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Tight-binding description of the band-edge states in GaAsÕAlAs quantum wells and superlattices

J. G. Menchero, T. G. Dargam,* and Belita Koiller
Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, Caixa Postal 68.528, 21945-970 Rio de Janeiro, Brazil

~Received 15 June 1999; revised manuscript received 7 February 2000!

We present a tight-binding investigation of the electron and hole band-edge states for GaAs/AlAs hetero-
structures. Quantum wells are studied near the critical width in which the system undergoes a direct- to
indirect-gap transition. Results are compared for first- and second-nearest-neighbor models. For the first hole
state both descriptions are in essential agreement. For the first electron state, however, important differences
arise. Although the critical width is the same in both models, for the second-nearest-neighbor approach the
indirect-gap regime is characterized by the wave function escaping from the well into the AlAs barriers, but
keeping the same translational symmetry. In the first-nearest-neighbor case, the transition is characterized by a
change in translational symmetry, and the wave function may or may not remain localized in the well. Type II
superlattices are considered within the second-nearest-neighbor approach. For increasing thickness of the AlAs
region, we show that the lowest electron state symmetry changes fromXz to Xxy , as observed experimentally.
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I. INTRODUCTION

In the tight-binding~TB! formalism, sometimes importan
differences arise between models containing only fi
nearest-neighbor~1NN! interactions and those which also in
clude second-nearest-neighbor~2NN! interactions. For in-
stance, Freericks and Falicov1 showed that ‘‘hidden’’
symmetries~of a permutational nature! in 1NN models can
give rise to ‘‘accidental’’ degeneracies~i.e., those that canno
be explained solely on the basis of translational or rotatio
symmetry!. An important example of this kind of degenera
occurs in zincblende semiconductors, in which the 1N
treatment gives a dispersionless band structure betweenX
andW points.2 This makes 1NN parametrizations unsuitab
for describing any property or quantity that depends on
effective masses at those points. The 2NN models, in c
trast, do not exhibit this anomalous behavior. Another
ample of a system in which a 2NN treatment is essentia
the case of intervalley coupling at superlattice interfaces.
and Sham showed that in order to describe such coupling
2NN hopping terms at the interface must be included.3 A
further advantage of 2NN approaches is that, due to
larger set of parameters, it is in general possible to obta
better fit to band energies and effective masses.4

Curiously, it has been noted that 1NN models may
more suitable for describing certain problems than their 2
counterparts. For example, Menchero and Boykin5 con-
ducted a systematic study of acceptor states in AlxGa12xAs
alloys comparing 1NN and 2NN models, and found that
1NN results were in better agreement with experiment.6 The
explanation was that 1NN approaches are intrinsically m
effective at binding the wave function to the impurity pote
tial.

The work by Menchero and Boykin compared 1NN a
2NN models forpoint potentials~impurities!. In this work,
we extend the investigation totwo-dimensionalpotentials by
considering the first electron state,ue1&, and the first hole
state,uh1&, in GaAs/AlAs quantum wells~QW’s!. We model
the QW by a superlattice with very thick AlAs spacer laye
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For the cases in which the wave function is localized in
GaAs, this is an excellent approximation because the w
function is exponentially damped in the AlAs region, effe
tively decoupling the GaAs wells. Whenue1& escapes to the
AlAs layer, however, we may expect some deviations~due to
confinement and tunneling! between the superlattice solutio
considered here and the ideal QW. In particular, the ene
and symmetry of the stateue1& may be sensitive to the AlAs
region width.7

This work is organized as follows. In Sec. II we descri
the real space~TB! approach adopted for the calculation
the band-edge states in heterostructures, contrasting re
from 1NN and 2NN models. In Sec. III we investigate th
point-group symmetry of the edge states in QW’s and sup
lattices. A summary and general conclusions are given
Sec. IV.

II. TIGHT-BINDING APPROACH FOR EDGE STATES
IN HETEROSTRUCTURES

For a bulk zinc-blende semiconductor, the primitive tran
lation vectors are

T15
a

2
~0,1,1!, T25

a

2
~1,0,1!, T35

a

2
~1,1,0!, ~1!

