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Commensurability oscillations due to pinned and drifting orbits in a two-dimensional
lateral surface superlattice
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We have simulated conduction in a two-dimensional electron gas subject to a weak two-dimensional peri-
odic potentialVx cos(2px/a)1Vy cos(2py/a). The usual commensurability oscillations inrxx(B) are seen with
Vx alone. An increase ofVy suppressesthese oscillations, rather than introducing the additional oscillations in
ryy(B) expected from previous perturbation theories. We show that this behavior arises from drift of the
guiding center of cyclotron motion along contours of an effective potential. Periodic modulation in the mag-
netic field can be treated in the same way.
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The behavior of electrons in a periodic potential lies at
heart of solid state physics and continues to yield surpri
Motion in acontrollableone-~1D! or two-dimensional~2D!
potential can be studied with a lateral surface superlat
~LSSL!. The electrons typically lie in a high-mobility 2D ga
in a semiconducting heterostructure, and the periodic po
tial is applied through an array of metal gates whose bias
be varied. Alternatively, a patterned stressor may be use
which case the dominant potential is piezoelectric; this ha
lower symmetry than the stressor, which will prove impo
tant.

The aim of using LSSL’s is often to explore quantum
mechanical effects, such as Bloch oscillation and the Ho
tadter butterfly, but the period of the potential is too long
most current devices. Instead, the dominant effects see
1D LSSL’s are commensurability oscillations~CO’s! in the
magnetoresistance.1 These can be explained semiclassical2

from interference between cyclotron motion and the perio
potential. Consider a sinusoidal potential energyV(x)
5Vx cos(2px/a). The interference causes a drift along t
equipotentials, parallel to they axis, which contributes to the
conductivitysyy and the resistivityrxx :

Drxx
(1D)~Vx!

r0
5S p l

a D 2S Vx

EF
D 2

J0
2S 2pRc

a D . ~1!

HereJ0 is a Bessel function of the first kind,r0 is the resis-
tivity at B50, l is the mean free path,Rc5vF /vc is the
cyclotron radius,vc5eB/m is the cyclotron frequency,EF is
the Fermi energy, andvF the Fermi velocity. No effect on
ryy is expected in this approach. Quantum-mechan
analysis3,4 yields a similar result but with small contribution
to ryy . Overall agreement between theory and experime
on 1D LSSL’s is excellent, even for the strong piezoelec
potentials in strained LSSL’s.5,6

Now consider a simple 2D potential energy,

V~x,y!5Vx cos~2px/a!1Vy cos~2py/a!. ~2!

To avoid ambiguity we takeVx>Vy . An extension of the
semiclassical theory7 shows thatVx continues to generat
PRB 610163-1829/2000/61~19!/13127~4!/$15.00
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oscillations inrxx(B) according to Eq.~1!, andVy has the
same effect onryy(B). In contrast to 1D potentials, there
little confirmation of this plausible result. An earl
experiment8 used a holographic technique1 in two steps. A
1D grating was produced first, and showed strong CO’s
the longitudinal resistivity as expected. The sample was n
illuminated with an orthogonal 1D pattern to produce a 2
grid. However, this combined pattern didnot produce simi-
lar, strong CO’s in bothrxx andryy , as expected from the
extension to the semiclassical model; much weaker osc
tions with the opposite phase were seen instead. Many
sequent measurements have used different modulation t
niques. Virtually the only common feature between them
that the CO’s are generally weak, confirming this most s
nificant feature of the holographic experiment.

We have performed simulations of conduction in a 2
LSSL to address this issue, and find thatVx and Vy do not
contribute independently. Instead, the introduction ofVy sup-
pressesthe oscillations inrxx rather than inducing oscilla
tions inryy . We explain this with a simple picture based o
drift of the guiding center of cyclotron motion along con
tours of an effective potential. Trajectories can drift or
pinned, and the pinning suppresses the magnetoresista
Remarkable behavior is found when higher Fourier com
nents dominate this potential, which should be detectabl
experiments.

