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Tight-binding description of the band-edge states in GaA&IAs quantum wells and superlattices
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We present a tight-binding investigation of the electron and hole band-edge states for GaAs/AlAs hetero-
structures. Quantum wells are studied near the critical width in which the system undergoes a direct- to
indirect-gap transition. Results are compared for first- and second-nearest-neighbor models. For the first hole
state both descriptions are in essential agreement. For the first electron state, however, important differences
arise. Although the critical width is the same in both models, for the second-nearest-neighbor approach the
indirect-gap regime is characterized by the wave function escaping from the well into the AlAs barriers, but
keeping the same translational symmetry. In the first-nearest-neighbor case, the transition is characterized by a
change in translational symmetry, and the wave function may or may not remain localized in the well. Type Il
superlattices are considered within the second-nearest-neighbor approach. For increasing thickness of the AlAs

region, we show that the lowest electron state symmetry changesdyaanX,, , as observed experimentally.

I. INTRODUCTION For the cases in which the wave function is localized in the
GaAs, this is an excellent approximation because the wave
In the tight-binding(TB) formalism, sometimes important function is exponentially damped in the AlAs region, effec-
differences arise between models containing only firsttively decoupling the GaAs wells. Whea,) escapes to the
nearest-neighbdflNN) interactions and those which also in- AlAs layer, however, we may expect some deviatihse to
clude second-nearest-neighb@NN) interactions. For in- confinement and tunnelingpetween the superlattice solution
stance, Freericks and Falicovshowed that “hidden” considered here and the ideal QW. In particular, the energy
symmetries(of a permutational naturén 1NN models can and symmetry of the state;) may be sensitive to the AlAs
give rise to “accidental” degeneraciése., those that cannot region width’
be explained solely on the basis of translational or rotational This work is organized as follows. In Sec. Il we describe
symmetry. An important example of this kind of degeneracy the real spac€TB) approach adopted for the calculation of
occurs in zinchlende semiconductors, in which the 1NNthe band-edge states in heterostructures, contrasting results
treatment gives a dispersionless band structure betweef thefrom 1NN and 2NN models. In Sec. lll we investigate the
andW points? This makes 1NN parametrizations unsuitable point-group symmetry of the edge states in QW's and super-
for describing any property or quantity that depends on thdattices. A summary and general conclusions are given in
effective masses at those points. The 2NN models, in conSec. IV.
trast, do not exhibit this anomalous behavior. Another ex-
ample of a system in which a 2NN treatment is essential is
the case of intervalley coupling at superlattice interfaces. Lu !I- TIGHT-BINDING APPROACH FOR EDGE STATES
and Sham showed that in order to describe such coupling the IN'HETEROSTRUCTURES
2NN hopping terms at the interface must be included For a bulk zinc-blende semiconductor, the primitive trans-
further advantage of 2NN approaches is that, due to th?ation vectors are
larger set of parameters, it is in general possible to obtain a
better fit to band energies and effective magses.
Curiously, it has been noted that 1NN models may be a a a
more suitable for describing certain problems than their 2NN T1=5(0.1,D, T>=5(101), Tz=5(1,10, ()
counterparts. For example, Menchero and Boykaon-
ducted a systematic study of acceptor states ifGAl ,As
alloys comparing 1NN and 2NN models, and found that thewherea is the lattice parameter. The conventiofiak) cell
1NN results were in better agreement with experinfefite  contains four lattice pointdocated at the originT ;, T, and
explanation was that 1NN approaches are intrinsically mord 3), with a basis consisting of a group Il and a group V
effective at binding the wave function to the impurity poten- element. This cell is then repeatd, N, andN, times in
tial. the x, y, and z directions, respectively, generating a large
The work by Menchero and Boykin compared 1NN andsupercell containing B,N,N, atoms in the zinc-blende
2NN models forpoint potentials(impurities. In this work,  structure. For the specific heterostructures considered here,
we extend the investigation tavo-dimensionapotentials by we definez as the growth direction and choo$¢,= 30,
considering the first electron state,;), and the first hole which corresponds to 60 monolay&hL ). All group V sub-
state,|h,), in GaAs/AlAs quantum well§QW’s). We model lattice sites are occupied by As atoms, and in the group IlI
the QW by a superlattice with very thick AlAs spacer layers.sublattice we assign Ga atoms to the fikstML, and Al
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TABLE I. Upper lines give the energy and symmetry of the first electron and hole states calculated for
various GaAs well width&V with 2NN and 1NN TB parametrizations. Energies are given in meV, and refer
to the origin at the corresponding GaAs bulk band edges: Conduction band edge) fand valence band
edge forlh,). The symmetry of each state, according to the notation in Fig. 3, is given in parentheses. Lower
lines give the bulk electron and heavy hole effective massds, atormalized by the free electron mass,
obtained for each parametrization.

