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Spin tunneling and phonon-assisted relaxation in Mp,-acetate
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We present a comprehensive theory of the magnetization relaxation in, gaadetate crystal in the high-
temperature regimel=1 K), which is based on phonon-assisted spin tunneling induced by quartic magnetic
anisotropy and weak transverse magnetic fields. The overall relaxation rate as function of the longitudinal
magnetic field is calculated and shown to agree well with experimental data including all resonance peaks
measured so far. The Lorentzian shape of the resonances, which we obtain via a generalized master equation
that includes spin tunneling, is also in good agreement with recent data. We derive a general formula for the
tunnel splitting energy of these resonances. We show that fourth-order diagonal terms in the Hamiltonian lead
to satellite peaks. A derivation of the effective linewidth of a resonance peak is given and shown to agree well
with experimental data. In addition, previously unknown spin-phonon coupling constants are calculated ex-
plicitly. The values obtained for these constants and for the sound velocity are also in good agreement with
recent data. We show that the spin relaxation in,)acetate takes place via several transition paths of
comparable weight. These transition paths are expressed in terms of intermediate relaxation times, which are
calculated and which can be tested experimentally.

. INTRODUCTION the width of the hyperfine induced Gaussi#réturns out to
be smaller forT=1 K than the width of the Lorentzians
The magnetization relaxation in the molecular obtained below and seen in the experim@r&imilarly, di-
magnet Mn,-acetate with chemical for- polar interactions have been ruled out by experiments on
mula, [Mny( CHsCO0);6 (H,0)40;,]- 2CH;COOH- 4H,0  diluted sampled® Thus, for temperature$=1 K we can
(henceforth abbreviated as M has attracted much recent safely neglect hyperfine and dipolar fields, and the dominant
interest since several experiméntshave indicated unusu- source of the peak broadening can be explained consistently
ally long relaxation times — about two months at a temperaby spin-phonon effects only.
ture of about 2 K — as well as pronounced peaks in the In a critical comparison between  model
relaxation timé&=8in response to a varying magnetic fi¢hg  calculations®>***"~?%and experimental datd** Friedmanet
when applied along the easy axis of the Morystal. These al.!! point out that a consistent explanation of the experimen-
peaks correspond to an increased relaxation rate of the matglly observed relaxation is still missing. A good starting
netization of Mn, and occur wherH, is tuned to multiples  point for theoretical calculations has been formulated by Vil-
of about 0.44 T. According to earlier suggestiothis phe-  lain et al,}” where the relaxation is described in terms of
nomenon has been interpreted as a manifestation of resonagin-phonon interaction and a generalized Orbach process.
tunneling of the magnetization, often referred to as macroHowever, this approach does not include the dependence on
scopic quantum tunnelinVQT). A qualitative explanation the external fieldH,. Also, one of the main challenges for
goes as follows. From the microscopic point of view a;Mn theory is to explain the overall shape of the relaxation curve
cluster acts like a giant spin with lengs= 10 as long as the as well as the nearly perfect Lorentzian shape of the mea-
external magnetic field is small compared to the exchangseured resonance peaKs.
interactions between the Mn ions, which is fulfilled in the In this work we perform a model calculation of the mag-
experimental range considered in this paper. The relaxationetization relaxation which is based on phonon-assisted tun-
rate of the magnetization increases at field values where theeling. We present a self-consistent theory which is in rea-
spin states become pairwise degenerate. It is this degenerasgnably good agreement both with the overall relaxation rate
that determines the resonance condition. As the external fieldncluding all resonancésmeasured by Thomast al.” (see
H, is moved away from a resonance the spin states are neig. 3) and with the Lorentzian shape of the first resonance
longer perfectly degenerate, and therefore the tunnelingeaks(see Figs. 7 and)8neasured by Friedmaet al* with
probability becomes smaller and thus the relaxation ratehigh precision for four different temperatures.
Since the spin system couples to the environmental phonons Our model, which is introduced in Sec. Il, contains five
of the Mny, crystal, the energy levels of the spin states areéndependent parameters: three anisotropy constast8
smeared out. This leads to homogeneously broadened rese-B,, the misalignment anglé (angle between field direc-
nance peaks that are of Lorentzian shape. There are al$ion and easy axis, the latter being taken along Ztais),
other sources which lead to broadening of the resonanceand the sound velocity. The anisotropy constai, and the
such as hyperfine and dipolar fiefdsThey give rise to in- angle # are responsible for the spin tunneling. This will be
homogeneous broadening with Gaussian-shaped péaks. explained in Sec. Ill. Moreover, we derive the spin-phonon
However, this stands in contrast to the measured resonanceupling constants in Sec. Il. It turns out from our calcula-
peaks, which are nearly perfect Lorentzidh&urthermore, tions that these constants can be expressed in terms of the
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anisotropy A. The constantsA,B,B, have already been Energy
measuret?? and are known within some experimental un-
certainty. We achieve optimal agreement between our theor
and data if we proceed as follows. In accordance with Ref.
11 we set¥=1°, while the constants,B,B, are fitted to the
relaxation data by observing, however, the constraints tha
A,B,B, are allowed to vary only within the range of their
experimental uncertainties. The sound velodityhas not
been directly measured yéto our knowledge However,
specific heat measuremefftgield the Debye temperature of
Mn,,, from which a sound velocity can be deduced that is in
excellent agreement with our fit of the sound velocity
=(1.45-2.0)x10° m/s (see Sec. IY. Thus, in contrast to
previous resulf$*1"~®our theory is in reasonably good
agreement not only with the relaxation dathbut also with

all experimental parameter values known so(f&e Figs. 3,

7, and 8. In addition, predictions are made which can be
tested experimentally: the sound velooitynd the interme-
diate relaxation times,,, as well as satellite peaks.

In Sec. Ill, extending previous work:**"~*°we make describes the coupling between the external magnetic field
use of a generalized master equation which treats phonotii; and the spirS. Theg factor is known to bey=1.9.2°
induced spin transitions between nearest and next-nearest en-We denote bylm), —s<mss, the eigenstates of{,
ergy levels as well as resonant tunneling due to quartict Hz with eigenvalue
anisotropies and transverse fields on the same footing, which
results in the Lorentzian shape of the resonances. We derive em=—Am?—Bm*+gugH,m. ©)
the effective linewidth of the Lorentzian peatsee Sec. V)
as well as a generalized formula of the tunnel splitting endf the external magnetic fieltH, is increased, one obtains
ergy (see Sec. I In Sec. IV, we obtain the relaxation time doubly degenerate spin states whenever a lavebincides
by exactly diagonalizing the master equation. In Sec. Vwith a levelm’ on the opposite side of the wefleparated by
solving the master equation analytically, we identify thethe barrier given byA). The resonance condition for double
dominant transition pathsee Figs. 9 and 3@Gnd show that degeneracy, i.eg,=e , leads to the resonance field
the magnetization reversal is not dominated by just one
single path but rather by several paths which can be of com- . n
parable weight. We finally note that some of the results of HI'™ =——[A+B(m?+m’?)]. (4)
the present paper have been published in Ref. 23 in a short 9k
and less general form. Here we present details of the deriva; g usual, we refer ta=m+m’ = even(odd as ever{odd)
tion of these results and generalize them in various WaySiconances
leading to results such as satellite peaks in the overall relax- '
ation curve, relaxation time of an individual relaxation path,
an analytical expression for the effective linewidths, and a

; - 1
generalized tunnel splitting formula. Ho=— §B4(S‘i +S%) +gugH,S,, (5)

y 3

|—s)

FIG. 1. Anisotropy energy- Am?—Bm?®.

