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Effect of long-range random potentials on the electronic transport properties
of disordered semiconductors: A numerical study
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A numerical model is used to calculate dc conductivity, thermoelectric power, and Hall mobility of quasi-
classical carriers subject to a long-range static random potential. The convergence of the results with respect to
the model parameters is investigated. The long-range spatial coherence of the random potential is shown to
affect the results to some degree, but less than inferred from the earlier study.

[. INTRODUCTION transport problem. The limited computing power available at
the time caused a restriction to very small model sizes. It was
The concept of a long-range random potential that modueoncluded that for a given value éfthe value obtained for

lates the mobility edges of amorphous semiconductors hasg, depends sensitively on the correlation of the random po-
been introduced by Tatiin 1970 and by Fritzsclfén 1971  tential. Recently this conclusion has been challenged by 2D
in order to explain the discrepancy between optical and elegnodel calculations? In the present paper we reinvestigate
trical band gaps in these systems. This concept was furthéhe problem to find out whether the discrepancy between the
used to exp|ain a Variety of phenomenal as e.g., the d|fferﬂN0 papers is caused by the different dimensionalities. Fur-
ence between the activation energies of the electrical dc coritérmore, we make use of the computer power available to-
ductivity and of the thermoelectric pow&? the change of day to investigate the numerical reliability of the results.
the drift mobility upon dopin§in singly dopeda-Si:H, the
broadening of the optical tail in compensate®i:H,” and Il. NUMERICAL MODEL

many other phenomena, see e.9., Ref. 8. In compensated We consider cubic samples of lendth L that are divided
crystals and in doped amorphous semiconductors a randomto NXNxN subcubes of length (NxN subsquares for
potential is caused by the r%g?lhomogeneny of a random dis)py gystemy L must be larger than the elastic and the inelas-
tribution of charged dopants,™ but other effects can also jc scattering lengths, but much smaller than the characteris-
contribute, as e.g., hydrogenated dangling b&halsd struc- tic wavelength of the random potential. It is then possible to

- 013,14 >
tural mhomogeneltle?. . . approximateV(r) in subcubei by its average valu&/(i),
In this paper we studyas in Ref. 4 electronic transport assigning a local conductivity- (T) to subcube

by nondegenerate electrons above a mobility edge, modu-

lated by a random static potential with a characteristic wave- Ec—Es+V(i)
length that exceeds both the elastic and the inelastic scatter- oi(T)=09 exp( - ?)
ing length. In a semiclassical description the random B
potential modulates the local carrier density and therewithn a second step the sample is replaced by an equivalent
the local conductivity. At elevated temperatures, the elecnetwork of conductors. From the resulting current distribu-
tronic current is nonzero in the entire sample with some prefsion we obtain the local current densitié(if) and the aver-
erence to regions with low values of the random potentialaged sample conductivity and compare it with the conduc-
As the temperature is lowered, the regions that effectivel;tivity o, of a sample withs=0.

carry the current will shrink to filaments with cross sections  £rom the current density the heat current transported by
that tend to zero. The highest potential on such a filamenfa electrical current of carriers with charge

determines the activation energy of the dc conductivity while

the thermoelectric power, connected with the mean energy R .

transported by the electronic current, provides a measure of Wy(r)==j(r)[Ec—Eg+V(r)+AkgT] (2

the mean potential on this filament. Hence the activation en- q

ergy of the dc conductivity is expected to exceed the activajs calculated using a constant heat of transport térsl.

tion energy of the thermoelectric power by some quantity,:romvgq(;) we calculate the mean Peltier coefficidhtand

E5 ., which is observed experimentally @Si:H (Ref. 3 and 1, the Peltier coefficient fos=0, from which the contri-

other amorphous semiconductdsee Ref. i bution of the random potential to the thermoelectric power is
While also many other experimental results have beepptained

interpreted in terms of a random potential, little is known

about the correlation of the amplitude of the random poten- . 111-TI,

tial or rather its variance with experimental data lik&g . S= q T ()

To date, only the earlier numerical study by one of the

present authofshas adressed the three-dimensiofiD) Combining conductivity and thermoelectric power we obtain

@
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QT)=inalag) + (8T) @ ol o

—In(ao/0)

where the overline indicates a configurational averempe _

below). - 10+ 1
The Hall effect is calculated from the longitudinal current

densities, assigning local transverse Hall fields within the gl ?? |

subcubes. In a second step the network equations for the

transverse Hall voltages are solved. We thus obtain the av-

In(a/a0), In(a/a)

eraged Hall mobitityw, in terms ofu, the Hall mobility for 6 u A
6=0. It is essential to decouple the calculation of the trans-
verse Hall voltages from the much larger longitudinal volt- 1 5/kBT =10
ages. Even with this precaution, the calculation of the Hall I - 1
mobility for lower temperatures is subject to numerical inac-
curacies. ol v

