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Self-similar magnetoconductance fluctuations in quantum dots
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Self-similarity of magnetoconductance fluctuations in quantum dots is investigated by means of a tight
binding Hamiltonian on a square lattice. Regular and chaotic dots are modeled by either alpeifesquare
or introducing diagonal disorder on a number of sites proportiondl. tbhe conductance is calculated by
means of an efficient implementation of the Kubo formula. The degree of opening of the cavity is varied by
changing the widtiW of the connected leads. It is shown that the fractal dimenBi@controlled by the ratio
WI/L. The fractal dimension decreases from 2 to 1 wkéih increases from 1/to 1, and is almost indepen-
dent of other parameters such as Fermi energy, leads configuration, etc. This result is consistent with recent
experimental data for soft-wall cavities, which indicate thaiecreases with the degree of wall softenfog
alternatively, cavity opening The results hold for both regular and chaotic cavities.

I. INTRODUCTION A. Theoretical background

) ) It has been argued that in purely chaotic systems classical

Conductance fluctuations in quantum dots have been thgaticles describe trajectories which sweep the phase space in
subject of much current intereSt Experimental evidence an ergodic fashioft? As a consequence, escape from the
indicates that the graph of conductance versus the applieghvity occurs exponentially fast. Instead, in mixed systems
magnetic field (perpendicular to the cavityhave a self- (like most real billiards; see belowhe probability of staying
similar charactef:3 In particular, self-similar patterns down longer than a timet within the cavity follows a power
to the mT scale were reported in Ref. 2. More recently, it hasaw.*1° In the presence of a magnetic fiehj the particles
been observed that magnetoconductance fluctuations haveaaquire a phase exp{@AB/®,), which varies with the
fractal character with a fractal dimension which decreaseaumberAB/d, of magnetic flux quantab,=h/e enclosed
with the gate voltage applied to the cavitfhe effect of the by a trajectory of total swept arel Again, in mixed sys-
latter is to decrease the potential well experienced by theems the probability distribution of enclosed areas larger than
carriers(soft-wall potential. A follows a power law,

These experimental findings seem to be in agreement with
theoretical studies which predict a self-similar character of B
conductance fluctuations in mixed-phase-space systéths. P(A)~A". @
though the theoretical foundation of these findings seems
sound, few detailed calculations are available in the literait is interesting to consider the possible existence of bounds
ture. The purpose of this paper is to present and discuss the the exponenty. The available information corresponds to
results of an extensive numerical study of the fractal characthe survival probabilityfthe probability of staying in the cav-
ter of magnetoconductance fluctuations in quantum dots. Wity a time longer thart), which is also expected to follow a
will not consider the low-magnetic-field region, where weak-power law with an exponent similar to that of the distribution
localization effects have been obserV8dnd investigated of areas’ Numerical results indicate that the survival prob-
theoretically?~® but rather we shall look at conductance fluc- ability follows a power law with an exponent in the range
tuations over a fairly wide range of magnetic fields. Thel<y<2 1% This result is consistent with the analysis of
opening of the cavity, that was achieved in the experiment#eiss et al}? These authors proved that the survival time
by means of a gate voltagds simulated by increasing the distribution for the entry set obeyed a power law with an
ratio W/L, whereW is the width of the leads aridthe linear  exponent greater than 1.
dimension of the dot. The results are consistent with the It was suggested by Ketzmeritthat power laws such as
experimental result of Ref. 3, namely, that the fractal dimenthat of Eq.(1) lead to self-similarity and fractality. This au-
sion decreases with the degree of opening of the cavity. thor used a semiclassical approaoh show that the change

The paper is organized as follows. The results of a semiin the conductancéat a fixed energyE) due to a small
classical theory of magnetoconductance fluctuations and thehange in the magnetic field,
main features of the experimental results are discussed in the
remaining part of this section. Section Il is devoted to a
description of the model and the theoretical tools. Particular AG=G(E,B+AB)-G(E,B), @
attention is given to the method we use to calculate the cur-
rent. The results are described and compared to experimeritsa random variable with zero mean and a variance which,
in Sec. lll, while some concluding remarks are included inassuming a power law such as that of EL), is proportional
Sec. IV. to a power ofAB. The result, reported in Refs. 4 and 13, is
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<(AG)2>~(AB)7’ ®) Il. MODEL AND METHODS