The Hamiltonian

Il MODEL makes tunneling betwee®, states possible, whel®, =S,

In accordance with earlier wotk!*'’~1*?*we use a *iS,, andB, is the fourth-order anisotropy constarht,
single-spin HamiltonianH =H+ Hz+ Hg,+ Hy including =|H|sin @ is the transverse field, with being the misalign-
spin-phonon coupling. This model turns out to be sufficientment angleH, is assumed to be much smaller thdp, i.e.,
to describe the behavior of the Mpacetate moleculéfor 6 is at most a few degrees. From experimé&hisis known

temperatureI=1 K). In particular, that B,/kg=(4.3—14.4)x 10 ° K. Finally, the most gen-
eral spin-phonon couplif§ which is allowed by the tetrag-
Ho= —Aﬁ— Bﬁ (1) onal symmetry of the My} crystal in leading order is given

by

represents the magnetic anisotropy wh&eeB>0. The an-

isotropy—A§ is depicted in Fig. 1. We define the easy axis 1

to lie along thez direction. Hsp: 91(€xx— eyy) ® (S>2<_ Si) +§926xy®{sx 1Sy}
Here, S is the spin operator withs=10, and A/kg

=0.52-0.56 K?*?andB/kg=(1.1-1.3)x10 3 (Refs. 21 1

and 22 are the anisotropy constantkg(is the Boltzmann +593( € @S0, St €,,218,S,})

facton. The Zeeman term

1
Hy,=9ugH,S, (2 + 594(wxz®{sx-Sz}+wyz®{syrsz})- (6)
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1 2 2 I 2 2
:Egl(exx_ ny)®(S++Sf)+Zgzexy®(S,—S+)
1 . .
+ Zg3[(6XZ_ I Eyz)®{s+ ' Soht (€xpti Eyz)®{s— S

1
+ Zg4[(wxz_iwyz)®{s+ :Sz}+(wxz+iwyz)®{s— !SZ}]!

()

where g;, i=1,2,3,4, are the spin-phonon coupling con-
stants, which we shall determine in the following.

The linear strain tensor is defined by=Vu, where
u(x,y,z) is the displacement field. Symmetrization of the
strain tensor yields

1(du, dug
=298 " oa ®
while the antisymmetrized linear strain tensor reads
1(du, dug
“a6~3\3p  Ga ) ®

with «,B8=X,y,z. To determineg; occurring in Eq.(6) we
follow Dohm and Fuldé’ The displacement

U= 8Xx x (10
(in leading order is generated by rotation only. The infini-

tesimal rotation angle can be calculated by acting With
(with respect to the positior) on both sides of Eq(10),

wy,
1
5([)=§VXU: Wzx | . (11)
Oyy

Applying infinitesimal rotations on the spin vectBr

1 0 0 1 0 wy|| S
0 1 wy; 0 1 0SS
0 —wy, 1 —wy, 0 1 S,
St wxS,
=| §— wyy, St S, |, (12
Oy~ wyzsy_ S,

we find (to leading order inw,z) that the easy axis term,
—AS, is transformed into

A(oyAS,S}+ wyz{sy 'S} (13

Comparison with the last term in E6) then yieldsg,
=2A.
If the rotation matriceR,, a=X,y,z, are expanded up to

rl 0 0
0 1 15 2. —5¢
R.= 2 0% <, (14)
1 2
0 Schy 1-5 60
ST -
1- 560, 0 —d¢y
R,= 0 1 0 , (15)

1
1- 564, — 8¢, O
R,= 1 . 16
z 5, 1—§5¢§ 0 (16
.0 0 1
Now we obtain fromu=R,R/R,Xx—Xx
(3p2+ Sp2)x
U= 85X x5 (Spz+ 542y |. (17)
(3pi+ 8¢5z

By keeping derivatives ob¢,, up to second order we find

5¢)2(=sxx—syy—szz, and cyclic permutation ofxy,z).
After inserting the rotated spin vect&R,S into —Aﬁ

=—A(S*—S{—S)) we get for the right-hand side

Al xx— €yy) (S5~ ) +O(€7), (18)

where we retain only terms that induce spin transitions.
Comparing with the spin-phonon Hamiltoni@6) one sees
immediately thag;=A, and thus

91=04/2=A. (19

Thus the coupling constanty; and g, are explicitly ex-
pressed in terms of the anisotropy

Finally, we note that the terms in E¢p) that are propor-
tional to g;, produce second-order transitions withm
==+ 2, while the ones proportional @, 4 produce first-order
transitions withAm=*=1. Thus, Eq.(19) implies that first-
order and second-order transitions are equally important for
the relaxation. In following Abragam and Blear@yit is
now very plausible to adopt the approximatiofgs|~g;
=A and|gs|~g,=2A (the sign is irrelevant for the transi-
tion rates calculated below

Ill. MASTER EQUATION INCLUDING SPIN TUNNELING
A. Generalized master equation

In this section we derive a master equation that describes
the relaxation of the spin due to phonon-assisted transitions
including resonances due to tunneling. For this we make use
of a standard formalisfi*® suitable to describe a system
(spin coupled to a heat bath reservgiahonons, the latter of

second order, one finds terms that include symmetric elewhich is in thermodynamic equilibrium described by the ca-

ments of the strain tenser,

nonical density matrixp,, for free phonons. That means we
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start from the full Hamiltoniar{="Hy+ Hyn+ Hs,, wWhere
Ho=Hat+ Hz+ Hy represents the systerit{,, the phonon
heat bath, andH, given in Eq. (6) is of the form Hs,
=2,Q;®F,;, whereQ; is a spin operator ané; is a phonon
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Eq. (20]%° and set[, ] ={(m|[,]lm’). The relaxation of
the magnetization is entirely based on E23).

The difference to the usual master equation is that Eq.
(23) takes also off-diagonal elements of the density matrix

operator. The generalized master equation in the interactiop(t) into account. This is essential to describe tunneling of

picture(l) in Born and Markoff approximation readisee Eq.
(8.1.29 in Ref. 29

: 1\2 w
p'(t)=—<—) > f dt"{[Qi(1),Q;(t—t")p'(1)]
h i 0

X(Fi(t)Fj) = [Qi(1),p' () Q;(t—t") I(FjFi(t"))},

(20

where Q;(t) =¢e'"0'Q,e~ "o, Equation(20) is valid for the
situations where the correlation time in the heat bath is
much smaller than the relaxation tirmeof the spin system.

Indeed, the assumption is satisfied here since a rough estlén

mate for thermal phonons yields.~7%/kgT~10 1! s, at
T=1 K, whereas it will turn out that=1 s(see below. In

this case, the integral kernel gives a vanishing contributio

for timest” larger thanr., and thus one can extend the
upper limit of the time integral to infinity and replagst
—1t") by p(t) (see also Ref. 30, Chap. 13

As our undamped Hamiltoniak, has also nondiagonal
elements in thém) basis it proves convenient to formulate
the generalized master equation in the Sdimger picture,
i.e., with p'(t) = el(/MHolp(t)e= (1Mol we get

. [ 1\ o
p(t)=,|i—[p(t),Ho]— g) ; fo dt"{[Q;,Q;(—t")p(1)]

X(Fi(t")Fj) =[Qi,p(1)Q(—t") I(FjFi(t"))}. (21)
As the tunnel splitting generated By is smaller than the
level spacing ofHy, i.e., Enmw <|em—&em| (s€€ below, we

can approximate the free propagatr(/M*ot" within the
integral kernel by e~ (/MMM iy the rest of our
calculations’® Next, we take the matrix elements
of Eq. (21 using pmm=(MlpIM"), pm=pmm: Unw
=e (MEm=em)t” and with the definitiorfS'>2

mkln

= 3 mlQIQIm [ drun(F(F),

1 o
S (mlQIRIQ) [ de i)

rr;kln:ﬁ

+ . +
'ym’m:; (Fm'kkm'+kakm)_rmmn"{m'_rmmrﬁm’ ’

+ —
anmn anmnv

(22)
it follows from Eq. (21) that

. |
Pmm’:%[PiHO]mm"" Smnv 2 PeWmn™ Ymm Pmny »
n#m
(23

where we have considered only the secular tefines, the
“coarse-grained” derivative was taken with respectttm

the magnetization, which is caused by the overlap ofShe
states.

The diagonal elementsm=m’) of Eq. (23) yield the
master equation

. i
Pm:%[PvHo]mm_" 2 PnWmn_PmE Wim. (24
n#m n#m
The equation for the off-diagonal elementa£m’'),
: i
Pmm’zg[paHO]mm’_ Ymm' Pmn’ s (25
be simplified in the following way.

