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Progressive suppression of spin relaxation in two-dimensional channels of finite width

A. A. Kiselev and K. W. Kim
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911

~Received 9 November 1999!

We have investigated spatiotemporal kinetics of electron spin polarization in a semiconductor narrow two-
dimensional~2D! strip and explored the ability to manipulate spin relaxation. Information about the conduction
electron spin and mechanisms of spin rotation is incorporated into a Monte Carlo transport simulation program.
A model problem, involving linear-in-k splitting of the conduction band responsible for the D’yakonov-Perel’
mechanism of spin relaxation in the zinc-blende semiconductors and heterostructures, is solved numerically to
yield the decay of spin polarization of an electron ensemble in the 2D channel of finite width. For very wide
channels, a conventional 2D value of spin relaxation is obtained. With decreasing channel width, the relaxation
time increases rapidly by orders of magnitude. Surprisingly, the crossover point between 2D and quasi-1D
behavior is found to be at tens of electron mean-free paths. Thus, classically wide channels can effectively
suppress electron spin relaxation.
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I. INTRODUCTION

Spintronics,1,2 a nontrivial extension of conventional ele
tronics, augments functionality by utilizing the carrier sp
degree of freedom. Spin can potentially be used as a m
more capacious quantum information storage cell, be
volved in the transfer of information, for elaborate schem
of information processing, both quantum mechanical a
classical, and be integrated with electric-charge counterp
in combined designs. Electron or nuclear spin manipulat
is believed to be the key component of the potential real
tions of a quantum computer~see Ref. 3, for example!.

So far several devices, including spin hybrid4 and field
effect transistors,5 tunneling structures with magnetic layers6

spin-based memory,7 and even systems based on carb
nanotubes8 have been proposed. The most notable succ
was obtained with giant magnetoresistance effect dev
that rely on the variation of electron scattering in
multilayer stack of ferromagnetic films separated by no
magnetic materials.9,10 Though the variation of the curren
through the structure is small, it is sufficient for detectio
and the excellent sensitivity of the device to weak exter
magnetic fields~typically 1% change of resistance per oe
sted! opened the door for massive data storage applicati
Spin coherence is a pivotal prerequisite for the operability
prospective spintronic devices.

Most propositions for experimental realizations of sp
tronic elements rely on the injection of spin-polarized ele
trons from the ferromagnetic layer. These suffer from
poor quality of the ferromagnet-semiconductor interfac
that reduce the polarization of the injected electrons to a
percent as a result of strong spin relaxation caused by
large number of surface states. In spin-valve designs the
portance of the interface problem is drastically amplified
cause the injected electron crosses the metal-semicond
interface twice~i.e., at the source and drain terminals of t
device!. Furthermore, spin relaxation in the active region
the device adds to the difficulties.

In our study, we consider the possibilities for suppress
spin relaxation of the conduction electrons and evaluate
ferent approaches. A potentially important case is altera
PRB 610163-1829/2000/61~19!/13115~6!/$15.00
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of spin relaxation in a 2D electron gas as a long strip of fin
width is formed, e.g., using an electrostatic squeezing sp
gate technique. These strips can be used to connect a
elements in integrated chip designs and could even becom
part of active devices as the size of circuit elements is
duced. Eventually the one-dimensional~1D! limit, exhibiting
no transport-induced spin relaxation related to the absenc
the inversion center in the elementary crystal cell, will
reached. This transition to 1D behavior was recently do
mented by Bournelet al.11 in their study of the spin transis
tor. In this paper, we focus on the definition of the crosso
points of the spin relaxation regimes and the description
the relaxation time behavior in the broad regions between
crossovers. A Monte Carlo approach is used to simulate e
tron transport, including the evolution of spin polarizatio
and relaxation, in 2D channels of finite width.