(see Ref. 1 Random processes having such a variance and A. Hamiltonian
zero mean are known as fractional Brownian motion, either
persistent or antipersistent having<<2 or 0<y<l1,
respectivelyt®> The corresponding graph is fractal with a
fractal dimensiorD given by

: D=2-yl2. _ @ H= > emamnimnl— 2ty
Taking account of the bounds foy discussed above, we mn e IS (m,n;m’,n’)
conclude thaD varies in the range 1-1.5. A
It should be remarked that the mixed character of a cavity X[m,my(m’,n’l, ©
can have several sourc¥s.’ First note that in the presence where|m,n) represents an atomic orbital on site,f). In-
of a magnetic field only the circle remains integrable no matdexes run from 1 td., and the symbo{ ) denotes that the
ter how large the field is. Square cavities become nonintesum is restricted to nearest neighbors. Using Landau’s gauge
grable as soon as the field is switched on. Moreover, conthe hopping integral is given by
necting the leads can also break down a regular beh&ior,
even in the case of a circular dot. On the other hand, it is also m @
widely accepted that the magnetic field regularizes fully cha- tmnm =t exp( 27ri—2 3) , m=m’
otic cavities'® Thus it is likely that most experimental, real, (L=1)"Po
situations can fit into the framework described above.

The quantum dot is described by means of a tight-binding
Hamiltonian with a single atomic level per lattice site bon
XL clusters of the square lattice,

=t otherwise, (7)

B. Survey of experimental results where (—1)? is the area of the cluster, anbl,=h/e the
. uantum of magnetic flux. The hopping integtalill be
The most detailed study of the fractal character of mag-q ; ;
netoconductance fluctuations in quantum dots is that of Saqsed as the unit of energy, whereas lengths will be measured

) 3 . . in terms of the lattice constaat (t=1 anda=1). The en-
chrajdaet al” The experiments were carried out on a sta-er of atomic levels at impurity sites is randomlv cho-
dium cavity with an area of 5:810"'2 m~2, a lithographic gy €mn purity y

radius of 1.14m, and an electron density=2.5x 10 m? sen between- A/2 andA/2, whereas at other sites, ,=0.

(we take the average of densities before and after i"Umi“a:-)mnﬂﬂre't'sesugfer%;?kﬂeo{;fei'tefoizrdnf,ﬂghzggs:ncﬁﬂ;irfg d1to
tion, see Ref. B Leads having a rather large width of d ' P

0.7 ;um were used. The magnetic fiellwas varied from 0 give chaotic behavior in isolated cavitiEsPlacing the im-

. . e . 1 . T

to 0.2 T (note that the conductance is symmetric relative t urltu?s on the su_rfa(_:e sités™ would require a\_/0|d|ng the
B=0). Introducing the numerical value of the flux quantum eads entrance sne_ém orQer to av0|q excessively strong
®,=hle=4.14x< 1015 Wb, the corresponding flux range is scattering effecys This choice would give an amount of im-

- . purities that decreases with the width of the leads, and thus
(I)N.(O_ZGO)CDO' On the other hand, the fractal analy5|s Wasill hinder a study of the change of the fractal dimension
carried out over increments of the magnetic field

in the rangeAB~10"*-10"* T which corresponds ta® with WIL.

o In our model the electrons see a potential that jumps
~(0.13-130%, although the fittings were actually done | h £ . Thi ial f
over a narrower rangad~ (0.9-65yb,. The fractal dimen- abruptly at the surface sites. This potential cannot of course

model the parabolic potential produced by the gate voltage
Sised in the experiments of Ref. 3. Thpeningof the cavity

ing gate voltage approximately in the range 1.35-1.0. Th?nduced by this softening of the walls was simulated in the

authors of Ref. 3 carried out a similar fractal analysis for the - : :
data of Ref. 2 obtaining a fractal dimensibr=1.3. In Ref. present case by increasing the width of the leads. As shown

5 leads 0 id d Sinai ” below, this procedure gives results for the variation of the
, narrower leads 0.2m wide were used on Sinal cavities fractal dimensions with the degree of opening of the cauvity,
produced from 1xm squares.

