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Spectroscopic structure of two interacting electrons in a quantum dot
by the shifted 1ÕN expansion method

Mohammad El-Said
Department of Physics, EMU, Gazi Magusa Mersin 10, Turkey

~Received 25 January 1999; revised manuscript received 27 January 2000!

The shifted 1/N expansion method has been used to study the relative Hamiltonian of two interacting
electrons confined in a quantum dot. The eigenenergy spectra are obtained for any arbitrary ratio of Coulomb
to confinement energies. Interesting features of the quantum dot spectra, such as the energy-level crossings and
the removal of the degeneracy, are explained. Comparisons show that our results are in very good agreement
with recent published ones calculated by exact and WKB methods.
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I. INTRODUCTION

Quasi-zero-dimensional systems, such as quantum
~QD’s!, have been the subject of intense research in re
years, owing to the nanofabrication techniques that m
possible the realization of systems of very small dimensi
comparable to the de Broglie wavelength of carriers. In s
small structures the electrons are fully quantized into a
crete spectrum of energy levels. Different experimental1–11

and theoretical12–26 methods have been devoted to inves
gate the energy spectrum and correlation effects of the in
acting electrons confined in quantum dots under the effec
applied magnetic field. One of the most interesting featu
of the electrons confined in a quantum dot is the energy-le
crossings. Once the crossings occur the spin and angular
mentum quantum numbers of the ground state of the qu
tum dot changes. These spin transitions appear as a kin
the addition energy spectra of the electrons confined i
quantum dot. Indeed these kinks have also been experim
tally confirmed in the addition energym(Ne) spectra of the
quantum dot using the single-electron spectroscopy6 and
gated transport spectroscopy methods.11 The addition energy
level m(Ne), as usual, is the energy required to add one m
electron to the QD, raising it from an (Ne21)-electron
ground state to an (Ne)-electron ground state;m(Ne)
5EG(Ne)2EG(Ne21).

In this work we shall use the 1/N expansion method to
focus on the quantum dot confining two interacting electro
as a simple, but not trivial case. First we calculate the spe
of two interacting electrons confined in a parabolic quant
dot and, second, we give physical analysis to the cros
phenomena, which occur in the quantum dot spectra.
then compare our computed QD spectra in addition to
spin singlet-triplet transition with different theoretic
works21 and relate our results with experimental6,7,10,11

works. The shifted 1/N expansion method has an advanta
over methods such as perturbations and pure numerical
culations. While the 1/N expansion technique is valid for a
the ranges ofl, the perturbation theory is limited to a wea
range ofl only. Purely numerical calculations are compu
tionally intensive and hard to follow in the physics of th
problem.

The rest of this work is outlined as follows. In Sec. II, w
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have presented the Hamiltonian theory for two interact
electrons parabolically confined in a quantum dot. We
scribe in Sec. III the shifted 1/N expansion technique, an
the final section is devoted to results and conclusions.

II. THE HAMILTONIAN THEORY

The effective-mass Hamiltonian for two interacting ele
trons, confined by a harmonic potential of characteris
length l 05(\/m* v0)1/2 in thexy plane, can be decoupled t
center-of-mass and relative motion as follows:

HR5
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For the center of massM52m* , Q52e, P5p11p2 and
its coordinater cm5(r11r2)/2. Similarly, for the relative part
we have reduced massm5m* /2, q5e/2, P5(p12p2)/2 and
its coordinater5r12r2 .

Notice that the effects of the spin and an applied unifo
magnetic field can also be taken into account by simply
placing v0 with the effective frequencyV5(v0

21vc
2/4)1/2

in the Hamiltonian, wherevc5eB/m* c is the cyclotron fre-
quency, and adding the spin energy termEs5g* mBBSz with
Sz5@12(21)m#/2 to the total energy of the QD spectr
The relative Hamiltonian@Eq. ~2!# can be written as
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By making the substitution

f~r !5r 21/2x~r !eimf

we obtain

d2x~r !

dr2 1S 2mE/\22
m22 1

4

r 2 2m2v0
2r 2/\22

2me2

\2«

1

r
D x~r !