To simulate conduction we solved the classical equati
of motion for electrons moving in the potential energy giv
by Eq.~2! and a normal magnetic field, with a constant pro
ability of isotropic scattering. The superlattice had perioda
5200 nm in GaAs with 331015m22 electrons of mobility
50 m2 V21 s21. The resistivity tensor was deduced from th
velocity autocorrelation function and its diagonal eleme
are plotted as a function of the magnetic field in Fig. 1. W
held Vx51 meV and raisedVy from zero toVx . In the 1D
limit, Vy50, the usual oscillations are seen inrxx with no
structure inryy , in excellent agreement with Eq.~1!. Recall
that the existing theory predicts that an increase ofVy from
zero should induce oscillations inryy without affectingrxx .
13 127 ©2000 The American Physical Society
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Instead, we seeno oscillations inryy while those inrxx are
suppressed. Most strikingly, there are no commensurabili
oscillations at all in the symmetric 2D limit whereVy5Vx .
The only large structure that remains is a positive magnet
sistance at low fields. This arises from magne
breakdown9,10 and it has recently been suggested11 that suc-
cessive breakdowns may lead to further oscillations
quantum-mechanical origin. Weak features common torxx
and ryy are also visible at higher fields, reproducible b
tween different simulations. We are unable to relate the
sitions of these features to CO’s. This contrasts with a p
vious simulation of transport in a symmetric superlattice12

which showed small commensurability maxima, mu
weaker than in the equivalent one-dimensional case. We
pose a different origin for these features below.

An explanation of this behavior follows from the traje
tories taken by electrons in the simulation. Typical examp
starting from different points are shown in Figs. 2~a! and
2~b! for Vx51 meV andVy5 1

2 meV. The magnetic fieldB
50.72 T, corresponding to the largest peak in Fig. 1. Th
is no scattering and the trajectories run for 100 ps, consi
ably longer than the lifetimet519 ps if scattering had bee
included. There is no sign of the chaos seen in weaker m
netic fields.13 The underlying motion is clearly a cyclotro
orbit and the overall trajectories can be divided into tw
classes. Fig. 2~a! shows the cyclotron orbit drifting alongy.
This is perpendicular to the wave vector of the stronger
tential component, and is the only type of trajectory seen
the 1D limit, Vy50. Such motion contributes tosyy and
rxx . No electrons were found to drift alongx and we there-
fore expect no effect onsxx and ryy . Trajectories of the
second class are pinned, as in Fig. 2~b!. The cyclotron orbit

FIG. 1. Simulation of diagonal components of resistivity tens
for square two-dimensional superlattices with period 200 nm,Vx

51 meV, and several values ofVy . Calculated points are joined b
lines for clarity and the thick curve shows the semiclassical re
@Eq. ~1!# for Vy50. Two simulations are plotted forVy5Vx and lie
on top of each other. The inset curve shows the estimate@Eq. ~6!# of
the effect ofVy on the oscillations due toVx alone, with points from
the simulations.
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is distorted and precesses but has no overall displacem
Such orbits make no contribution to conduction in the lim
of large vct and therefore suppress the magnetoresista
All trajectories become pinned in the symmetric 2D lim
Vy5Vx , quenching the CO’s. This analysis of the trajec
ries therefore shows that CO’s are reduced in magnitude
cause of pinned orbits, and are seen only inrxx if Vx.Vy .

The trajectories are only weakly distorted from regu
cyclotron motion. We therefore focus on motion of the gu
ing center,2 which drifts at a velocity given by

v(d)~X,Y!5“Veff~X,Y!3B/eB2. ~3!

The effective potential energyVeff(X,Y) is the periodic po-
tential energy@Eq. ~2!# averaged over the perimeter of
cyclotron orbit centered on (X,Y), which reducesVx andVy
equally by a factor ofJ0(2pRc /a). This depends on mag
netic field through the cyclotron radiusRc . Equation ~3!
shows that the guiding center drifts along contours
Veff(X,Y). Two examples are plotted in Fig. 3. All contou
are closed for a symmetric effective potential withVx

eff

5Vy
eff @Fig. 3~a!#. All trajectories are therefore pinned as

Fig. 2~b!. Figure 3~b! shows the effect of breaking the sym

r

lt

FIG. 2. ~a! Drifting and ~b! pinned trajectories in a square su
perlattice with period 200 nm shown by the grid,Vx51 meV, Vy

5
1
2 meV, andB50.72 T.~c! Chaotic trajectory forB50.28 T; note

the different scale.

