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Spectroscopic structure of two interacting electrons in a quantum dot
by the shifted YN expansion method
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The shifted 1IN expansion method has been used to study the relative Hamiltonian of two interacting
electrons confined in a quantum dot. The eigenenergy spectra are obtained for any arbitrary ratio of Coulomb
to confinement energies. Interesting features of the quantum dot spectra, such as the energy-level crossings and
the removal of the degeneracy, are explained. Comparisons show that our results are in very good agreement
with recent published ones calculated by exact and WKB methods.

[. INTRODUCTION have presented the Hamiltonian theory for two interacting
electrons parabolically confined in a quantum dot. We de-
Quasi-zero-dimensional systems, such as quantum dogsribe in Sec. Ill the shifted W expansion technique, and

(QD’s), have been the subject of intense research in recerife final section is devoted to results and conclusions.
years, owing to the nanofabrication techniques that make
possible the realization of systems of very small dimensions Il. THE HAMILTONIAN THEORY
comparable to the de Broglie wavelength of carriers. In such The effective-mass Hamiltonian for two interacting elec-
small structures the electrons are fully quantized into a dis: 9

. S trons, confined by a harmonic potential of characteristic
crete spectrum of energy levels. Different experiméntal lengthl o= (//m* wg) 2 in the xy plane, can be decoupled to
and theoreticaF~2° methods have been devoted to investi- - 9.0 0 ypane, P

. -~ center-of-mass and relative motion as follows:
gate the energy spectrum and correlation effects of the inter-

acting electrons confined in quantum dots under the effect of P2 1

applied magnetic field. One of the most interesting features HR:W+ EMwéRZ, (1)
of the electrons confined in a quantum dot is the energy-level

crossings. Once the crossings occur the spin and angular mo- P2 1 e 1

mentum quantum numbers of the ground state of the quan- H=-—+ —ngr2+ _— 2
tum dot changes. These spin transitions appear as a kink in 2p 2 e |r]

the addition energy spectra of the electrons confined in a
guantum dot. Indeed these kinks have also been experimeﬂé
tally confirmed in the addition energy(N.) spectra of the
quantum dot using the single-electron spectrostogyd
gated transport spectroscopy methbt$he addition energy
level u(Ng), as usual, is the energy required to add one more
electron to the QD, raising it from anNg—1)-electron
ground state to an Ng)-electron ground stateu(Ng)
=Eg(Ne) ~Eg(Ne—1).

In this work we shall use the W/ expansion method to
focus on the quantum dot confining two interacting electron
as a simple, but not trivial case. First we calculate the spectr

For the center of madgl =2m*, Q=2e, P=p;+p, and
coordinate ;.= (r{+r,)/2. Similarly, for the relative part
we have reduced mags=m*/2,q=e/2, P=(p;—p,)/2 and

its coordinater =r,;—r.

Notice that the effects of the spin and an applied uniform
agnetic field can also be taken into account by simply re-
placing w, with the effective frequency)=(w3+ w?/4)Y?
in the Hamiltonian, where»,=eB/m* c is the cyclotron fre-
quency, and adding the spin energy teffg¥ g* ugBS, with
S,=[1—-(—1)"]/2 to the total energy of the QD spectra.

he relative HamiltoniafEq. (2)] can be written as

of two interacting electrons confined in a parabolic quantum 5201 9 J 1 52 1 o2
dot and, second, we give physical analysis to the crossing H,=- — ——(r—) + 5 —|+ _ngr2+ i
phenomena, which occur in the quantum dot spectra. We 2proor\ ar] rdet] 2 er
then compare our computed QD spectra in addition to the ©)

spin singlet-triplet transition with different theoretical By making the substitution

works’! and relate our results with experimefitat®!!

works. The shifted M expansion method has an advantage d(r)=r"Y2y(r)em¢
over methods such as perturbations and pure numerical cal-

culations. While the M expansion technique is valid for all we obtain

the ranges of, the perturbation theory is limited to a weak

range of\ only. Purely numerical calculations are computa- d2y(r) 5 m’—3 ) 2010 2 e?
tionally intensive and hard to follow in the physics of the —gz— T | 2ZuE/h = — 7= p wor/h"= 27— x(r)
problem.

