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Spin tunneling and phonon-assisted relaxation in Mn12-acetate

Michael N. Leuenberger* and Daniel Loss†

Department of Physics and Astronomy, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
~Received 13 July 1999!

We present a comprehensive theory of the magnetization relaxation in a Mn12-acetate crystal in the high-
temperature regime (T*1 K), which is based on phonon-assisted spin tunneling induced by quartic magnetic
anisotropy and weak transverse magnetic fields. The overall relaxation rate as function of the longitudinal
magnetic field is calculated and shown to agree well with experimental data including all resonance peaks
measured so far. The Lorentzian shape of the resonances, which we obtain via a generalized master equation
that includes spin tunneling, is also in good agreement with recent data. We derive a general formula for the
tunnel splitting energy of these resonances. We show that fourth-order diagonal terms in the Hamiltonian lead
to satellite peaks. A derivation of the effective linewidth of a resonance peak is given and shown to agree well
with experimental data. In addition, previously unknown spin-phonon coupling constants are calculated ex-
plicitly. The values obtained for these constants and for the sound velocity are also in good agreement with
recent data. We show that the spin relaxation in Mn12-acetate takes place via several transition paths of
comparable weight. These transition paths are expressed in terms of intermediate relaxation times, which are
calculated and which can be tested experimentally.
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I. INTRODUCTION

The magnetization relaxation in the molecul
magnet Mn12-acetate with chemical for
mula, @Mn12( CH3COO)16 (H2O)4O12#• 2CH3COOH• 4H2O
~henceforth abbreviated as Mn12) has attracted much recen
interest since several experiments1–5 have indicated unusu
ally long relaxation times — about two months at a tempe
ture of about 2 K — as well as pronounced peaks in
relaxation time6–8 in response to a varying magnetic fieldHz
when applied along the easy axis of the Mn12 crystal. These
peaks correspond to an increased relaxation rate of the m
netization of Mn12 and occur whenHz is tuned to multiples
of about 0.44 T. According to earlier suggestions9,10 this phe-
nomenon has been interpreted as a manifestation of reso
tunneling of the magnetization, often referred to as mac
scopic quantum tunneling~MQT!. A qualitative explanation
goes as follows. From the microscopic point of view a Mn12
cluster acts like a giant spin with lengths510 as long as the
external magnetic field is small compared to the excha
interactions between the Mn ions, which is fulfilled in th
experimental range considered in this paper. The relaxa
rate of the magnetization increases at field values where
spin states become pairwise degenerate. It is this degene
that determines the resonance condition. As the external
Hz is moved away from a resonance the spin states are
longer perfectly degenerate, and therefore the tunne
probability becomes smaller and thus the relaxation r
Since the spin system couples to the environmental phon
of the Mn12 crystal, the energy levels of the spin states
smeared out. This leads to homogeneously broadened
nance peaks that are of Lorentzian shape. There are
other sources which lead to broadening of the resonan
such as hyperfine and dipolar fields.11 They give rise to in-
homogeneous broadening with Gaussian-shaped peaks12,13

However, this stands in contrast to the measured reson
peaks, which are nearly perfect Lorentzians.11 Furthermore,
PRB 610163-1829/2000/61~2!/1286~17!/$15.00
-
e

g-

ant
-

e

n
he
acy
ld
no
g

e.
ns
e
so-
lso
s,

ce

the width of the hyperfine induced Gaussians12,14turns out to
be smaller forT*1 K than the width of the Lorentzian
obtained below and seen in the experiment.15 Similarly, di-
polar interactions have been ruled out by experiments
diluted samples.16 Thus, for temperaturesT*1 K we can
safely neglect hyperfine and dipolar fields, and the domin
source of the peak broadening can be explained consiste
by spin-phonon effects only.

In a critical comparison between mod
calculations12,14,17–20and experimental data6,7,11 Friedmanet
al.11 point out that a consistent explanation of the experim
tally observed relaxation is still missing. A good startin
point for theoretical calculations has been formulated by V
lain et al.,17 where the relaxation is described in terms
spin-phonon interaction and a generalized Orbach proc
However, this approach does not include the dependenc
the external fieldHz . Also, one of the main challenges fo
theory is to explain the overall shape of the relaxation cu
as well as the nearly perfect Lorentzian shape of the m
sured resonance peaks.11

In this work we perform a model calculation of the ma
netization relaxation which is based on phonon-assisted
neling. We present a self-consistent theory which is in r
sonably good agreement both with the overall relaxation r
~including all resonances! measured by Thomaset al.7 ~see
Fig. 3! and with the Lorentzian shape of the first resonan
peaks~see Figs. 7 and 8! measured by Friedmanet al.11 with
high precision for four different temperatures.

