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Effect of long-range random potentials on the electronic transport properties
of disordered semiconductors: A numerical study

H. Overhof and M. Schmidtke
Fachbereich Physik, Universita¨t-GH Paderborn, D-33098 Paderborn, Germany

~Received 8 October 1999!

A numerical model is used to calculate dc conductivity, thermoelectric power, and Hall mobility of quasi-
classical carriers subject to a long-range static random potential. The convergence of the results with respect to
the model parameters is investigated. The long-range spatial coherence of the random potential is shown to
affect the results to some degree, but less than inferred from the earlier study.
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I. INTRODUCTION

The concept of a long-range random potential that mo
lates the mobility edges of amorphous semiconductors
been introduced by Tauc1 in 1970 and by Fritzsche2 in 1971
in order to explain the discrepancy between optical and e
trical band gaps in these systems. This concept was fur
used to explain a variety of phenomena, as e.g., the dif
ence between the activation energies of the electrical dc
ductivity and of the thermoelectric power,3–5 the change of
the drift mobility upon doping6 in singly dopeda-Si:H, the
broadening of the optical tail in compensateda-Si:H,7 and
many other phenomena, see e.g., Ref. 8. In compens
crystals and in doped amorphous semiconductors a ran
potential is caused by the nonhomogeneity of a random
tribution of charged dopants,9–11 but other effects can als
contribute, as e.g., hydrogenated dangling bonds12 and struc-
tural inhomogeneities.13,14

In this paper we study~as in Ref. 4! electronic transport
by nondegenerate electrons above a mobility edge, mo
lated by a random static potential with a characteristic wa
length that exceeds both the elastic and the inelastic sca
ing length. In a semiclassical description the rand
potential modulates the local carrier density and therew
the local conductivity. At elevated temperatures, the el
tronic current is nonzero in the entire sample with some p
erence to regions with low values of the random potent
As the temperature is lowered, the regions that effectiv
carry the current will shrink to filaments with cross sectio
that tend to zero. The highest potential on such a filam
determines the activation energy of the dc conductivity wh
the thermoelectric power, connected with the mean ene
transported by the electronic current, provides a measur
the mean potential on this filament. Hence the activation
ergy of the dc conductivity is expected to exceed the act
tion energy of the thermoelectric power by some quan
EQ* , which is observed experimentally ina-Si:H ~Ref. 3! and
other amorphous semiconductors~see Ref. 5!.

While also many other experimental results have b
interpreted in terms of a random potential, little is know
about the correlation of the amplitude of the random pot
tial or rather its varianced with experimental data likeEQ* .
To date, only the earlier numerical study by one of t
present authors4 has adressed the three-dimensional~3D!
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transport problem. The limited computing power available
the time caused a restriction to very small model sizes. It w
concluded that for a given value ofd the value obtained for
EQ* depends sensitively on the correlation of the random
tential. Recently this conclusion has been challenged by
model calculations.14 In the present paper we reinvestiga
the problem to find out whether the discrepancy between
two papers is caused by the different dimensionalities. F
thermore, we make use of the computer power available
day to investigate the numerical reliability of the results.

II. NUMERICAL MODEL

We consider cubic samples of lengthN•L that are divided
into N3N3N subcubes of lengthL (N3N subsquares for
2D systems!. L must be larger than the elastic and the inel
tic scattering lengths, but much smaller than the characte
tic wavelength of the random potential. It is then possible
approximateV(rW) in subcubei by its average valueV( i ),
assigning a local conductivitys i(T) to subcubei

s i~T!5s0 expS 2
EC2EF1V~ i !

kBT D . ~1!

In a second step the sample is replaced by an equiva
network of conductors. From the resulting current distrib
tion we obtain the local current densitiesjW(rW) and the aver-
aged sample conductivitys and compare it with the conduc
tivity s0 of a sample withd50.

From the current density the heat current transported
the electrical current of carriers with chargeq

wW q~rW !5
1

q
jW~rW !@EC2EF1V~rW !1AkBT# ~2!

is calculated using a constant heat of transport termA.1.
FromwW q(rW) we calculate the mean Peltier coefficientP and
P0, the Peltier coefficient ford50, from which the contri-
bution of the random potential to the thermoelectric powe
obtained

Ŝ5
1

q

P2P0

T
. ~3!

Combining conductivity and thermoelectric power we obta
12 977 ©2000 The American Physical Society
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Q̂~T!5 ln~s/s0!1
q

kB
S̄̂~T!, ~4!

where the overline indicates a configurational average~see
below!.

The Hall effect is calculated from the longitudinal curre
densities, assigning local transverse Hall fields within
subcubes. In a second step the network equations for
transverse Hall voltages are solved. We thus obtain the
eraged Hall mobititymH in terms ofm0, the Hall mobility for
d50. It is essential to decouple the calculation of the tra
verse Hall voltages from the much larger longitudinal vo
ages. Even with this precaution, the calculation of the H
mobility for lower temperatures is subject to numerical ina
curacies.