50, ~4!
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wherem50, 61, 62 . . . is theazimuthal quantum number
The eigenenergies for the center-of-mass motion can

exactly obtained as

Ecm5~2Ncm1uM cmu11!v0 ,

Ncm50,1,2, . . . , M cm50,61,62, . . . . ~5!

The problem is reduced to solving the Hamiltonian of t
relative motion, Eq.~2!. By making the substitutionr
5& l 0x, we write Eq.~2! as

d2x~x!

dx2 1S «2x22
l

x
2

m22 1
4

x2 D x~x!50 ~6!

with

«5E/~\v0!/2 and l5& l 0 /a* , ~7!

wherel is a tuning parameter and it measures the ratio of
Coulomb interaction to the harmonic confinement,

l5
& l 0

a*
52AR* /\v0 ~8!

with an effective Bohr radiusa* 5\2«/m* e2.
The parameterl5& l /a* can be adjusted experimental

by varying the magnetic field strengthB through the cyclo-
tron frequencyvc5eB/m* c. The change invc results in a
change of both the effective frequencyV5(v0

21vc
2/4)1/2

and the effective characteristic lengthl 5(\/m* V)1/2. In this
case, both energies, the single-electron magnetoconfine
energy Eq5(2n1umu11)V1mvc/2 and the many-body
electron-electron interaction energyEc;e2/« l , will change
also.

Since Eq.~6!, representing the problem of relative motio
confined in a harmonic potential coupled with a Coulom
potentialV(x)5x21l/x, cannot be solved exactly by an
analytical methods, it is clear that we are going to resor
approximation methods.

III. CALCULATION METHOD

The shifted 1/N expansion method,N being the spatial
dimension, is a pseudoperturbative technique in the se
that it proposes a perturbation parameter that is not relate
the coupling constant.27–30

The method starts by writing the radial Schro¨dinger equa-
tion, for an arbitrary cylindrical symmetric potential, i
N-dimensional space, as

F2
d2

dr2 1
k̄2@12~12a!/ k̄#@12~32a!/ k̄#

4r 2 1
V~r !

Q
Gc~r !

5«nr ,mc~r !, ~9!

where

V~r !5r 21
l

r
~10!

andk̄5N12m2a, a is a shift parameter, andQ is a scaling
constant to be determined. The shifted 1/N expansion
e

e

ent

o

se
to

method consists of solving Eq.~9! in terms of the expansion
parameter 1/k̄. It is convenient to shift the origin tor 0 by the
definition

y5 k̄1/2~r 2r 0!/r 0 ~11!

and to expand Eq.~9! abouty50 in powers ofy. Comparing
the coefficients of powers ofy in the series with the corre
sponding ones of the same order in the Schro¨dinger equation
for a one-dimensional anharmonic oscillator, we determ
the anharmonic oscillator frequency, the energy eigenva
the scaling constant, and the shift parameter in terms ofk̄, r 0
and the potential derivatives. The anharmonic frequency
rameter is

Ã5F31
r 0V* ~r 0!

V8~r 0! G1/2

~12!

the energy eigenvalues in powers of 1/k̄ ~up to third order!
read

«nr ,m5
l

r 0

1r 0
21

k̄2

4r 0
2

1
1

r 0
2 F ~12a!~32a!

4
1a1G1

a2

k̄r 0
2

,

~13!

a522~2nr11!v̄, ~14!

A2r 0
3V8~r 0!5212m2a5Q1/2, ~15!

wherea1 anda2 parameters are expressed in terms ofQ, v̄,
and nr , and given in the Appendix. The rootsr 0 ~for par-
ticular quantum state and confining frequency! can be deter-
mined through Eqs.~14! and~15!, and thus the task of com
puting the energy from Eq.~13! is relatively easy,nr is the
radial quantum number related to the principle~n! and mag-
netic ~m! quantum number by the relationnr5n2umu21.