This paper is organized as follows: In Sec. II, we st
with a brief account of spin relaxation mechanisms in se
conductors in order to identify the most relevant one. W
discuss its transformation to lower-dimensional systems
well as different possibilities to suppress destructive spin
laxation. In Sec. III, the model of a narrow patterned 2
electron gas channel is described. Results of a Monte C
simulation of spin relaxation in the channel are given in t
next section~Sec. IV!, along with a comprehensive discu
sion of the relaxation regimes in terms of the channel wi
and a value of the spin splitting of electron subbands~Sec.
V!. A brief summary follows at the end.

II. MECHANISMS OF SPIN RELAXATION

There are several mechanisms that can cause spin r
ation of conduction electrons12 ~see Ref. 13 for an up-to-dat
informal review!.

~i! The mechanism of D’yakonov and Perel’14 ~DP! re-
gards the spin splitting of the conduction band in zinc-blen
semiconductors at finite wave vectors as equivalent to
presence of an effective magnetic field that causes elec
spin to precess. For an electron experiencing random m
tiple scattering events, the orientation of this effective field
13 115 ©2000 The American Physical Society
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random, thus leading to spin relaxation.
~ii ! Bir-Aronov-Pikus15 ~BAP! processes involve a simu

taneous flip of electron and hole spins due to electron-h
exchange coupling.

~iii ! Spin relaxation due to momentum relaxation is po
sible directly through spin-orbit coupling@Elliot-Yafet16

~EY! process#.
~iv! Spin relaxation can take place as a result of hyper

interaction of electron spins with magnetic momenta of l
tice nuclei, the hyperfine magnetic field being random
changed due to the migration of electrons in the crystal.

The BAP processes require a substantial hole concen
tion that is not available in the unipolar doped structures.
processes are suppressed in the 2D environments studi
this work due to the particular structure of the perturbat
matrix element responsible for the EY processes~see Ref.
12, p. 84!. Random hyperfine fields are much weaker
extended electron states than for highly localized ones; t
amplitude and even their presence in the system are d
mined by the nature of the constituent atoms. Thus, the m
relevant mechanism for our case is of the DP type.

A. DP mechanism and change of the dimensionality

As a result of the relatively low zinc-blende crystal sym
metry, the effective 232 electron Hamiltonian for the con
duction electrons contains spin-dependent terms that are
bic in the electron wave vectork

H5h8@sxkx~ky
22kz

2!1 cycl. perm.#, ~1!

wheres i( i 5x,y,z) are the Pauli matrices. The constanth8
reflects the strength of the spin splitting in the conduct
band and its value is defined by the details of the semic
ductor band structure. Other terms in Eq.~1! are obtained by
cyclic permutations of the indices.

Modifications to the character of the spin relaxation a
occur as the system dimensionality is changed from the
to 2D, as can be achieved, for example, in semicondu
heterostructures.17 First, the average wave vector in the d
rection of the quantum confinement (z axis! is large, so the
terms in the spin splitting involvingkz

2 will dominate. This
reorients the effective magnetic field into the plane of the
electron gas (xy plane!. Nevertheless, the elementary rot
tions around random axes, all lying in one plane, do
commute with each other; thus the electrons reaching
same final destination by different trajectories will have d
ferent spin orientations. As the transport time increas
more and more distinguishable trajectories will become p
sible leading to a progressive reduction of the average
polarization of the electron ensemble. For a structure w
ukzu.kF ~relatively easy to design!, the splitting for a typical
electron will be larger and the rate of spin relaxation will
enhanced. One might naively expect similar behavior w
the further reduction of the dimensionality to the 1D ca
Choose thex axis to be along the wire. Again the main term
in Eq. ~1! will contain spatial-confinement multipliersky

2 ,
kz

2 . The principal difference with the 2D case is that all r
tations in one dimension are limited to a single axis direct
and they commute with each other. Apart from the syste
atic rotation, spin polarization does not disappear with tim
All particles, independent of the number and the sequenc
le
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the scattering events, that reach the same final pointB, will
have the same spin orientation. This statement is relaxe
one allows intersubband scattering in the 1D system. T
type of scattering becomes progressively more important
wider and wider quantum wires with more and more su
bands involved. Thus, we will recover the 2D or 3D case
the limit of very thick quantum wires.

