PHYSICAL REVIEW B VOLUME 61, NUMBER 19 15 MAY 2000-I

Commensurability oscillations due to pinned and drifting orbits in a two-dimensional
lateral surface superlattice
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We have simulated conduction in a two-dimensional electron gas subject to a weak two-dimensional peri-
odic potentialV, cos(2mx/a)+V, cos(2ry/a). The usual commensurability oscillationsgp,(B) are seen with
V, alone. An increase of, suppressethese oscillations, rather than introducing the additional oscillations in
pyy(B) expected from previous perturbation theories. We show that this behavior arises from drift of the
guiding center of cyclotron motion along contours of an effective potential. Periodic modulation in the mag-
netic field can be treated in the same way.

The behavior of electrons in a periodic potential lies at theoscillations inp,,(B) according to Eq(1), andV, has the
heart of solid state physics and continues to yield surprisesame effect om,(B). In contrast to 1D potentials, there is
Motion in acontrollableone-(1D) or two-dimensiona(2D)  Jittle confirmation of this plausible result. An early
potential can be studied with a lateral surface superlatticeéxperimerft used a holographic technigu two steps. A
(LSSL). The electrons typically lie in a high-mobility 2D gas 1D grating was produced first, and showed strong CO’s in
in a semiconducting heterostructure, and the periodic poterpe |ongitudinal resistivity as expected. The sample was next
tial is applied through an array of metal gates whose bias cafy,minated with an orthogonal 1D pattern to produce a 2D
be varied. Alternatively, a patterned stressor may be used, i&rid. However, this combined pattern digt produce simi-
which case the dominant potential is pi_ezoel_ectric; th@s has far, strong CO’s in bothp,, and pyy, as expected from the
lower symmetry than the stressor, which will prove impor- . ohgjon to the semiclassical model; much weaker oscilla-

tant. tions with the opposite phase were seen instead. Many sub-

The aim of using LSSL's is often to explore quantum- sequent measurements have used different modulation tech-
mechanical effects, such as Bloch oscillation and the Hofs= d

tadter butterfly, but the period of the potential is too long inn'queﬁ' \égtfally the only Ifomm(?(n featfgre.betv;/](.aen them_ IS
most current devices. Instead, the dominant effects seen at the s are generally weak, confirming this most sig-

1D LSSL's are commensurability oscillatiof€0’s) in the ~ Nificant feature of the holographic experiment.
magnetoresistanceThese can be explained semiclassidally ~We have performed simulations of conduction in a 2D
from interference between cyclotron motion and the periodid-SSL to address this issue, and find thgtandV, do not
potential. Consider a sinusoidal potential energyx) contribute independently. Instead, the introductioVp&up-
=V, cos(2rx/a). The interference causes a drift along thepresseshe oscillations inp,, rather than inducing oscilla-
equipotentials, parallel to theaxis, which contributes to the tions inp,,. We explain this with a simple picture based on
conductivity oy, and the resistivitypy: drift of the guiding center of cyclotron motion along con-
tours of an effective potential. Trajectories can drift or be
VX)2J2

2 pinned, and the pinning suppresses the magnetoresistance.
E. 0

l

a

27R.
a

ApGD(Vy)
p - oy Remarkable behavior is found when higher Fourier compo-
0 . . . . .
. ) . ) ) ) nents dominate this potential, which should be detectable in
HereJ, is a Bessel function of the first kingy, is the resis- experiments.
tivity at B=0, | is the mean free patR.=v¢/wc is the To simulate conduction we solved the classical equations
cyclotron radiusw.=eB/m is the cyclotron frequenc¥ris  of motion for electrons moving in the potential energy given
the Fermi energy, ande the Fermi velocity. No effect on by Eq.(2) and a normal magnetic field, with a constant prob-
pyy IS expected in this approach. Quantum-mechanicahpility of isotropic scattering. The superlattice had period
analysis*yields a similar result but with small contributions =200 nm in GaAs with % 10"°m~2 electrons of mobility
to pyy. Overall agreement between theory and experimentgo n?v~1s1. The resistivity tensor was deduced from the
on 1D LSSL's is excellent, even for the strong piezoelectricyelocity autocorrelation function and its diagonal elements