FIG. 3. Contour plots of effective potential energy for a squa
superlattice. ~a! Vy

eff5Vx
eff , with all contours closed.~b! Vy

eff

5
1
2 Vx

eff , showing two bands of open contours~shaded! running
parallel to theY axis.
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metry with Vy
eff5 1

2 Vx
eff . This introduces a band of open co

tours, shaded in the plot, running parallel to theY axis. The
guiding center can drift along these and the deviation of
contours from straight lines leads to the lateral oscillatio
seen in Fig. 2~a!.

The change in conductivity can be estimated7,14 from

Dsmn5
e2mt

p\2 ^v̄m
(d)v̄n

(d)&orbits. ~4!

It is assumed that only drifting orbits need be considered.
first find the average drift velocityv̄(d) for each orbit, which
leaves onlyv̄y

(d) in our case. The square@ v̄y
(d)#2 is then av-

eraged over all orbits in the unit cell to giveDsyy . A diffi-
culty is that Eq.~4! is valid only if the lifetimet is much
larger than the periods of the drifting orbits. This fails f
trajectories on the boundary of the open region because
go through stagnation points in the middle of each edge
the unit cell, but is satisfied for the majority of orbits.

The open orbits are complicated and we therefore m
several approximations to estimate Eq.~4!. Start from the 1D
limit, Vy50, in which case all orbits drift withv̄y

(d)(X)
5(2pVx

eff/eBa)sin(2pX/a). The introduction ofVy affects
this in two ways. First, the fraction of the unit cell occupie
by drifting orbits is reduced to

Pdrift512
8

p2E
0

p/2

arcsinSAVy

Vx
sinu D du. ~5!

We replace the areas of drifting orbits shown in Fig. 3~b! by
bands alongY of the same area centered onX5 1

4 a and 3
4 a,

and average@ v̄y
(d)(X)#2 over the remaining area.

The second effect ofVy is to make the drifting orbits
sinuous, which reduces their average velocity alongY. The

most rapid orbit is through the symmetry point (1
4 , 1

4 )a. Its
period is increased by a factor of (2/p)K compared with
Vy50, whereK is the complete elliptic integral of the firs
kind15 with modulusk5Vy /Vx . We apply this factor to all
orbits. Combining the two effects leads to the approxim
resistivity

Drxx~Vx ,Vy!

Drxx
(1D)~Vx!

'
p2

4K2S Pdrift1
sin~pPdrift!

p D . ~6!

This is plotted in the inset to Fig. 1. It reduces correctly
the symmetric and 1D limits, and agrees well with the sim
lations.

These results show that CO’s are much harder to obs
in 2D potentials because the symmetry must be broken. T
are also less robust in 2D. IfVy50 the guiding center drifts
alongY, which does not change the potential experienced
the electron. In 2D, however, the potential changes and
picture based on the guiding center will be valid only if
drift during one cyclotron period is much smaller than t
unit cell. This leads to the conditioneBa@2p(mVx

eff)1/2 for
CO’s to exist, which is similar to that for normal diffusio
rather than chaos in a much stronger, symmetric potenti13

Using the envelope of the Bessel function to relateVx
eff and

Vx allows this to be rewritten asvF(eBa)3@m(2pVx)
2.

This becomesB@0.3 T for the conditions used in Fig. 1
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which is in reasonable agreement with the simulations.
would also expect the CO’s to become more robust asVy is
reduced, which is seen.