In fact, there are two types of linear-in-k terms, with simi-
lar functional forms, that appear in the effective-mass s
Hamiltonian for the 2D electron gas:18 the
bulk-asymmetry-19 and structure-asymmetry-induce
~Bychkov-Rashba! terms.20,21 The former can be derived
from Eq. ~1! by keeping only the terms withkz

2 , and the
latter is

H5h s•@k3 ẑ#[h~sxky2sykx!, ~2!

where ẑ is a unit vector in thez direction. We ignore the
origin of the spin splitting term in our model problem an
simply assume its presence with a wave-vector depende
given by Eq.~2!. ~See Refs. 22 and 23 for the band-structu
calculation of the linear-in-k spin splitting in heterostructure
simultaneously treating bulk- and structure-induced asym
try.!

This form of the spin Hamiltonian is equivalent to th
interaction of the spin with the effective magnetic field

H5
\

2
s•Veff , whereVeff[hDP v3 ẑ. ~3!

Here the particle velocityv5\k/m* and an obvious substi
tution h→hDP is done for convenience.hDP is expressed in
inverse length units. The spin of a particle moving ballis
cally through distance 1/hDP will rotate by the anglef51.
The quantum-mechanical description of the evolution of
spin 1/2 is equivalent to the evolution of the classic mom
tum S with the equation of motion

dS

dt
5Veff3S.

The reciprocal effect of electron spin on the orbital moti
through spin-orbit coupling can often be ignored due to
large electron kinetic energy in comparison to the typi
spin splittings and strong change of the momentum in s
tering events.

B. Influencing spin relaxation time

In addition to understanding the physics of carrier sp
depolarization, we consider and assess the ability to activ
influence these destructive processes in order to improve
rameters and gain new functionality of future spintronic d
vices. Potential approaches for manipulating spin relaxa
times are the following:

~i! A simple observation follows directly from the intrin
sic nature of the motional narrowing regime~small elemen-
tary spin rotations during ballistic electron flights!.12 Reduc-
tion of momentum relaxation timetp leads to the
suppression of spin relaxation, sincetS

21;tp^Veff
2 &. On the

other hand, this will lead to broadenings as well as decoh
ence and can worsen device parameters.
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~ii ! Spin splitting is absent~small! for structures with
principal axis along (011). Recent experiments deliveredtS
in (011) quantum wells more than an order of magnitu
longer than that of the (001) counterpart.24

~iii ! The bulk-asymmetry- and structure-asymmet
induced spin splittings are additive with the similar linear-
k dependence; thus it is possible to tune combined spin s
tings in the conduction band to a desired value through
nipulation of the external electric field~and fix the axis of the
effective magnetic field, as in the 1D case, although it is
possible to cancel the splittings completely!.

~iv! Additional spin splitting, which is independent of th
electron wave vector, will fix the precession axis. An ob
ous possibility here is the Zeeman effect. The time of s
relaxation scales in the presence of the external magn
field B as25

1

tS~B!
5

1

tS~0!

1

11~VLtp!2
,

where \VL5gmBB is a Zeeman splitting of electron spi
sublevels. This suggests that spin relaxation time will dou
for VLtp51.

~v! Spin relaxation of the conduction electrons can
controlled by doping. The first realization of this was r
ported in d-doped heterostructures26 and enhancement in
spin memory by several orders of magnitude has rece
been observed inn-doped structures.27

~vi! When the channel widthL is comparable to the mag
nitude of the electron mean free pathLp the sequential alter
ation of one of the wave vector components should eff
tively reduce spin relaxation~reflective boundaries!.11

Scattering on the boundaries~diffusive boundaries! will also
decreasetp and can potentially influence spin relaxatio
Quantum mechanically, channel narrowing leads to
quantization of electron transverse motion in the strip and
absence of spin relaxation without intersubband scatterin

The first five possibilities have been considered to so
extent in the scientific literature or are just obvious con
quences of the relaxation mechanism. The sixth deserv
more thorough analysis and is the subject of our study.
examine the effect of the patterning of the 2D electron
into strips of large widthL, we developed a simple Mont
Carlo simulator encompassing random scattering of the e
trons in the channel, reflection from the boundaries, and s
rotation during free flight due to spin splitting of the condu
tion band.