Our model, which is introduced in Sec. II, contains fiv
independent parameters: three anisotropy constantsA@B
@B4, the misalignment angleu ~angle between field direc
tion and easy axis, the latter being taken along thez axis!,
and the sound velocityc. The anisotropy constantB4 and the
angleu are responsible for the spin tunneling. This will b
explained in Sec. III. Moreover, we derive the spin-phon
coupling constants in Sec. II. It turns out from our calcu
tions that these constants can be expressed in terms o
1286 ©2000 The American Physical Society
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PRB 61 1287SPIN TUNNELING AND PHONON-ASSISTED . . .
anisotropy A. The constantsA,B,B4 have already been
measured21,22 and are known within some experimental u
certainty. We achieve optimal agreement between our the
and data if we proceed as follows. In accordance with R
11 we setu51°, while the constantsA,B,B4 are fitted to the
relaxation data by observing, however, the constraints
A,B,B4 are allowed to vary only within the range of the
experimental uncertainties. The sound velocityc has not
been directly measured yet~to our knowledge!. However,
specific heat measurements42 yield the Debye temperature o
Mn12, from which a sound velocity can be deduced that is
excellent agreement with our fit of the sound velocityc
5(1.4522.0)3103 m/s ~see Sec. IV!. Thus, in contrast to
previous results12,14,17–19our theory is in reasonably goo
agreement not only with the relaxation data7,11 but also with
all experimental parameter values known so far~see Figs. 3,
7, and 8!. In addition, predictions are made which can
tested experimentally: the sound velocityc and the interme-
diate relaxation timestn , as well as satellite peaks.

In Sec. III, extending previous work,12,14,17–19we make
use of a generalized master equation which treats pho
induced spin transitions between nearest and next-neares
ergy levels as well as resonant tunneling due to qua
anisotropies and transverse fields on the same footing, w
results in the Lorentzian shape of the resonances. We de
the effective linewidth of the Lorentzian peaks~see Sec. VI!
as well as a generalized formula of the tunnel splitting
ergy ~see Sec. III!. In Sec. IV, we obtain the relaxation tim
by exactly diagonalizing the master equation. In Sec.
solving the master equation analytically, we identify t
dominant transition paths~see Figs. 9 and 10! and show that
the magnetization reversal is not dominated by just o
single path but rather by several paths which can be of c
parable weight. We finally note that some of the results
the present paper have been published in Ref. 23 in a s
and less general form. Here we present details of the der
tion of these results and generalize them in various wa
leading to results such as satellite peaks in the overall re
ation curve, relaxation time of an individual relaxation pa
an analytical expression for the effective linewidths, and
generalized tunnel splitting formula.

II. MODEL

In accordance with earlier work12,14,17–19,24 we use a
single-spin HamiltonianH5Ha1HZ1Hsp1HT including
spin-phonon coupling. This model turns out to be sufficie
to describe the behavior of the Mn12-acetate molecule~for
temperaturesT*1 K). In particular,

Ha52ASz
22BSz

4 ~1!

represents the magnetic anisotropy whereA@B.0. The an-
isotropy2ASz

2 is depicted in Fig. 1. We define the easy ax
to lie along thez direction.

Here, S is the spin operator withs510, and A/kB
50.52– 0.56 K,21,22 andB/kB5(1.121.3)31023 ~Refs. 21
and 22! are the anisotropy constants (kB is the Boltzmann
factor!. The Zeeman term

HZ5gmBHzSz ~2!
ry
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describes the coupling between the external magnetic fi
Hz and the spinS. Theg factor is known to beg51.9.25

We denote byum&, 2s<m<s, the eigenstates ofHa
1HZ with eigenvalue

«m52Am22Bm41gmBHzm. ~3!

If the external magnetic fieldHz is increased, one obtain
doubly degenerate spin states whenever a levelm coincides
with a levelm8 on the opposite side of the well~separated by
the barrier given byA). The resonance condition for doub
degeneracy, i.e.,«m5«m8 , leads to the resonance field

Hz
mm85

n

gmB
@A1B~m21m82!#. ~4!

As usual, we refer ton5m1m85 even~odd! as even~odd!
resonances.