potentials in strained LSSL% _ are plotted as a function of the magnetic field in Fig. 1. We
Now consider a simple 2D potential energy, held V,=1 meV and raised, from zero toV,. In the 1D
V(x,y) = Vy cOS 2mx/a) +V, cog 2my/a). @) limit, Vy,=0, the usual oscillations are seenp, with no

structure inpy,, in excellent agreement with E¢l). Recall
To avoid ambiguity we tak&/,=V, . An extension of the that the existing theory predicts that an increas& pfrom
semiclassical theofyshows thatV, continues to generate zero should induce oscillations 1w,y without affectingp,y .
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B (D) FIG. 2. (a) Drifting and (b) pinned trajectories in a square su-

perlattice with period 200 nm shown by the gridd,=1 meV,V,

FIG. 1. Simulation of diagonal components of resistivity tensor:% meV, andB=0.72 T.(c) Chaotic trajectory foB=0.28 T; note
for square two-dimensional superlattices with period 200 ¥, the different scale.
=1 meV, and several values ¥f, . Calculated points are joined by
lines for clarity and the thick curve shows the semiclassical resulis distorted and precesses but has no overall displacement.
[Eq. (D] for Vy=0. Two simulations are plotted faf,=V, and lie  Such orbits make no contribution to conduction in the limit
on top of each other. The inset curve shows the estifiiaie(6)] of  of |arge w7 and therefore suppress the magnetoresistance.
the effect oNy on the oscillations due td, alone, with points from trajectories become pinned in the symmetric 2D limit,
the simulations. V,=V,, quenching the CO’s. This analysis of the trajecto-
ries therefore shows that CO’s are reduced in magnitude be-
cause of pinned orbits, and are seen onlyjpif V,>V, .

The trajectories are only weakly distorted from regular

Instead, we seao oscillations inp,, while those inp,, are
suppressedMost strikingly, there are no commensurability
oscillations at all in the symmetric 2D limit whelé,=Vy.  cycitr0n motion. We therefore focus on motion of the guid-

T_he only large structure that remains i's a positive magneto.rq-ng center which drifts at a velocity given by
sistance at low fields. This arises from magnetic
breakdowr'® and it has recently been suggestethat suc- V(X Y) = VVEf(X,Y) X Ble B 3)
cessive breakdowns may lead to further oscillations of
quantum-mechanical origin. Weak features commomygp  The effective potential energy*"(X,Y) is the periodic po-
and p,, are also visible at higher fields, reproducible be-tential energy[Eq. (2)] averaged over the perimeter of a
tween different simulations. We are unable to relate the pocyclotron orbit centered onX,Y), which reduces/, andV,
sitions of these features to CO’s. This contrasts with a preequally by a factor oflo(27R./a). This depends on mag-
vious simulation of transport in a symmetric superlatite, netic field through the cyclotron radiu’.. Equation(3)
which showed small commensurability maxima, muchshows that the guiding center drifts along contours of
weaker than in the equivalent one-dimensional case. We pro*"(X,Y). Two examples are plotted in Fig. 3. All contours
pose a different origin for these features below. are closed for a symmetric effective potential wit"
An explanation of this behavior follows from the trajec- =V§” [Fig. 3@]. All trajectories are therefore pinned as in
tories taken by electrons in the simulation. Typical examples=ig. 2(b). Figure 3b) shows the effect of breaking the sym-

starting from different points are shown in FiggaRand
— _1 . .
2(b) for V=1 meV andV,=3; meV. The magnetic fiel® TEITTIITY & J(l'))'{/'vgf}':'%v?ﬁ
7
orbit and the overall trajectories can be divided into two g
fore expect no effect omr,, and p,,. Trajectories of the =3Vve" showing two bands of open contoufshaded running

- : ) . ‘(a) Veff — Veff
=0.72 T, corresponding to the largest peak in Fig. 1. There g > z
classes. Fig. @) shows the cyclotron orbit drifting along

This is perpendicular to the wave vector of the stronger po- %

second class are pinned, as in Figh)2 The cyclotron orbit  parallel to theY axis.

