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Quantum dot lattice embedded in an organic medium: Hybrid exciton state and optical response
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We propose a model to implement organic exciton—semiconductor exciton hybridization by embedding a
semiconductor quantum dot array into an organic medium. A Wannier-Mott transfer exciton is formed when
the exciton in each semiconductor dot interacts via multipole-multipole coupling with other excitons in the
different dots of the array. A hybrid exciton appears in the system owing to strong dipole-dipole interaction of
the Frenkel exciton of the organic molecules with the Wannier-Mott transfer exciton of the quantum dot array.
This hybrid exciton has both a large oscillator stren@fnenkel-like and a large exciton Bohr radius
(Wannier-like. At resonance between these two types of excitons, the optical nonlinearity is very high and can
be controlled by changing parameters of the system such as dot radius and dot spacing.

[. INTRODUCTION length of the system. This fact, as well as the hybridization,
will give us a very large optical nonlinearity.

The possibilities of using organic materials to embed In Sec. Il we present our model to get the hybrid exciton
semiconductor heterostructures led us to the expectation dfamiltonian. The hopping coefficient of the exciton in dif-
having some system with unique physical properties. It ha&erent dots and the Wannier-Frenkel exciton coupling con-
already been noted that a different type of excitonic statétant are described in Secs. Ill and IV. The nonlinear optical
could be obtained by mixing Wannier-Mott and Frenkel ex-susceptibility and its dependence upon the system parameters
citons. In Refs. 1—4 the authors proposed structures of laye@€ obtained in Sec. V, along with an estimate of the magni-
with organic-inorganic quantum wells, and parallel organic-tude of the nonlinear coefficient for a typical system.
inorganic quantum wires, where the Wannier and Frenkel
excitons in neighboring layers interact with each other to Il. THE MODEL
form a type of exciton that has both the very large oscillator ) ) , )
strength of the Frenkel exciton, and the high polarizability in W€ consider a three-dimensional array of semiconductor
an external field of a Wannier exciton. Recently, in Ref. 39uantum dots placed into some organic material as a host
the interesting model of a single semiconductor quantum ddi’€dium. The size of the system should be considerably
with an organic shell was also proposed and strong enhancemaller than the wavelength of light that corresponds to the

ment of the nonlinearity was found for the weak confinemendransition between excited and ground stafes an approxi-
regime in the limit of dot radiu®R,>ag (exciton Bohr ra- mation, we will consider here the ideal array with dots of the

dius). same radiufk and the same dot-dot spacidg

At present, quantum dots—which are three-dimensionally The total Hamiltonian of the system will be taken as fol-

confined nanostructures—have been studied intensivelkpws;
theoretically and experimentalfy® As a model for hetero-
structures where the resonant mixing of Wannier-Mott ancy :Z EY}YaE@ﬁI’LZ E,Fn(IZ)bEmbngr E Iim(r.K)

Frenkel excitons can appear, we propose here the system ofa n, k,m

semiconductor quantum dot array embedded in a medium of . . .

organic material. Such structures are reported to have been %3’ p: -l .- (akac, C.
fagricated by several authot$!® It is alrea%y known' that (anlbkm+anlbkm)+ﬁﬁz’u' tovi (@25 +H.C). ()
when many quantum dots are arranged together in an array, 1 ) o

due to the multipole interaction of excitons in different dots, Whereay, (as) are creatiortannihilatior) operators of Wan-

an exciton inside a quantum dot can be considered as n#i€r excitons in quantum dots. The indetabels the exciton
localized in that dot, but it can propagate through the latticestates and indicates the sites of the dot in the dot lattice.
via the mechanism of exciton transfer processes. In ouHere we assume that the dots are distributed on sites of a

model, when we place such a dot array in an organic materee-dimensional lattice with the positior=(n,,n,,n,) of

the medium, a hybrid exciton will appear in the system. Thisihe sitegthe “lattice” constany equalsd. For simplicity, we
hybrid exciton, which is a mixed state of the transfer excitonassyme a cubic array, i.e., the number of dots in each direc-

and the Frenkel exciton of the medium when these are af, o N, ,Ny,N, is the sameN,=N,=N,=N. b} (bg.)
resonance, also has a large exciton radhecause of the Y N y km ;
large Wannier-Mott exciton radiyisand a large oscillator fatre creatlor(ann|h|!at|or).operators for*t'he Frenkel e>.<C|ton
strength(because of the large oscillator strengths of both thd the organic mFedlum with wave vectiiin the mth exciton
Frenkel and transfer Wannier-Mott excitgnsThe small  state.E; and E; = are the excitation energies of Wannier
mass of the transfer exciton then leads to a large coherenexcitons in the dots and the Frenkel exciton in the medium,