The rest of this work is outlined as follows. In Sec. Il, we =0, 4)
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wherem=0, +1, *2 ... is theazimuthal quantum number. method consists of solving E) in terms of the expansion

The eigenenergies for the center-of-mass motion can bgarameter X. It is convenient to shift the origin to, by the
exactly obtained as definition

Ecm:(2N0m+|Mcm|+l)wOa y:?l’z(r—ro)/ro (11

Nen=0,12..., M =0,+1,%2,.... (5)  and to expand Ed9) abouty=0 in powers ofy. Comparing
. . o the coefficients of powers of in the series with the corre-
The _problem_ is reduced to solvmg the Hamlltor_nan of thesponding ones of the same order in the $dimger equation
relative motion, Eq.(2). By making the substitutior  for 5 one-dimensional anharmonic oscillator, we determine

=v2lox, we write Eq.(2) as the anharmonic oscillator frequency, the energy eigenvalue,
5 2 1 the scaling constant, and the shift parameter in ternks of
d"x() + ( e—x2— E_ m~—a X(X)=0 (6) and the potential derivatives. The anharmonic frequency pa-
dx2 X X2 rameter is
with % 12
roV*(r
e oY (o) 12
e=El(fwy)/2 and A=v2l,/a*, 7) V'(ro)
where\ is a tuning parameter and it measures the ratio of théhe energy eigenvalues in powers o?lbp to third order
Coulomb interaction to the harmonic confinement, read
V20, 2 _ _
=22 R ® Ak_i{w]_
re 2 2 —> ’
ro 4rg 1o 4 krd
with an effective Bohr radiua* =#%2&/m* 2. (13)
The parametex =v2l/a* can be adjusted experimentally
by varying the magnetic field strengBhthrough the cyclo- a=2—(2n,+1)w, (14
tron frequencyw.=eB/m*c. The change inv. results in a
change of both the effective frequen€y=(w3+ w?/4)*? V2r3Vi(rg)=2+2m-a=Q¥ (15)

and the effective characteristic length (£/m* Q)2 In this i

case, both energies, the single-electron magnetoconfinemefffiéréa: anda; parameters are expressed in termQob,
energy Eq=(2n+|m|+1)Q+mow./2 and the many-body qnd n,, and given in the Appe_n_dlx. The rootg (for par-
electron-electron interaction ener@y~e?el, will change ficular quantum state and confining frequencgn be deter-
also. mined through Eq914) and(15), and thus the task of com-

Since Eq.(6), representing the problem of relative motion Puting the energy from Eq13) is relatively easyn, is the
confined in a harmonic potential coupled with a Coulombradial quantum number related to the princifii¢ and mag-
potential V(x) =x2+ \/x, cannot be solved exactly by any "Netic(m) quantum number by the relation=n—|m|—1.

analytical methods, it is clear that we are going to resort to
approximation methods. IV. RESULTS AND CONCLUSIONS

Our calculated results for QD’s of two interacting elec-
Ill. CALCULATION METHOD trons are presented in Figs. 1 and 2 and Tables | and Il. We
The shifted 1N expansion method\ being the spatial Nhave considered QD's made of GaAs/AlGaAs, with
dimension, is a pseudoperturbative technique in the sengéctron effective mass* =0.067m, and dielectric constant
that it proposes a perturbation parameter that is not related th?-5- Table I compares the energy spectra of two indepen-
the coupling constarft.~% dent \=0) and interactind\ =1 and 10. The comparison
The method starts by writing the radial Sctimger equa-  Petween both cases clearly shows that the energy levels are
tion, for an arbitrary cylindrical symmetric potential, in €nhanced by including the electron-electferg) interaction

N-dimensional space, as Coulomb energy. For example, the energy of the quantum-
dot state|0,2) increases significantly from 6 fox=0 to
d2  K[1-(1—a)/k][1—(3—a)k] V(r) 6.6536 and 11.7860 for=1 and 10, respectively. Thus the
~ 4 a2 + 0 r) e-einteraction term is very significant and its effects on the
QD spectra manifest themselves in two ways: it removes the
=g, mi(r) (9) level degeneracy of the quantum-dot states and it also leads
n.,m ’ .
to the crossing between these QD levels. Both effects can be
where attributed to the new dependence of the Coulomb interaction

energy on the quantum numki@n), as we are going to show,
and to the ratio of Coulomb to harmonic confinement ener-
giesA.

o These level crossings are the salient features of the QD
andk=N-+2m—a, ais a shift parameter, an@ is a scaling  spectra, which has been studied and analyzed to a great ex-
constant to be determined. The shiftedN lexpansion tent. In this discussion we shall work along this direction

A
V(r):r2+F (10
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FIG. 2. The eigenenergies of the quantum dot spectra produced
: by 1IN expansion method®@@®@®) compared with the results of
3.5 . exact method—) given in Ref. 21 for(a) n=0, A=2 and(b)
m=5, A=10.
20 ' : ergy on the quantum numbasr. This present behavior for the
18 20 25 30 Coulomb potential energy receives detailed analysis in our
study.
Kk To investigate the dependence relation of the Coulomb

FIG. 1. The Coulomb interaction ener@yr, as a function of term ~Z_I./r0 onmandx thrOUQh Ourr_neth_Od’ we have calcu-
roots ro corresponding to the quantum stat@sm>,m=0,+1, lated, first, th_e harmon'c_ frequenay using Eq.(12) and,
+2,... +10for(a A=1 and(b) A= 10. second, obtained the shifted paramedethrough Eq.(14).