According to Eqg. (7), Q; is an element of the set

r{si,sz ,S.S,,S,S,,5.S,,5,S.}. Hence, we see that

=I_ =0, and we get

mmn’ m’ mmn’ m’

1
E(Wm+Wm’),
(26)

1
Ym'm™ Ymny :E ; (Whm +Wpm) =

where we use the abbreviatia®,,= = W,

Evaluation of Eq.(22) leads immediately to Fermi’s
golden rule for transition rates in first quantizatisee Eq.
(8.2.3 in Ref. 29

2m |2 ’ ’
Wino=—- 2 (MNHnN") (N’ o] N') S(Ens — Eny
NN’

—&enmten). (27)
Explicit evaluation yieldgsee Appendix A
W A’y (spe1—Em)®
ML 2mpcSh 4 eflem=1em) — 1
17A%s.,  (em=p—em)°
m=2m— b u (28

:|.92’7TpC5ﬁ4 ePlems2—em) _ 1’

where s,;=(s¥m)(stm+1)(2m+1)?, and s.,=(s
Fm)(stm+1)(s¥m—1)(stm+2). The mass density

for Mny, is given by 1.8%10° kg/m.®® Here, ¢ is the
sound velocity of the Mn crystal, which is the only free
parameter in our theory. As already mentioned, we are not
aware of direct measurementsmfbut see below Note that

the transition ratesNy .1 m, W2y are very sensitive to
variations of the sound velocity, as the latter enters with the
fifth power.

B. Spin tunneling

We include now the spin tunneling in the generalized
master equatiof23). Let|m) and|m’) be two eigenstates of
H,+H, on the left and right sides of the barrier, respec-
tively. |[m) and|m’) are degenerate wherl31-|Z=HQ“m'—HZ
vanishes. In the presence of tunneling, inducedHyy, the
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FIG. 4. Full line: semilogarithmic plot of calculated relaxation
time 7 as function of magnetic field, at T=1.9 K. Here 6
o offs =0.5° has been chosen. Dots and error bars: data taken from Ref. 7.

bution toE,,,y . For the potentialé*x/mi m,, we insert com-
binations of terms occurring ik{t. For example, the anisot-
FIG. 2. Tunneling configuration. ropy B, leads to transitonsAm==*4, while the
. . misalignment, leads to transitiondm= *1. The summa-
two states form(ant)symmetric levels split byEnqy (for  tions in Eq.(30) can be thought of as summation over dif-
6H,=0). By using time-independent perturbation theory infgrent paths in the Hilbert space connectjng) with [m’).

higher oriler the tunnel splitting energly, can be Continuing the evaluation of the first part of Eq.
evaluated, (23) we project the undamped Hamiltoniak, by P
=3 ,—mm|N){n| on the two-state systefim),|m’)}, which
Epmy =2 Vim-1 Vm-1m-2 Vit (29 yields the two-state Hamiltonian in the presence of a bias
Em-1"€mE&m-2"€m ' field (see Fig. 2
Note that in this expression only steps witm=+*1 are o E
allowed. However, for the present purpose we need to gen- Hr= Emlmy(m|+ ';m [my(m’|+(m<m’)
eralize Eq.(29) to situations where potential,, . R
with arbitrary stepsAm=m,—m;,; (m>m;>m; >m’, Emmr
i=1,... N—1) can occur. As we will show in Appendix B &m 2
this is indeed possible by using resolvent techniques, and we = =PH,P, (31
find B
2 m

Vm,ml N1 Vm»,m- 1 . .
L Vi | with é,=e,+gugdH,m and the energy eigenvaluds;
Mg, my EmT Em =1 EmT Emy g =3 &mt & =N (Em— En)?+E-, 1. Hy provides a valid

- #m, 4 .. . .
mzmm description as long as the level splitting remains smaller than

(30 N
the level spacing, i.e.,
whereN is the lowest order of the degenerate perturbation
theory, by means of which Eq(30) has been derived A:\/(gm—gm,)erEim,<|sm(,)—sm(,)ﬂ|. (32

(Nth-order secular equatidh, giving a nonvanishing contri-
We have checked that between two main resonances this

T[s] condition is satisfied for the statés) and |m;) of the
10° T[s]
10°
. 10°
10 s
5 10
10 .
2 10
10 3
10
10 5
1 H, [T] 10
0 0.5 1 1.5 10
. . ) . ) 1 H,[T]
FIG. 3. Full line: semilogarithmic plot of calculated relaxation 0 0.5 1 1.5
time 7 as function of magnetic fielti, at T=1.9 K. The optimal
fit values (see text are A/lkg=0.54 K, B/kg=1.1x10"° K, and FIG. 5. Full line: semilogarithmic plot of calculated relaxation

B,/kg=8.5X10"° K, #=1°, andc=1.45<10° m/s. Dots and time 7 as function of magnetic fielth, at T=1.9 K. Hered=2°
error bars: data taken from Ref. 7. has been chosen. Dots and error bars: data taken from Ref. 7.
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T[s]

10°
10°
10!
103
102
10

1 H, [T]

0 0.5 1 1.5

FIG. 6. Full line: semilogarithmic plot of calculated relaxation
time 7 as function of magnetic fielth, at T=1.9 K. Here§=3°
has been chosen. Dots and error bars: data taken from Ref. 7.

dominant paths and for each degenerate pair of statgs
|m’) with EmiEm S EmpEm (see Sec. V.

Next we insert the two-state Hamiltoni&_ﬂr into the gen-
eralized master equatid23), which yields

. IEmny
Pm:%(Pmm’_pm’m)_mem_" 2 Winon
n#m,m’
(33

and

. i IEmny
Pmm = — ggmm’ + Ymmr | Py T T(Pm_l)m’)v
(34)
where & =é&n—&n,» and likewise for m—m’. Ulti-
mately, we are interested in the overall relaxation timef

the quantityps—p_ (see Sec. Y due to phonon-induced
transitions. Thist turns out to be much longer than
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rrios™)

H [T]
04

-0.04 -0.02 0.02 0.

FIG. 7. Full line: plot of calculated relaxation raté=1/r as
function of H, for the first resonance peak d&=2.6 K. The
Lorentzian shape is due ﬂbm/ in Eq. (36). The optimal fit values
(see text are Alkg=0.56 K, B/kg=1.3x10 2% K, and B,/kg
=14.4<10° K, 9=1°, andc=2.0x10®> m/s. Dots: data taken
from Ref. 11.

pk=—Wyp+ En: Winon - (37

We note thaifm has a Lorentzian shape with respect to
the external magnetic fieldH, occurring in&,. - TheH,
dependence o¥V,, around the resonances turns out to be
much weaker(see below and can be safely ignored. It is

thus thisl“m' that will determine the peak shape of the mag-
netization resonancésee below and Figs. 3)8\ote that in
Figs. 3—8 these Lorentzians drancatedat the center of the
peak by the spin-phonon transition ratd, and W, in
such a way that the effective linewidttefined as the width
at half of the height of the truncated pe¢ak much larger

=1/ymm » Which is the decoherence time of the decay of thethan Wp,,+W,,/)/2. This needs some further explanations,

off-diagonal elementg,,,y e~ " of the density matrixp.

which are given in Sec. VI, after we have discussed the re-

Thus, we can neglect the time-dependence of the offlaxation times.

diagonal elements, i.o;m~0. Physically this means that
we deal with incoherent tunneling for times 4.3 Insert-
ing then the stationary solution of E¢B4) into Eq. (33),

which leads to the complete master equation including reso-

nant as well as nonresonant levels,

bm:_Wum+ 2 Wmnpn+rm (Pm'—pPm), (35

n#m,m’
where
’ W +W!
1“m:Ezmm' 2 mz - 2 (36)
4¢ AW+ Wpy)

is the transition rate froomto m’ (induced by tunnelingin
the presence of phonon dampitfgThe relaxation dynamics

of the resonances described bymF 107 s(see Fig. 15

turns out to be much faster than the phonon-induced overall

relaxation, i.e., ]l7$’<rz 1s(see Fig. 3 Thus, our deriva-
tion based on the assumptio> 74 is self-consistent since
1/Fm/~7d. Note that Eq(35) is now of the usual form of a