mink
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respectively. For Wannier excitons confined to a dot, or Wt
quantum sphere, the oscillator strengths are concentratdd=_>, E) (k)auza“g+22 ) kEK | [t(ky)cosk,d

mainly in the low excited states. So, with no loss of gener- Ik Xy

ality, and in order to simplify, we will consider only the + I

interaction of the lowest states of excitofise ground state +1(k,)cosk,d+t(k,) cosk,dla ai+ > EF(K)b; bin
mk

and the lowest excited staté\lso we assume that the energy
difference between the energy levé§ and EV is much .

: = e +> Gim(K) (@l bim+aghbl ). (5)
smaller than the distance to other bandg,(r,k) is the . =Im kiIZkm T Sk km
coupling constant of Wannier and Frenkel excitons, and mik
t--, is the hopping constant between Wannier excitons iln the perfect confinement approximatibh,the exciton
the dots. This hopping constant, which has its origin in thevave functions must vanish at the boundary of dots, and the
multipolar interaction of excitons in different dots, in generalenergy of the Wannier exciton in the spherical quantum dot
is different in different directions because of the direction ofhas discrete values according to the zeros of the Bessel func-
polarization. Here we assume that only nearest dots intera8ion. That is, the energy of the Wannier exciton with quan-
with each other, so the hopping constants for the nearest dotgm numbe#n,|} is EN(k) = Eg— E2X1+ h2y2,/2mR2, where
in thex,y,z directions ar,,t,,t,, respectively, where, e.g., Egy is the band gapl,:_gxt is the exciton binding energy, and
ty=tssm if n'is (n,+1,n,,n,) andl,|’ are the labels of the ¥l is thenth zero of the spherical Bessel functidr(x) of
lowest energy levels, and similarly foy,t,. Because the dot orderl, which depends on the magnitude of the dot radius
radius is approximately equal to the ground state excitorieremis the effective mass of the electron and the hole. The
Bohr radius for the systems under consideration, we assur@west excitation in the dot will be the state witk0,n=1.
that there exists only one exciton in each dot, so we omit thén writing the expression foE|(k) we are assuming the dot
exciton-exciton interaction in the same dot. Thus we have fois spherical as a good approximation to the actual shape.
the hopping term For kd small, the total Hamiltor{5) can be written as

H=>, EV(K)+ >, EF(K)blbi+ >, G(K)(atbi+aiby),
Hhopzz 2 (txa; +1,n,,n ;Ian ny,n sl Eg tr( ) 2k ( ) kK Ek ( )( Kk K k)
7 Nx.Ny.ng X y''z x 'y iz (6)

+tyal ,a " . . .
yeneny 10, 1900y 0yl whereE}Y(k) is the transfer energy of the Wannier exciton of

t the semiconductor dot array:
+tzanxyny]nz+1;|anxvny,nz;|,+ H.c). (2 y

Changing tok space by Fourier transformation, we obtain EX(k)=EW+22 t(k)—d?X t(k)k?, )
| I
N B \/—g E . wherei={x,y,z}.
an, n,.n, 1= VYN e [expi (nck.d+nyk,d Equation (6) describes the system of Wannier excitons
e and Frenkel excitons, interacting with each other. In addition
+nzkzd)]alx,ky,kz;l . (3)  to the exciton energy in single quantum dots, the energy of

the Wannier exciton in the quantum dot array also includes
the large transfer energy between the two closest quantum
dots in the array.
The Fourer wansioms of tc, 1, wil be Ve nolce bat because of conement, re eneroy and
t(kX)'t(ky)’t(kZ)f respectlyely. The Fougfar*trar.]sformatlon vector. But the energy and state of a transfer exciton in the
for the d(?t-medlum coupling constagin(r k) will be the  o,antum dot array do havevector dependence and we will
following: need to include the dispersion relation for the energy of this
transfer exciton. This energy strongly depends on the value

9|m(Fﬁ,|Z)=2 [expi(nxk)’(d+nyk)’,d+nzk;d)]G,m(I2’,lz). of the hopping constart‘(IZ) and the direction of the polar-
k’r

Hered is the distance between dots akel {k, Ky Kz} is the
wave vector of the exciton in the coupled dots.

