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Self-similar magnetoconductance fluctuations in quantum dots
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Self-similarity of magnetoconductance fluctuations in quantum dots is investigated by means of a tight
binding Hamiltonian on a square lattice. Regular and chaotic dots are modeled by either a perfectL3L square
or introducing diagonal disorder on a number of sites proportional toL. The conductance is calculated by
means of an efficient implementation of the Kubo formula. The degree of opening of the cavity is varied by
changing the widthW of the connected leads. It is shown that the fractal dimensionD is controlled by the ratio
W/L. The fractal dimension decreases from 2 to 1 whenW/L increases from 1/L to 1, and is almost indepen-
dent of other parameters such as Fermi energy, leads configuration, etc. This result is consistent with recent
experimental data for soft-wall cavities, which indicate thatD decreases with the degree of wall softening~or,
alternatively, cavity opening!. The results hold for both regular and chaotic cavities.
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I. INTRODUCTION

Conductance fluctuations in quantum dots have been
subject of much current interest.1–5 Experimental evidence
indicates that the graph of conductance versus the app
magnetic field ~perpendicular to the cavity! have a self-
similar character.2,3 In particular, self-similar patterns dow
to the mT scale were reported in Ref. 2. More recently, it h
been observed that magnetoconductance fluctuations ha
fractal character with a fractal dimension which decrea
with the gate voltage applied to the cavity.3 The effect of the
latter is to decrease the potential well experienced by
carriers~soft-wall potential!.

These experimental findings seem to be in agreement
theoretical studies which predict a self-similar character
conductance fluctuations in mixed-phase-space systems.4 Al-
though the theoretical foundation of these findings see
sound, few detailed calculations are available in the lite
ture. The purpose of this paper is to present and discuss
results of an extensive numerical study of the fractal cha
ter of magnetoconductance fluctuations in quantum dots.
will not consider the low-magnetic-field region, where wea
localization effects have been observed1,2 and investigated
theoretically,6–8 but rather we shall look at conductance flu
tuations over a fairly wide range of magnetic fields. T
opening of the cavity, that was achieved in the experime
by means of a gate voltage,3 is simulated by increasing th
ratio W/L, whereW is the width of the leads andL the linear
dimension of the dot. The results are consistent with
experimental result of Ref. 3, namely, that the fractal dim
sion decreases with the degree of opening of the cavity.

The paper is organized as follows. The results of a se
classical theory of magnetoconductance fluctuations and
main features of the experimental results are discussed in
remaining part of this section. Section II is devoted to
description of the model and the theoretical tools. Particu
attention is given to the method we use to calculate the
rent. The results are described and compared to experim
in Sec. III, while some concluding remarks are included
Sec. IV.
PRB 610163-1829/2000/61~19!/13014~7!/$15.00
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A. Theoretical background

It has been argued that in purely chaotic systems class
particles describe trajectories which sweep the phase spa
an ergodic fashion.4,9 As a consequence, escape from t
cavity occurs exponentially fast. Instead, in mixed syste
~like most real billiards; see below! the probability of staying
longer than a timet within the cavity follows a power
law.4,10 In the presence of a magnetic fieldB, the particles
acquire a phase exp(2p iAB/F0), which varies with the
numberAB/F0 of magnetic flux quantaF05h/e enclosed
by a trajectory of total swept areaA. Again, in mixed sys-
tems the probability distribution of enclosed areas larger t
A follows a power law,

P~A!;A2g. ~1!

It is interesting to consider the possible existence of bou
to the exponentg. The available information corresponds
the survival probability~the probability of staying in the cav
ity a time longer thant), which is also expected to follow a
power law with an exponent similar to that of the distributio
of areas.4 Numerical results indicate that the survival pro
ability follows a power law with an exponent in the rang
1,g,2.10,11 This result is consistent with the analysis
Meiss et al.12 These authors proved that the survival tim
distribution for the entry set obeyed a power law with
exponent greater than 1.