) ... in qualitative agreement with experimental observations.
To figure out to what extent the range of magnetic field

explored in the experiments can be considered small as con-

cerns the validity of the semiclassical approximatidmye B. Conductance

have calculated the cyclotron radiuscorresponding to the The conductancémeasured in units of the quantum of

maximum flux reached in the experimeﬁtl&n terms of the Conductancﬁoz eZ/h) was Computed by using an efficient

magnetic flux, the classical cyclotron radiysis written as  jmplementation of Kubo formula. A detailed description of
moA ®, the method can be found in Ref. 23, whereas applications to

= —, (5)  mesoscopic systems are described in Refs. 24 and 18. For a

h @ current propagating in th& direction, the static electrical
wherem andv are the mass and velocity of electrolsis  conductivity is given by
the area of the cavity, anldlis Planck’s constant. The elec-

e

tron velocity can be obtained from the two-dimensional elec- _ e’ ~ A - -
tron density,v = (A/m)+/27n. Introducing the values of the G=-2 h Tl (hw)IMG(E) (hv)ImG(E)],  (8)

parameters given above and=260D, we obtainr, .
=2.5 um, which is approximately twice the typical radius of where ImG(E) is obtained from the advanced and retarded
the stadium. Green functions,
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. 1 . - '
Im G(E)= 5 [GY(E) - GNE)], 9 30 [

and the velocity(curren} operatoro, is related to the posi- =

tion operator x through the equation of motioriv,

=[H,x], H being the Hamiltonian. B 1
Numerical calculations were carried out connecting quan- 10 - 1
tum dots to semi-infinite leads of width W in the rangell— 5L ]

20 | e’

G/G,

The hopping integral inside the leads and between leads and o W"‘“WWWW‘“WMM
dot at the contact sites is taken equal to that in the quantum 0 30 60 90 120 150
dot (ballistic cas¢ Assuming the validity of both the one- /D,

electron approximation and the linear response, the exact
form of the e'?c”'c field does not change th_e valu@qﬂn their respective quankan 97X 97 regular dots £ =0), with leads
a.brupt potential .drop. at one of thg two junctions provides th%aving widthsW of 9 (lower curve, 25 (middle curve, and 57
simplest numerical implementation of the Kubo fornfdla (upper curve and connected to opposite corners of the dot as de-

since, in this case, the velocity operator has finite matrixcriped in the text. Calculations were done at an en&rgy- /3.
elements on only two adjacent layers and Green functions

are just needed for this restricted subset of sites. Assumin\g,
this potential drop to occur at the left contact side, the veloc
ity operator can be explicitly written as

FIG. 1. Magnetoconductance vs magnetic flbwth in units of

as varied in the range (0—15D). The corresponding cy-
clotron radii can be calculated from the expression rfgr
rewritten in the units used here, namefyf/(2ma?)=t=1,
wheret is the hopping integral. Then

W
iﬁvx=—j§1 (XL =11i)X0iD (10

r L ®
. - _ —=fiv(E) 5= —, (13)
where (l,j) are the atomic orbitals at the left contact sites L/2 2m ©
nearest neighbors to the dot. wherefiv (E) = (2 sir’k, + sirk)g . For E=— /3 fiv(E)
Green functions are given by ~2.12The minimumr ;~0.1(L/2) is reached for the small-

IR 3 N est cavity ( =47) and the largest fluxd§ =150D,), and is
R [EI=H=24(B)=2(B)JGB)=1, (1 more than an order of magnitude smaller than those attained
where2; 5(E) are the self-energies introduced by the twoin the experimental worksee above
semi-infinite lead$® The explicit form of the retarded self It is interesting to estimate how the magnetic flux scales
energy due to the mode of wave veckgris over which fluctuations are expected change with the system
1 size. A small flux scale can be derived by equating the mag-
S(E)=={E—e(k,)—iV4—[E—e(k,) ]2, (12) netic energyfw, to the average level spacing which we
2 Y Y approximate by &/. This givesA® = (2/7)®,, suggesting
for energies within its bandIE—e(ky)|<2, where (k) that fluctuations are no_t expected to occur at scales much
=2 cosk,) is the eigenenergy of the mo#g which is quan- lower tha_n one magnetic flux quanta, mdepe_znc!ently of the
tized ask, = (ny m)/(W+1), n,_ being an integer from 1 to System size. As concerns the largest magnetic field(E3).
W. The transfoyrmation from ﬂ.y]e normal modes to the |Oca||nd|cates that it increases linearly with the linear size of the

tight-binding basis is obtained from the amplitudes of theSyStemL.

