenkel excitons, a
tnW nW 8 l l 8 is the hopping constant between Wannier excitons
the dots. This hopping constant, which has its origin in
multipolar interaction of excitons in different dots, in gene
is different in different directions because of the direction
polarization. Here we assume that only nearest dots inte
with each other, so the hopping constants for the nearest
in thex,y,z directions aretx ,ty ,tz , respectively, where, e.g
tx5tnW nW 8 l l 8 if nW 8 is (nx11,ny ,nz) andl ,l 8 are the labels of the
lowest energy levels, and similarly forty ,tz . Because the do
radius is approximately equal to the ground state exc
Bohr radius for the systems under consideration, we ass
that there exists only one exciton in each dot, so we omit
exciton-exciton interaction in the same dot. Thus we have
the hopping term

Hhop5(
l l 8

(
nx ,ny ,nz

~ txanx11,ny ,nz ; l
† anx ,ny ,nz ; l 8

1tyanx ,ny11,nz ; l
† anx ,ny ,nz ; l 8

1tzanx ,ny ,nz11;l
† anx ,ny ,nz ; l 81H.c.!. ~2!

Changing tok space by Fourier transformation, we obtain

anx ,ny ,nz ; l
† 51/AN3 (

kx ,ky ,kz

@expi ~nxkxd1nykyd

1nzkzd!#akx ,ky ,kz ; l
† . ~3!

Hered is the distance between dots andkW5$kx ,ky ,kz% is the
wave vector of the exciton in the coupled dots.

The Fourier transforms of tx ,ty ,tz will be
t(kx),t(ky),t(kz), respectively. The Fourier transformatio
for the dot-medium coupling constantglm(rWnW ,kW ) will be the
following:

glm~rWnW ,kW !5(
kW8

@expi ~nxkx8d1nyky8d1nzkz8d!#Glm~kW8,kW !.

~4!

Notice here that if one makes the translational transforma
with a lattice vectorLW in the lattice, due to the exponentia
forms of the Frenkel and Wannier exciton state functio
one will get, by translational invariance,(Lexpi(kW2kW8)LW

5d(k2k8). So the coefficientGlm(kW ,kW8) will be different
from zero only ifk5k8. Then instead ofGlm(kW ,kW8) we can
write the coupling constant asGlm(kW ) and omit the sum ove
k8.

Then we get the total Hamiltonian~1! as
r
ed
-

d
n
e
l
f
ct

ots

n
e

e
r

n

,

H5(
lkW

El
W~kW !alkW

†
alkW12(

l
(

kx ,ky ,kz ,l
@ t~kx!coskxd

1t~ky!coskyd1t~kz!coskzd#alkW
†

alkW1(
mkW

Em
F ~kW !bkWm

†
bkWm

1(
mlkW

Glm~kW !~akW l
†

bkWm1akW lbkWm
†

!. ~5!

In the perfect confinement approximation,1,4 the exciton
wave functions must vanish at the boundary of dots, and
energy of the Wannier exciton in the spherical quantum
has discrete values according to the zeros of the Bessel f
tion. That is, the energy of the Wannier exciton with qua
tum number$n,l % is Enl

W(k)5Eg2Eext
b 1\2gnl

2 /2mR2, where
Eg is the band gap,Eext

b is the exciton binding energy, an
gnl is thenth zero of the spherical Bessel functionJl(x) of
orderl, which depends on the magnitude of the dot radiusR.
Herem is the effective mass of the electron and the hole. T
lowest excitation in the dot will be the state withl 50,n51.
In writing the expression forEnl

W(k) we are assuming the do
is spherical as a good approximation to the actual shape

For kd small, the total Hamilton~5! can be written as

H5(
kW

Etr
W~kW !1(

k
EF~k!bkW

†
bkW1(

k
G~k!~akW

†
bkW1akWbkW

†
!,

~6!

whereEtr
W(kW ) is the transfer energy of the Wannier exciton

the semiconductor dot array:

Etr
W~kW !5EW12(

i
t~ki !2d2(

i
t~ki !ki

2 , ~7!

wherei 5$x,y,z%.
Equation ~6! describes the system of Wannier excito

and Frenkel excitons, interacting with each other. In addit
to the exciton energy in single quantum dots, the energy
the Wannier exciton in the quantum dot array also includ
the large transfer energy between the two closest quan
dots in the array.