It was suggested by Ketzmerick4 that power laws such a
that of Eq.~1! lead to self-similarity and fractality. This au
thor used a semiclassical approach4 to show that the change
in the conductance~at a fixed energyE) due to a small
change in the magnetic field,

DG5G~E,B1DB!2G~E,B!, ~2!

is a random variable with zero mean and a variance wh
assuming a power law such as that of Eq.~1!, is proportional
to a power ofDB. The result, reported in Refs. 4 and 13,
13 014 ©2000 The American Physical Society
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^~DG!2&;~DB!g ~3!

~see Ref. 14!. Random processes having such a variance
zero mean are known as fractional Brownian motion, eit
persistent or antipersistent having 1,g,2 or 0,g,1,
respectively.15 The corresponding graph is fractal with
fractal dimensionD given by

D522g/2. ~4!

Taking account of the bounds forg discussed above, w
conclude thatD varies in the range 1–1.5.

It should be remarked that the mixed character of a ca
can have several sources.16,17 First note that in the presenc
of a magnetic field only the circle remains integrable no m
ter how large the field is. Square cavities become nonin
grable as soon as the field is switched on. Moreover, c
necting the leads can also break down a regular behavi18

even in the case of a circular dot. On the other hand, it is a
widely accepted that the magnetic field regularizes fully c
otic cavities.16 Thus it is likely that most experimental, rea
situations can fit into the framework described above.

B. Survey of experimental results

The most detailed study of the fractal character of m
netoconductance fluctuations in quantum dots is that of
chrajdaet al.3 The experiments were carried out on a s
dium cavity with an area of 5.3310212 m22, a lithographic
radius of 1.1mm, and an electron densityn52.531015 m2

~we take the average of densities before and after illum
tion, see Ref. 3!. Leads having a rather large width o
0.7 mm were used. The magnetic fieldB was varied from 0
to 0.2 T ~note that the conductance is symmetric relative
B50). Introducing the numerical value of the flux quantu
F05h/e54.14310215 W b, the corresponding flux range
F'(0 –260)F0. On the other hand, the fractal analysis w
carried out over increments of the magnetic fie
in the rangeDB'1024–1021 T which corresponds toDF
'(0.13–130)F0, although the fittings were actually don
over a narrower rangeDF'(0.9–65)F0. The fractal dimen-
sion of the magnetoconductance curves varied with incre
ing gate voltage approximately in the range 1.35–1.0. T
authors of Ref. 3 carried out a similar fractal analysis for
data of Ref. 2 obtaining a fractal dimensionD51.3. In Ref.
2, narrower leads 0.2mm wide were used on Sinai cavitie
produced from 1-mm squares.

To figure out to what extent the range of magnetic fie
explored in the experiments can be considered small as
cerns the validity of the semiclassical approximation,16 we
have calculated the cyclotron radiusr c corresponding to the
maximum flux reached in the experiments.3 In terms of the
magnetic flux, the classical cyclotron radiusr c is written as

r c5
mvA

h

F0

F
, ~5!

wherem andv are the mass and velocity of electrons,A is
the area of the cavity, andh is Planck’s constant. The elec
tron velocity can be obtained from the two-dimensional el
tron density,v5(\/m)A2pn. Introducing the values of the
parameters given above andF5260F0, we obtain r c
52.5 mm, which is approximately twice the typical radius
the stadium.
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II. MODEL AND METHODS

A. Hamiltonian

The quantum dot is described by means of a tight-bind
Hamiltonian with a single atomic level per lattice site onL
3L clusters of the square lattice,

Ĥ5 (
m,n P IS

em,num,n&^m,nu2 (
^m,n;m8,n8&

tm,n;m8,n8

3um,n&^m8,n8u, ~6!

whereum,n& represents an atomic orbital on site (m,n). In-
dexes run from 1 toL, and the symbol̂ & denotes that the
sum is restricted to nearest neighbors. Using Landau’s ga
the hopping integral is given by

tm,n;m8,n85t expS 2p i
m

~L21!2

F

F0
D , m5m8

5t otherwise, ~7!