B2NN? VINNP BINNC

W(ML) ler) [hy) ler) [hy) ler) [hy)
12 189(I) 49() 126() 48(I) 164() 43(T)
10 235() 65() 160(") 64() 165(X) 57(T)
8 251(1) 90(T") 184(M) 87(I") 165(X) 78(T)
6 251(1) 132(1) 204(M) 126(T) 165(X) 114(T)
4 251() 209(") 242(M) 196(T") 165(X) 181()

m%/mg Mhn/Mg m%/mg Mhn/Mg m%/mg Mhn/Mg
GaAs 0.07 0.41 0.12 0.41 0.07 0.47
AlAs 0.17 0.50 0.29 0.58 0.14 0.77

aReference 4.
bRreference 8.
‘Reference 9.

atoms to the remaininlyl = (60— N) ML. Periodic boundary ~plot the TB envelope function squared for stgg) within
conditions are imposed, thus generating a (GaA&)AS) v the B2NN parametrization, obtained for a supercell of size
superlattice. Ny=N,=2, andN,=30. For a well width of 10 ML(and

For our TB parametrizations, we use those of Veghl®  above, |e;) is localized within the GaAs region. This state is
and of Boykinet al® for 1NN, and of Boykiff for 2NN, all  nondegenerate and is composedspfs*, and p, orbitals.
of which adopt ansp’s* basis set. We refer to them as The valence statfh,), which is plotted in the inset, is also
VINN, BINN, and B2NN, respectively. Unless otherwise confined to the well region. Staf,) is twofold degenerate,
stated, the results presented below for 1NN calculations werand is made up op, and p, orbitals. We calculated the
obtained within the more traditional and widely employeddipole moment of the band-edge transition, and found it to be
V1NN parametrization of Ref. 8. We neglect the spin-orbit
interaction and add appropriate constants to the diagonal ma-

trix elements to yield the same conduction-band off§@ta5 0.25 é_ ! ! ! ! _
eV) for both parametrizations. Within each material of the 02 F o — | } (a) 10ML3
superlattice, the bulk parameters for GaAs or AlAs are used 0.15 =S| /N i i E
without modification. At the interface, we take the average oodé E M];/\\U E
for the on-site energies of the As atoms, {lreplane As-As ’ 0 EL L. |, Ll
hopping, and thécross-plangGa-Al hopping. 2 L L

Since only the band-edge states are of interest, complete o« 02 EF o ! ' (b) 8ML =
diagonalization of the Hamiltonian is unnecessary. We solve > 0155 FA A ! E
for the band-edge states using arder-N algorithm'® that - 01 g & ! ! E
scales linearly in time with the number of states, making the 0.05 E—\& i \ =
solution feasible even for extremely large supercells. We de- 0.8 BT TS
termine the desired eigenstate by minimizing the expectation 02 E . Vo (c) 6ML =
value of (W|(H—E;)?|¥), whereE, is a reference en- 015 E = i~ | 1 3
ergy suitably chosen in the gap region. Stags$ or |h,) are o1 B =LA =
obtained forE,.; near the conduction or valence edge, re- 0.05 E ML i 3
spectively. Thus, for each givef.¢, the orderN algorithm s S T I B st

-20 -10 0 10 20 30

leads to asingle eigenstatend eigenvalue. In general, of
course, that state may belong to a many-fold degenerate sub-
space. Our results for the edge states thus obtained through r . 1. Tight-binding envelope function squared for the first

different parametrizations are summarized in Table . electron state in a 60 ML GaAs/AlAs superlattice using 2NN pa-
The spatial distribution of the states along the heterostrucrametrization, with the results for the first hole state shown in the

ture growth directionz is conveniently depicted through a inset. For degenerate levels, the distributions were calculated by

TB analog of the usual envelope function, introduced byaveraging over all such states. The vertical dashed lines indicate the

Bastard'? This function is obtained from the squared TB GaAs/AlAs interfaces(a) For 10 ML of GaAs, the wave function is

expansion coefficients, summed for each monolayer over albcalized in the well. For well widths oft) 8 ML and (c) 6 ML

x andy site coordinates and over all orbitafsin Fig. 1 we  confinement effects expel the electron from the well.