— I In doing the fractal analysis of the magnetoconductance
normal modes(nlk,) = V2/(W+1)sin(nk,). graphs we note that they are self-affifteo different mag-

) nitudes in the two axes as in the Brownian motion; see Ref.
C. Numerical procedures 15). Thus we use the method proposed by Hit$t also
The linear size of the square clusters was varied in théollowed in Ref. 3. The application of the Hurst algorithm to

rangeL=47-197, and the energy was fixed Bt — /3.  the present case consists @f dividing the magnetic flux
Some calculations at an energy near the bottom of the ban#ange in intervals of length ®; and(ii) determiningN(A ®)
and through the whole energy band, were also done. Inpugs the difference between the maximum and minimum con-
output leads having a width o/ were attached at opposite ductances in each interval summed over all intervals in the
corners of the square: from sité,1) to site (1W), and from  explored range, and divided hy®. This procedure corre-
(L,L) to (L,L-W). We checked that, as far as fluctuationssponds, in the standard box-counting algorithm, to taking
are concerned, the position of the leads is not a relevarfectangular boxes with an infinitely small size in the conduc-
parameter. In particular some calculations were done witf{ance axis.
the leads connected to contiguous corners as follows: first
lead as before, and second froin, 1) to (L,W). In order to Ill. RESULTS
allow for a reliable analysis of the graph of conductance vs
magnetic flux, we have swept a range®flarger than that
covered in the experiments. We have checked that fluctua- The effect of the leads width on magnetoconductance
tions do not change much with the magnetic field, providedluctuations is illustrated in Fig. 1. As the width decreases
that the range of fluxes at which quantum interference effectthe graph shows stronger fluctuations, mainly due to the re-
are no longer present is not reach@sge below The flux  duction of the momentum constraint. This applies to cavities

A. Magnetoconductance fluctuations
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FIG. 2. Magnetoconductance vs magnetic flbrth in units of FIG. 3. Conductance fluctuations in the whole energy band of

their respective quantan 97X 97 dots withA=0. The results cor- 97x97 dots with no disorder, and leads having a width of 25 and
respond to energies= — 3.5 (dashed linpandE = — 7/3 (continu- connected to opposite corners of the cavity as described in the text.
ous and dotted lingsand leads of width 25 attached at opposite The results correspond ®=0 (continuous ling and ® =40d,,
(dashed and continuous lines contiguougdotted ling corners of  (dashed ling

the square as described in the text.

. ) , ) ing number of transversal modes that contribute to the cur-
with or without disorder, and independently of other param-gn; Flyctuations produced by quantum interference are also
eters of the modelenergy, leads configuration, 8tcFor (5 he noted. At a finite magnetic field the conductance shows
large W and above a given flux, the conductance coincide$y more complex behavior, probably as a consequence of the
with that obtained folW=L (a case without interference gcillation discussed in the preceding paragraph.
effects. In the latter cas& decreases stepwise, each siefp Cavities with disordefchaotio also show fluctuations at
one conductance quantyiieing a consequence of transver- 5 sma|| flux scale, as illustrated in Fig. 4. The magnetocon-
sal modes successively crossing the energy at wilids  gyctance curve is less spiky than in regular cavities, albeit
calculated. As the energy difference between the bottom ofjopally they are not much different. Fluctuations remain
the transversal modes bands increases with the magnefi§en for leads as wide as the dot itsdlf£L) as a conse-
field™ (actually infw;, wherew,=eB/m is the cyclotron  quence of the lack of the momentum constraint induced by

frequency the width of the steps in Fig. 1 also increases withgisorder. However, the long-period oscillation observed in
B. The results for the energy near the bottom of the bandegyiar cavities is no longer present.