Substituting both quantities in E(L5), we give the relation

using the shifted M expansion method. To explain both between the,, m, and\ variables,
features, particular attention is paid to the dominant term:

V(ro)=\/ro+r3. This term contributes-50% to the total (2018 \r)¥2=2|m| +
energy of the quantum dot state. The energy of any quantum-

dot state with different quantum numbéns ,m) and various

\ can be computed using the energy series expression given It is clear that finding the roots, through Eq.(16) ana-

in Eq. (13). This effective potential term, namely/(ro) lytically in terms ofmandX is not attainable. Thus, we seek
=)\/ro+r§, represents clearly a Coulomb and harmonic osnumerical solution and produce the rootsfor differentm
cillator potentials. For a purely hydrogen atom the energystates and\ values as given in Fig. 1. We observe that the
expectation value of the Coulomb potential is independent ofoots r, for fixed A, increase asn increases and thus the
the quantum numbem. This is different from the expecta- Coulomb energy-1/r, tends to decrease. On the other hand,
tion value of parabolic potential energy that shows a cleathe confinement energyr3 is enhanced by increasing the
dependence om. Now the effective two-electron Hamil- quantum numbem. These behaviors for Coulomb and con-
tonian theory includes two potentials, the harmonic oscillatoffining potential terms are in agreement with the results of
and the Coulomb potentials, which are in competition withMaksym’s and Chakraborty’s wor.In Ref. 12, they found
each other. This is equivalent to saying that a harmonic osthat the Coulomb energyalculated and also shown in Fig. 2
cillator force tries to push the electron to the center of thefor three interacting electropdecreases as the total quantum
quantum dot while a Coulomb force tries to repel the elecnumber(J) increases, while the confining energgingle en-
tron towards the edge of the QD. The potential competitiorergy) increases as increases also. The reduction in the
changes the dependence of the Coulanbinteraction en- electron-electron interaction energy, ¥4 o, does not con-

3_
34 (Z(ro N)

1/2
ng—)\ro)} - (18
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TABLE I. The energies of two interacting electrons in a quantum dot calculated by @efct21) and
1/N expansion methods for=1 and 10. Energies are expressed in unité f/2.

A=0 A=1 A=10

[n, m €nm [n, m Exact 1N n, m Exact 1N

|0, O 2 |0, O 3.4952 3.4234 o, 0 10.4816 10.4398

o, 1) 4 0,  4.8553 48524 |0,1)  10.8495  10.8341

0, 2, |1, 0 6 0,2  6.6538 6.6535 0,2  11.7903  11.7860
|1, O 7.2340 7.2339 0, 3 13.0720 13.0717

0, 3, |1, 8 0,3  8.5485 8.5484 |1,00  14.0379  14.0380
|1, B 8.7594 8.7197 11, 1) 14.4622 14.4621

0, 4, |1, 2), |2, O 10 0, 4 10.4814 10.4814 |0, 4 14.5546 14.5544

|1, 2 10.6024 10.6023 |1, 2 15.4916 15.4915
|2, O 11.0848 10.0848 |0, 5 16.1628 16.1629
0,5, 11, 3, |2, D 12 |0, 5 12.4340 12.4340 |1, 3 16.8431 16.8431
11, 3 12.5154 12,5153 2,0 17.6671 17.6670
12, B 12.6961 12.6962 |0, 6 17.6671 17.8541

sume completely the enhancement in the confinement enerdlgis way removes the level degeneracy of the quantum dot
asrg. This net competition energy between the Coulomb andpectra. In addition to this degeneracy lifting the electron-
confinement energies, which actually both constitute theslectron interaction energy changes the ordering of the quan-
dominant termE(®=\/r,+r3 in the energy series, removes tum dot levels from0,0), |0,2), |0,2), [1,0), 0,3, |1,1), [0,4),
the degeneracy of the quantum dot levels and also leads tt,2), |2,0), |0,5), |1,3), |2,1) for A=0 to |0,0), |0,1), |0,2),
the level crossings. For example, the stas [1,2), and  |0,3), [1,0), |1,1), [0,4, 1,2, [0,5), |1,3), |2,0), [0,6) for \
12,0, which are degenerate for independent=(0) with  =10. Particularly, the statd$,0), |0,3 for A =1 change their
eigenenergy 10, are now split into three states with differengrder to0|0,3), |1,0), for A=10 and the level crossing occurs.
energies 10.4814, 10.6023, and 10.0848, respectively, for thehe same thing happens fti,2), [2,0), |0,5, |1,3, which
interacting case\=1. The electron-electron interaction in changes td1,2), [0,5), |1,3), |2,0. For finite large values of
\, the electron-electron interaction energy becomes more