IV. RELAXATION TIME

A. Numerical diagonalization of the master equation

In this section we give the results of our exact evaluation
obtained by a numerical diagonalization of the master equa-

r'[1o™s1]

-0.04 -0.02 0

0.02 0.04

FIG. 8. Full lines: semilogarithmic plots of calculated relaxation
rateI"=1/7 as function ofH, for the first resonance peak @ T
=25 K, (b) T=2.6 K, (¢) T=2.7 K, and(d) T=2.8 K. All

master equation, i.e., only diagonal elements of the densitgeaks are of single Lorentzian shape. The optimal fit values are the

matrix p(t) occur. For levelk#m,m’, Eq. (35) reduces to

same as in Fig. 7. Dots: data taken from Ref. 11.
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tion. For convenience we now write down the master equa- (1|gugH4S,|0)(0|gugH,S,|1)
tion (35) as a vector equation, P——
p(t)=Wp(t), (39) . (1|gueH,Sd2)(2|gueH,\Si1)
- E1— €&
where the elements of the vectp(t) are the diagonal ele- Lo
ments of the density matrix. Within the intervall, ,, [see =kgX40 mK
Eq. (65)] delimited by the two main resonancaes andn, <|ey|=ksx2.3 K (44)

ly the tunneling rate#y" and I'}2 [Eq. (36)), for which
only the tunnefing rate an [Eq. (36)], for whic clearly shows that the unperturbed stae®)} are a good

my+m;=n; andm,+m,= nz (see Sec V Aare allowed to  zeroth-order approximation. It is also important to know
be included for self-consistency reasons: the tunnel splittingvhether the second-order shifts caused by the perturbation
(32) enteringl is only valid within this intervall, .. If  7{; are negligible compared to the tunnel Splittifigh -

w;, i=1,2,...,21, are the eigenvalues of the rate mathix Explicitly, we find
the dominant relaxation time of the spin system is given by
AP —AC)|/kg=8.5 mK (n=4),

1
™ miaX{ Rewi}' (39 IAP—AD)|/kg=13.2 MK (n=3),
The eigenvaluesy; turn out to be nondegenerate with the AP~ AC)|/kg=5.0 mK (n=2),
smallest one being far separated by a factor of at least 10
from the remaining ones. The result is plotted in Fig. 3, |A(22)—A(_2%|/k3=0.5 mK  (n=1),
where the overall relaxation rateis shown as a function of
H,atT=1.9 K. Itis important to note that all the resonance IAD-A@)|/kg=0 (n=0) (45)

peaks are of Lorentzian shape. We note that in our model the
e\;]en resorTanc(;ads are induced by lth(f qufgcanlsgtropy, whereA(z) is the second-order shift of the unperturbed states
whereas t eSEf resonances are induced by product Comﬁ)mﬁ of the dominant paths. These renormalizations cause a
naEgnsgofBLl rtg‘ﬂdlt'x_sx termsd[see Eq(tﬁo'z% For th? pIott | very small shift of the resonance peaks, e.g., the shifinfor
N Hg. < welse - In accordance wi € expermental _ 3'is 0.6 mT. The relevant tunnel splitting energies of the
uncertainty'! leading to a maximal transversal fiel, of odd and even resonances are about the SaxeeptE, ,):
about 350 G. 4-1-
E4,*4~E3,*2~E5,*3~kBX45 mK,
B. Comparison with experimental data

For comparison we also include in Fig. 3 the data reported Es-1/kg~130 mK, Eg »/kg~40 mK. (46
by Thomaset al.”*° We have optimized the filas explained
in the Introduction in such a way that the fits of the model
parameters, given by

For comparisonk, _,/kg~1 K [see also Eq(66)]. In con-
clusion, the diagonal elements of the shifts of the nondegen-
erate perturbation theory are much smaller than the off-

Alkg=0.54 K, (40) diagonal elements of the shifts of the degenerate perturbation
theory (see Appendix B Thus our assumption of quaside-
B/kg=1.1x10"3 K, (41)  generacy is very well satisfied.
We note that there are satellite peaks in Figs. 3—6, the
B,/kg=8.5x105 K, (42) origin of which will be explained below in Sec. V.

In Figs. 7 and 8 we plot the peaks of the first resonance at
are roughly within the reported experimental uncertainties oH,=0, which is induced only by thB, anisotropy, for four
Refs. 21 and 22Zsee above The value ofB, is in excellent  different temperatures, namely=2.5, 2.6, 2.7, and 2.8 K.
agreement with recent measurements performed in Ref. 4Ghe four peaks(like all otherg are of single Lorentzian

Our fit of the sound velocity yields shape as a result of the two-state transition Ffe given in
Eq. (36). For comparison we plot in Figs. 7 and 8 the data
reported by Friedmaet al!! for the same temperaturéso
There is a difference between odd and even resonances, i.erfor bars, however, are given in Ref.)1The optimal fit
the relaxation timer at an even resonance peak is about thre¢values are

times smaller than the one at a subsequent odd resonance

c=1.45x10° m/s. (43

peak. It should be mentioned that almost identical plots are Alkg=0.56 K, (47)
obtained for 0.5 #=<3°, as can be seen in Figs. 3—6. The

present theory holds fdH,| <1000 G(which is well satis- B/kg=1.3x10"° K, (48)
fied here; otherwise the shift of the levelsn) due to the

perturbationH, S, must be taken into account. For example, B,/kg=14.4<10° K, (49

for the resonancen=3 the relevant tunneling takes place
between4) and|—1). The dominant second-order shift c=2.0x10°> m/s. (50)
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Note that these values are the same for all four tempera: [0)
tures, which means that our peaks fit also the temperaturt
dependence of the relaxation time. The fitting parameters
turn out to be somewhat larger than the ones used in Fig. @
[see Eqs(40)—(42)], which could be caused by sample dif- !
ferences, e.g., in volume-to-surface ratio and/or in shape an
isotropy of the samples, etc. Indeed, the sample of Ref. 115}
consists of many small crystallites in contrast to the single
crystal used by Thomast al.’” In any case, the differences |7)
are small, and the sound velocityseems to be within the
expected order of magnitude. Clearly, it would be highly o,
desirable to check this prediction by an independent and di-
rect measurement af On the other hant! we can get an [10) |~10)
independent estimate for ¢ from the specific heat and the
Debye temperatur@®, which was recently measured in  FIG. 9. Spin relaxation pathdrom m=10 to m=—10) for O

Mn12.42 The reported value i®=(38+4) K, and making <9ugH,<A+13B. Full lines: thermal transitions due to phonons.
use of the Debye relatiéh Dashed lines: dominant tunneling transitions dueBtp and H,

terms. Dotted lines: tunneling transitions that lead to satellite peaks
3 [included in the numerical diagonalization of the master equation
kg®p=%wp=7cky, with n= G_Dz = Vo (51 (38)]. The states where paths intersect are denoted as vertices.
T 0
we find value in Ref. 21. From Figs. 7 and 8 we see that the tem-
perature dependence of the relaxation time agrees quite well
c=(1.77-2.18 X 10° mis, (52)  with the measurements of Friedmanal !

3)

wherewp is the Debye frequenc¥kp the Debye wave vec-

tor, andV,=3716 A the unit-cell volume. Comparing this V. RELAXATION PATHS

value forc with the one obtained before, see E($3) and

(50), we see that the agreement is very good. This result

corroborates not only our prediction ofbut also our values In order to get a better physical understanding for the

obtained for the spin-phonon coupling constagyts relaxation process of the spin system it is instructive to de-
Finally we also mention that the prefactor termine the dominant transition paths via which the spin can

A2s. /127 pc5h? of our spin-phonon rateEEq. (28)] is in relax into its ground state. For this we derive an approximate

excellent agreement with the value of the parameter denotednalytic expression for the relaxation time denotedrby(to

by Cin arecent papé*4 Note that their fit of the paramef%r dlStIﬂgUISh it from the exact obtained in the preViOUS sec-

C is not as precise as ours, becaudds assumed to be tion). First, we solve the master equation for mticular

independent of the spin statglsn)}. transition pathn which does not intersect with other paths.
To summarize our results obtained so far, we see that theor H,=0 we find (derivation is given beloy

agreement between theory and experiment is satisfactory; in

particular we emphasize that there is no free fit parameter. 1 eBlem =29

Thus, our model and its evaluation seems to contain the es- Th= — —

sential physics responsible for the magnetization relaxation 1+ePle-s2d) (], Qm:”

in Mny,.