In order to avoid the computer-time consuming construc- 10 20 30 40 50
tion of the random potential from the Coulomb potential of N

screened point chargdas in Ref. 4 we start in this paper —_— — .
with a Gaussian potential distribution of variangeAssign- FIG. 1. In(oog) (full spheres, In(o/ao) (.e mpty d'amon.d)s and
—In(oy/o) (squarep for the NXNXN resistor model withz=6

ing random values to the subcubes results in a random po- B ; .
tential Vg Without spatial correlation. A potential with a anld 5//kBT_1O as a function oN. The bars denote the variance
finite correlation length is obtained fro,, averaging slin(eloo)]

each potential/(i) with the potential of the 26 adjacent sub- . . ) )
cubes(8 subsquare in 2D caseShe procedure is repeated former value is dominated by the samples with the highest

N, times and results in a potential with a Gaussian distribu£onductances, while the latter is dominated by samples with
tion and a correlation length,=1.7yn.L. the largest resistivity value. F&f=<20 both the distributions

For infinite systems a single samplee., a single random of o/oy andoy/o turn out to be very asymetric, and the rare

potential data s¢would determine the transport parameters.©¢curence _Of samples with _exc_eptionally large values virtu-
In a numerical treatment restricted to finite systems we hav@!ly_prohibited the determination of converged averages
performed configurational averages, since different sample&/ 9o andoo/a, respectively. o

lead to somewhat different transport parameters. The results While for N=10, the conductances of individual samples
presented in this study are always configurationally average¥a'y by five orders of magnitude, Fig. 1 shows that for
over 100 sample, a number that proved sufficient for the=30 the spread is greatly reduced. While the differences
determination of mean values and varianees betweenin(a/ay), In(olop), and —In(oy /o) are reduced with

A fair representation o¥/(r) by a steplike potentiaV/(i) ~ rising N, the averaged values(o/og) are practically identi-
requiresN to be large. While the numerical effort to solve a cal for N=20, indicating convergence with respect to the
conductance network problem consisting Nf nodes is Sample size.
greatly reduced because the conductance matrix is sparse, the
computational effort still rises proportional td.” For 2D
systems our calculations are limitedNe=< 100, while for 3D o
systems the limit iN<45. This in turn means that for 3D I the limit 6/kgT>1, the conductance problem for un-
systems neithelr <1 ., nor | ,,<N- L can really be fulfilled. correlated rand.om potentials can be apprpxmated, d|V|d|ng
We shall show, however, that our results, within certain limi-the subcubes into two classes, conducting subcubes with
tations, are representative for infinite systems. In order t¢/(i)<Vc and nonconducting subcubes wit(i)=V, in
reduce the effect of the surfaces of our finite samples, we us@halogy to open and blocked sites of a site percolation
periodic boundary conditions in transverse direction, a preProblem:” A “critical concentration” p. (depending on the

caution that folN=20 turned out not to be necessary. geometry of the netwopkof sites must be open in order to
have the first contiguous “critical path” of open sites extend

through the sample.
The equivalent to the critical path is a path wi{i)
Since the conductivity Eq.1l) depends exponentially on <V, in all subcubes. In the low-temperature limit this path
the potentialsV(i), a configurational average should start carries the total current. From the analoyy, can be deter-
from In(o/oy) rather than frono/o. In Fig. 1 we therefore  mined via
plot the mean valui(o/oy) for 3D samples of different size
N. Since the spread becomes important for larger values of Ve
S/kgT, we show results fob/kgT=10, the lowest tempera- pc:f p(V)dv, (5)
ture considered in this study. The distribution function of the —
individual values of In¢/ay) closely resembles a Gaussian of
width e[ In(a/oy)], which is also indicated in Fig. 1. which is also the low-temperature activation enekgy of
Also shown in Fig. 1 are averaged values for the samplehe network conductance. In a similar manner the average
conductances and the sample resistances, respectively. TReltier heat can be approximated by

B. Analogous percolation problem

A. Convergence with respect to sample size
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FIG. 2. In(o/oy) (full spheres and q/kBg (full squares for the
two-dimensionaN X N resistor model witle=4 andé/kgT=10 as
a function of N. The bars denote the variancepIin(a/oy)] and

e(q/k9), respectively.

1 (Ve
Ell—pcfocv'p(v)dv- (6)

Ill. RESULTS

In this section we discuss the results obtained both for 2D
and 3D systems. The results for 2D systems are of particulé
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FIG. 4.Q is plotted vsé&/kgT, for 10X 10X 10 sampleqgopen
squarey for 20x20x20 samples(full circles), and for 40<40
X 40 samplegfull squares.

we obtainE’é~1.16§. We observe that for 2D systems the
results are rather independent of,, in agreement with
Quicker and Kakaliod?

B. 3D systems
The transport data for a 3D network with= 20 are plot-
gd in Fig. 3.q/kgS appears to be activated WIEEE = 2.05.

interest, because comparison can be made with recent modep In the 2D caseg/ o, rises with risingd/kgT, because the

calculations of Quicker and Kakalid$.