We notice that, because of confinement, the energy
state of one quantum dot cannot be described by a w
vector. But the energy and state of a transfer exciton in
quantum dot array do havek-vector dependence and we wi
need to include the dispersion relation for the energy of t
transfer exciton. This energy strongly depends on the va
of the hopping constantt(kW ) and the direction of the polar
ization vector of the exciton, which we will investigate in th
next sections. The presence of the transfer exciton allow
to change the energy region of the resonance and also
optical properties of the hybrid exciton. So in our model t
semiconductor quantum dot array embedded in an org
medium can be interpreted as follows. The Wannier excit
in quantum dots interact with each other to form a kind
transfer exciton propagating through the lattice. This trans
exciton in its turn is coupled at resonance with the Fren
excitons in the organic medium to form a hybrid organ
inorganic exciton state.

In our model we consider the exciton-exciton interacti
and the hybridization as the principal effect, so here we o
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the potential scattering between the dot array and the
dium and leave it for future reseach.

We write the hybrid excited state as follows

uC~k!&5ul~k! f F~0!C l
W~k!1v l 8~k! f W~0!uC l 8

F
~k!&, ~8!

whereCW(k) andCF(k) are excited states andf W(0),f F(0)
are ground states of the Wannier exciton in the dot array
the Frenkel exciton in the medium, respectively. Since
will consider only the lowest excited states of the excito
from now on we will omit the indicesl and l 8. The coeffi-
cientsu(k) andv(k) have the following form:

u~k!5
G~k!

$@EF~k!2Etr
W~k!#21G2~k!%1/2

,

v~k!5
EF~k!2Etr

W~k!

$@EF~k!2Etr
W~k!#21G2~k!%1/2

. ~9!

Thus in terms of hybrid operatorsakW ,akW
† , the Hamiltonian in

Eq. ~6! can be written as

H85(
k

E~k!akW
†
akW ~10!

with the energyE(kW ) of the hybrid state given by the follow
ing dispersion relation:

E~kW !5~1/2!@EF~kW !1Etr
W~kW !#61/2$@EF~kW !2Etr

W~kW !#2

14G2~kW !%1/2. ~11!

Because of the weak dependence of the Frenkel exciton
ergy upon thek vector, the Frenkel exciton energy may b
taken as independent of the wave vectork, EF(k)5EF(0).
We can see from Eq.~11! that the existence of the array o
dots, which results in the appearance of the transfer exc
energy Etr

W(kW ), enhances the coupling between these t
kinds of exciton at resonance, i.e., the gap between two
brid exciton branches becomes large. The coupling will
strong whenEF(kW ) andEtr

W(kW ) are in resonance. So the res
nance coupling behavior depends strongly on the hopp
coefficient t(kW ) and the hybridization coefficientG(kW ),
which we will investigate in the next sections.

III. HOPPING COEFFICIENT t„k¢ …

The hopping coefficientt(kW ) is in fact the transfer energ
between the two closest dots in the dot array and plays
important role in the process occurring when a dot array
placed in an organic medium. The transfer energy is e
mated as the electrostatic interaction between exciton
dots. Because of the existence of ‘‘confined’’ excitons, ea
dot has its transition dipole moment, which will interact wi
the corresponding moment of another dot when the dista
between dots is comparable to the dot radius. As mentio
above, for one isolated quantum dot the oscillator strengt
concentrated mainly in the lowest excited states and so
assume that only the transition dipole moments to the low
excited states are involved in the interaction for an arr
This multipolar interaction is intrinsically strongly sho
e-
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n
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range and dependent upon the distance between dots, s
use here the nearest neighbor approximation.

Now consider the electrostatic interaction between ex
tons in two spherical quantum dots:

t~kW !5^Wi~kW !uHd-duWj~kW !&, ~12!

where Wi(kW ),Wj (kW ) are the exciton wave functions in th
two dots.

uWi~kW !&5
1

V0
E f~rW i

eh!w~rW i !e
ikW (rWei1rWhi)/2

3Ce
†~rWei!Ch

†~rWhi!drWeidrWhiu0&, ~13!

wheref(rW i
eh) is the relative electron-hole motion function

rW i
eh5rWei2rWhi , w(rW) is the exciton envelope function, an

rWei(rWhi), ce
†(rWei)@ch

†(rWhi)# are the coordinates and creatio
operators of the electron~hole! in the dot, respectively.V0 is
the spherical dot’s volume.

The envelope function for the exciton inside a spheri
dot depends on the radius of the dot and has the form1,4

w~rW i !nlm5Ylm~u i ,f i !
21/2

R3/2

Jnl~gnlr i /R!