III. THE MODEL

As a model system we consider a strip of the 2D elect
gas. The third dimension (z axis! is quantized and irrelevan
to the issue of electron movement in real space since
intersubband gap is larger than all other energy scales
volved. We make the following assumptions.

~i! All particles have the same velocityuvu.
~ii ! Scattering is considered to be elastic and isotropic

order to retain model simplicity; the former assumption p
serves velocity modulus, and the later one eliminates
correlations between directions of the particle velocity bef
and after the scattering event.
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~iii ! We neglect electron-electron interactions and co
sider electrons to be independent.

~iv! An assumption that all scatterers are completely
correlated leads to an exponential distribution of times
tween any two consecutive scattering events. Their aver
is called the momentum relaxation timetp , which corre-
sponds to the mean free pathLp5uvutp .

~v! The spin Hamiltonian is given in the form of Eq.~3!
and influences only the spin coordinate. We ignore the re
rocal effect of the spin on the motion in real space.

~vi! The width of the channel is large, several or even te
of mean free paths, so that it is permissible to consider c
sically the electron real-space movement.

~vii ! Initially, we consider reflecting boundary condition
at the borders of the 2D strip. Reflecting channel bounda
preserve the longitudinal component of the particle veloc
and change sign of the normal component in collisio
Later, we compare our results obtained with reflective a
diffusive boundaries.

Now we consider the types of possible spin polarizat
measurements. For simplicity, in all of our experiments, p
ticles will be injected into the system at some particular po
A ~input terminal! at time t50 with spin S. As the particle
experiences multiple scattering events, a diffusive pattern
motion is formed with a Gaussian distribution~for an isotro-
pic system!

G~r !;
1

^r &
expS 2

r 2

^r &2D ,

that broadens as time increases:^r &;LpAt/tp.
Clearly, there are multiple possibilities for experimen

setups. The definition of spin relaxation timetS obtained in
these experiments will vary correspondingly. Several imp
tant possibilities are as follows.

~i! The most informative type of experiment would be
measure the average spin^S& as a function of timet at each
point B ~output terminal!. Measurement results for all othe
experimental configurations can be derived by partial in
gration of this correlation function. In our computer simul
tion, we give preference to this type of measurement. R
experimental realization can be technically complicat
since it requires measurement locality in both space and t
domains.

~ii ! At time t, ^S& is taken as an average over the who
ensemble independent of the real-space position of electr
Optical experiments are considered likely to deliver inform
tion of this type, because of the limited possibilities to foc
optical systems and fundamental restrictions.

~iii ! Electrons are removed from the system immediat
upon arrival at the output terminal.^S& is measured, for ex-
ample, as a function of the interterminal distance. Individ
particles can spend substantial time in the system, depen
on their trajectories. This type of experiment is the mo
probable variant in electric experiments where pointsA and
B can be identified as real device gates. Made from fer
magnetic materials, gates can inject polarized electrons
sense the polarization of the drain flux, delivering inform
tion about the average spin of carriers. As it was alrea
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13 118 PRB 61A. A. KISELEV AND K. W. KIM
pointed out, the possibility of experimental realization
these measurements is severely restricted at present by
tations of the technology.