IV. RESULTS AND CONCLUSIONS

Our calculated results for QD’s of two interacting ele
trons are presented in Figs. 1 and 2 and Tables I and II.
have considered QD’s made of GaAs/Al12xGaxAs, with
electron effective massm* 50.067m0 and dielectric constan
12.5. Table I compares the energy spectra of two indep
dent (l50) and interacting~l51 and 10!. The comparison
between both cases clearly shows that the energy levels
enhanced by including the electron-electron~e-e! interaction
Coulomb energy. For example, the energy of the quantu
dot stateu0,2& increases significantly from 6 forl50 to
6.6536 and 11.7860 forl51 and 10, respectively. Thus th
e-e interaction term is very significant and its effects on t
QD spectra manifest themselves in two ways: it removes
level degeneracy of the quantum-dot states and it also le
to the crossing between these QD levels. Both effects ca
attributed to the new dependence of the Coulomb interac
energy on the quantum number~m!, as we are going to show
and to the ratio of Coulomb to harmonic confinement en
giesl.

These level crossings are the salient features of the
spectra, which has been studied and analyzed to a grea
tent. In this discussion we shall work along this directi
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using the shifted 1/N expansion method. To explain bot
features, particular attention is paid to the dominant te
V(r 0)5l/r 01r 0

2. This term contributes;50% to the total
energy of the quantum dot state. The energy of any quant
dot state with different quantum numbersunf ,m& and various
l can be computed using the energy series expression g
in Eq. ~13!. This effective potential term, namely,V(r 0)
5l/r 01r 0

2, represents clearly a Coulomb and harmonic
cillator potentials. For a purely hydrogen atom the ene
expectation value of the Coulomb potential is independen
the quantum numberm. This is different from the expecta
tion value of parabolic potential energy that shows a cl
dependence onm. Now the effective two-electron Hamil
tonian theory includes two potentials, the harmonic oscilla
and the Coulomb potentials, which are in competition w
each other. This is equivalent to saying that a harmonic
cillator force tries to push the electron to the center of
quantum dot while a Coulomb force tries to repel the el
tron towards the edge of the QD. The potential competit
changes the dependence of the Coulombe-e interaction en-

FIG. 1. The Coulomb interaction energyl/r 0 as a function of
roots r 0 corresponding to the quantum statesu0,m.,m50,11,
12, . . . ,110 for ~a! l51 and~b! l510.
:

-
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ergy on the quantum numberm. This present behavior for the
Coulomb potential energy receives detailed analysis in
study.

To investigate the dependence relation of the Coulo
term;1/r 0 on m andl through our method, we have calcu
lated, first, the harmonic frequencyv̄ using Eq.~12! and,
second, obtained the shifted parametera through Eq.~14!.
Substituting both quantities in Eq.~15!, we give the relation
between ther 0 , m, andl variables,

@2~r 0
42lr 0!#1/252umu1F31

2~r 0
32l!

~2r 0
42lr 0!G

1/2

. ~16!

It is clear that finding the rootsr 0 through Eq.~16! ana-
lytically in terms ofm andl is not attainable. Thus, we see
numerical solution and produce the rootsr 0 for different m
states andl values as given in Fig. 1. We observe that t
roots r 0 , for fixed l, increase asm increases and thus th
Coulomb energy;1/r 0 tends to decrease. On the other han
the confinement energy;r 0

2 is enhanced by increasing th
quantum numberm. These behaviors for Coulomb and co
fining potential terms are in agreement with the results
Maksym’s and Chakraborty’s work.12 In Ref. 12, they found
that the Coulomb energy~calculated and also shown in Fig.
for three interacting electrons! decreases as the total quantu
number~J! increases, while the confining energy~single en-
ergy! increases asJ increases also. The reduction in th
electron-electron interaction energy, asl/r 0 , does not con-