Motion becomes chaotic when the condition onB is vio-
lated and a typical trajectory is shown in Fig. 2~c! for B
50.28 T. The weak features inr seen in Fig. 1 whenVy
5Vx occur in this regime of chaotic motion, a further reas
for discounting them as commensurability oscillations. Th
may instead be associated with changes in phase spac
duced by orbits in real space that surround 1,4,9, . . . cells of
the lattice. Prominent features arise from such orbits in ‘‘a
tidot’’ superlattices,16 where the electron gas is periodical
and fully depleted, but our samples contain amuchweaker
periodic potential.

A general feature that follows from the drift of the guid
ing center along contours, Eq.~3!, is that there can be only
one average direction of drift. By symmetry this must
alongX or Y if only Vx andVy are present, so it is impossibl
to have oscillations in bothrxx andryy . New features appea
when further Fourier components are added
the potential. Consider the simplest ‘‘diagona
component,V1,1cos@2p(x1y)/a#. The average over a cy
clotron orbit gives an effective potential energyV1,1

eff

5V1,1J0(2pA2Rc /a). This has a different dependence o
magnetic field fromVx andVy , andV1,1 can therefore domi-
nate the behavior near zeros ofJ0(2pRc /a) where the fun-
damental terms vanish.

The effect of raisingV1,1
eff from zero is displayed in Fig. 4

holding Vy
eff5 1

2 Vx
eff . The region of open contours parallel t

Y is distorted and shrinks asV1,1
eff rises. It collapses when

V1,1
eff5Vx

eff , all orbits are pinned, and CO’s are quenche
Open contours reappear whenV1,1

eff.Vx
eff but are now parallel

to the diagonalY52X. This diagonal drift induces equa
peaks inrxx and ryy instead of the expected minimum i

FIG. 4. Effect of diagonal componentV1,1
eff on contour plots of

effective potential energy for a square superlattice withVy
eff

5
1
2 Vx

eff . ~a!,~b! Region of open contours distorts asV1,1
eff is raised

but drift remains parallel toY on average.~c! Open contours vanish
for V1,1

eff5Vx
eff ; all orbits are pinned.~d! Open contours reappear fo

V1,1
eff.Vx

eff but now run diagonally.
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rxx . Such a mechanism may contribute to the antiphase
fects seen in some experiments,8 particularly if the funda-
mental potential components are well balanced, and the
responding CO’s are suppressed. Note, however, tha
CO’s of any period will be seen within this model unle
there is some asymmetry in the potentials.

Commensurability oscillations can also be induced b
2D periodic magnetic fieldBz5B01Bm(x,y).14,17,18 This
can be analyzed in the same way with an effective poten
energy given byVm

eff(X,Y)5EFBm
eff(X,Y)/B0. Here the mag-

netic fieldBm
eff(X,Y) is averaged over theareaof a cyclotron

orbit centered on (X,Y), rather than its perimeter. This intro
duces a factor of 2J1(u)/u with u52pRc /a for the funda-
mental Fourier components, rather thanJ0(u). Experiments
show that CO’s in a square array of magnetic elements
pear only in the direction of in-plane magnetization19 in ac-
cord with contours ofBm presented there.

We have shown that the commensurability oscillations
a two-dimensional superlattice are quite different from
superposition of one-dimensional results. The addition of
potential energyVy cos(2py/a) suppresses the oscillations
rxx(B) due toVx cos(2px/a) alone, rather than adding ne
oscillations inryy(B). There are no oscillations at all in
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symmetric potential,Vx5Vy , provided that only open orbit
contribute to conduction. An asymmetric potential is the
fore needed to observe commensurability oscillations. T
might seem to present difficulty, as most devices have s
metric patterns, but real structures contain strain that ind
an asymmetric potential through the piezoelectric effec20

The behavior in two dimensions can be explained from
drift of the guiding center of cyclotron motion along co
tours of an effective potential, as in one dimension, but
coupling of motion alongx andy causes standard perturb
tion theory to fail in any two-dimensional periodic potenti
This coupling also reduces the stability of commensurab
oscillations, and motion becomes chaotic at low magn
fields. Higher Fourier components in the potential lead
characteristic signatures in bothrxx andryy near minima of
the fundamental oscillations, and their detection wo
verify the theory presented here.
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