We now show that our result for spin relaxation do
indeed depend on the type of measurement. As a sim
example we consider a pure 1D case. From the point of v
of the first and third experiments, there is no spin relaxati
In these cases there exists a systematic rotation of the
proportional to the distance from the injection pointA. All
particles reaching pointB will have exactly the same spi
orientation, independent of the number of scattering eve
and individual trajectories, but different for different choic
of point B. Thus, the transverse component of the spin
given bySy(x)5Sy

0cos(hDPx). For the second realization, w
readily conclude that the average spin is expressed as

^Sy&5E dx Sy~x!G~x!;Sy
0 expS 2

1

4
hDP

2 ^x&2D
;Sy

0 expS 2
1

4
hDP

2 Lp
2 t

tp
D

and shows an exponential decay of spin polarization in
spatially broadening electron distribution.

Note that in the 2D case, the same phenomenon of
systematic rotation of the electron spin takes place in a
tion to the~2D-3D specific! DP spin relaxation. This system
atic rotation by the angle~vector form! f5hDP r3 ẑ for the
particle real-space transferr is again independent on the d
tails of individual trajectories.

IV. SIMULATION RESULTS

Figure 1~a! shows the time dependence of average s
polarization 2̂Sy& in the channel. It is found that, apart from
the systematic rotation, this dependence is essentially
same for all points inside the channel that have a substa
electron occupation for a reliable calculation of spin pol
ization. The calculation is performed for the DP parame
hDPLp50.05 and different channel widths. For this partic
lar plot the trajectories ofN553103 electrons are traced
giving a standard deviation on the order ofAN;1022

~throughout our investigationN51032105).
As can be seen from the figure, a strong dependenc

polarization decay on the channel width is obtained. T
decay is found to be approximately exponential, apart fr
the small initial interval. This is the region where the diff
sive regime of electron motion and spin rotation is not
established (At/tp;1). It overlaps or is followed by the re
gion where the typical trajectory of a randomly scatter
particle does not reach channel boundaries yet. Here the
laxation should be essentially the same as in the unpatte
2D gas. The generally exponential temporal behavior of s
polarization justifies an introduction of the spin relaxati
time tS . The dependence of this decay time on the chan
width is presented in Fig. 1~b!. In the case of sufficiently
wide channels, the relaxation time defined in this way
proaches the 2D limit oftS

2D , while tS scales asL22 for
narrow channels.

Figure 1~c! summarizes our simulation results for cha
nels with a fixed width and different values of DP termhDP.
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As the constanthDP becomes larger and larger, the chara
teristic behavior gradually deviates from the regime of m
tional narrowing since elementary rotations on the elem
tary free flights are no longer small. This leads to quick s
relaxation, as reflected by the reduction and saturation oftS .
On the other hand, there is a steep increase in the relaxa
time ashDP decreases. We have found an intermediate
gion wheretS

21 scales as a second power of the DP consta
and that is followed by a fourth-power dependence for v
small values ofhDP. Thus, in the well-established regime o
motional narrowing and in the limit of sufficiently narrow
channels, we propose an asymptotic formulatS;hDP

24L22.
To identify an effect of the particular choice of the boun

ary conditions we have simulated a channel with diffus
boundaries as well. The particle that reaches the channel
der is scattered back into the channel with equal probabili
for all directions of the new particle velocity. Calculatio
results repeat closely the case of the reflective boudarie
to the very narrow channel with widths of only several me
free paths. No systematic deviation of the spin relaxat
time is observed for wider channels.

V. REGIMES OF THE DP RELAXATION IN A CHANNEL

We distinguish the following regimes of spin relaxation
channels of finite width as we vary both independent para
etershDP and L of the problem in consideration. First, fo
very large spin splitting (hDPLp*1) we violate a genera
condition for the motional narrowing regime for the DP sp
relaxation. Each elementary rotation is not small and the
formation about the spin polarization is lost after the fi
random scattering event~see Fig. 2 as a guide!. For this
regime,tS is on the order oftp and is the shortest of al
regimes.