The Hamiltonian

HT52
1

2
B4~S1

4 1S2
4 !1gmBHxSx, ~5!

makes tunneling betweenSz states possible, whereS65Sx
6 iSy , and B4 is the fourth-order anisotropy constant.Hx
5uHusinu is the transverse field, withu being the misalign-
ment angle.Hx is assumed to be much smaller thanHz , i.e.,
u is at most a few degrees. From experiments21 it is known
that B4 /kB5(4.3214.4)31025 K. Finally, the most gen-
eral spin-phonon coupling26 which is allowed by the tetrag
onal symmetry of the Mn12 crystal in leading order is given
by

Hsp5g1~exx2eyy! ^ ~Sx
22Sy

2!1
1

2
g2exy^ $Sx ,Sy%

1
1

2
g3~exz^ $Sx ,Sz%1eyz^ $Sy ,Sz%!

1
1

2
g4~vxz^ $Sx ,Sz%1vyz^ $Sy ,Sz%!, ~6!

FIG. 1. Anisotropy energy2Am22Bm4.
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5
1

2
g1~exx2eyy! ^ ~S1

2 1S2
2 !1

i

4
g2exy^ ~S2

2 2S1
2 !

1
1

4
g3@~exz2 i eyz! ^ $S1 ,Sz%1~exz1 i eyz! ^ $S2 ,Sz%#

1
1

4
g4@~vxz2 ivyz! ^ $S1 ,Sz%1~vxz1 ivyz! ^ $S2 ,Sz%#,

~7!

where gi , i 51,2,3,4, are the spin-phonon coupling co
stants, which we shall determine in the following.

The linear strain tensor is defined bye5¹u, where
u(x,y,z) is the displacement field. Symmetrization of th
strain tensor yields

eab5
1

2 S ]ua

]b
1

]ub

]a D , ~8!

while the antisymmetrized linear strain tensor reads

vab5
1

2 S ]ua

]b
2

]ub

]a D , ~9!

with a,b5x,y,z. To determinegi occurring in Eq.~6! we
follow Dohm and Fulde.27 The displacement

u5df3x ~10!

~in leading order! is generated by rotation only. The infin
tesimal rotation angle can be calculated by acting with“x
~with respect to the positionx) on both sides of Eq.~10!,

df5
1

2
“3u5F vyz

vzx

vxy

G . ~11!

Applying infinitesimal rotations on the spin vectorS

F 1 0 0

0 1 vyz

0 2vyz 1
GF 1 0 vxz

0 1 0

2vxz 0 1
GF Sx

Sy

Sz

G
5F Sx1vxzSz

Sy2vxzvyzSx1vyzSz

vxzSx2vyzSy2Sz

G , ~12!

we find ~to leading order invab) that the easy axis term,
2ASz

2 , is transformed into

A~vxz$Sx ,Sz%1vyz$Sy ,Sz%!. ~13!

Comparison with the last term in Eq.~6! then yieldsg4
52A.

If the rotation matricesRa , a5x,y,z, are expanded up to
second order, one finds terms that include symmetric
ments of the strain tensore,
e-

Rx5F 1 0 0

0 12
1

2
dfx

2 2dfx

0 dfx 12
1

2
dfx

2
G , ~14!

Ry5F 12
1

2
dfy

2 0 2dfy

0 1 0

dfy 0 12
1

2
dfy

2
G , ~15!

Rz5F 12
1

2
dfz

2 2dfz 0

dfz 12
1

2
dfz

2 0

0 0 1

G . ~16!

Now we obtain fromu5RzRyRxx2x

u5df3x2
1

2F ~dfy
21dfz

2!x

~dfx
21dfz

2!y

~dfx
21dfy

2!z
G . ~17!

By keeping derivatives ofdfa , up to second order we find
dfx

25«xx2«yy2«zz, and cyclic permutation of (x,y,z).
After inserting the rotated spin vectorRxRyS into 2ASz

2

52A(S22Sx
22Sy

2) we get for the right-hand side

A~exx2eyy!~Sx
22Sy

2!1O~e2!, ~18!

where we retain only terms that induce spin transitio
Comparing with the spin-phonon Hamiltonian~6! one sees
immediately thatg15A, and thus

g15g4/25A. ~19!

Thus the coupling constantsg1 and g4 are explicitly ex-
pressed in terms of the anisotropyA.