where (L21)2 is the area of the cluster, andF05h/e the
quantum of magnetic flux. The hopping integralt will be
used as the unit of energy, whereas lengths will be meas
in terms of the lattice constanta (t51 anda51). The en-
ergyem,n of atomic levels at impurity sites is randomly cho
sen between2D/2 andD/2, whereas at other sitesem,n50.
Impurities were taken on 2L sites forming a cross centere
on the square dot. The latter procedure has been checke
give chaotic behavior in isolated cavities.19 Placing the im-
purities on the surface sites20,21 would require avoiding the
leads’ entrance sites~in order to avoid excessively stron
scattering effects!. This choice would give an amount of im
purities that decreases with the width of the leads, and t
will hinder a study of the change of the fractal dimensi
with W/L.

In our model the electrons see a potential that jum
abruptly at the surface sites. This potential cannot of cou
model the parabolic potential produced by the gate volt
used in the experiments of Ref. 3. Theopeningof the cavity
induced by this softening of the walls was simulated in t
present case by increasing the width of the leads. As sh
below, this procedure gives results for the variation of t
fractal dimensions with the degree of opening of the cav
in qualitative agreement with experimental observations.

B. Conductance

The conductance~measured in units of the quantum o
conductanceG05e2/h) was computed by using an efficien
implementation of Kubo formula. A detailed description
the method can be found in Ref. 23, whereas application
mesoscopic systems are described in Refs. 24 and 18. F
current propagating in thex direction, the static electrica
conductivity is given by

G522S e2

h DTr@~\ v̂x!Im Ĝ~E!~\ v̂x!Im Ĝ~E!#, ~8!

where ImĜ(E) is obtained from the advanced and retard
Green functions,
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Im Ĝ~E!5
1

2i
@ ĜR~E!2ĜA~E!#, ~9!

and the velocity~current! operatorv̂x is related to the posi-
tion operator x̂ through the equation of motion\ v̂x

5@Ĥ,x̂#, Ĥ being the Hamiltonian.
Numerical calculations were carried out connecting qu

tum dots to semi-infinite leads of width W in the range 1 –L.
The hopping integral inside the leads and between leads
dot at the contact sites is taken equal to that in the quan
dot ~ballistic case!. Assuming the validity of both the one
electron approximation and the linear response, the e
form of the electric field does not change the value ofG. An
abrupt potential drop at one of the two junctions provides
simplest numerical implementation of the Kubo formula23

since, in this case, the velocity operator has finite ma
elements on only two adjacent layers and Green functi
are just needed for this restricted subset of sites. Assum
this potential drop to occur at the left contact side, the vel
ity operator can be explicitly written as

i\vx52(
j 51

W

~ u l , j &^1,j u2u1,j &^ l , j u! ~10!

where (u l , j & are the atomic orbitals at the left contact sit
nearest neighbors to the dot.

Green functions are given by

@EÎ2Ĥ2Ŝ 1~E!2Ŝ 2~E!#Ĝ~E!5 Î , ~11!

where Ŝ1,2(E) are the self-energies introduced by the tw
semi-infinite leads.25 The explicit form of the retarded se
energy due to the mode of wave vectorky is

S~E!5
1

2
$E2e~ky!2 iA42@E2e~ky!#2%, ~12!

for energies within its banduE2e(ky)u,2, where e(ky)
52 cos(ky) is the eigenenergy of the modeky which is quan-
tized asky5(nky

p)/(W11), nky
being an integer from 1 to

W. The transformation from the normal modes to the lo
tight-binding basis is obtained from the amplitudes of t
normal modes,̂nuky&5A2/(W11)sin(nky).