A. Analytical result

: (53

5

C. Comparison with previous results 12

T4 6

In comparison to previous results we obtain much better 3
agreement between theory and experiment for the following 14 =%
reasons. For this comparison we can restrict ourselves to the
work of Fortet al,'® since — as far as we are aware of — it
has produced the best agreement with the relaxation’ data
thus far. First, the spin-phonon coupling constagis go,
andg; are explicitly given in our work ¢, has been found
beforé?). As shown in Sec. Il we find them to be of order
A=0.56 K, and it is this value which leads to good agree- t f
ment with all known experimental data which involve these 102 I-10
coupling constantd”** In contrast, Fortet al'® set arbi- FIG. 10. Serially reduced diagram associated with Fig. 9. In

trarily the g's to values of 15 K and 30 K, which is clearly order to understand the analytical evaluation of the relaxation dia-
in contradiction to our microscopic values. Moreover, ourgram in Fig. 9 better, tunneling transitions that lead to satellite

value for the fit parameteB, fulfills the constraints of inde- peaks are excluded. The relaxation timgsare given in Eq(53).
pendent measurementtst®?*?2while Fortet al!® obtain a  For|H,|<0.05 T only the path,— 75— r; is dominant(see Figs.
B, value which is about 30 times smaller than the measured and 8.

T T7
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LT — m; i em.— €
whereQmi* —Qmi_,miﬂ—WmHlmi orl“miﬂ, depending on Bom—c9y = eblom—cdy 4 JebBem,~29)
the particular patim characterized by the sum over the levels M TP, =€ S P, QM
m (see Figs. 9 and 10 Equation(53) holds for arbitrary m2

initial (&;) and final €) energies, and for arbitrary steps
Am=m;,—m; (see below.
We now turn to the derivation of the relaxation time of a

. . . . (em_—&s)
cascade including the external fidit},. For this we need to e,g(smpfs_s)pmpze;z(s_sfgs)pid JefEm,~2s

go beyond the results obtained previodljor H,=0, Qs
which requires a non-trivial extension. We start with rewrit- P
ing the master equatiof85) as
. s my eﬁ(smi_ss)
ps=Qm pm, ~ Qg7ps, Ps:eﬁ(s_siwpfs+3%‘4 LES (59)
(| mi
ijZQQ;HijHJFQleij,l—erlpmj—ﬂmj’lpmj, In the special case ofi,=0, i.e., es—&_c=0, Eq. (59
agrees with previous resufts.
b= Qo — Q™ (54) Taking the time derivative of Eq59) and usingp_/ps
L =—1 we find
yvith mje]—s,s[, m>m;,q, j=1,... ps<2s-1, and 3 e o9
pm =dpy, /dt. We consider now the stationary limit of Eq. D —+ e (60)
) L . P=s _1+ Ble _g—eg) < Qmi+l !
(54) which we define by € m; m;
: : : and thus
ps=—J, pm=0, p-s=J, (55
: , : o J eflem e
where the first and last equation express conservation of the Ps—p_s=2 E =—2J. (61)
probability current, which we assume positive fdt,=0 1+efle—smed 'y Qi+t
and independent ofm. Equation(55) leads top+1 equa- '
tions, The solution of the last differential equation is
i i — —t/7*
J(t)=Q$:*1pmi—ﬂm:+lpmi+l, (56) J(t)=Joe "7, (62
) with the relaxation time
and by solving forpmi+l we get
1 E eﬁ(€m|785)
m; * = , H,=0. 63
Qm:+1 J T 1+elg(s,s—ss) m Qzﬁl z ( )
Pm= g Pt g (57) !
m; m; Finally, the summatiorE{mi}n in Eqg. (53) is defined as the
where we have introduced=0, ... p<2s—1, and m, summationZ, in Eq. (63) taken only fromMiya) 10 Miing

—s. To simplify the following treatment we assume detailed T 1, Where|Miyiar),|Ming) denote any two neighboring ver-
balance also for the tunneling processes. This approximatiotices (where paths intersecin Figs. 9, 16, 18, and 2(see
has little effect on the final result which turns out to agreebelow.

very well with the exact relaxation time where no such Similarly one can solve the rate equatio(b) for J
approximations are invoked. Inserting then the detailed bal<<0<H,<0. Then we obtain

ance relatior) ' /Q*1=ePem ., #m) one obtains -
1 ; 1 e,g(gmi e_g)

* —
] T _1+eﬁ(ss—sfs) % in , H.=0, (&4
pm_=eB(smi+1_smi)pm_ t - (59 -
! Q0 which forH,=0 (i.e.,e _s=¢,) and stepdAm= +1 reduces
' to the result found in Ref. 14.
In order to get an equation that dependspary and ps only If there is more than one path contributing to the relax-
one has to sum over the following+ 1 equations: ation (which is typically the case in the region between two
resonanceswe have to account for intersections at vertices.
J For this we associate with each path a probability current
ps=eflem=dp + qm J,=pn, and interpret Eq(53) in terms of a serial circuit
s with the summands playing the role of “resistances.” This
allows us then to set up flow diagrams fhyr(see Figs. 9, 10,
Jeflem —e9) and 16-21, which obey the analog of Kirchhoff's rules:
eﬁ(sml—ss)pml:eﬁ(smz—sS)pmva —am (K1) 2,J,=0: The sum over all incoming and outgoing

my currents vanishes at a vertésurrent conservation
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(K2) 2,J,7v=AN: The sum over all voltage drops J=3,+0,, I+ Js=Jg,
(Jn7,) is equal to the source-drain voltagd = ps—p_ for
any closed patliprobability conservation J1=03+3,, J3+Jde=J7,
The total probability current is given by=AN. For every Js=J35+Jg, J7tJg=J,
interval .
while from (K2) we get
In, 0, =[H; 74771 HZTE2] (65 AN=Jy71+ 373+ 777,

[see Eq.(4)], where ny=my +ms, Np=mr+mp,, 0O
<n;=n,+1<3, a set of equations is given by the rules

(K1) and (K2). For every set we derive the relaxation time
’T* :AN/J J272:J17'1+ J4T4+J5’T5,
ng.ny .

\]373:J4T4+ ‘J57-5+J67-61

Figure 9 shows the complete, Fig. 10 its serially reduced
flow diagram for G=H, < (1/gug) (A+13B). From (K1) we
get From these equations we obtain

‘J878=‘J57-5+ JGTG+J7T7 .

Tgyl(Hz) =(TpT1TgTo+ TgTaT1To+ TgT1T5To+ TgTaT1Tet TaT7T5To+ TaT7ToTg+ TgT7T5 T+ TgT7ToTa+ TaT7T5Tg

+ TQTIToT3+ TyT7ToTy+ TgTyT3T7+ TgT3TgTy+ T4T3TgT7+ TgT3ToTg T TgTaT3To+ T4T3ToTg+ TgT4T3Te

+ 7gT3Ts Tyt TgT3TgTg+ TgT7T5To+ TgT 1 ToTg+ TgT1TsTg+ T3T1T5Tg+ TgT3T 1T+ T7T1T5To+ T3T1ToTg

+ T3TITg Ty T7T1ToTg T T7T1TgTg T T7T1ToTy+ TgTgT1T7+ TaT1TgT7+ TgT4T1T7+ TgT3T1To+ T7T1ToT3

+ 79Ty T Tyt TyT T T+ TgT T5T7+ TgT7ToTe T TgTyT7Tgt T4T3TsTgt T4T3T5To+ T4T1ToTg

+ 7471 T5Te) (TgT5 T+ TgTs T+ TgTaTot TeTaTa+ TaTs T+ TgTaTet TeTaTo T TaToTeg+ T4T7Te+ TgT3Ts

+ TToTg T T7TsTg T T7Tg Tyt Ty ToT3+ T4 Ty 75+ T3T 75+ TgT 75+ TgT3T + T3TpTg+ T3 75T+ 73757+ T3 75Ty
+ TYT3T7+ TyT3Tg+ TgTgT1+ T3T1T7 + T7T1Tg T T4T1Tg T T3T1TgT T4T1T7 T TgT4T1 T TgToTgT T4 T5Tr+ T4T3Tg

+ 7Tyt T7T1Ts).