Finally, we note that the terms in Eq.~6! that are propor-
tional to g1,2 produce second-order transitions withDm
562, while the ones proportional tog3,4 produce first-order
transitions withDm561. Thus, Eq.~19! implies that first-
order and second-order transitions are equally important
the relaxation. In following Abragam and Bleaney,28 it is
now very plausible to adopt the approximationsug2u'g1
5A and ug3u'g452A ~the sign is irrelevant for the transi
tion rates calculated below!.

III. MASTER EQUATION INCLUDING SPIN TUNNELING

A. Generalized master equation

In this section we derive a master equation that descr
the relaxation of the spin due to phonon-assisted transit
including resonances due to tunneling. For this we make
of a standard formalism29,30 suitable to describe a system
~spin! coupled to a heat bath reservoir~phonons!, the latter of
which is in thermodynamic equilibrium described by the c
nonical density matrixrph for free phonons. That means w
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PRB 61 1289SPIN TUNNELING AND PHONON-ASSISTED . . .
start from the full HamiltonianH5H01Hph1Hsp, where
H05Ha1HZ1HT represents the system,Hph the phonon
heat bath, andHsp given in Eq. ~6! is of the form Hsp
5( iQi ^ Fi , whereQi is a spin operator andFi is a phonon
operator. The generalized master equation in the interac
picture~I! in Born and Markoff approximation reads@see Eq.
~8.1.22! in Ref. 29#

ṙ I~ t !52S 1

\ D 2

(
i j

E
0

`

dt9$@Qi~ t !,Qj~ t2t9!r I~ t !#

3^Fi~ t9!F j&2@Qi~ t !,r I~ t !Qj~ t2t9!#^F jFi~ t9!&%,

~20!

whereQi(t)5eiH0tQie
2 iH0t. Equation~20! is valid for the

situations where the correlation timetc in the heat bath is
much smaller than the relaxation timet of the spin system.
Indeed, the assumption is satisfied here since a rough
mate for thermal phonons yieldstc;\/kBT;10211 s, at
T51 K, whereas it will turn out thatt*1 s~see below!. In
this case, the integral kernel gives a vanishing contribut
for times t9 larger thantc , and thus one can extend th
upper limit of the time integral to infinity and replacer(t
2t9) by r(t) ~see also Ref. 30, Chap. 13!.

As our undamped HamiltonianH0 has also nondiagona
elements in theum& basis it proves convenient to formula
the generalized master equation in the Schro¨dinger picture,
i.e., with r I(t)5e( i /\)H0tr(t)e2( i /\)H0t, we get

ṙ~ t !5
i

\
@r~ t !,H0#2S 1

\ D 2

(
i j

E
0

`

dt9$@Qi ,Qj~2t9!r~ t !#

3^Fi~ t9!F j&2@Qi ,r~ t !Qj~2t9!#^F jFi~ t9!&%. ~21!

As the tunnel splitting generated byHT is smaller than the
level spacing ofH0, i.e., Emm8,u«m2«m8u ~see below!, we
can approximate the free propagatore2( i /\)H0t9 within the
integral kernel by e2( i /\)(Ha1HZ)t9 in the rest of our
calculations.31 Next, we take the matrix element
of Eq. ~21! using rmm85^murum8&, rm5rmm, Umm8
5e2( i /\)(«m2«m8)t9, and with the definitions29,32

Gmkln
1 5

1

\2 (
i , j

^muQi uk&^ l uQj un&E
0

`

dt9Uln^Fi~ t9!F j&,

Gmkln
2 5

1

\2 (
i , j

^muQi uk&^ l uQj un&E
0

`

dt9Umk̂ F jFi~ t9!&,

gm8m5(
k

~Gm8kkm8
1

1Gmkkm
2 !2Gmmm8m8

1
2Gmmm8m8

2 ,

Wmn5Gnmmn
1 1Gnmmn

2 , ~22!

it follows from Eq. ~21! that

ṙmm85
i

\
@r,H0#mm81dmm8 (

nÞm
rnWmn2gmm8rmm8 ,

~23!

where we have considered only the secular terms@i.e., the
‘‘coarse-grained’’ derivative was taken with respect tot in
on

ti-

n

Eq. ~20!#29 and set@ ,#mm85^mu@ ,#um8&. The relaxation of
the magnetization is entirely based on Eq.~23!.

The difference to the usual master equation is that
~23! takes also off-diagonal elements of the density ma
r(t) into account. This is essential to describe tunneling
the magnetization, which is caused by the overlap of theSz
states.