wherea is the lattice parameter. The conventional~fcc! cell
contains four lattice points~located at the origin,T1 ,T2, and
T3), with a basis consisting of a group III and a group
element. This cell is then repeatedNx , Ny , andNz times in
the x, y, and z directions, respectively, generating a lar
supercell containing 8NxNyNz atoms in the zinc-blende
structure. For the specific heterostructures considered h
we definez as the growth direction and chooseNz530,
which corresponds to 60 monolayers~ML !. All group V sub-
lattice sites are occupied by As atoms, and in the group
sublattice we assign Ga atoms to the firstN ML, and Al
13 021 ©2000 The American Physical Society
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TABLE I. Upper lines give the energy and symmetry of the first electron and hole states calculat
various GaAs well widthsW with 2NN and 1NN TB parametrizations. Energies are given in meV, and r
to the origin at the corresponding GaAs bulk band edges: Conduction band edge forue1& and valence band
edge foruh1&. The symmetry of each state, according to the notation in Fig. 3, is given in parentheses.
lines give the bulk electron and heavy hole effective masses atG, normalized by the free electron mas
obtained for each parametrization.

B2NNa V1NNb B1NNc

W(ML) ue1& uh1& ue1& uh1& ue1& uh1&

12 189(Ḡ) 49(Ḡ) 126(Ḡ) 48(Ḡ) 164(Ḡ) 43(Ḡ)
10 235(Ḡ) 65(Ḡ) 160(Ḡ) 64(Ḡ) 165(X̄) 57(Ḡ)
8 251(Ḡ) 90(Ḡ) 184(M̄ ) 87(Ḡ) 165(X̄) 78(Ḡ)
6 251(Ḡ) 132(Ḡ) 204(M̄ ) 126(Ḡ) 165(X̄) 114(Ḡ)
4 251(Ḡ) 209(Ḡ) 242(M̄ ) 196(Ḡ) 165(X̄) 181(Ḡ)

me* /m0 mhh /m0 me* /m0 mhh /m0 me* /m0 mhh /m0

GaAs 0.07 0.41 0.12 0.41 0.07 0.47
AlAs 0.17 0.50 0.29 0.58 0.14 0.77

aReference 4.
bReference 8.
cReference 9.
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atoms to the remainingM5(602N) ML. Periodic boundary
conditions are imposed, thus generating a (GaAs)N(AlAs) M
superlattice.

For our TB parametrizations, we use those of Voglet al.8

and of Boykinet al.9 for 1NN, and of Boykin4 for 2NN, all
of which adopt ansp3s* basis set. We refer to them a
V1NN, B1NN, and B2NN, respectively. Unless otherwi
stated, the results presented below for 1NN calculations w
obtained within the more traditional and widely employ
V1NN parametrization of Ref. 8. We neglect the spin-or
interaction and add appropriate constants to the diagonal
trix elements to yield the same conduction-band offsets~0.25
eV! for both parametrizations. Within each material of t
superlattice, the bulk parameters for GaAs or AlAs are u
without modification. At the interface, we take the avera
for the on-site energies of the As atoms, the~in-plane! As-As
hopping, and the~cross-plane! Ga-Al hopping.

Since only the band-edge states are of interest, comp
diagonalization of the Hamiltonian is unnecessary. We so
for the band-edge states using anorder-N algorithm10 that
scales linearly in time with the number of states, making
solution feasible even for extremely large supercells. We
termine the desired eigenstate by minimizing the expecta
value of ^Cu(H2Ere f)

2uC&, whereEre f is a reference en
ergy suitably chosen in the gap region. Statesue1& or uh1& are
obtained forEre f near the conduction or valence edge,
spectively. Thus, for each givenEre f , the order-N algorithm
leads to asingle eigenstateand eigenvalue. In general, o
course, that state may belong to a many-fold degenerate
space. Our results for the edge states thus obtained thr
different parametrizations are summarized in Table I.

The spatial distribution of the states along the heterost
ture growth directionz is conveniently depicted through
TB analog of the usual envelope function, introduced
Bastard.12 This function is obtained from the squared T
expansion coefficients, summed for each monolayer ove
x andy site coordinates and over all orbitals.13 In Fig. 1 we
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plot the TB envelope function squared for stateue1& within
the B2NN parametrization, obtained for a supercell of s
Nx5Ny52, andNz530. For a well width of 10 ML~and
above!, ue1& is localized within the GaAs region. This state
nondegenerate and is composed ofs, s* , and pz orbitals.
The valence stateuh1&, which is plotted in the inset, is als
confined to the well region. Stateuh1& is twofold degenerate
and is made up ofpx and py orbitals. We calculated the
dipole moment of the band-edge transition, and found it to