C. Numerical procedures

The linear size of the square clusters was varied in
rangeL547–197, and the energy was fixed atE52p/3.
Some calculations at an energy near the bottom of the b
and through the whole energy band, were also done. In
output leads having a width ofW were attached at opposit
corners of the square: from site~1,1! to site (1,W), and from
(L,L) to (L,L –W). We checked that, as far as fluctuatio
are concerned, the position of the leads is not a relev
parameter. In particular some calculations were done w
the leads connected to contiguous corners as follows:
lead as before, and second from (L,1) to (L,W). In order to
allow for a reliable analysis of the graph of conductance
magnetic flux, we have swept a range ofF larger than that
covered in the experiments. We have checked that fluc
tions do not change much with the magnetic field, provid
that the range of fluxes at which quantum interference effe
are no longer present is not reached~see below!. The flux
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was varied in the range (0 –150)F0. The corresponding cy-
clotron radii can be calculated from the expression forr c
rewritten in the units used here, namely,\2/(2ma2)5t51,
wheret is the hopping integral. Then

r c

L/2
5\v~E!

L

2p

F0

F
, ~13!

where\v(E)5^2Asin2kx1sin2ky&E . For E52p/3 \v(E)
'2.1.24 The minimumr c'0.1(L/2) is reached for the small
est cavity (L547) and the largest flux (F5150F0), and is
more than an order of magnitude smaller than those atta
in the experimental work~see above!.

It is interesting to estimate how the magnetic flux sca
over which fluctuations are expected change with the sys
size. A small flux scale can be derived by equating the m
netic energy\vc to the average level spacing which w
approximate by 8/L2. This givesDF5(2/p)F0, suggesting
that fluctuations are not expected to occur at scales m
lower than one magnetic flux quanta, independently of
system size. As concerns the largest magnetic field, Eq.~13!
indicates that it increases linearly with the linear size of
systemL.

In doing the fractal analysis of the magnetoconducta
graphs we note that they are self-affine~two different mag-
nitudes in the two axes as in the Brownian motion; see R
15!. Thus we use the method proposed by Hurst,15,22 also
followed in Ref. 3. The application of the Hurst algorithm
the present case consists of~i! dividing the magnetic flux
range in intervals of lengthDF; and~ii ! determiningN(DF)
as the difference between the maximum and minimum c
ductances in each interval summed over all intervals in
explored range, and divided byDF. This procedure corre-
sponds, in the standard box-counting algorithm, to tak
rectangular boxes with an infinitely small size in the condu
tance axis.

III. RESULTS

A. Magnetoconductance fluctuations

The effect of the leads width on magnetoconductan
fluctuations is illustrated in Fig. 1. As the width decreas
the graph shows stronger fluctuations, mainly due to the
duction of the momentum constraint. This applies to cavit

FIG. 1. Magnetoconductance vs magnetic flux~both in units of
their respective quanta! in 97397 regular dots (D50), with leads
having widthsW of 9 ~lower curve!, 25 ~middle curve!, and 57
~upper curve! and connected to opposite corners of the dot as
scribed in the text. Calculations were done at an energyE52p/3.
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with or without disorder, and independently of other para
eters of the model~energy, leads configuration, etc.!. For
large W and above a given flux, the conductance coincid
with that obtained forW5L ~a case without interferenc
effects!. In the latter caseG decreases stepwise, each step~of
one conductance quantum! being a consequence of transve
sal modes successively crossing the energy at whichG is
calculated. As the energy difference between the bottom
the transversal modes bands increases with the mag
field25 ~actually in \vc , wherevc5eB/m is the cyclotron
frequency! the width of the steps in Fig. 1 also increases w
B. The results for the energy near the bottom of the ba
show that the transition to the regime in which quantu
interference is negligible occurs at a lower magnetic fi
~see Fig. 2!. This is surely a consequence of the smal
velocity and, thus, cyclotron radius, of electrons at that
ergy.

For moderately wide leads the magnetoconducta
shows two minima~probably a long period oscillation whic
extends up to higher magnetic fields!. The period of the os-
cillation is almost independent ofW ~see Figs. 1 and 2!,
although it increases with the linear size of the system.
instance atE52p/3 the flux increment between the tw
minima forL547 and 97, are 31 and 60 flux quanta, resp
tively. The amplitude of the oscillation, however, decrea
as the leads widthW decreases: forL597, and at the same
Fermi energy, the conductance drop from zero flux to
first minimum is approximately two, seven, and ten cond
tance quanta forW59, 17, and 25, respectively. The perio
also varies with the Fermi energy, being 60 and 24 forE
52p/3 and 3.5, respectively~the results correspond toL
597 andW525). Although we do not have a fully satisfac
tory explanation for this long period oscillation, we sugge
that it could be related to changes in the density of sta
induced by the magnetic field. As the magnetic field
creases the energy levels segregate into bundles w
width, average energy, and number of levels vary with
magnetic field.