Monolayer
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TABLE Il. Character tableD,y.

0.25 ;_ TT LI ! LI ! LI I T 1T _;
0.2 F o ! ! (a) 10ML= -
016 =1 . | | (a) = E Co, S4ZIS421 Cox:Cyy 0110,0110
AN : 3

0.1¢ | ! E Ay 1 1 1 1 1
Oog E_l ! | [ | |_§ A2 1 1 1 -1 -1
0.25 E ' E B, 11 -1 1 -1

s 0RE = B, 1 1 -1 -1 1

2 0.15 ¢ E E 2 -2 0 0 0
0.1F 3
0.05 ¢ 3
0‘28 g_l I I_g clarify this question, we have performed calculations with a
02 F o (c) 6ML = different 1NN parametrizationwhich yields improved fits
0.15 E i 3 for the electron effective masses. The effective masses for
0.1 F =LAl = the bulk materials af’, obtained for the three parametriza-
0.05 & |ML | | = tions, are given in Table I. Since V1NN parametrization

leads to an electron effective mass almost a factor of two
larger than the other models, it is possible that the stronger
binding is a consequence of the increased electron effective
FIG. 2. Tight-binding envelope function squared for the first mass in the GaAs region. Analysis of tfe) state obtained

electron state in a 60 ML GaAs/AlAs superlattice using 1NN pa-with the BINN parametrization leads to the conclusions that,
rametrization, with the results for the first hole state shown in then the indirect-gap regime, the electron is indeed expelled
inset. For degenerate levels, the distributions were calculated bfrom the GaAs well, in qualitative agreement with the 2NN
averaging over all such stateg) For 10 ML of GaAs, the wave results, but the wave function is twofold degenerate, there-
function is localized in the well, in agreement with the 2NN result. fore of different translational symmetry than in the 2NN
For well widths of(b) 8 ML and(c) 6 ML, the transition is indirect, case.
but the wave function remains localized in the well. The relevance of the effective masses may be inferred
from the binding energies of the edge states given in Table I.
We note that for comparable effective masses, as is the case
of BINN and B2NN for electron states, the binding energies
Yor W=12 are in better agreement among each other than the
one corresponding to the VINN parametrization. Similarly,

r hole states, the B2ZNN and V1NN effective masses are in

etter agreement with each other than with B1NN, leading to
corresponding agreements for the binding energies of the
|h;) state. On the other hand, the electron wave function for
B1NN is expelled from the GaAs well for widths between 10
and 12 ML, which is wider than in the B2NN parametriza-
tion (8—10 ML). This implies that the BINN itessable to
bind the electron to the well than B2NN. Therefore, it seems
that for QW electron states the 1NN models ac intrinsi-

|
0 |
-20 -10 0 10 20
Monolayer

[y]
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strongly optically active. Therefore, QW's of this width are
typical type-lI materials. For the narrower widths of 8 ML

from the well. The hole statgh,) remains localized in the
well, as shown in the insets, and has essentially the sa
character as the 10 ML case. The narrower wells, therefor
exhibit typical type-Il behavior. These results, including the
critical transition width, are in complete agreement with the
theoretical results of Franceschetti and Zufibased on an
empirical pseudopotential approach.

In Fig. 2 we plot the TB envelope distributions obtained
using the VINN parametrizatidhfor the same size supercell
as considered above. The results for bet) and|h,) states
using a We”.W'dth of 10 ML(and_abovb are completely cally stronger at binding than the 2NN model, in contrast to
consistent with the B2NN case, with both edge states loca the expected behavior based on acceptor levels
ized inside the well, and a large dipole moment. The behav- '
ior of the|h;) states for 8 ML’s and 6 ML'’s, shown in the
insets, are also essentially unchanged from the B2NN casgy; poINT-GROUP SYMMETRY OF THE EDGE STATES
For the narrower well widths, however, a fundamentally dif-
ferent behavior is observed ftg, ), with the state remaining A. Quantum wells and type-I superlattices
localizedwithin the well. An analysis reveals that for these | order to understand the intriguing results in Sec. I, a

narrow wells|e;) is twofold degenerate, and contains con-more detailed analysis of the wave-function symmetry is re-
tributions from all five sp’s* orbitals. Furthermore, the quired. Information regarding each calculated eigenstate, in-
band'edge transition is Opt|Ca”y inaCtiVe, wigero dlpOle C|uding degeneracy and Symmetry, is obtained within a
moment. Therefore, the direct-gap to indirect-gap tranSitiOQ}roup-theoretical approach. The point-group symmetry of
occurs at the same critical width for both INN and 2NN the superlattice i9,4, which consists of eight operations,
cases, although the nature of the transition in the wave funcang whose character table is given in Table II. Our objective
tions is clearly very different. is to obtain all linearly independent eigenfunctions which are
It is interesting to note that in the VINN mo8ehe elec- degenerate with¥) by reasons of symmetry. We accom-