show that the transition to the regime in which quantum
interference is negligible occurs at a lower magnetic field

(see Fig. 2 This is surely a consequence of the smaller B. Fractal dimension
velocity and, thus, cyclotron radius, of electrons at that en- The analysis of the magnetoconductance curves is illus-
ergy. trated in Fig. 5, where results for the number of boxes

For moderately wide leads the magnetoconductancg(A®) required to cover the curves and the variance of Eq.
shows two minimgprobably a long period oscillation which (3) are plotted versus the flux incremei®. Fittings for the
extends up to higher magnetic fieJdShe period of the 0s-  number of boxes are far better than for the variance. This has
cillation is almost independent diV (see Figs. 1 and)2  aiso been reported to occur in the analysis of the fractional
although it increases with the linear size of the system. FOgrownian motion® In any case the fitted exponerfhown
instance atE=—7/3 the flux increment between the two in the caption of the figudefulfill Eq. (4) within 10%. The
minima forL =47 and 97, are 31 and 60 flux quanta, respeChumber of decades where a power law is followed increases

tively. The amplitude of the oscillation, however, decreasesyith the system size rather slowly. Thus we have not gone
as the leads widthV decreases: fob =97, and at the same

Fermi energy, the conductance drop from zero flux to the
first minimum is approximately two, seven, and ten conduc-
tance quanta fow=9, 17, and 25, respectively. The period
also varies with the Fermi energy, being 60 and 24 Eor
=—m/3 and 3.5, respectivelithe results correspond to
=97 andW=25). Although we do not have a fully satisfac-
tory explanation for this long period oscillation, we suggest
that it could be related to changes in the density of states
induced by the magnetic field. As the magnetic field in-
creases the energy levels segregate into bundles whose
width, average energy, and number of levels vary with the
magnetic field.

The dependence of the conductareon energyE is FIG. 4. Magnetoconductance vs magnetic flux inx®7 dots
illustrated in Fig. 3. The figure shows numerical results forejther with no disorde’A=0 (continuous ling or with disorder
®=0 and 4@, on a cavity of linear size 97 and leads 25 (A=6) on 2. impurity sites in crosgbroken ling. The results
wide. In the absence of magnetic fighlincreases, on aver- correspond to an enerdgy= — /3 and leads of width 17 connected
age, as a function d&. This is a consequence of the increas-to opposite corners of the dot, as described in the text.

G/G,
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FIG. 6. Fractal analysis of magnetoconductance fluctuations in
97X 97 regular dots 4 =0), with leads having a widtkiv=25 and
connected to opposite corners of the square dot as discussed in the
10 text. Filled circles correspond to an enerf§y — 3.5 and triangles

AD/D, to E=— /3. The numerical results for the number of boxes
N(A®) were fitted by N(A®)o<(AD)~P, with D=1.46 for E

FIG. 5. Fractal analysis of magnetoconductance fluctuations ir= — 7/3 andD =1.49 for E= — 3.5 for fittings done in the range
97X 97 regular dots £ =0), with leads of widths Icircles and 33 A®=1-10®, and D=1.50 and 1.53 if done over the whole
(diamonds attached at opposite corners of the dot as discussed irange of the figure.
the text, and an enerdy= — /3. Filled symbols correspond to the
number of boxedN(A®), and empty symbols to the variance of changed to 1.50 and 1.53, respectively. These results illus-
conductance incremen{¢AG)?). The numerical results were fitted trate the almost null dependence of the fractal dimension on
by N(A®)(A®) " and ((AG)*)=(A®)”, obtainingW=1, D the Fermi energy, suggesting that the number of open modes
=2.06, y=0.004,W=33,D=1.47, andy=1.42. All fittings were  js not an important factor as far as fluctuations are con-
carried out in the whole range, but for the variance of dots withcerneq, If leads are placed at contiguous corners the results
W= 33 which was done foA®=1-10D,. are not changed significanthp =1.57 for both energies if

beyondL=197. On the other hand, and in order to do athe fitting is done over the restricted range, & 1.52 and

similar analysis for all sizes, we have carried out fittings in1-28 for E=—m/3 andE=—3.5 when fits are carried out
the rangeAd = (1—10)b,. We have checked for the larger over the whole range. Dn‘ferences are in the range 5-10 %.
sizes(as in Fig. 5 that increasing this range does not signifi- W& ¢an conclude thab is not much affected either by the