Jl 11~gnl!
, ~14!

wherer eh is the electron-hole relative coordinate andr is the
center of mass coordinate of the exciton.Hd-d is the interac-
tion Hamiltonian between two dipole moments in these t
dots. In our case the distance between two dots is larger
the dot radius,d.R, so the interaction can be considere
approximately as the ordinary dipole-dipole interaction. B
when the dot spacing is of the same order as the dot rad
we have to consider the multipolar interaction. Neglecti
the higher orders, we obtain for the hopping coefficient b
tween two spherical quantum dots

t~k!5fns~0!2f ns$~mW 1
w
•mW 2

w!23~mW 1
w
•n̂12!~mW 2

w
•n̂12!%.

~15!

fnl(r ) is the quantum dot exciton envelope function,mW 1,2
w are

transition dipole moments to the excited state (n,l 50,m
50) for the quantum dot spheres 1 and 2, respectively,
n̂12 is the unit vector directed along the straight line conne
ing two excitons, which due to the small dot radius we c
approximately treat as directed along the line connecting
dot centers.f ns is the integral

f ns5E w~rW !nsd
3r E w~rW8!ns

ud1r 1r 8u3
d3r 8. ~16!

The integrals are taken over the volume of the two dots.
For exciton polarization parallel to the direction conne

ing two dot centers,

t i52fns~0!2f ns2~mw!2. ~17!

For exciton polarization perpendicular to the direction co
necting two dot centers the hopping coefficient is equal t

t'5fns~0!2f ns~mw!2. ~18!
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The hopping constant depends strongly on the polariza
direction of the excitons. Also, the transfer energy~7! de-
pends on the direction of thek vector and the relationship
between thek vector and the polarization mode of the exc
ton. The longitudinal and transverse modes have differ
energies.

For the transition dipole moment to the excited st
(n,l 50,m50) of the spherical quantum dot we have

mw5
~2!3/2

np
f1s~0!pcvR3/2. ~19!

Hence, from Eqs.~15!–~19!, the hopping coefficientt de-
pends onR/d, so we can change the dot separationd with
respect to dot radiusR in order to determine the optimumt.

IV. HYBRIDIZATION PARAMETER G„k…

The organic medium can also be described as a lat
with organic molecules occupying every site. The Fren
exciton can move between the sites. Because of the s
‘‘lattice constant’’ here, the organic molecular lattice can
considered as a ‘‘microscopic’’ lattice in comparison wi
the macroscopic size of the dot lattice. The organic latt
constant is of order 5 Å , while the dot radius is abo
30–100 Å and the dot lattice constant is usually arou
60–500 Å . The resonance coupling of Frenkel excitons
the medium and Wannier excitons in the dot array is de
mined by the interaction parameter

G~k!5^F,kuHintuW,k&, ~20!

where the interaction Hamiltonian is taken similarly to Re
1, 3, and 4 as

Hint52(
n

E~r n!P~r n!. ~21!

Here E(r n) is the operator of the electric field created
point r n in the organic medium by the excitons in quantu
dots andP(r n) is the transition polarization operator of th
Frenkel exciton at molecular siter n of the organic medium.

If the dielectric constant of the semiconductor dots ise1
and of the organic medium ise2, the field at some pointr n
outside the dot created by the exciton in the dot locatedr
is

E~r 2r n!5
3e1

2e21e1

3n̂ cosu2m̂

~r 2r n!3
mD@ ânl

† ~r !1ânl~r !#.

~22!

P(r n) is the polarization operator of the Frenkel excit
at molecular siter n ,

P~r n!5mW F~ b̂n
†1b̂n!. ~23!

mW F is the optical transition dipole moment of the organ
molecule. The Frenkel exciton wave function is written
the form

F~k!5
1

NF
1/2 (

n
eikr nxs

f~r n!bn
†u0&. ~24!
n

nt

e

e,
l
all

e
t
d
n
r-

.

t

ws(r n) is the excited state of the molecule at siter n . Putting
Eqs.~21!–~24! into Eq. ~20!, we have the expression for th
hybridization coefficient of the semiconductor quantum d
and the organic medium:

G~k!5
3e1

2e21e1

p

2

sinu

~NF!1/2
mFmwfns~0!Dns~k!, ~25!

whereu is the angle between the exciton transition dipo
moments of the quantum dot and the organic molecule,

Dns~k!5E
medium

eikr 8xns
f ~r 8!d3r 8E

dot

wnlm~r !

r ur 2r 8u3
d3r .

~26!

Reading from right to left, the first integral is taken over t
dot and the second one is taken over the volume of the wh
medium.

For illustration a numerical calculation was done for som
samples. Figure 1 shows the hybrid exciton dispersion cur
plotted for ZnSe dots embedded in a standard organic m
rial. The parameters were taken asEF(0)2EW(0)
55 meV, aB530 Å , mF55 D, N55. In Fig. 1 two
branches of the hybrid exciton are plotted for an array of d
with radiusR540 Å , and the dot lattice constantd580 Å .