In order to avoid the computer-time consuming constr
tion of the random potential from the Coulomb potential
screened point charges~as in Ref. 4! we start in this paper
with a Gaussian potential distribution of varianced. Assign-
ing random values to the subcubes results in a random
tential Vstart without spatial correlation. A potential with
finite correlation length is obtained fromVstart averaging
each potentialV( i ) with the potential of the 26 adjacent su
cubes~8 subsquare in 2D cases!. The procedure is repeate
nav times and results in a potential with a Gaussian distri
tion and a correlation lengthl cor.1.7AnavL.

For infinite systems a single sample~i.e., a single random
potential data set! would determine the transport paramete
In a numerical treatment restricted to finite systems we h
performed configurational averages, since different sam
lead to somewhat different transport parameters. The res
presented in this study are always configurationally avera
over 100 sample, a number that proved sufficient for
determination of mean values and variances«.

A fair representation ofV(rW) by a steplike potentialV( i )
requiresN to be large. While the numerical effort to solve
conductance network problem consisting ofN3 nodes is
greatly reduced because the conductance matrix is spars
computational effort still rises proportional toN.7 For 2D
systems our calculations are limited toN<100, while for 3D
systems the limit isN<45. This in turn means that for 3D
systems neitherL! l cor nor l cor!N•L can really be fulfilled.
We shall show, however, that our results, within certain lim
tations, are representative for infinite systems. In order
reduce the effect of the surfaces of our finite samples, we
periodic boundary conditions in transverse direction, a p
caution that forN>20 turned out not to be necessary.

A. Convergence with respect to sample size

Since the conductivity Eq.~1! depends exponentially o
the potentialsV( i ), a configurational average should sta
from ln(s/s0) rather than froms/s0. In Fig. 1 we therefore
plot the mean valueln(s/s0) for 3D samples of different size
N. Since the spread becomes important for larger value
d/kBT, we show results ford/kBT510, the lowest tempera
ture considered in this study. The distribution function of t
individual values of ln(s/s0) closely resembles a Gaussian
width «@ ln(s/s0)#, which is also indicated in Fig. 1.

Also shown in Fig. 1 are averaged values for the sam
conductances and the sample resistances, respectively
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former value is dominated by the samples with the high
conductances, while the latter is dominated by samples w
the largest resistivity value. ForN&20 both the distributions
of s/s0 ands0 /s turn out to be very asymetric, and the ra
occurence of samples with exceptionally large values vir
ally prohibited the determination of converged averag
s/s0 ands0 /s, respectively.

While for N510, the conductances of individual sampl
vary by five orders of magnitude, Fig. 1 shows that forN
*30 the spread is greatly reduced. While the differen
betweenln(s/s0), ln(s/s0), and2 ln(s0 /s) are reduced with
rising N, the averaged valuesln(s/s0) are practically identi-
cal for N>20, indicating convergence with respect to t
sample size.

B. Analogous percolation problem

In the limit d/kBT@1, the conductance problem for un
correlated random potentials can be approximated, divid
the subcubes into two classes, conducting subcubes
V( i )<Vc and nonconducting subcubes withV( i )>Vc in
analogy to open and blocked sites of a site percolat
problem.15 A ‘‘critical concentration’’ pc ~depending on the
geometry of the network! of sites must be open in order t
have the first contiguous ‘‘critical path’’ of open sites exte
through the sample.

The equivalent to the critical path is a path withV( i )
<Vc in all subcubes. In the low-temperature limit this pa
carries the total current. From the analogy,Vc can be deter-
mined via

pc5E
2`

Vc
p~V!dV, ~5!

which is also the low-temperature activation energyEs of
the network conductance. In a similar manner the aver
Peltier heat can be approximated by

FIG. 1. ln(s/s0) ~full spheres!, ln(s/s0) ~empty diamonds!, and
2 ln(s0 /s) ~squares! for the N3N3N resistor model withz56
and d/kBT510 as a function ofN. The bars denote the varianc
«@ ln(s/s0)#.
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1

pc
E

2`

Vc
V•p~V!dV. ~6!

III. RESULTS

In this section we discuss the results obtained both for
and 3D systems. The results for 2D systems are of partic
interest, because comparison can be made with recent m
calculations of Quicker and Kakalios.14

A. 2D systems

Results for 2D models withnav53 are shown in Fig. 2.
Clearly, the results are converged with respect toN. If we
approximate

Q̂~T!5Q̂02
EQ*

kBT
~7!

FIG. 3. 2 ln(s/s0) ~spheres! compared withq/kBS̄̂ ~squares!

~left! and Q̂ ~right! calculated for a 20320320 resistor network
model as a function of the normalized inverse temperature foz
56. The bars denote the variances of the individual values.