A. 2D systems

Results for 2D models witm,,~=3 are shown in Fig. 2.
Clearly, the results are converged with respecNtdf we
approximate

~ - _a _ Fo
Q(M=Qo— = (7)
kgT
5 25
3
s ., ]
vE . I .
Tl om . |
5- i I . . i
|‘U)_10_ - - { i
a
= ¢ []
151 - -
] ]
B T e w—) 74 6 8 10
J/RBT J/kBT

FIG. 3. —In(d/ay) (spheres compared withq/kBg (squares

highest value of the potential encountered on the current-
carrying path is negative, an effect that is much more pro-
nounced in a 3D systemp(=0.307 for a 3D,z=6 cubic
lattice®) than in a 2D systenfwith p.=0.59 for az=4 2D
square network
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FIG. 5. © calculated for 100 2820x 20 systems plotted vs
S/kgT (full sphere$ are compared with calculatioriepen sphergs

(left) and O (right) calculated for a 28 20X 20 resistor network  where the random potential has been coarse-grained blocks of eight
model as a function of the normalized inverse temperaturezfor subcubes. An extrapolation for the high-temperature limits is also
=6. The bars denote the variances of the individual values. indicated.
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FIG. 6. |nm) and e[In(uy/ uo)] plotted vsd/kgT for 20 FIG. 7. —In(oloy) (spherescompared withg/kgS (squaresfor
X 20X 20 samples. a 20X 20X 20 resistor model witlz=6 at 5/kgT=10 as a function
of n,,. Forn,=0 the results forz=18 are shown as open dia-

monds.
The results foro/ o displayed in Fig. 3 show larger de-

viations from a strictly activated behavior and, therefdpe, gradually decreases, whereas the variancd the Hall mo-

also exhibits a distinct kink nea#/kgT=5. Figure 4 shows bility increases. Since a calculation gf, is plagued with the

this kink not to be an effect of the sample size: with rislig  same cross-section problem of the current-carrying path as

the kink is shifted to somewhat larger values&kgT, but  the dc conductivity, we have not been able to determine the

apparently does not disappear. low-temperature value ofxy any further and note that a
Instead this kink is caused by the finite size of the subwell-defined activation energy is observed only for the

cubes: As discussed above, the cross section of the currergmaller values ob/kgT.

carrying path is reduced until it approaches a single line in

the zero-temperature limit. In contrast, in our numerical

model the size of the subcube sets a strict lower limit to all

cross sections, giving rise to the kink observedin In a previous papéiit had been claimed that the sloﬁé

In Fig. 5 results forQ for two different sets oN=20 of Q is small compared ta5 unless the potential is long
samples are compared to illustrate this effect. The first set imange with I ,,>L. This claim has been challenged
standard calculation with,,=3. In the second set, the po- recently** Results obtained for a 2D model with uncorre-
tential of the first set was coarse grained, replacing the poated potentials lead to a slopi% that is about 2/3 of the
tential of blocks of 2<2X2 subcubes by its average value. slope derived from potentials wilh,=L. We have checked
As is clearly seen, coarse-grained potentials lead to a kink ahis result for 2D systems and obtain similar numbers. For
higher temperatures when compared with results from poterzp systems the difference between results @rderived
tial without coarse graining. from correlated and from uncorrelated potentials is similar to

2D systems. In Fig. 7 we show results fordig,) and for

q/ksgobtained for 3D samples @ kgT=10 with different

values ofn,,. The value of® increases by a about 30%

. . . when going fromn,,=0 to n,~=1, with marginal changes
Although the sign of the Hall effect in amorphous semi- for larger values of,,. Also shown in Fig. 7 are results for

conductors has been known to be anomalous for more than _ e :
20 years this sign anomaly is still not understood to date%a"_o- for @ model withz=18. Obviously a change of the
’ coordination number affects the conductivity and the thermo-

Clearly, it is not just a consequence of disorder, since the . . . A
. . ) . . electric power data leading to rather minor changesQor
anomaly is absent in microcrystalline sampfeand disap-

pears in recrystallized amorphous sampte®ur model cal- only. _
i - : From our present result, the best estimate for the transport

‘?)arameters in the presence of a random potential can be sum-
marized as

V. DISCUSSION

IV. HALL EFFECT

absence of a random potential.
In Fig. 6 we show the effect of the random potential on

the Hall mobility for this case. Fob/kgT=5 the Hall mo-

bility is activated with a well-defined activation energy;.

8
For larger values ob/kgT the slope of the Hall mobility In(o/ o) =~0.6+0.8 FBT’ ®
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ﬂs 1.6-2. 1k . )
B
Q=1.0- 1.28[%, (10)
B
)
|n(MH/MO)=o.o7—o.ﬁ (12)

in reasonable agreement with the previous re%lqﬁ;s: 1.8
—1.755/kgT) obtained for 3D samples of size XA0x 10,
for which the convergence was questionable.

In contrast to the earlier resutihe results presented here
can be considered as well converged with respect to the
sample size, at least fa¥/kgT=<5. Furthermore, in general
agreement with Ref. 14, we find a sizable sldfg for un-
correlated potentials as well. If these have a Gaussian distri-
bution, we obtain a value d&q that is about 2/3 of the value
given in Eq.(10) for the correlated random potential.
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