TABLE II. The energies of the quantum dot spectra calculatedpronounced and the energy of the states with smalalues,

by 1IN expansion method fofa) n=0, \=2 and (b)) m=5, A thus smallr, and large\/r, from lower energy levels, sig-

=10. nificantly enhances and catches the states with largel-
ues. This means a largg and small\/ry, from the higher-
@ energy level. Our observation here agrees with Ref. 21. In
m Zom this way the dependence of Coulomb energymrand \
0 4.5421 throughrg Ve.o(rg,m,\), explains the energy level cross-
1 5.6500 ings and the removal of the level degeneracy. As we men-
2 7.2865 tioned earlier, these transitions in the angular momer{tam
3 0.0862 and spin(s) of the ground state for the interacting electrons
4 10.9564 confined in the quantum dot appear as kinks in the electron
5 12.8638 addition energy spectra. Indeed these transitions have been
6 14.7936 predicted theoretically ~ and also confirmed
- 16.7380 experimentall§”** by different groups using quantum dots
) made from GaA#l; ,GaAs.

In addition to this qualitative explanation of the spectral

" ons properties of the quantum dot, we have tested the accuracy of
0 16.1629 the shifted IN expansion method against different numerical

1 20.0086 methods. In Figs. @ and Zb) and Table Il, we have com-

2 23.8586 pared the energies, for different quantum states and various
3 27.7146 values of\, computed by ™M expansion method against the

4 31.5795 recently published results produced by Wontzel-Kramers-
5 35.4545 Brillouin (-Jeffreys W.K.B.-double-parabola and exact nu-

6 39.3390 merical methods. The comparison clearly shows that tNe 1/

7 43.2324 expansion method gives very accurate results compared with
3 47.1347 WKB and exact numerical methods. Almost perfect results
9 51.0437 are obtained for quantum-dot states with large quantum num-
10 54.9601 berinamelyn, andm. Since large values af, andm mean

thatk=2N+m—a is also large, the energy series expression
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given in Eq.(13) converges very rapidly in terms ofk/ and the r.emoval of the_degenera_cy as two interesting fea-
expansion. For example, the energies of the 662 calcu-  tures, wh_|ch are theoretically predicted and also experimen-
lated by 1N and exact methods, respectively, are 3.4234 and@lly confirmed in the spectra of the quantum dot. In addition
3.4952 forn=1 and 10.4398 and 10.4816 for=10. On the  t0 this explanation, the shifted N/ expansion technique
other hand, the energies of the stdle5) calculated with gives very accurate numerical results compared with WKB
both methods, 12.4340 far=1 and 16.8431, are exactly the and exact methods.
same for the statf,3) calculated ai = 10.

In conclusion, we have studied the spectral properties of
two interacting electrons in a quantum dot using thisl 1/
expansion method. With the dominant simple energy term The parameters; and a, appeared in Eq(13) and are
V(r0)=>\/r0+r§, we are able to explain the level crossings given as follows:

APPENDIX

a1=[(1+2n,)e,+3(1+2n,+2n?)e,|—w [eZ+6(1+2n,)ee5+ (11+30n,+30n?)e3],
ay=(1+2n,)dy+3(1+2n,+2n?)d,+5(3+8n,+6n?+4n)ds— @ [ (1+2n,)e5+ 12(1+2n, +2n?)e,e, + 2e,d,
+2(21+59, +51n?+34n%)e2+ 6(1+2n,)e;d3+ 30(1+ 2N, + 2n?)e;ds + 6(1+ 2N, ) e5d; + 2(11+ 300, + 30n?) e5ds,
+10(13+40n, +42n%+ 28n%)e;ds |+ w ~ [ 4e2e,+ 36(1+ 2N, ) e e,e5+ 8(11+ 300, + 30n?) 5+ 24(1+n, ) ele,
+8(31+78n,+ 78n?) e 65,4+ 12(57+ 18N, + 225n?+ 150n3) e3e, ] — w 5[ 8e3+ 1081+ 2n,)efes
+48(11+30n,+ 30n?)e, 3+ 30(31+ 109, + 141n+ 94n>) e3]

with e;=¢;/w!’? andd;= &, /w!’?, wherej=1, 2, 3, 4, i=1, 2, 3,4, 5, 6.
The definition ofe; and §; quantities are

e1=(2—a), e,=—-38(2—a)/2,

5 rdv@(ry)
83=—1+rgV(3)(r0)/6Q, 84:Z+ OTA-QO’

8,=—(1—a)(3—a)l2, 8,=3(1—a)(3—a)l4,
8;=2(2—a), &,=—5(2—a)/2,

85=—3H+1VO(ro)/120Q, 85=1+r3VO)(ry)/720Q.
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