FIG. 1. Tight-binding envelope function squared for the fi
electron state in a 60 ML GaAs/AlAs superlattice using 2NN p
rametrization, with the results for the first hole state shown in
inset. For degenerate levels, the distributions were calculated
averaging over all such states. The vertical dashed lines indicate
GaAs/AlAs interfaces.~a! For 10 ML of GaAs, the wave function is
localized in the well. For well widths of~b! 8 ML and ~c! 6 ML
confinement effects expel the electron from the well.
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strongly optically active. Therefore, QW’s of this width a
typical type-I materials. For the narrower widths of 8 M
and 6 ML, however, confinement effects expel the elect
from the well. The hole stateuh1& remains localized in the
well, as shown in the insets, and has essentially the s
character as the 10 ML case. The narrower wells, theref
exhibit typical type-II behavior. These results, including t
critical transition width, are in complete agreement with t
theoretical results of Franceschetti and Zunger14 based on an
empirical pseudopotential approach.

In Fig. 2 we plot the TB envelope distributions obtain
using the V1NN parametrization,8 for the same size superce
as considered above. The results for bothue1& anduh1& states
using a well width of 10 ML~and above! are completely
consistent with the B2NN case, with both edge states lo
ized inside the well, and a large dipole moment. The beh
ior of the uh1& states for 8 ML’s and 6 ML’s, shown in the
insets, are also essentially unchanged from the B2NN c
For the narrower well widths, however, a fundamentally d
ferent behavior is observed forue1&, with the state remaining
localizedwithin the well. An analysis reveals that for thes
narrow wellsue1& is twofold degenerate, and contains co
tributions from all five sp3s* orbitals. Furthermore, the
band-edge transition is optically inactive, withzero dipole
moment. Therefore, the direct-gap to indirect-gap transit
occurs at the same critical width for both 1NN and 2N
cases, although the nature of the transition in the wave fu
tions is clearly very different.

It is interesting to note that in the V1NN model8 the elec-
tron remains bound to the QW potential at far narrow
widths than in the 2NN case. This result might be interpre
as the two-dimensional analog of that obtained by Mench
and Boykin5 for point potentials, i.e., 1NN models are mo
effective at binding than their 2NN counterparts. In order

FIG. 2. Tight-binding envelope function squared for the fi
electron state in a 60 ML GaAs/AlAs superlattice using 1NN p
rametrization, with the results for the first hole state shown in
inset. For degenerate levels, the distributions were calculated
averaging over all such states.~a! For 10 ML of GaAs, the wave
function is localized in the well, in agreement with the 2NN resu
For well widths of~b! 8 ML and ~c! 6 ML, the transition is indirect,
but the wave function remains localized in the well.
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clarify this question, we have performed calculations with
different 1NN parametrization,9 which yields improved fits
for the electron effective masses. The effective masses
the bulk materials atG, obtained for the three parametriza
tions, are given in Table I. Since V1NN parametrizati
leads to an electron effective mass almost a factor of
larger than the other models, it is possible that the stron
binding is a consequence of the increased electron effec
mass in the GaAs region. Analysis of theue1& state obtained
with the B1NN parametrization leads to the conclusions th
in the indirect-gap regime, the electron is indeed expel
from the GaAs well, in qualitative agreement with the 2N
results, but the wave function is twofold degenerate, the
fore of different translational symmetry than in the 2N
case.

The relevance of the effective masses may be infer
from the binding energies of the edge states given in Tab
We note that for comparable effective masses, as is the
of B1NN and B2NN for electron states, the binding energ
for W512 are in better agreement among each other than
one corresponding to the V1NN parametrization. Similar
for hole states, the B2NN and V1NN effective masses are
better agreement with each other than with B1NN, leading
corresponding agreements for the binding energies of
uh1& state. On the other hand, the electron wave function
B1NN is expelled from the GaAs well for widths between 1
and 12 ML, which is wider than in the B2NN parametriz
tion ~8–10 ML!. This implies that the B1NN islessable to
bind the electron to the well than B2NN. Therefore, it see
that for QW electron states the 1NN models arenot intrinsi-
cally stronger at binding than the 2NN model, in contrast
the expected behavior based on acceptor levels.5

III. POINT-GROUP SYMMETRY OF THE EDGE STATES

A. Quantum wells and type-I superlattices

In order to understand the intriguing results in Sec. II
more detailed analysis of the wave-function symmetry is
quired. Information regarding each calculated eigenstate
cluding degeneracy and symmetry, is obtained within
group-theoretical approach. The point-group symmetry
the superlattice isD2d , which consists of eight operations
and whose character table is given in Table II. Our object
is to obtain all linearly independent eigenfunctions which a
degenerate withuC& by reasons of symmetry. We accom
plish this by a two-step method. First, we generate
symmetry-related eigenfunctions

Pi uC&5uF i&, ~2!

t
-
e
by

.