©
%

is no scattering and the trajectories run for 100 ps, consider- /
ably longer than the lifetime= 19 ps if scattering had been
. _ . _ la
tential component, and is the only type of trajectory seen in
the 1D limit, Vy=0. Such motion contributes to-,, and FIG. 3. Contour plots of effective potential energy for a square

included. There is no sign of the chaos seen in weaker mag-
netic fields'®> The underlying motion is clearly a cyclotron
pxx- NO electrons were found to drift alongand we there-  superlattice. (a) V)e/ff:\/gff, with all contours closed.(b) V;‘ff
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metry with Vﬁﬁ_z vem This introduces a band of open con- [ IO % yo k \(l‘)\)\‘\,\}l}}\‘:\é\vjﬂ &
tours, shaded in the plot, running parallel to thexis. The — y j
guiding center can drift along these and the deviation of the /

=
contours from straight lines leads to the lateral oscillations J
seen in Fig. 2a).
The change in conductivity can be estimdt&tfrom
e’m
AU#V: 7TﬁZ’T<;(Md);$;d)>Orbi'[S' (4) N ﬁ % @ @

VT =3V" %

It is assumed that only drifting orbits need be considered. We @V =V

X

first find the average drift velocity® for each orbit, which

leaves onlyo!® in our case. The squafe?]? is then av-
eraged over all orbits in the unit cell to giveo,. A diffi-

culty is that Eq.(4) is valid only if the lifetime 7 is much
larger than the periods of the drifting orbits. This fails for
trajectories on the boundary of the open region because they
go through stagnation points in the middle of each edge of
the unit cell, but is satisfied for the majority of orbits.

The open o_rblts_are comp_llcated and we therefore make 5 4 Effect of diagonal componeht, on contour plots of
several approximations to estimate E4). Start from the 1D ¢tactive potential energy for a square superlattice V\Mﬁ"f
limit, V,=0, in which case all orbits drift Wit@d)(x) =3VE™. (a),(b) Region of open contours distorts ¥§" is raised
= (277V§ff/eBa)sin(27TX/a). The introduction ofV, affects  but drift remains parallel t&f on average(c) Open contours vanish
this in two ways. First, the fraction of the unit cell occupied for V§"=VE"; all orbits are pinned(d) Open contours reappear for

by drifting orbits is reduced to V§">VE™ but now run diagonally.
P.o—1_ 8 f”’z : \/E inolde 5  Which is in reasonable agreement with the simulations. We
drift w2, arcs| V, sin ’ 5) would also expect the CO’s to become more robust ags
reduced, which is seen.
We replace the areas of drifting orbits shown in Figh)dy Motion becomes chaotic when the condition Bris vio-
bands alongf of the same area centered ¥/-3a and3a,  |ated and a typical trajectory is shown in Fig(cpfor B
and averagé;(yd)(X)]2 over the remaining area. =0.28 T. The weak features ip seen in Fig. 1 wherv,

The second effect oV, is to make the drifting orbits =V, occur in this regime of chaotic motion, a further reason
sinuous, which reduces their average velocity aldhg@he  for discounting them as commensurability oscillations. They
most rapid orbit is through the symmetry point,§)a. Its ~ May instead be associated with changes in phase space in-

period is increased by a factor of ¢&/K compared with duced py orbits i_n real space tha‘g surround 1,4,9 Ct_alls_ of
V,=0, whereK is the complete elliptic integral of the first the lattice. Prominent features arise from such orbits in “an-

; ” . 6 . .-
Kind® with modulusk=V, /V, . We apply this factor to all tidot” superlatticest® where the electron gas is periodically

orbits. Combining the two effects leads to the approximaté®"d fully depleted, but our samples contaimachweaker
resistivity periodic potential.