cantly alter the exponents. It is also interesting to note tha‘?ne]f_gy at whichG is calculated(or measureror by lead
the fittings are poor for small values Afd, as expected. configuration. _ ,
A technical point is worthy of comment. It concerns the In Fig. 7 we plot the fractal dimension for three cluster

determination of the fractal dimension in cases where th&1Z€S Versus the ratig//L. The collapse of the numerical

flux range in which interference effects are absent is reachelfSults indicate that the relevant parameter is in fact the ratio

within the explored range of magnetic fields, such as those of//L- D monotonically decreases from 2 to 1 @4L in-
Figs. 1 and 2. In those cases the region where the condu€/€ases from 1/to 1. In the latter case we do not obtain
tance decreases stepwise, if included in the analysis, ma@zl for regular cavities due to numerical inaccuracies. Our
affect D in a rather spurious way. We have analyzed this'®Sults clearly show that results f@r greater than 3/2 are
point on the results for the two cases of those figures whiclR0Ssible, in apparent contradiction with the remarks made in
show that behavior. In the case Bi= —3.5 and leads 25 Ref. 3. Introducing disorder has no apparent effecDofor

wide (Fig. 1) the results aré® =1.49 and 1.55 for fits done

10°

over eitherd® =0-150 or® =0-70, while forE= — 7/3 and 20

leads ofW=57 (Fig. 2) D= 1.13 no matter whether the men- i

tioned flux range was or was not included in the fittings. The 18 '’

effect is larger in the low-energy case, as the smaller electron L6l s .

velocity (and, thus, smaller cyclotron radjusduces the en- Az ¢ o

tering into that regime at lower degrees of openfamaller 14} ’.- .

W) when conductance fluctuations are still important and, ..

consequentlyD is large. In any case the effect can be con- 12¢ . ., -
sidered as small, and fittings can be safely done in the whole L0 ‘ , * )
flux range(induced errors are always well below 10% in the 00 02 04 Wi 06 08 10

cases investigated here

The dependence on energy and lead configuration has giG. 7. Fractal dimension of magnetoconductance fluctuations,
been explored o =97 dots with leads of widthV=25 s the ratiow/L, whereW is the width of the leads aridthe linear
(Fig. 2. For leads at opposite corners fittings in the flux dimension of the system. The size of the circles is proportional to
rangeA® =(1-10)P, give fractal dimensions of 1.46 and the system size. The results correspond to redfilkd circles and
1.49 forE=—7/3 andE= —3.5 (see Fig. . If the fittings  chaotic(empty circle$ cavities of linear sizet =47, 97, and 197.
are done over the whole range of the figure these results af®r chaotic cavitiesA =6 was used.
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10° . | | 1.1 for a square cavity with or without disorder, respectively.
As the cavity investigated in Ref. 3 had a stadium shape, the
results should be compared with those corresponding to cavi-
ties with disordef® The agreement is quite satisfactory.
Concerning the results of Ref. 2, for which the authors of
Ref. 3 reported~ 1.3, we note that the discrepancy with
our results is rather appreciable. In ReM\ZL was 0.2, for
which the numerical results of Fig. 7 gii@=1.5-1.6. The
slight difference between the fractal dimensions reported for
10° . . . ) the two experiment$1.35 and 1.3, respectivelyannot be
10 1A°I'3 10 10 understood in the light of the present analysis, as their re-

) spectiveW/L ratio differ in approximately a factor of 4.
FIG. 8. Fractal analysis of the conductance vs energy curves of

Fig. 3. The results are for a ¥XP7 regular dots with no disorder
(A=0), with leads of widthV=25 attached at opposite corners of IV. CONCLUDING REMARKS

the square dot. Triangles correspondd®o=0 and circles tod .
=40b,. The numerical results for the number of boXe$AE) We have p_resepted a numerical Stqdy of_r_nagnetoconduc-
were fitted byN(AE)x(AE)~®, with D=1.49 for =0 andD tance fluctuations in regular and chaotic cavities addressed to