TABLE II. Character table,D2d .

E C2z S4z ,S4z
21 C2x ,C2y s110,s11̄0

A1 1 1 1 1 1
A2 1 1 1 21 21
B1 1 1 21 1 21
B2 1 1 21 21 1
E 2 22 0 0 0
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where thePi are the Wigner operators11 for the point-group
elements. These eight eigenfunctionsuF i& are necessarily de
generate, while of course not necessarily linearly indep
dent. The second step, therefore, is to perform a Gr
Schmidt orthonormalization. The dimension of the linea
independent subspace immediately gives the degenerac
the level.

For the superlattice, the primitive translation vectors a

t15
a

2
~1,1,0!, t25

a

2
~1,21,0!, t35

a

2
~0,0,N1M !, ~3!

with the reciprocal-lattice vectors given by

g15
2p

a
~1,1,0!, g25

2p

a
~1,21,0!, g35

2p

a S 0,0,
2

N1M D ,

~4!

where we have assumedN1M is even.
As mentioned above, the band-edge states were calcu

using a supercell sizeNx5Ny52, which corresponds to
eight superlatticeprimitive unit cells. We considered large
supercells, ranging up toNx5Ny58, but found no change in
the band-edge eigenenergies. This means that the tra
tional symmetries of the band-edge states correspond to
of the eightk points sampled in the superlattice Brillou
zone. The Brillouin zone for an ideal (Nz→`) QW is shown
in Fig. 3, along with thek-point sampling for theNx5Ny
52 supercell.

By examining the expansion coefficients for the wa
functions, it is a straightforward matter to deduce theirk
symmetry. For instance,Ḡ states are invariant under a tran
lation t1, whereasX̄ states change sign under the same tra
lation. States not obeying either rule must be eitherD̄ or M̄ .
These states can be easily differentiated by considerin
translation 2t1, which leads to a sign change forD̄ but not
M̄ . From this analysis we find that theue1& state for 2NN is
Ḡ for the three well widths considered in Fig. 1, and also
the W510 ML case for 1NN in Fig. 2. However, for th
narrower wells in 1NN, we find that theue1& state occurs a
M̄ , for the V1NN parametrization, or atX̄, for the B1NN
parametrization. In all cases theuh1& state symmetry isḠ.

FIG. 3. Two-dimensional Brillouin zone for the quantum we
The sampling forNx5Ny52 results in the 8k points shown. The
reciprocal-lattice vectors for the superlattice areg1 andg2.
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Translational symmetry therefore explains why the ba
edge transition for 1NN is dipole forbidden forW58 ML
and W56 ML. It is worth pointing out that none of the
degeneracies encountered in this work are of the ‘‘accid
tal’’ type of Freericks and Falicov.1

The results presented in Figs. 2~b! and 2~c! are also in
contradiction with those obtained by Ihm,15 who performed
TB calculations for GaAs-AlAs superlattices within the sam
V1NN model adopted here.8 He finds that, for the GaAs
layer thickness below;30 Å, the stateue1& is confined to
the AlAs layer region. Although details of his TB calcula
tions are not presented, we may infer from the above res
that hisk-point sampling included onlyḠ andX̄ points, as is
the case for aNx5Ny51 supercell.

For the cases in whichue1& corresponds toḠ, it is also
useful to calculate the point-group symmetry, because
determines the dipole selection rules for the lowest-ene
transition. The dipole operator can be written asrW•eW , whererW

is the position vector andeW is the electric field vector. Ac-
cording to the matrix element theorem,11 ^h1urW•eW ue1& can be
nonzero only if the irreducible representation of^h1u is con-
tained in the direct product of the irreducible representati
of rW•eW and ue1&. These symmetries can be easily found
application of the Wigner operatorsPi , and comparing the
traces for each class of operators to the characters in Tab
We find that for all electron statesue1& occuring atḠ, in both
1NN and 2NN, the point-group symmetry isA1. Further-
more, it can be easily verified that for the caseeW lying in the
xy plane, the dipole operator transforms according toE,
whereas ifeW is alongz then the irreducible representation
B2. The relevant direct products can be easily worked
with the aid of the character table

Eg
^ A1

ue1&
5E, B2

g
^ A1

ue1&
5A1 , ~5!

whereg denotes the irreducible representation of the dip
operator. Stateuh1& has point-group symmetryE in all cases
considered. Therefore, the matrix element theorem sh
that ue1&↔uh1& transitions are dipole-allowed only if th
field polarization lies in thexy plane.