The dependence of the conductanceG on energyE is
illustrated in Fig. 3. The figure shows numerical results
F50 and 40F0 on a cavity of linear size 97 and leads 2
wide. In the absence of magnetic fieldG increases, on aver
age, as a function ofE. This is a consequence of the increa

FIG. 2. Magnetoconductance vs magnetic flux~both in units of
their respective quanta! in 97397 dots withD50. The results cor-
respond to energiesE523.5 ~dashed line! andE52p/3 ~continu-
ous and dotted lines!, and leads of width 25 attached at oppos
~dashed and continuous lines! or contiguous~dotted line! corners of
the square as described in the text.
-

s

of
tic

d

d
r
-

e

r

-
s

e
-

t
s

-
se

e

r

-

ing number of transversal modes that contribute to the c
rent. Fluctuations produced by quantum interference are
to be noted. At a finite magnetic field the conductance sho
a more complex behavior, probably as a consequence o
oscillation discussed in the preceding paragraph.

Cavities with disorder~chaotic! also show fluctuations a
a small flux scale, as illustrated in Fig. 4. The magnetoc
ductance curve is less spiky than in regular cavities, alb
globally they are not much different. Fluctuations rema
even for leads as wide as the dot itself (W5L) as a conse-
quence of the lack of the momentum constraint induced
disorder. However, the long-period oscillation observed
regular cavities is no longer present.

B. Fractal dimension

The analysis of the magnetoconductance curves is il
trated in Fig. 5, where results for the number of box
N(DF) required to cover the curves and the variance of E
~3! are plotted versus the flux incrementDF. Fittings for the
number of boxes are far better than for the variance. This
also been reported to occur in the analysis of the fractio
Brownian motion.15 In any case the fitted exponents~shown
in the caption of the figure! fulfill Eq. ~4! within 10%. The
number of decades where a power law is followed increa
with the system size rather slowly. Thus we have not go

FIG. 3. Conductance fluctuations in the whole energy band
97397 dots with no disorder, and leads having a width of 25 a
connected to opposite corners of the cavity as described in the
The results correspond toF50 ~continuous line! and F540F0

~dashed line!.

FIG. 4. Magnetoconductance vs magnetic flux in 97397 dots
either with no disorderD50 ~continuous line! or with disorder
(D56) on 2L impurity sites in cross~broken line!. The results
correspond to an energyE52p/3 and leads of width 17 connecte
to opposite corners of the dot, as described in the text.
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beyondL5197. On the other hand, and in order to do
similar analysis for all sizes, we have carried out fittings
the rangeDF5(1 –10)F0. We have checked for the large
sizes~as in Fig. 5! that increasing this range does not sign
cantly alter the exponents. It is also interesting to note t
the fittings are poor for small values ofDF, as expected.4

A technical point is worthy of comment. It concerns th
determination of the fractal dimension in cases where
flux range in which interference effects are absent is reac
within the explored range of magnetic fields, such as thos
Figs. 1 and 2. In those cases the region where the con
tance decreases stepwise, if included in the analysis,
affect D in a rather spurious way. We have analyzed t
point on the results for the two cases of those figures wh
show that behavior. In the case ofE523.5 and leads 25
wide ~Fig. 1! the results areD51.49 and 1.55 for fits done
over eitherF50 –150 orF50 –70, while forE52p/3 and
leads ofW557 ~Fig. 2! D51.13 no matter whether the men
tioned flux range was or was not included in the fittings. T
effect is larger in the low-energy case, as the smaller elec
velocity ~and, thus, smaller cyclotron radius! induces the en-
tering into that regime at lower degrees of opening~smaller
W) when conductance fluctuations are still important a
consequently,D is large. In any case the effect can be co
sidered as small, and fittings can be safely done in the wh
flux range~induced errors are always well below 10% in t
cases investigated here!.