ization vector of the exciton, which we will investigate in the
(4) next sections. The presence of the transfer exciton allows us
to change the energy region of the resonance and also the
Notice here that if one makes the translational transformatioptical properties of the hybrid exciton. So in our model the
with a lattice vector in the lattice, due to the exponential Semiconductor quantum dot array embedded in an organic
forms of the Frenkel and Wannier exciton state functionsmedium can be interpreted as follows. The Wannier excitons
one will get, by translational invarianceELexpi(IZ—IZ’)I: in quantum.dots mteract_wnh each other to form a kind of
— s(k—K'). So the coefficientG,(K.K') will be different tran'sfer_ex'cnon pr(_)pagatlng through the Iattlcg. This transfer
' Imi™ o exciton in its turn is coupled at resonance with the Frenkel
from zero only ifk=k’. Then instead oG, (k,k") we can  excitons in the organic medium to form a hybrid organic-
write the coupling constant &3,,(k) and omit the sum over inorganic exciton state.
k'. In our model we consider the exciton-exciton interaction
Then we get the total Hamiltoniail) as and the hybridization as the principal effect, so here we omit
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the potential scattering between the dot array and the meange and dependent upon the distance between dots, so we
dium and leave it for future reseach. use here the nearest neighbor approximation.
We write the hybrid excited state as follows Now consider the electrostatic interaction between exci-

tons in two spherical quantum dots:
W (k)= (k) FF(0) W (k) +v1, (K) PY(0) [ W1, (K)), (8)

whereW (k) andW (k) are excited states aritd'(0),f7(0) t(k) = (Wi(K) | Ha.o| W; (k). (12)
are ground states of the Wannier exciton in the dot array an
the Frenkel exciton in the medium, respectively. Since w
will consider only the lowest excited states of the exciton,
from now on we will omit the indice$ andl’. The coeffi-

\(){/hereWi(IZ),Wj(IZ) are the exciton wave functions in the
wo dots.

- 1 - . pe s
cientsu(k) andv (k) have the following form: |Wi(k)>:V_OJ B(reM o(r;)elkreit /2
G(k - - e
u(k)= i , XU () drdln0), (19
{[EF(k) —E{f(K)]°+G2(k)} 2 .
where ¢(rfh) is the relative electron-hole motion function,
ok EF(k)—EV(K) © reN=ra—rni, o(r) is the exciton envelope function, and

Fei(Fhi), Wi(Fe)[¥i(rn)] are the coordinates and creation
: operators of the electrafimole) in the dot, respectively is
Thus in terms of hybrid operatorg;, « , the Hamiltonian in  the spherical dot’s volume.

Eq. (6) can be written as The envelope function for the exciton inside a spherical
dot depends on the radius of the dot and has thef6rm

T IEF (K — EM(k) P+ G2(k) 12

H' = E(K)arap 10
Ek: (e (19 - 212 3, (ynf i IR)

R e(r)nim=Yim( 6, b)) —55 ) (14)

with the energyE (k) of the hybrid state given by the follow- R 1+18 Yl

ing dispersion relation: wherer ¢, is the electron-hole relative coordinate anid the

center of mass coordinate of the excitéty. 4 is the interac-

tion Hamiltonian between two dipole moments in these two

+4G2(R)) 2 (11) dots. In our case the distancg betwe_en two dots is Iar_ger than
' the dot radiusd>R, so the interaction can be considered

Because of the weak dependence of the Frenkel exciton empproximately as the ordinary dipole-dipole interaction. But

ergy upon thek vector, the Frenkel exciton energy may be when the dot spacing is of the same order as the dot radius,

taken as independent of the wave vedtplE"(k)=EF(0). = we have to consider the multipolar interaction. Neglecting

We can see from Eq11) that the existence of the array of the higher orders, we obtain for the hopping coefficient be-

dots, which results in the appearance of the transfer excitotween two spherical quantum dots

energy E}’Y(IZ), enhances the coupling between these two ) “w w sy A sy A

kinds of exciton at resonance, i.e., the gap between two hy- t(K)=@ns(0)fn{ (1~ 2) = 3(p1 - N2 (17 - N1o)}.

brid exciton branches becomes large. The coupling will be (15

strong wherEF (k) andE}Y(k) are in resonance. So the reso- #n(r) is the quantum dot exciton envelope functiwz are

nance coupling behavior depends strongly on the hoppingansition dipole moments to the excited statgl &0m

coefficient t(k) and the hybridization coefficienG(k),  =0) for the quantum dot spheres 1 and 2, respectively, and

which we will investigate in the next sections. Ny, is the unit vector directed along the straight line connect-

ing two excitons, which due to the small dot radius we can

lll. HOPPING COEFFICIENT t(Kk) approximately treat as directed along the line connecting two

dot centersf, ¢ is the integral

E(K)=(1/2[EF(K) + E{f(K)] = V2{[EF (k) ~ E{/(K)]?