=1.52 ford=400,. The fittings were done in the whole range.  INvestigate how the fractal dimension of the magnetoconduc-
tance curves depends on the system parameters. Our results
indicate that the relevant parameter as far as the fractal di-
mension is concerned is the degree of opening of the cavity,

D versusW/L is, in any case, very similar to that found for Which in this work was changed by varying the width of the

regular cavities. We have checked that the spatial distribu/€@ds attached to the dad decreases with the degree of

tion of the impurities does not qualitatively change these®Pening O=1-2 as the ratioV/L decreased from 1 to
results, although actual values Bf may of course be af- 1/L), in line with an experimental investigation in which dot

fected. This indicates that the nature of the closed cavity apPeNing was tuned by means of a gate voltage that softened
B=0 is not a determining factor as far as the self-similaritytn® dot walls. Note that values &f greater 1.5 are incom-

of fluctuations is concerned. For very closed cavitemall  Patible with the semiclassical result of E(), once the
leads width, low wall softening, efcthe fractal dimension is PrOPer bounds for the exponeptare taken into accourisee

near 2(no fractal charact¢mo matter the type of the cavity, abovg and in Ref. )3 We have not yet i.nvestigated' the
and D decreases down te-1 with the degree of opening, cla55|_cal dynamlcs_ of our modéh b|II|_ard Wl_th boundaries
also for all cavities, although the limib=1 is probably at Whlch_reflectlon is not specu)aand, in particular, Whether
never reached in chaotic cavitiesee above It is also inter- the survival pr_obab|llty decays as a power Iaw and, if so,
esting to note that the fact tha does not depend on the NOW the classical power-law exponeptvaries with W/L.

cavity size indicates that it is not affected by the strength off hus, it is not clear whether the semiclassical theory of R_ef.
the magnetic field. In fact the cyclotron radius varies in a% Should apply at all to the quantum model we have studied

: 26,27
factor of 4 from the smallest to the largest cavity investigated'imerically: o . .
in this work, without a significant change D. The results also indicate that, for sufficiently wide leads,

The above discussion suggests that what matters as far fyctuations are more important in chaotic than in regular
the fractality of fluctuations is concerned is the degree offavities, likely due to a reduction of the momentum con-
opening of the cavity. In particular in our case this is con-straint in the former. As a consequence the fractal dimension

trolled by the parameteA/L. To provide a further illustra- is larger in chaotic than in regular cavities for the same de-
tion of this point, we have calculated the fractal dimension ofdr€€ of opening.

the conductance versus energy curves of Fig. 3. UBiag a We have also investigateq the gffects of othe_r system pa-
tunable parameter can be attained experimentally by chang@Meters such as lead configuration and Fermi energy, and
ing a gate voltage. The fractal analysis shown in Fig. 8 give howed that they do not significantly alter the fractal dimen-
fractal dimension =1.49 and 1.52 fod=0 and 40. re- Sion. This conclusion is further supported by numerical re-

spectively. These numbers are quite close to those obtainétﬂ“ts for the fractal dimension of conductance versus energy

for curves of the conductance versus the magnetic (e curves. The results fob are practically identical to those
Fig. 6), giving support to our conclusions. obtained for curves of conductance versus magnetic flux in

cavities with the sam®V/L ratio. We hope that these results

) ) _ will help in the analysis of future experimental studies of this
C. Comparison with experiment topic.

N(AE)

W/L smaller than 0.2. For sufficiently wide leads, however,
disorder increases noise and tilisThe overall behavior of

The results reported in Fig. 7 are in line with the decrease
in D observed experimentally as the degree of softness of the
cavity walls was increasedA more detailed comparison
with experimental results is worthwhile. In RS a fractal We thank O. Bohigas, L. Brey, R. Ketzmerick, M.J.
dimension of 1.35 was reported for the less opened cavitganchez, C. Tejedor, and D. Ulimo for useful comments and
(this is the result for the most confining voltage reported inremarks. This work was supported in part by the Spanish
Ref. 3. The cavity had a leads width to lithographic radius CICYT (Grant No. PB96-0085and the European TMR
ratio of ~0.64. For such a ratio our results gilde=1.4 and  Network-Fractals c.n. FMRXCT980183.
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