The dependence on energy and lead configuration
been explored onL597 dots with leads of widthW525
~Fig. 2!. For leads at opposite corners fittings in the fl
rangeDF5(1 –10)F0 give fractal dimensions of 1.46 an
1.49 for E52p/3 andE523.5 ~see Fig. 6!. If the fittings
are done over the whole range of the figure these results

FIG. 5. Fractal analysis of magnetoconductance fluctuation
97397 regular dots (D50), with leads of widths 1~circles! and 33
~diamonds! attached at opposite corners of the dot as discusse
the text, and an energyE52p/3. Filled symbols correspond to th
number of boxesN(DF), and empty symbols to the variance
conductance increments^(DG)2&. The numerical results were fitte
by N(DF)}(DF)2D and ^(DG)2&}(DF)g, obtainingW51, D
52.06, g50.004,W533, D51.47, andg51.42. All fittings were
carried out in the whole range, but for the variance of dots w
W533 which was done forDF51 – 10F0.
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changed to 1.50 and 1.53, respectively. These results i
trate the almost null dependence of the fractal dimension
the Fermi energy, suggesting that the number of open mo
is not an important factor as far as fluctuations are c
cerned. If leads are placed at contiguous corners the re
are not changed significantly:D51.57 for both energies if
the fitting is done over the restricted range, andD51.52 and
1.58 for E52p/3 andE523.5 when fits are carried ou
over the whole range. Differences are in the range 5–10
We can conclude thatD is not much affected either by th
energy at whichG is calculated~or measured! or by lead
configuration.

In Fig. 7 we plot the fractal dimension for three clust
sizes versus the ratioW/L. The collapse of the numerica
results indicate that the relevant parameter is in fact the r
W/L. D monotonically decreases from 2 to 1 asW/L in-
creases from 1/L to 1. In the latter case we do not obta
D51 for regular cavities due to numerical inaccuracies. O
results clearly show that results forD greater than 3/2 are
possible, in apparent contradiction with the remarks mad
Ref. 3. Introducing disorder has no apparent effect onD for

in

in

FIG. 6. Fractal analysis of magnetoconductance fluctuation
97397 regular dots (D50), with leads having a widthW525 and
connected to opposite corners of the square dot as discussed
text. Filled circles correspond to an energyE523.5 and triangles
to E52p/3. The numerical results for the number of box
N(DF) were fitted by N(DF)}(DF)2D, with D51.46 for E
52p/3 andD51.49 for E523.5 for fittings done in the range
DF51210 F0, and D51.50 and 1.53 if done over the whol
range of the figure.

FIG. 7. Fractal dimension of magnetoconductance fluctuatio
vs the ratioW/L, whereW is the width of the leads andL the linear
dimension of the system. The size of the circles is proportiona
the system size. The results correspond to regular~filled circles! and
chaotic~empty circles! cavities of linear sizesL547, 97, and 197.
For chaotic cavities,D56 was used.
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W/L smaller than 0.2. For sufficiently wide leads, howev
disorder increases noise and thusD. The overall behavior of
D versusW/L is, in any case, very similar to that found fo
regular cavities. We have checked that the spatial distr
tion of the impurities does not qualitatively change the
results, although actual values ofD may of course be af-
fected. This indicates that the nature of the closed cavit
B50 is not a determining factor as far as the self-similar
of fluctuations is concerned. For very closed cavities~small
leads width, low wall softening, etc.! the fractal dimension is
near 2~no fractal character! no matter the type of the cavity
and D decreases down to'1 with the degree of opening
also for all cavities, although the limitD51 is probably
never reached in chaotic cavities~see above!. It is also inter-
esting to note that the fact thatD does not depend on th
cavity size indicates that it is not affected by the strength
the magnetic field. In fact the cyclotron radius varies in
factor of 4 from the smallest to the largest cavity investiga
in this work, without a significant change inD.