V. NONLINEAR OPTICAL RESPONSE

As already noted in Ref. 11 and can be seen from Eq.~7!,
the Wannier transfer exciton has a rather small translatio
mass, which depends on the hopping constant and the n
ber of dots. This small translational mass is one reason f
large coherence length, which is related to the homogene
linewidth of the excitonic transition. In turn, this leads to
large figure of merit of the exciton, and, associated with
large exciton resonance oscillator strength a
nonlinearity.11

In the region of strong mixing, the oscillator strength
the hybrid exciton is determined as

f ~kW !5uu~kW !u2f F1uv~kW !u2f W12uu~kW !v~kW !u~ f F!1/2~ f W!1/2.
~27!

FIG. 1. Hybrid exciton dispersion calculated for ZnSe do
placed in an organic material. The dispersion curve is plotted
dot radiusR550 Å and dot spacingd5200 Å .
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Both components, the transfer Wannier and the Frenkel
citons, give contributions to the oscillator strength of t
hybrid exciton. Due to the confinement effect of the excit
in one single dot as well as the transfer exciton coupl
between dots in the array, the Wannier transfer exciton
cillator strength may achieve a value comparable to tha
the Frenkel exciton, which is very big due to the small ex
ton radius and small molecular lattice constant. So plac
many semiconductor dots in an organic medium leads
large oscillator strength of the hybrid exciton. At resonan
the oscillator strength of the hybrid state is determined by
Frenkel exciton component.

In the presence of an electric field, the third-order susc
tibility can be calculated using standard pertubat
theory.12–15We introduce the decay constantg and note that
the two-body interaction here is considered to arise from
interaction of excitons in different dots. Considering only t
resonance case and neglecting contributions from the o
nonresonant levels, we have approximately the result for
lowest optical nonlinearity of the hybrid excitons:

x (3)~w!'
mF

4

V

~2A2!4

p2 S Vmedium

Vcell
D 2

l c
3S R

d D 6

f1s
4 ~0!

3S 1

~w2w̃1 ig'!2~w2w̃2 ig i!
D . ~28!

The exciton coherence lengthl c is given as8

l c5S 3p2

21/2D 1/3
\

~M\Gh!1/2
. ~29!

M is the exciton translational mass, which is inversely p
portional to the transfer energy~7!, which we can control by
changing the system parameters, namely, dot radius and
spacing.\w̃ is the lowest excitation energy of the hybr
exciton.Gh is the linewidth of the exciton andg' andg i are
the transverse and longitudinal relaxation constants of
excitonic transition, respectively.V is the volume of the
whole system,Vmediumis the volume of the organic host, an
Vcell is the volume of one cell in the organic lattice. Notic
here that we consider the case where the sample siz
smaller than the coherence length, so the size depend
appears as in Eq.~29!.

The value ofx (3)(w) in Eq. ~28! at resonance may b
very large. By changing the number of dots and other par
eters of the array, one can control the value of the nonline
ity.

Here we present some numerical results for ZnSe dots
Fig. 2 the third-order nonlinear susceptibility of a ZnS
quantum dot lattice embedded in an organic material is p
ted for several different dot radii and dot spacings. We
B

x-

g
s-
f

-
g
a
,
s

p-

e

er
e

-

ot

e
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ce
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In

t-
e

here the following typical parameters of organic and se
conductor materials: vF5100 Å , aorg55 Å , mF

55 D, a1B530 Å , EF(0)2EW(0)55 meV. We see that
at resonance, e.g., where the hybridization is strongest,
have a very high peak of nonlinear susceptibility with
enhancement of about five orders of magnitude in comp
son with that of the Wannier exciton. The nonlinear coe
cient is larger for smaller dots and closer spacing betw
them. Also, we expect that disorder in the semiconductor
array will decrease the enhancement effect, but this has
yet been calculated.

VI. SUMMARY

In summary, we have presented here a model for crea
systems that offer a strong resonance coupling of Fren
and Wannier excitons to obtain an hybrid exciton state w
the special properties of both kinds of exciton, i.e., hav
large exciton radius as well as large oscillator strength.
addition, we can control the expected resonance parame
by changing the number of dots, their radius, the dista
between them, and the dot radius and dot separation rela
We are now investigating the system with randomness—
a disordered distribution of dots, which is very interesti
and important.
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FIG. 2. Third-order nonlinear susceptibility for the hybrid exc
ton state of ZnSe dots in organic material. We plot the susceptib
versus wave vector. Note that there is a very significant enha
ment ofx (3). Plots are for different dot radiusR and separationd.
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