tron remains bound to the QW potential at far narrowerpjish this by a two-step method. First, we generate the

as the two-dimensional analog of that obtained by Menchero
and Boykir? for point potentials, i.e., 1NN models are more
effective at binding than their 2NN counterparts. In order to P W) =|D;), 2
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Translational symmetry therefore explains why the band-
edge transition for 1NN is dipole forbidden fW/=8 ML
and W=6 ML. It is worth pointing out that none of the
degeneracies encountered in this work are of the “acciden-
tal” type of Freericks and FalicoV.

The results presented in Figs(bR and Zc) are also in
contradiction with those obtained by Ihfhwho performed
TB calculations for GaAs-AlAs superlattices within the same
VAINN model adopted hefeHe finds that, for the GaAs
layer thickness below-30 A, the statde,) is confined to
the AlAs layer region. Although details of his TB calcula-
tions are not presented, we may infer from the above results

that hisk-point sampling included onlfandfpoints, asis
the case for &,=Ny=1 supercell.

FIG. 3. Two-dimensional Brillouin zone for the quantum well, ~ FOr the cases in whicte,) corresponds td’, it is also
The sampling foN,=N,=2 results in the & points shown. The ~USeful to calculate the point-group symmetry, because this
reciprocal-lattice vectors for the superlattice greandg,. determines the dipole selection rules for the lowest-energy

transition. The dipole operator can be writterr as, wherer
where theP; are the Wigner opergtdﬁsfor the point-group s the position vector and is the electric field vector. Ac-
elements. Thgse eight eigenfunctigds) are ngcessar!ly de- cording to the matrix element theoréd(h,|r - €|e;) can be
generate, while of course not necessarily linearly 'ndepenﬁonzero only if the irreducible representation(bf| is con-

dent. _The second step, therefore,_ Is to perform a Gramt'ained in the direct product of the irreducible representations
Schmidt orthonormalization. The dimension of the linearly

independent subspace immediately gives the degeneracy 8f - € and |e;). These symmetries can be easily found by
the level. application of the Wigner operatofg , and comparing the

For the superlattice, the primitive translation vectors are traces for each class of operators to the charact_ers in Table Il.
We find that for all electron statés,) occuring afl’, in both

INN and 2NN, the point-group symmetry &,. Further-
more, it can be easily verified that for the caskying in the

xy plane, the dipole operator transforms accordingEto
whereas ife is alongz then the irreducible representation is
B,. The relevant direct products can be easily worked out
' with the aid of the character table

(4)

a a a
t1=5(110, t,=5(1-10, t=5(0.0N+M), (3)

with the reciprocal-lattice vectors given by

2T 2T 10, g=2"[00-2
gl_?( ’ !Qv gz_?( v !)! g3_? ’ m

Yo AlSD — Yo AlED)
where we have assumétH- M is even. ETeA; E, BioA At ®)

As mentioned above, the band-edge states were calculat
using a supercell siz&,=N,=2, which corresponds to
eight superlatticeprimitive unit cells. We considered larger
supercells, ranging up td,=N, =8, but found no change in
the band-edge eigenenergies. This means that the trans
tional symmetries of the band-edge states correspond to on
of the eightk points sampled in the superlattice Brillouin

%erey denotes the irreducible representation of the dipole
operator. Stat¢h,) has point-group symmetry in all cases
considered. Therefore, the matrix element theorem shows
hat |e;)«|h;) transitions are dipole-allowed only if the
e'ld polarization lies in thexy plane.

zone. The Brillouin zone for an idealN(— ) QW is shown B. Type-Il superlattices
in Fig. 3, along with thek-point sampling for theN,=N, It is interesting to consider more carefully the 2NN case
=2 supercell. in which the electron state is expelled from the well. Intu-

By examining the expansion coefficients for the waveitively, it is clear that thde,) state must be X-like,” be-
functions, it is a straightforward matter to deduce their cause the conduction band minimum for pure AlAs occurs at
symmetry. For instancd; states are invariant under a trans- X. However, care must be exercised because the tKree
lationt;, whereasX states change sign under the same transStates that are degenerate in thelk, fold into different
lation. States not obeying either rule must be eithesr M. points of thesuperlatticeBrillouin zone
These states can be easily differentiated by considering a
translation 2;, which leads to a sign change far but not
M. From this analysis we find that the,) state for 2NN is Therefore, for the case in which the;) state isT, the tran-