B. Type-II superlattices

It is interesting to consider more carefully the 2NN ca
in which the electron state is expelled from the well. Int
itively, it is clear that theue1& state must be ‘‘X-like,’’ be-
cause the conduction band minimum for pure AlAs occurs
X. However, care must be exercised because the threX
states that are degenerate in thebulk, fold into different
points of thesuperlatticeBrillouin zone

Xz→Ḡ, Xx ,Xy→X̄. ~6!

Therefore, for the case in which theue1& state isḠ, the tran-
sition is pseudodirect, i.e., the transition is dipole allowed
but very weak due to the small spatial overlap between
electron and hole wave functions. ForX̄ the dipole matrix
element is identically zero and optical transitions are o
possible with phonon assistance.



o

e
n

e,
t

g

he
a

at

ca
s
-

f 2
ng

e

te

dge
ear
n

ed

ap
es
we
by

t-
tion

e
o
el,

in
e
e

s
me-
y
ce

for
ge
p-

PRB 61 13 025TIGHT-BINDING DESCRIPTION OF THE BAND-EDGE . . .
According to our previous analysis for superlattices
period 60 ML, theue1& state isḠ, and so it is clear that this
must be derived from theXz state of the bulk. This can b
easily verified by showing that the wave function is invaria
under abulk translation vectorT3, but changes sign underT1
or T2. For wider wells, i.e., wider AlAs regions in this cas
an Xxy lowest electron state can be expected because
confinement energy~which favors anXz symmetry forue1&)
becomes dominated by the effect of intervalley couplin
which pushes anXxy level belowXz . In order to estimate the
crossover width, we write the energy of theXz state in the
superlattice as

E~Xz!5EX
01

\2p2

2ml* L2
, ~7!

whereEX
0 is the energy in the bulk. The second term is t

confinement energy assuming infinite and perfectly flat b
riers, with ml* 51.34me being the longitudinal effective
mass,4 andL being the width of the AlAs layer (L5M ML
in our supercells!. Intervalley coupling betweenXx and Xy
~which would be otherwise degenerate! will push the two
states apart. As a first approximation, the lower-lying st
will have an energy

E~Xxy!5EX
01

\2p2

2mt* L2
2

V0

L8
, ~8!

where mt* 50.26me is the transverse effective mass,4 L8
5(N1M ) ML is the superlattice period, andV0 is the in-
tervalley coupling strength, recently16 calculated to be 0.39
eV Å. For the narrow GaAs layers considered here, we
safely setL8'L. Solving for the critical width which pushe
an Xxy state belowXz , we obtain an AlAs thickness of ap
proximately 100 ML. Experimentally, Kesterenet al. found7

the crossover thickness to be;21 ML. However, in the
same studies they showed thatstrain effectslower theExy
level by roughly 23 meV relative toEz . Including this term
into our analysis leads then to a crossover thickness o
ML, in excellent agreement with experiment. It is interesti
to observe, however, that even in the absence of strain
f

t

he

,
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e
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2
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fects, theXxy level is predicted to be the lowest electron sta
for wide enough spacer layers.

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a TB study of the e
states for a GaAs QW embedded in AlAs spacer layers, n
the critical well width for which the fundamental transitio
goes from direct~allowed! to indirect ~forbidden!. We com-
pared 1NN and 2NN models, and found that both provid
the same description of the first hole stateuh1& for all widths
considered. For the first electron stateue1&, both models were
again in agreement for wide enough wells, in the direct-g
regime. For narrower wells, however, important differenc
arise. Two 1NN parametrizations were considered, and
found that the indirect-gap regime is always characterized
a change ink symmetry. For the 2NN model, the indirec
gap regime is characterized by the electron wave func
escaping from the GaAs well, but keeping the samek sym-
metry.

Our study also indicates the relevance of properk-point
sampling. It was pointed out by Lu and Sham3 that Ihm’s
1NN TB calculation15 gave an invalid ordering of theXz
level with respect to theXxy due to the infinite transvers
effective mass in theX valley of the bulk bands inherent t
1NN TB models. We showed here that, for the 1NN mod
not only the relative position of levels ink space is affected
in the narrow GaAs layer limit, but actually an inversion
the real space positionof the levels may result when a mor
complete k-point sampling is considered through larg
enough supercells.

For type II structures, we show that for increasing AlA
barrier width a crossover in the lowest electron state sym
try, from Xz to Xxy , is expected. This transition, induced b
theXx-Xy coupling, is predicted to occur even in the absen
of strain effects.
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