The hopping coefficierlt(IZ) is in fact the transfer energy
between the two closest dots in the dot array and plays an )

>, 3 ()D(r )ns 3.7

frs= | @(r)nd’r r

important role in the process occurring when a dot array is 3
[d+r+r1/]

placed in an organic medium. The transfer energy is esti-
mated as the electrostatic interaction between excitons ilil-he integrals are taken over the volume of the two dots
dots. Because qf_the existence of conf_med _excitons, egch For exciton polarization parallel to the direction connect-
dot has its transition dipole moment, which will interact with .

X . ing two dot centers,
the corresponding moment of another dot when the distance
between dots is comparable to the dot radlL!s. As mentlongd ty=— b 0)2F 1 2(1™)2. (17)
above, for one isolated quantum dot the oscillator strength is
concentrated mainly in the lowest excited states and so wEor exciton polarization perpendicular to the direction con-
assume that only the transition dipole moments to the lowestecting two dot centers the hopping coefficient is equal to
excited states are involved in the interaction for an array.
This multipolar interaction is intrinsically strongly short t, = dne(0)%f o ™). (18

(16)
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The hopping constant depends strongly on the polarizatior =«
direction of the excitons. Also, the transfer ener@y de- ™ amoo, ne g0
pends on the direction of thie vector and the relationship
between thek vector and the polarization mode of the exci-
ton. The longitudinal and transverse modes have different
energies. 0.0
For the transition dipole moment to the excited state

(n,I=0m=0) of the spherical quantum dot we have

(2)3/2

nr

w

M

$15(0)Pe,R*? (19

Hence, from Eqs(15)—(19), the hopping coefficient de-
pends onR/d, so we can change the dot separatibwith
respect to dot radiuR in order to determine the optimuim e

0.00 0.04 0.08 0.12 0.16 k

IV. HYBRIDIZATION PARAMETER  G(k) FIG. 1. Hybrid exciton dispersion calculated for ZnSe dots

. ) ) . placed in an organic material. The dispersion curve is plotted for
The organic medium can also be described as a latticgjot radiusR=50 A and dot spacing=200 A .

with organic molecules occupying every site. The Frenkel
exciton can move between the sites. Because of the sm «(r,) is the excited state of the molecule at sife Putting

“lattice constant” here, the organic molecular lattice can beEqs.(Zl)—(24) into Eq. (20), we have the expression for the

considered as a “microscopic” lattice in comparison with pyyrigization coefficient of the semiconductor quantum dot
the macroscopic size of the dot lattice. The organic latticey,q the organic medium:

constant is of order 5 A, while the dot radius is about

30-100 A and the dot lattice constant is usually around 3¢, = sing
60-500 A . The resonance coupling of Frenkel excitons in G(k)= Sete 2 NF l/ZMFMW¢nS(O)DnS(k), (25
the medium and Wannier excitons in the dot array is deter- €27 € < (N7)
mined by the interaction parameter where 6 is the angle between the exciton transition dipole
moments of the quantum dot and the organic molecule, and
G(K) = (F,k|Hing W,K), (20) q 9
where the interaction Hamiltonian is taken similarly to Refs. J . @nim(T)
D..(k)= eIkl' f r’ d3rrf d3
1, 3, and 4 as nS( ) medium XnS( ) dOtr|r_r,|3
(26)
Hint= _; E(rn)P(ry). (2D Reading from right to left, the first integral is taken over the

dot and the second one is taken over the volume of the whole
Here E(r,) is the operator of the electric field created at medium.
pointr, in the organic medium by the excitons in quantum  For illustration a numerical calculation was done for some
dots andP(r,) is the transition polarization operator of the samples. Figure 1 shows the hybrid exciton dispersion curves
Frenkel exciton at molecular sitg, of the organic medium. plotted for ZnSe dots embedded in a standard organic mate-
If the dielectric constant of the semiconductor dotsjs rial. The parameters were taken aE"(0)—EY(0)

and of the organic medium is,, the field at some point, =5 meV,ag=30 A, uF=5D,N=5. In Fig. 1 two
outside the dot created by the exciton in the dot located at branches of the hybrid exciton are plotted for an array of dots
is with radiusR=40 A , and the dot lattice constadt=80 A .