I for the three well widths considered in Fig. 1, and also forsition is pseudodirecti.e., the transition is dipole allowed
the W=10 ML case for 1NN in Fig. 2. However, for the pyt very weak due to the small spatial overlap between the
narrower wells in 1NN, we find that the,) state occurs at  gjecron and hole wave functions. Férthe dipole matrix

M, for the VINN parametrization, or &, for the BINN  element is identically zero and optical transitions are only
parametrization. In all cases thb,) state symmetry id". possible with phonon assistance.

Xp T, Xy Xy X. (©)
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According to our previous analysis for superlattices offects, theX,, level is predicted to be the lowest electron state
period 60 ML, thele;) state isI", and so it is clear that this for wide enough spacer layers.
must be derived from th&, state of the bulk. This can be
easily verified by showing that the wave function is invariant IV. SUMMARY AND CONCLUSIONS

under abulk translation vectorl 5, but changes sign unde&g, In summary, we have presented a TB study of the edge
or T,. For wider wells, i.e., wider AlAs regions in this case, states for a GaAs QW embedded in AlAs spacer layers, near
an Xy, lowest electron state can be expected because thfie critical well width for which the fundamental transition
confinement energgwhich favors anX, symmetry forle;))  goes from directallowed to indirect (forbidden. We com-
becomes dominated by the effect of intervalley coupling,pared 1NN and 2NN models, and found that both provided
which pushes aiX,, level belowX, . In order to estimate the  the same description of the first hole stktg) for all widths
crossover width, we write the energy of thg state in the  considered. For the first electron sthgg), both models were

superlattice as again in agreement for wide enough wells, in the direct-gap
regime. For narrower wells, however, important differences
ﬁ2772 h . . .
E(X,)—E%+ 7) arise. Two 1NN parametrizations were considered, and we
z X mi L2 ’ found that the indirect-gap regime is always characterized by

a change irk symmetry. For the 2NN model, the indirect-
where E?( is the energy in the bulk. The second term is thegap regime is characterized by the electron wave function
confinement energy assuming infinite and perfectly flat barescaping from the GaAs well, but keeping the sdosym-
riers, with mj=1.34m, being the longitudinal effective metry.
mass! andL being the width of the AlAs layerl(=M ML Our study also indicates the relevance of prokgioint
in our supercells Intervalley coupling betweeX, andX,  sampling. It was pointed out by Lu and Shathat Ihm’s
(which would be otherwise degenerpteill push the two 1NN TB calculatiod® gave an invalid ordering of th&,
states apart. As a first approximation, the lower-lying statdevel with respect to theX,, due to the infinite transverse
will have an energy effective mass in th& valley of the bulk bands inherent to

1NN TB models. We showed here that, for the 1NN model,

h2m? Qg not only the relative position of levels i space is affected

w2 T, 8 in the narrow GaAs layer limit, but actually an inversion in
2m; L L thereal space positiof the levels may result when a more
where m* =0.26m, is the transverse effective masg,’ complete k-point sampling is considered through large
=(N+M) ML is the superlattice period, ard, is the in-  €nough supercelis. . .
tervalley coupling strength, recentfycalculated to be 0.39 F_or type Il structures, we show that for increasing AlAs
eV A. For the narrow GaAs layers considered here, we Caparrler width a crossover in . IOW?St elegtron ;tate symme-
safely selL’ ~L . Solving for the critical width which pushes Y: from X, to X,y is expected. This transition, induced by
an X,, state belowX,, we obtain an AlAs thickness of ap- the Xx'_Xy coupling, is predicted to occur even in the absence
proximately 100 ML. Experimentally, Kestere al. found ~ ©f Strain effects.
the crossover thickness to be21 ML. However, in the
same studies they showed trstain effectslower the E,,
level by roughly 23 meV relative t&,. Including this term We thank R. B. Capaz for interesting discussions and for
into our analysis leads then to a crossover thickness of 22 critical reading of this manuscript. We also acknowledge
ML, in excellent agreement with experiment. It is interestinghelpful assistance from F. J. Ribeiro. This work was sup-
to observe, however, that even in the absence of strain eported by CNPq, PRONEX, FAPERJ, and FUJB.

E(Xyy)=Eg+
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