A general feature that follows from the drift of the guid-
2 ; ‘ ing center along contours, E@), is that there can be only
A2alVi V) | 7 2/ arite+ Sm(wpd”ﬁ)). (6) one average direction of drift. By symmetry this must be
APS(D)(VX) 4K \ alongXorYif only V, andV, are present, so it is impossible
This is plotted in the inset to Fig. 1. It reduces correctly tot0 have oscillations in pOthX andpyy . New features appear
the symmetric and 1D limits, and agrees well with the simu—When furth_er Foune_r components  are “aplded ,:[O
lations. the potential. Consider the simplest “diagonal
These results show that CO’s are much harder to obser omponent,_\/1,1§:o§127-r(x+y)/a]. _The average over aeﬁcy'
in 2D potentials because the symmetry must be broken. The otron orbit_gives an. effective .potent|al energy;
are also less robust in 2D. ¥, =0 the guiding center drifts :Vl,lJO_(zﬁ\/ERc/a)- This has a different dependence on
along, which does not change the potential experienced bynagnetic field fromV, andV, , andV, , can therefore domi-
the electron. In 2D, however, the potential changes and thBate the behavior near zeros Bf(27R.:/a) where the fun-
picture based on the guiding center will be valid only if its d@mental terms vanish. , o o
drift during one cyclotron period is much smaller than the The Eff?fCt of fglsmg/i,lfrom zero is displayed in Fig. 4,
unit cell. This leads to the conditiomBas>2m(m\EMY2for  holding Vi'=3V{". The region of open contours parallel to
CO’s to exist, which is similar to that for normal diffusion Y is distorted and shrinks ag$"; rises. It collapses when
rather than chaos in a much stronger, symmetric potéﬁtial.vﬁffﬁviﬁ, all orbits are pinned, and CO's are quenched.
Using the envelope of the Bessel function to reMﬁS and  Open contours reappear wh\zfﬁffl>v)e(“ but are now parallel
V, allows this to be rewritten asg(eBa)3>m(27V,)%.  to the diagonaly=—X. This diagonal drift induces equal
This becomes8>0.3 T for the conditions used in Fig. 1, peaks inpy, and p,, instead of the expected minimum in
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pxx- Such a mechanism may contribute to the antiphase ekymmetric potential/,=V, , provided that only open orbits
fects seen in some experimefitparticularly if the funda- contribute to conduction.’An asymmetric potential is there-
mental potential components are well balanced, and the cofere needed to observe commensurability oscillations. This

responding CO’s are suppressed. Note, however, that n@ight seem to present difficulty, as most devices have sym-
CO’s of any period will be seen within this model unless metric patterns, but real structures contain strain that induces

there is some asymmetry in the potentials.
Commensurability oscillations can also be induced by
2D periodic magnetic fieldB,=By+ By (x,y).1*1"1® This

can be analyzed in the same way with an effective potentig,

energy given bye(X,Y)=EBE"(X,Y)/B,. Here the mag-
netic fieldB(X,Y) is averaged over thereaof a cyclotron
orbit centered onX,Y), rather than its perimeter. This intro-
duces a factor of 2(6)/6 with #=2=7R;/a for the funda-
mental Fourier components, rather thiyt#). Experiments
show that CO’s in a square array of magnetic elements a
pear only in the direction of in-plane magnetizafidm ac-
cord with contours oB,, presented there.

We have shown that the commensurability oscillations in
a two-dimensional superlattice are quite different from the

an asymmetric potential through the piezoelectric effect.

aThe behavior in two dimensions can be explained from the

drift of the guiding center of cyclotron motion along con-
urs of an effective potential, as in one dimension, but the
coupling of motion along andy causes standard perturba-
tion theory to fail in any two-dimensional periodic potential.
This coupling also reduces the stability of commensurability
oscillations, and motion becomes chaotic at low magnetic
fields. Higher Fourier components in the potential lead to

Feharacteristic signatures in bogh, andp,, near minima of

the fundamental oscillations, and their detection would
verify the theory presented here.
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