FIG. 2. The eigenenergies of the quantum dot spectra produ
by 1/N expansion method~ddd! compared with the results o
exact method~ ! given in Ref. 21 for~a! n50, l52 and ~b!
m55, l510.
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TABLE I. The energies of two interacting electrons in a quantum dot calculated by exact~Ref. 21! and
1/N expansion methods forl51 and 10. Energies are expressed in units of\v0/2.

l50 l51 l510
un, m& «n,m un, m& Exact 1/N un, m& Exact 1/N

u0, 0& 2 u0, 0& 3.4952 3.4234 u0, 0& 10.4816 10.4398
u0, 1& 4 u0, 1& 4.8553 4.8524 u0, 1& 10.8495 10.8341
u0, 2&, u1, 0& 6 u0, 2& 6.6538 6.6535 u0, 2& 11.7903 11.7860

u1, 0& 7.2340 7.2339 u0, 3& 13.0720 13.0717
u0, 3&, u1, 1& 8 u0, 3& 8.5485 8.5484 u1, 0& 14.0379 14.0380

u1, 1& 8.7594 8.7197 u1, 1& 14.4622 14.4621
u0, 4&, u1, 2&, u2, 0& 10 u0, 4& 10.4814 10.4814 u0, 4& 14.5546 14.5544

u1, 2& 10.6024 10.6023 u1, 2& 15.4916 15.4915
u2, 0& 11.0848 10.0848 u0, 5& 16.1628 16.1629

u0, 5&, u1, 3&, u2, 1& 12 u0, 5& 12.4340 12.4340 u1, 3& 16.8431 16.8431
u1, 3& 12.5154 12.5153 u2, 0& 17.6671 17.6670
u2, 1& 12.6961 12.6962 u0, 6& 17.6671 17.8541
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sume completely the enhancement in the confinement en
asr 0

2. This net competition energy between the Coulomb a
confinement energies, which actually both constitute
dominant termE(0)5l/r 01r 0

2 in the energy series, remove
the degeneracy of the quantum dot levels and also lead
the level crossings. For example, the statesu4&, u1,2&, and
u2,0&, which are degenerate for independent (l50) with
eigenenergy 10, are now split into three states with differ
energies 10.4814, 10.6023, and 10.0848, respectively, fo
interacting casel51. The electron-electron interaction i

TABLE II. The energies of the quantum dot spectra calcula
by 1/N expansion method for~a! n50, l52 and ~b! m55, l
510.

~a!

m «0,m

0 4.5421
1 5.6500
2 7.2865
3 9.0862
4 10.9564
5 12.8638
6 14.7936
7 16.7380

~b!

n «n,5

0 16.1629
1 20.0086
2 23.8586
3 27.7146
4 31.5795
5 35.4545
6 39.3390
7 43.2324
8 47.1347
9 51.0437
10 54.9601
gy
d
e

to

t
he

this way removes the level degeneracy of the quantum
spectra. In addition to this degeneracy lifting the electro
electron interaction energy changes the ordering of the qu
tum dot levels fromu0,0&, u0,1&, u0,2&, u1,0&, u0,3&, u1,1&, u0,4&,
u1,2&, u2,0&, u0,5&, u1,3&, u2,1& for l50 to u0,0&, u0,1&, u0,2&,
u0,3&, u1,0&, u1,1&, u0,4&, u1,2&, u0,5&, u1,3&, u2,0&, u0,6& for l
510. Particularly, the statesu1,0&, u0,3& for l51 change their
order tou0,3&, u1,0&, for l510 and the level crossing occur
The same thing happens foru1,2&, u2,0&, u0,5&, u1,3&, which
changes tou1,2&, u0,5&, u1,3&, u2,0&. For finite large values of
l, the electron-electron interaction energy becomes m
pronounced and the energy of the states with smallm values,
thus smallr 0 and largel/r 0 , from lower energy levels, sig
nificantly enhances and catches the states with largem val-
ues. This means a larger 0 and smalll/r 0 , from the higher-
energy level. Our observation here agrees with Ref. 21
this way the dependence of Coulomb energy onm and l
through r 0 Ve-e(r 0 ,m,l), explains the energy level cross
ings and the removal of the level degeneracy. As we m
tioned earlier, these transitions in the angular momentum~m!
and spin~s! of the ground state for the interacting electro
confined in the quantum dot appear as kinks in the elec
addition energy spectra. Indeed these transitions have b
predicted theoretically13 and also confirmed
experimentally6,7,11 by different groups using quantum do
made from GaAsuAl12xGaxAs.