The above discussion suggests that what matters as f
the fractality of fluctuations is concerned is the degree
opening of the cavity. In particular in our case this is co
trolled by the parameterW/L. To provide a further illustra-
tion of this point, we have calculated the fractal dimension
the conductance versus energy curves of Fig. 3. UsingE as a
tunable parameter can be attained experimentally by ch
ing a gate voltage. The fractal analysis shown in Fig. 8 gi
fractal dimensionsD51.49 and 1.52 forF50 and 40, re-
spectively. These numbers are quite close to those obta
for curves of the conductance versus the magnetic flux~see
Fig. 6!, giving support to our conclusions.

C. Comparison with experiment

The results reported in Fig. 7 are in line with the decre
in D observed experimentally as the degree of softness o
cavity walls was increased.3 A more detailed comparison
with experimental results is worthwhile. In Ref. 3 a fractal
dimension of 1.35 was reported for the less opened ca
~this is the result for the most confining voltage reported
Ref. 3!. The cavity had a leads width to lithographic radi
ratio of '0.64. For such a ratio our results giveD'1.4 and

FIG. 8. Fractal analysis of the conductance vs energy curve
Fig. 3. The results are for a 97397 regular dots with no disorde
(D50), with leads of widthW525 attached at opposite corners
the square dot. Triangles correspond toF50 and circles toF
540F0. The numerical results for the number of boxesN(DE)
were fitted byN(DE)}(DE)2D, with D51.49 for F50 and D
51.52 forF540F0. The fittings were done in the whole range.
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1.1 for a square cavity with or without disorder, respective
As the cavity investigated in Ref. 3 had a stadium shape,
results should be compared with those corresponding to c
ties with disorder.20 The agreement is quite satisfactory.

Concerning the results of Ref. 2, for which the authors
Ref. 3 reportedD'1.3, we note that the discrepancy wi
our results is rather appreciable. In Ref. 2W/L was 0.2, for
which the numerical results of Fig. 7 giveD51.5–1.6. The
slight difference between the fractal dimensions reported
the two experiments~1.35 and 1.3, respectively! cannot be
understood in the light of the present analysis, as their
spectiveW/L ratio differ in approximately a factor of 4.

IV. CONCLUDING REMARKS

We have presented a numerical study of magnetocond
tance fluctuations in regular and chaotic cavities addresse
investigate how the fractal dimension of the magnetocond
tance curves depends on the system parameters. Our re
indicate that the relevant parameter as far as the fracta
mension is concerned is the degree of opening of the cav
which in this work was changed by varying the width of th
leads attached to the dot.D decreases with the degree
opening (D51 –2 as the ratioW/L decreased from 1 to
1/L), in line with an experimental investigation in which do
opening was tuned by means of a gate voltage that softe
the dot walls. Note that values ofD greater 1.5 are incom
patible with the semiclassical result of Eq.~4!, once the
proper bounds for the exponentg are taken into account~see
above and in Ref. 13!. We have not yet investigated th
classical dynamics of our model~a billiard with boundaries
at which reflection is not specular! and, in particular, whethe
the survival probability decays as a power law and, if
how the classical power-law exponentg varies with W/L.
Thus, it is not clear whether the semiclassical theory of R
4 should apply at all to the quantum model we have stud
numerically.26,27

The results also indicate that, for sufficiently wide lead
fluctuations are more important in chaotic than in regu
cavities, likely due to a reduction of the momentum co
straint in the former. As a consequence the fractal dimens
is larger in chaotic than in regular cavities for the same
gree of opening.

We have also investigated the effects of other system
rameters such as lead configuration and Fermi energy,
showed that they do not significantly alter the fractal dime
sion. This conclusion is further supported by numerical
sults for the fractal dimension of conductance versus ene
curves. The results forD are practically identical to those
obtained for curves of conductance versus magnetic flux
cavities with the sameW/L ratio. We hope that these resul
will help in the analysis of future experimental studies of th
topic.
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