When 73 , is plotted as function oH, there is no visible n mr mr
difference between the exactobtained in Sec. IV and this
approximater*, which confirms that the diagram in Fig. 9 0 4 —4
contains the physically relevant relaxation paths for the in- 1 3 —2
terval 1o ,. Similar results are obtained for the other inter- 2 S -3
vals, whose diagrams and calculations are shown in Appen- 3 4 -1
dix C. 4 6 -2
Finally, near a resonandésH,|<w’, see Eq.74)] the (66)

above expression for*; Eq. (53), strongly simplifies since Our calculation of the intermediate relaxation times

we find that there is only one dominant relaxation path Whicrbrovides a further prediction which could be tested with
involves only one tunneling channel. This finally explains R techniques of the type described in Ref. 44.
why the peak shape is given by a single Lorentzian. We call

the five strongest broadened resonances in Figs. 3—6 the ,

main resonances. For every main resonanee have iden- B. Satellite peaks

tified [using Eq.(53)] its dominant path and its associated Beside the main resonances there are also other narrower
tunneling channel between the stateg) and|my). These resonancessee Figs. 3—-6that are a direct consequence of
states are the fourth-order anisotropy constaBfsee Eq(1)]. Indeed,
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T[s]

10°

10°

10?

0.7 0.8 0.9 1

FIG. 11. Full line: semilogarithmic plot of calculated relaxation
time 7 as function of magnetic fielth, at T=1.9 K in the interval
3A/2gug<H,<5A/2gug with a higher resolution. The tunneling
transition from|5) and|— 3) is responsible for the main peak. Two
satellite peaks are visible. The léfight) one is due to the tunneling
channel betweefd) and|—2) (|6) and|—4)). Here §=2° has
been chosen. Dots and error bars: data taken from Ref. 7.

if the plots around one peak are magnified further, satellite dmzmé_

peaks become visiblesee Figs. 11-14 In order to under-

stand the occurrence of these satellite peaks it is instructive

ER AND DANIEL LOSS PRB 61

T[s]- .

10

10°

102

10

H,[T]
1.5 1.6 1.7 1.8 1.9

FIG. 13. Full line: semilogarithmic plot of calculated relaxation
time 7 as function of magnetic fielt, atT=1.9 K in the interval
TA2gug=<H,<9A/2gug with a higher resolution. The tunneling
transition from|6) and|—2) is responsible for the main peak. Two
satellite peaks are visible. The I¢fight) one is due to the tunneling
channel betweetb) and|—1) (|7) and|—3)). Here §=2° has
been chosen. Dots and error bars: data taken from Ref. 7.

m{m; mom), nB
T e R e WL}
mym; |z 2 Oue

(67)

to look at Fig. 18 below. There are several paths which can

be used in the relaxation process. As we include the fourth
order anisotropy terms- Bﬁ, the resonance condition is not
the same for every levdkee Eq.(4)]. Hence, very narrow

peaks show up, which can be seen only at high resolution. |
Fig. 18 several additional tunneling paths, some of which ar

i

wherem;, m; (m,, m;) are responsible for the satellite
(main) peak, ancdh=m;+m;=m,+m,. It would be inter-
esting to search experimentally for these satellite peaks,
hich requires a higher experimental resolution of the peaks
an achieved so far.

responsible for the satellite peaks in Figs. 11 and 12, have to

be drawn(represented by the dotted lines in Fig.).1Bor
example, the tunnel splitting energy of the path frofh to

| -2) is proportional toH,B4H, (third-order perturbation
where the ordering of the factors corresponds to the chos
path. Due to the presence bff the width of the satellite
peak(see next sectigndepends on the misalignment angle
0. If one takes a close look at our high resolution plots this

[S)

VI. WIDTH OF THE LORENTZIANS

In this section we give a physical interpretation of the
effective half-width of the Lorentzian peaks in our plots. In
der to get an expression for the width of our main and
satellite peaks consider a LorentziB(H,) with linewidth w
(see Fig. 1p If the upper part of this Lorentzian is cut off
(where the curve is already very narrpand both ends are

difference between Fig. 11 and Fig. 12 is observable. It mus¢onnected by a horizontal line one obtains a curve that still
be noted that we consider only tunnel splitting energies up thas the same single Lorentzian shape for all practical pur-

second order iB, and third order irH, (also combinations
such aB2H?) for all the main and satellite peaks. Narrower

satellite peaks are neglect&iThe distanceﬂ?ﬂ? between a
11

poses but now with an effective linewidit’ >w. Changing
the tunnel matrix elemeri,,y results in a different trunca-
tion of the Lorentzian, thus changing the effective linewidth
w’. We shall now estimate the effective linewidii and

satellite peak and its associated main peak caused by a maipmpare it with the one obtained from the exact. I¥aking

resonance is given by E®),

T[s]

108

10°

10*

0.7 0.8 0.9 1

FIG. 12. Same plot as in Fig. 11, but with a misalignment angle
of §=3°. Dots and error bars: data taken from Ref. 7.

only the largest terms of E¢53) gives a rough approxima-

T[s)k. .
10*
103
102
10
H,[T]
1.5 1.6 1.7 1.8 1.9

FIG. 14. Same plot as in Fig. 13, but with a misalignment angle
of #=3°. Dots and error bars: data taken from Ref. 7.
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7
100 pitrs
W’
108
H,[T]
-0.2 -0.1 0 0.1 0.2

FIG. 15. Truncated Lorentziaﬁ;4 with A/kg=0.56 K, B/kg
=1.3x10"% K, and B,/kg=14.4<10"° K, #=1°, andc=2.0
X 10° m/s,w'=37.4 mT (' agrees very well with the width of
the Lorentzian in Fig. ¥ andl'; 4(w'/2)=2.4x10° s *. The trun-
cation is indicated by the dashed line.

tion of the relaxation time near a resonance where the statés

|m) and|m’) are degenerate,

1 eB(Sm+27ss) eﬁ(am’fss)
7= +
1+ eB(S_SisS) Wm,m+2 Wm/ —2.m’
eﬁ(gmas))
— (68)
ra
Using the detailed balance relation
M = eﬁ(5m+2_5m) (69)
Wm+2,m
we obtain the following approximation:
eB(5m+2_Ss) 2
[ _|_ —_
T 1+eﬁ(375785) Wm’m+2 Fm! ) (70)

where we assumed tha¥, n: 2~Wp o -*® In the limit

&mm— 0 the phonon-damped tunneling ra]fé{}' is much
larger thanW, .2, SO

Zeﬁ(sm+27£s)

lim 7=

Emm —0

= : (71)
(1+ efle-s ES))V\/m,m+2

The half-width of7’(H,), denoted by, is then determined
by the conditions’ (w'/2)=7'(0)/2. This condition is ful-
filled when

(72

Thus we obtain the expression for the effective linewidth

1/2

2
,_ 2VWr+ Wy | Eppy B h2(W+ W)
|m—m’|g,uB Wm,m+2 4

(73

Since the heighErznm,/ﬁz(Wm+ W,,/) of the Lorentziarl“m'

is very large compared to its linewidthm—m'|gugw/%
=(Wnt+Wqy)/2 and Wy,+ W, ~2W,, 1o for the domi-
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nant pathgsee Sec. Ywe get the following reasonably ac-
curate approximation for the effective linewidths in our

plots: i
2°E

Im—m'|gug

Comparison with our exact calculations of the relaxation
time shows thatv’ of Eq. (74) gives a very good estimate
for the effective linewidth of the peaks in our pldsee Figs.
3-8 and 11-1p

!