3¢ 3ncost—pu
262+61 (r—rn)3

V. NONLINEAR OPTICAL RESPONSE

E(r—ry) uPral(r+ay(n].

As already noted in Ref. 11 and can be seen from(Bx.
(22 the wannier transfer exciton has a rather small translational
mass, which depends on the hopping constant and the num-
ber of dots. This small translational mass is one reason for a
large coherence length, which is related to the homogeneous
P(r,)=aF(b!+b,). (23) linewidth of the excitonic transition. In turn, this leads to a

large figure of merit of the exciton, and, associated with it,
~F

uF is the optical transition dipole moment of the organic!arge  exciton  resonance oscillator  strength  and

. . . . . i il
molecule. The Frenkel exciton wave function is written in nonlinearity.” o .
the form In the region of strong mixing, the oscillator strength of

the hybrid exciton is determined as

P(r,) is the polarization operator of the Frenkel exciton
at molecular site|,,

1
N '1:/2

F(k)= ;e‘“nx;<rn)b$|0>. @4 f(K=|u(k)2F+ v (k)| 2FV+2|u(k)o (k)| (FF) Y2 W) V2

(27)
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Both components, the transfer Wannier and the Frenkel ex: x®
citons, give contributions to the oscillator strength of the
hybrid exciton. Due to the confinement effect of the exciton
in one single dot as well as the transfer exciton coupling
between dots in the array, the Wannier transfer exciton os-
cillator strength may achieve a value comparable to that of
the Frenkel exciton, which is very big due to the small exci-

ton radius and small molecular lattice constant. So placing

many semiconductor dots in an organic medium leads to &.cs

0.120

large oscillator strength of the hybrid exciton. At resonance, 4=180.0 B =400
the oscillator strength of the hybrid state is determined by its d4-100.0 =500
Frenkel exciton component. 0.030 4= 1200 R=30.0

d=100.0 R = 40.0

In the presence of an electric field, the third-order suscep-
tibility can be calculated using standard pertubation
theory2~1®We introduce the decay constapnd note that ", ™ — — — -
the two-body interaction here is considered to arise from the
resonance case and neglecting contributions from the othden state of ZnSe dots in organic material. We plot the susceptibility

nonresonant levels, we have approximately the result for thyersus wave vector. Note that there is a very significant enhance-
lowest optical nonlinearity of the hybrid excitons: ment of x(®). Plots are for different dot radiuR and separation.

4 4 2 6 here the following typical parameters of organic and semi-
wi (2v2)* Vied R g typical p g
VF 5 \n/]e =03 d $1(0) conductor materials:  v"=100 A, a,,q=5 A, uf
™ cell =5D, a;5=30 A, EF(0)—EY(0)=5 meV. We see that
1 at resonance, e.g., where the hybridization is strongest, we
x( _ _ ) (28) have a very high peak of nonlinear susceptibility with an
(w—w+iyL)2(w—w—iy||) enhancement of about five orders of magnitude in compari-
son with that of the Wannier exciton. The nonlinear coeffi-
cient is larger for smaller dots and closer spacing between

xP(w)~

The exciton coherence lengthis given a8

3,2\ 1B A them. Also, we expect that disorder in the semiconductor dot
|C:(T/2 —. (29 array will decrease the enhancement effect, but this has not
2 (MAI'y) yet been calculated.
M is the exciton translational mass, which is inversely pro-
portional to the transfer enerdy), which we can control by VI. SUMMARY

changing the system parameters, namely, dot radius and dot In summary, we have presented here a model for creating

spacing.iw is the lowest excitation energy of the hybrid systems that offer a strong resonance coupling of Frenkel
exciton.I'y is the linewidth of the exciton angl, andy| are  and Wannier excitons to obtain an hybrid exciton state with
the transverse and longitudinal relaxation constants of thehe special properties of both kinds of exciton, i.e., having
excitonic transition, respectivelyV is the volume of the |arge exciton radius as well as large oscillator strength. In
whole systemYpeqiymis the volume of the organic host, and addition, we can control the expected resonance parameters
Vcen is the volume of one cell in the organic lattice. Notice by changing the number of dots, their radius, the distance
here that we consider the case where the sample size ffetween them, and the dot radius and dot separation relation.
smaller than the coherence length, so the size dependengge are now investigating the system with randomness—i.e.,
appears as in Eq29). a disordered distribution of dots, which is very interesting

The value ofy®*(w) in Eq. (28) at resonance may be and important.
very large. By changing the number of dots and other param-
eters of the array, one can control the value of the nonlinear- ACKNOWLEDGMENTS
ity.
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