FIG. 2. ln(s/s0) ~full spheres! andq/kBS̄̂ ~full squares! for the
two-dimensionalN3N resistor model withz54 andd/kBT510 as
a function of N. The bars denote the variances«@ ln(s/s0)# and

«(q/kŜ), respectively.
D
ar
del

we obtainEQ* ;1.16d. We observe that for 2D systems th
results are rather independent ofnav, in agreement with
Quicker and Kakalios.14

B. 3D systems

The transport data for a 3D network withN520 are plot-

ted in Fig. 3.q/kBS̄̂ appears to be activated withES* 52.0d.
As in the 2D case,s/s0 rises with risingd/kBT, because the
highest value of the potential encountered on the curre
carrying path is negative, an effect that is much more p
nounced in a 3D system (pc50.307 for a 3D,z56 cubic
lattice15! than in a 2D system~with pc50.59 for az54 2D
square network!.

FIG. 4. Q̂ is plotted vsd/kBT, for 10310310 samples~open
squares!, for 20320320 samples~full circles!, and for 40340
340 samples~full squares!.

FIG. 5. Q̂ calculated for 100 20320320 systems plotted vs
d/kBT ~full spheres! are compared with calculations~open spheres!
where the random potential has been coarse-grained blocks of
subcubes. An extrapolation for the high-temperature limits is a
indicated.
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The results fors/s0 displayed in Fig. 3 show larger de

viations from a strictly activated behavior and, therefore,Q̂
also exhibits a distinct kink neard/kBT.5. Figure 4 shows
this kink not to be an effect of the sample size: with risingN,
the kink is shifted to somewhat larger values ofd/kBT, but
apparently does not disappear.

Instead this kink is caused by the finite size of the s
cubes: As discussed above, the cross section of the cur
carrying path is reduced until it approaches a single line
the zero-temperature limit. In contrast, in our numeri
model the size of the subcube sets a strict lower limit to

cross sections, giving rise to the kink observed inQ̂.

In Fig. 5 results forQ̂ for two different sets ofN520
samples are compared to illustrate this effect. The first se
standard calculation withnav53. In the second set, the po
tential of the first set was coarse grained, replacing the
tential of blocks of 23232 subcubes by its average valu
As is clearly seen, coarse-grained potentials lead to a kin
higher temperatures when compared with results from po
tial without coarse graining.

IV. HALL EFFECT

Although the sign of the Hall effect in amorphous sem
conductors has been known to be anomalous for more
20 years,3 this sign anomaly is still not understood to da
Clearly, it is not just a consequence of disorder, since
anomaly is absent in microcrystalline samples16 and disap-
pears in recrystallized amorphous samples.17 Our model cal-
culations are performed assuming a normal Hall effect in
absence of a random potential.

In Fig. 6 we show the effect of the random potential
the Hall mobility for this case. Ford/kBT&5 the Hall mo-
bility is activated with a well-defined activation energyEH .
For larger values ofd/kBT the slope of the Hall mobility

FIG. 6. ln(mH /m0) and «@ ln(mH /m0)# plotted vsd/kBT for 20
320320 samples.
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gradually decreases, whereas the variance« of the Hall mo-
bility increases. Since a calculation ofmH is plagued with the
same cross-section problem of the current-carrying path
the dc conductivity, we have not been able to determine
low-temperature value ofmH any further and note that a
well-defined activation energy is observed only for t
smaller values ofd/kBT.

V. DISCUSSION

In a previous paper4 it had been claimed that the slopeEQ̂
*

of Q̂ is small compared tod unless the potential is long
range with l cor@L. This claim has been challenge
recently:14 Results obtained for a 2D model with uncorr
lated potentials lead to a slopeEQ̂

* that is about 2/3 of the
slope derived from potentials withl cor>L. We have checked
this result for 2D systems and obtain similar numbers. F
3D systems the difference between results forQ̂ derived
from correlated and from uncorrelated potentials is similar
2D systems. In Fig. 7 we show results for ln(s/s0) and for

q/kBS̄̂ obtained for 3D samples atd/kBT510 with different
values ofnav. The value ofQ̂ increases by a about 30%
when going fromnav50 to nav51, with marginal changes
for larger values ofnav. Also shown in Fig. 7 are results fo
nav50 for a model withz518. Obviously a change of the
coordination number affects the conductivity and the therm
electric power data leading to rather minor changes forQ̂
only.

From our present result, the best estimate for the trans
parameters in the presence of a random potential can be
marized as

ln~s/s0!520.610.82
d

kBT
, ~8!

FIG. 7. 2 ln(s/s0) ~spheres! compared withq/kBS̄̂ ~squares! for
a 20320320 resistor model withz56 atd/kBT510 as a function
of nav. For nav50 the results forz518 are shown as open dia
monds.
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kB
S51.622.1

d

kBT
, ~9!

Q̂51.021.28
d

kBT
, ~10!

ln~mH /m0!50.0720.5
d

kBT
~11!
in reasonable agreement with the previous results4 (Q̂51.8
21.75d/kBT) obtained for 3D samples of size 10310310,
for which the convergence was questionable.

In contrast to the earlier results4 the results presented her
can be considered as well converged with respect to
sample size, at least ford/kBT&5. Furthermore, in genera
agreement with Ref. 14, we find a sizable slopeEQ for un-
correlated potentials as well. If these have a Gaussian di
bution, we obtain a value ofEQ that is about 2/3 of the value
given in Eq.~10! for the correlated random potential.
45
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