WhenhDP is small (hDPLp,1), we return to the regime
of motional narrowing and a well-known equationtS

2D

;tp(hDPLp)22 defines the time of spin relaxation in the 2
system. As we narrow the strip of the 2D electron gas,
find that the behavior is unchanged untilhDPL;1. For
smaller channel widths (hDPL,1), DP spin relaxation is
suppressed very effectively withtS;tS

2D(hDPL)22. For L
,Lp the channel widthL acts as a new mean free path in t
system, substitutingLp in equations. In fact, this region doe
not satisfy our assumption about classical motion of partic
in real space; the transverse motion is quantized and
system should be considered as a quantum wire with m
tiple subbands. The crossover points define broad region
mixed behavior, that becomes more definitive as we le
them.

While our conclusions are based on the results of
Monte Carlo simulation, other approaches are possible.
recent publication,28 Mal’shukov and Chao, considering a
equation of spin diffusion, were able to identify spec
waveguide diffusion modes that determine the propaga
of spin density in long channels. Their finding, that sp
relaxation in this mode slows asL22 in very narrow chan-
nels, directly confirms one of our statements.

Thus far, the analysis has been presented using symb
notation for a generalized discussion. Hence, it is neces
to examine whether the chosen range of parameters is
within the reasonable limits of contemporary heterostr
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FIG. 1. Spin relaxation in a channel.~a! Time dependence of the
spin polarization, calculated for different channel widths. The
constanthDP is fixed to be 0.05. The trajectories of 53103 particles
are traced yielding a standard deviation;1022 for the calculated
averages. Close-to-exponential decays of the polarization perm
definition of the spin relaxation timetS ; ~b! tS as a function of the
channel widthL; ~c! spin relaxation time dependence on the D
spin splitting constanthDP at fixed channel widthL540Lp .
tures. For the asymmetric GaAs/AlxGa12xAs quantum well
with channel electron concentration of 1012 cm22 ~corre-
sponding tokF'33105 cm21), the spin splitting values in
the conduction band are measured to be on the order of
20.3 meV at the Fermi energy~see Ref. 29 and the refer
ences therein!, corresponding tohDP56293104 cm21.
Samples withLp@1/q5331026 cm are readily available in
the laboratories. This set of parameters verges on the reg
of motional narrowing and large elementary rotations. R
ducing the spin splitting~i.e., hDP) will push parameters into
the well-established regime of motional narrowing, suita
for the experimental observation of the described pheno
ena. This can be accomplished by lowering the electron c
centration in the 2D electron gas resulting in a reduced st
ture asymmetry due to the internal electric field. Datta a
Das5 give an estimate ofp/hDP5731025 cm for some par-
ticular InxGa12xAs/InxAl12xAs heterostructures.

This analysis used an assumption that other mechan
of spin relaxation are not important. As we change chan
parameters and the DP spin relaxation time increases by
ders of magnitude, other relaxation mechanisms can co
into play, determining the value oftS .

VI. SUMMARY

We have investigated spin-dependent transport in se
conductor narrow 2D channels and explored the possib
of suppressing spin relaxation. Our approach is based o
Monte Carlo transport model and incorporates informat
on conduction-band electron spins and spin rotation mec
nisms. Specifically, an ensemble of electrons experienc
multiple scattering events is simulated numerically to stu
the decay of electron spin polarization in channels of fin
width due to the DP mechanism. We have identified differ
regimes of the spin relaxation in the 2D channels of fin

he

FIG. 2. Different regimes of the spin relaxation on the pla
(hDP,L) of model parameters:hDPLp*1 ~elementary rotations
during free flights are not small!, tS;tp ; hDPLp,1, hDPL*1 ~2D
spin relaxation!, tS

2D;tp(hDPLp)22; hDPL,1 ~supression of spin
relaxation, quasi-1D regime!, tS;tS

2D(hDPL)22;tp hDP
24L22; L

&Lp (L substitutesLp , quantum-mechanical quantization in th
channel!.
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width and established the dependencies of spin relaxa
time on the widthL and DP parameterhDP. The most attrac-
tive regime for future spintronic applications is the regime
the suppressed spin relaxation with the relaxation timetS

scaling asL22.
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