(74)

VII. CONCLUSION

We have presented a comprehensive theoretical descrip-
tion of spin relaxation due to phonon-induced transitions and
tunnel resonances. Deriving a generalized master equation
(in Born and Markoff approximationwe obtain an exact
numerical evaluation of the overall relaxation timas func-
ion of the longitudinal magnetic fieldH, comprising

orentzian-shaped peaks. In order to perform this evaluation
we calculate the phonon-assisted transition rates of the spins,
the spin-phonon coupling constants, and the tunnel splitting
energy, for which a generalized formula is derived. The
fourth-order diagonal terms in the Hamiltonian give rise to
satellite peaks, the experimental observation of which re-
quires a higher resolution afH,) than achieved so far. Our
approximate analytical solution of the master equation yields
a clear physical understanding of the relaxation process by
revealing the relaxation paths that are followed by the spin.
This solution provides the prediction of all involved interme-
diate relaxation times,, which can be tested experimen-
tally. The results of our model calculation agree well wath
known data. We have been able to get agreement between
theory and the entire relaxation curve. In addition, we have
obtained reasonable agreement between theory and four
single resonance peaks recently measured to high accuracy at
four different temperatures. The formalism presented in this
work has been applied to the specific parameter values of
Mny,, but many results derived here are generally valid and
can be used for similar spin systems as well.
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APPENDIX A: SPIN-PHONON RATES

In order to evaluate the spin-phonon raiés,, of Eq.(27)
we first change to the Fourier representatior i a phonon
wave vector, we can writa(x) as follows:

1 iq-x
u0=75 2 u@e ™, (A1)
with N being the number of unit cells. Hence
i axUx(Q)  axUy(a)  gxu,(q)
e(x)= N % Qyux(Q)  ayuy(d)  ayu,(q) |e'a™.
qux(a)  gzuy(a) q.u.(q)
(A2)



1298 MICHAEL N. LEUENBERGER AND DANIEL LOSS PRB 61

After (ant)jsymmetrization, these maitrix elements can be in- c|n)=n|n—1),
serted into the expressidi),

1 (1 cllny=yn+1|n+1),
Hep=—= 2 11502[0xU,(Q) —ayu,(q)]®(S2 +S2) ) )
VN i.q 2

i S_|s,my=+(s+m)(s—m+1)[s,m—1),
+ 592l auy(Q) +ayuc(a)]e(S2 - S7)

1 Si|s,;my=(s—m)(s+m+1)[sm+1).  (A6)

+ §g3[qxuz(q)+qzux(Q) =i (Qyuz(q)+qzuy(q))]
The transition rat&V_,=W,,_,, [see Eq.(27)] for m—m

1 ) —2 (em-2=¢y) can now be calculated in second quantiza-

®{S+ e+ g9l AUz(Q) + 0 Ux() +i(ayU-(Q) tion (n,=ng., @=X,y,z denotes the number of phonons
with wave vectorq, polarization mode\, and oscillation

1 direction «, and the thermal average over phonons is left
Uy (]SS, S;p+ 59alauUz(a) +dUx(q) implicit),

] 1
—I (quz(Q)+qZUy(Q))]®{S+ 1Sz}+ 594[QXUZ(Q) W_zzz% 2 |<nq, - 11m_2|Hsdnq’ ’m>|25/t
q

— QU (@) +i(ayu,(a) — g Uy ()] @ {S_ S} e R, ™ 5
(A3)
— 11t 2
R; are the positions of the Mamolecules. _Qy<”y+1|c(y Iny)?[(m—2|S% |m)|?
We proceed with the canonical transformation,p) g

—(c",0). cM=g,cl" annihilates(creates a phonon with

2
T (qx<ny+ 1|C(T)|ny>+qy<nx+1|C(T)|nx>
wave vectorg and polarizatiorey, and

h ><|<m—2|82|m>|2}5+
- t
u(a)= 2qu(c +0), (Ad)
. . . . 1 mS_>o 1
whereM is the mass per unit cell. Inserting E&4) into Eq. =— —( nq+0>
(A3) and considering only the spin of the Mmmolecule at 4 “g NMoy
R;=0 yields g2
X | g1(dy—ay)*+ E(qﬁqy)z}&t, (A7)

Ho=2 | ZNE [ g1l a(Cyt ) —ay(cy+¢y)]
where s_,=(s+m)(s—m+1)(s+m—-1)(s—m+2), and
80 =8(% (em-2— em) —hwg).

With the approximatiorg;=A~g, and the thermal aver-
age(ny) = 1/(eP"“a—1) one obtains

[
®(S1+82)+ ggaladcy ey +ay(ci+e]

®(52—82)+Eg [(g,—igy)(ci+c,) +a,(cl+c
— + 8 3L (Qx qy z z qz(Cy X

1
2 2
t T TRAS_2
—icy,—ic,)|®{S,.,S}+ = +i c,+cC ==
y~iey))1®1S: S+ ggal(axFigy)(c;+cy) W=7 Eq, NV, (e e 1) 5. .

(A8)

b 1 .
+azCx+oxticyFicy)]@{S. ,S}+ Faal(ay—iay)
As a next step the sum is replaced by an inte¢faIN)=
X (cl+c,) —q,(ci+c,—ic)—ic,)le{s, S} —[a%(27)%]fd%q) and the densitp=M/a® is inserted,

1 H . .
+ 594l (Ac+iay)(C;+ ;) —ax(Cx+ Cyticy+icy)]

O .

(dx—q )2+i(q +q,)?
A?%s_, J' d3g "¢ Y 1
wq + (e Phoa—1) -

W,2:
®{S_,S;}{. (A5) 327%p
(A9)
This expression can be used to evaluate the transition prob-
ability. We employ the following standard relations: After changing to spherical coordinates one gets
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75

13) |—1)
T4 T8
T3
15) |—-3)
1 T
T2 T8
[

110) {—10)

FIG. 17. Serially reduced diagram associated with Fig. 16. In
order to understand the analytical evaluation of the relaxation dia-
FIG. 16. Spin relaxation pathdrom m=10 to m=—10) for gram in Fig. 16 better, tunneling transitions that lead to satellite
(L/gug)(A+13B)<H,<(2/gug)(A+34B). Full lines: thermal peaks are excluded. The relaxation timgsare given in Eq(53).
transitions due to phonons. Dashed lines: dominant tunneling tran-
sitions due toB, andH, terms. Dotted lines: tunneling transitions |agds to a rigorous treatment of the perturbation theory,
that lead to satellite pealfincluded in the numerical diagonaliza- which is very useful to evaluate high-order perturbation

=10}

tion of the master equatiof3g)]. terms. We use the notation of Messfh.
Let N be the order of the perturbation. Then the projection
17A%s_, (=dq q* operatorP ==, |m)(m|, consisting of the degenerate states
W_z= 1927p JO aTq +(etBhog—1) 6. (AL0) {|m)}, and the operatorH{ — Eg)P are expanded as follows:
Assuming a linear dispersion relation,= cq, wherec is the o o
sound velocity, and using=%wy=7%cq one obtains P=Py+ >, ANAMN), (H-EY)P= > ANBMY,
N=1 N=1
17A%s_, F e® "
_o= € " wit
2 192mpccht)o  + (et Fhea—1)
17A%s_ Em_2—&m)°>
_ 2 (em-27#m _ (A11) AN =" gaygey. .. v,
1927pc®h* eflem-272m — 1 (N)

In the same way we get

BN = _ 2 SRAVASAVARIRVES SRR Y
17A23+2 (8m+2_8m)3 (N=-1)

= , Al12
192mpcSi* eflemiz—em — (AL2)

+2
where
with s, ,=(s—m)(s+m+1)(s—m—1)(s+m+2).
The transition rates fan—m=1 can be calculated in the
same manner as above wih=2A~gs,