In addition to this qualitative explanation of the spect
properties of the quantum dot, we have tested the accurac
the shifted 1/N expansion method against different numeric
methods. In Figs. 2~a! and 2~b! and Table II, we have com
pared the energies, for different quantum states and var
values ofl, computed by 1/N expansion method against th
recently published results produced by Wontzel-Krame
Brillouin ~-Jeffreys! W.K.B.-double-parabola and exact nu
merical methods. The comparison clearly shows that theN
expansion method gives very accurate results compared
WKB and exact numerical methods. Almost perfect resu
are obtained for quantum-dot states with large quantum n
bers, namely,nr andm. Since large values ofnr andm mean
that k̄52N1m2a is also large, the energy series express

d
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given in Eq. ~13! converges very rapidly in terms of 1/k̄
expansion. For example, the energies of the stateu0,0& calcu-
lated by 1/N and exact methods, respectively, are 3.4234
3.4952 forl51 and 10.4398 and 10.4816 forl510. On the
other hand, the energies of the stateu0,5& calculated with
both methods, 12.4340 forl51 and 16.8431, are exactly th
same for the stateu1,3& calculated atl510.

In conclusion, we have studied the spectral properties
two interacting electrons in a quantum dot using the 1N
expansion method. With the dominant simple energy te
V(r 0)5l/r 01r 0

2, we are able to explain the level crossin
M

ev

.

ys

D

G

M

d

of

and the removal of the degeneracy as two interesting
tures, which are theoretically predicted and also experim
tally confirmed in the spectra of the quantum dot. In additi
to this explanation, the shifted 1/N expansion technique
gives very accurate numerical results compared with W
and exact methods.

APPENDIX

The parametersa1 and a2 appeared in Eq.~13! and are
given as follows:
a15 b~112nr !e213~112nr12nr
2!e4c2Ã21@e1

216~112nr !e1e31~11130nr130nr
2!e3

2#,

a25~112nr !d213~112nr12nr
2!d415~318nr16nr

214nr
3!d62Ã21@~112nr !e2

2112~112nr12nr
2!e2e412e1d1

12~21159nr151nr
2134nr

3!e4
216~112nr !e1d3130~112nr12nr

2!e1d516~112nr !e3d112~11130nr130nr
2!e3d3

110~13140nr142nr
2128nr

3!e3d5#1Ã22@4e1
2e2136~112nr !e1e2e318~11130nr130nr

2!e2e3
2124~11nr !e1

2e4

18~31178nr178nr
2!e1e3e4112~571189nr1225nr

21150nr
3!e3

2e4#2Ã23@8e1
31108~112nr !e1

2e3
2

148~11130nr130nr
2!e1e3

2130~311109nr1141nr
2194nr

3!e3
4#

with ej5« j /Ã j /2 anddi5d i /Ã j /2, where j 51, 2, 3, 4, i 51, 2, 3, 4, 5, 6.
The definition of« j andd i quantities are

«15~22a!, «2523~22a!/2,

«35211r 0
5V~3!~r 0!/6Q, «45

5

4
1

r 0
6V~4!~r 0!

24Q
,

d152~12a!~32a!/2, d253~12a!~32a!/4,

d352~22a!, d4525~22a!/2,

d552 3
2 1r 0

7V~5!~r 0!/120Q, d65 7
4 1r 0

8V~6!~r 0!/720Q.
ev.
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