Azstl ("«'mil_sm)3

W, = , (A13) l4)
=1 1277p05h4 eﬂ(smtlfgm)— 1

I6)
where s.;=(s¥m)(stm+1)(2m+1)?, and p=1.83

X 10® kg/m?.® 18

APPENDIX B: LEVEL SPLITTING

In this appendix we derive a formula for the tunnel split-
ting energy which is applicable to potentiaisni'mmeﬂ% |=10)
with arbitrary Am=m;—m;,; (m>m>m,,.;>m’, i
=1,... N—1). According to Kato’s theoflf the expansion
of the resolvent

FIG. 18. Spin relaxation pathdrom m=10 to m= —10) for
(2/gug)(A+34B)<H,<(3/gug)(A+17B). Full lines: thermal
transitions due to phonons. Dashed lines: dominant tunneling tran-
sitions due toB, andH, terms. Dotted lines: tunneling transitions
G(z)= 1 (B1) that lead to satellite peakincluded in the numerical diagonaliza-

z—Hy—AV tion of the master equatiof88)].
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pI—1) 14) ¢
-
T4 5 - 5
I5) 1-3) 16 -2
T3 3
1 6 g1 6
T2 7
77 -
J .
]10) |—10) 110) |—10)

FIG. 19. Serially reduced diagram associated with Fig. 18. In  FIG. 21. Serially reduced diagram associated with Fig. 20. In
order to understand the analytical evaluation of the relaxation diaerder to understand the analytical evaluation of the relaxation dia-
gram in Fig. 18 better, tunneling transitions that lead to satellitegram in Fig. 20 better, tunneling transitions that lead to satellite

peaks are excluded. The relaxation timgsare given in Eq(53). peaks are excluded. The relaxation timgsare given in Eq(53).
- Py, if k=0, *
Ka=PoPPy=Py+Py >, ANANP,. (B4)
Sk= Qo . a N=1
— if k=1,
a Thus we have now
Qo ! Ca=(E3— x)Po+(E2—x) 2, ANP,ANP
Qo=1-Py, —=Qo———Qo, a=(Ea=Xx)Po+(Ez—x) 2. N"Pg 0
a (Ea—Ho) N=1
and the sumX, has to be taken over all combinations S N N
(N) K + > ANP,BMNP,. B5
ki,Ko,- -, kyer with the restrictionky+ko+ ... +kyig NE:1 0 0 (BS)

= N " . . . .
The following general secular equation must be solved: Equation(B5) is the general formula for finding the per-
turbed eigenvalues and eigenstates. We apply it now to the

detH,— yK,)=de(C,) =0, (82)  Situation of our two degenerate spin statey and |m’).
é é é The following derivation refers to the off-diagonal elements
where we have introduced the abbreviat®g=H,— yK,. of Eq.(B5).

The x are the eigenvalues of the perturbed statesandK , The factorsP,AMP, and PoBMP, do not vanish ifk;
are defined by =kn:1=0. As we look for the lowest-order perturbation

that gives a contribution to the tunnel splittirgy,,, , the
o projection operator§', i=2, ... N, must not be equal to
Ha=PoHPPy=EJK,+ P, >, \NBMNP,, (B3) —Py, i.e k#0,i=2,... N. Hence, we get the following
N=1 combinations for the lowest-order perturbation,

for AN: ky=kz=---=k_;=1k =2,
kizi=---=ky=1, i=2,...N, (B6)
for BN: ky=kg=---=ky=1. (B7)
In the case of weak perturbation the second term of(B§)

is much smaller than the third one. Thus the secular equation
reads as follows:

19)
1) 1=,
Pa)

|—10)

FIG. 20. Spin relaxation pathdrom m=10 to m=—10) for
(3lgug)(A+17B)<H,<(4/gug) (A+40B). Full lines: thermal
transitions due to phonons. Dashed lines: dominant tunneling tran-
sitions due toB, andH, terms. Dotted lines: tunneling transitions |,
that lead to satellite peaKincluded in the numerical diagonaliza-
tion of the master equatio(38)]. FIG. 22. Cascade withm=—1 andH=0.
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Ca=(E2— x)Po+ (diagonal elemenjs

m,my

Em— €
m my

) [T —— Vi m(m|.

i=1 Em— €
=1 &m™&m

Thus we arrive at formulé30).

(B8)

APPENDIX C: APPLICATION OF KIRCHHOFF'S RULES

In this appendix we make use of Kirchhoff's rulésl)

SPIN TUNNELING AND PHONON-ASSISTED . ..

1301
F(l):i |V1'0|2(8 —& )3i
2m fhpcS 0 Y 1—e Bleomen)

_3 IVid?| A P e b1

T om f4pcd| g2 1— e BAIS® (DY)

A=100QA is the energy barrier.

We have extended this expression by taking higher-order
transitions into account. If we take a cascade with transitions
Am= =2, for the cases=10, we obtain

3 |Vaq? e P4

(2) =
I 21T fl4p05

_ 3__ -
(80 82) 1—e73(‘90782)

and (K2) in order to evaluate the diagrams of the relaxation

paths. Each diagram and its evaluation is valid for the inter-

val between two main peaks. The solutioﬁlvnz of the

Kirchhoff equations between the peaks=m;+m; and
n,=m,+m; is not written down explicitly, since it is too
lengthy and the calculation is straightforward.

(1) (Lgug)(A+13B)<H,<(2/gug)(A+34B): From J
=111+35,01=0J3134,J4= 35+ Jg,Jo+ I5=Jg,J3+ = J7,7
+Jg=J, and AN=J;71+J373+J777,J373=J474+ I575
+J676,Jdo70=J171+ 474+ I575,Jg7g = J575+ g7+ 777,
one can immediately evaluate the relaxation tinfg(H)
=AN/J (see Figs. 16 and 17

(2 (2lgug)(A+34B)<H,< 3/gug(A+17B): From
J=01+35,11=03+0,+ 37,05+ 1,=J5,J3+ J5=Jg, )5+ J7
=J, and AN=J,71+ 373+ J76,J373=Ju7s+ J575,J75
=J171+d474,d777=J474+ 575+ g7, ONE can immedi-
ately evaluate the relaxation timg J(H)=AN/J (see Figs.
18 and 19.

3) (3lgug)(A+17B)<H,<(4/gug)(A+40B): From
J=01+35,11=03+34,J4=J5+J7,d5+ 3+ I5=Jg, )6+ J7
=J, and AN=J,7,+J373+Jg76,J373=JuTa+I575,J57>
=J17+ 474+ I575,J777= 575+ JgTg, ONE can immedi-
ately evaluate the relaxation tim¢g ,(H)=AN/J (see Figs.
20 and 2]

APPENDIX D: FIRST-ORDER vs SECOND-ORDER
TRANSITION

3 e_ﬁA
—. (D2
1-e Flenp

A
(s/2)?

3 Vpd?
2T ﬁ4pC5

Comparing to the relaxation rae* with s=10, an in-
crease by a factor

re  ac
m ~ E =64 (D3)
is obtained, assumingv®~V(? (see Abragam and
Bleaney?® p. 563, for experimental evidence

Now we calculate the relaxation rate by means of formula
(63) with TM=1/7*, Am==1, andT®=1/7*, Am=
+2. If there is a fast transition via tunneling between levels
m=4 andm’=—4 for H,=0 atT=1.9 K, we get the fol-
lowing more accurate estimation:

NG

- 11.7 (D4)
The same can be done if the fastest transition takes place via
tunneling between levelm=2 andm’= -2 for H,=0 at
T=19 K,

re

We show in this section that second-order transitions leadrrom these results it is obvious that second-order transitions
to a much faster relaxation of the spin system than first-ordelead to a faster relaxation. Note that it is E49) together
transitions if the coupling constants are equal. The relaxatiowith Eq. (28) which imply that the ratio§D4) and (D5) are

rateI'™) of the cascade with transitionsm= +1 has been
calculated by Villainet all’ (see Fig. 23,

of the same order as the ratiD3). This provides a theoret-
ical justification for the approximatiokl!)~ V),
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