The diagonal elements (m5m8) of Eq. ~23! yield the
master equation

ṙm5
i

\
@r,H0#mm1 (

nÞm
rnWmn2rm (

nÞm
Wnm . ~24!

The equation for the off-diagonal elements (mÞm8),

ṙmm85
i

\
@r,H0#mm82gmm8rmm8 , ~25!

can be simplified in the following way
According to Eq. ~7!, Qi is an element of the se
$S1

2 ,S2
2 ,S1Sz ,SzS1 ,S2Sz ,SzS2%. Hence, we see tha

Gmmm8m8
1

5Gmmm8m8
2

50, and we get

gm8m5gmm85
1

2 (
n

~Wnm81Wnm!5
1

2
~Wm1Wm8!,

~26!

where we use the abbreviationWm5(nWnm .
Evaluation of Eq. ~22! leads immediately to Fermi’s

golden rule for transition rates in first quantization@see Eq.
~8.2.3! in Ref. 29#:

Wmn5
2p

\ (
NN8

u^mNuHspunN8&u2^N8urphuN8&d~EN82EN

2«m1«n!. ~27!

Explicit evaluation yields~see Appendix A!

Wm61,m5
A2s61

12prc5\4

~«m612«m!3

eb(«m612«m)21
,

Wm62,m5
17A2s62

192prc5\4

~«m622«m!3

eb(«m622«m)21
, ~28!

where s615(s7m)(s6m11)(2m61)2, and s625(s
7m)(s6m11)(s7m21)(s6m12). The mass densityr
for Mn12 is given by 1.833103 kg/m3.33 Here, c is the
sound velocity of the Mn crystal, which is the only fre
parameter in our theory. As already mentioned, we are
aware of direct measurements ofc ~but see below!. Note that
the transition ratesWm61,m ,Wm62,m are very sensitive to
variations of the sound velocityc, as the latter enters with th
fifth power.

B. Spin tunneling

We include now the spin tunneling in the generaliz
master equation~23!. Let um& andum8& be two eigenstates o
Ha1HZ on the left and right sides of the barrier, respe

tively. um& and um8& are degenerate whendHz5Hz
mm82Hz

vanishes. In the presence of tunneling, induced byHT , the
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1290 PRB 61MICHAEL N. LEUENBERGER AND DANIEL LOSS
two states form~anti!symmetric levels split byEmm8 ~for
dHz50). By using time-independent perturbation theory
higher order the tunnel splitting energyEmm8 can be
evaluated,34

Emm852
Vm,m21

«m212«m

Vm21,m22

«m222«m
•••V2m811,2m8 . ~29!

Note that in this expression only steps withDm561 are
allowed. However, for the present purpose we need to g
eralize Eq.~29! to situations where potentialsVmi ,mi 11

PR
with arbitrary stepsDm5mi2mi 11 (m.mi.mi 11.m8,
i 51, . . . ,N21) can occur. As we will show in Appendix B
this is indeed possible by using resolvent techniques, and
find

Emm852U (
m1 , . . . ,mN

miÞm,m8

Vm,m1

«m2«m1

)
i 51

N21 Vmi ,mi 11

«m2«mi 11

VmN ,m8U ,

~30!

whereN is the lowest order of the degenerate perturbat
theory, by means of which Eq.~30! has been derived
(Nth-order secular equation35!, giving a nonvanishing contri-

FIG. 2. Tunneling configuration.

FIG. 3. Full line: semilogarithmic plot of calculated relaxatio
time t as function of magnetic fieldHz at T51.9 K. The optimal
fit values ~see text! are A/kB50.54 K, B/kB51.131023 K, and
B4 /kB58.531025 K, u51°, and c51.453103 m/s. Dots and
error bars: data taken from Ref. 7.
n-

e

n

bution toEmm8 . For the potentialsVmi ,mi 11
we insert com-

binations of terms occurring inHT . For example, the anisot
ropy B4 leads to transitions Dm564, while the
misalignmentHx leads to transitionsDm561. The summa-
tions in Eq.~30! can be thought of as summation over d
ferent paths in the Hilbert space connectingum& with um8&.

Continuing the evaluation of the first part of Eq
~23! we project the undamped HamiltonianH0 by P
5(n5m,m8un&^nu on the two-state system$um&,um8&%, which
yields the two-state Hamiltonian in the presence of a b
field ~see Fig. 2!

H̄T5jmum&^mu1
Emm8

2
um&^m8u1~m↔m8!

5̂F jm
Emm8

2

Emm8
2

jm8

G5PH0P, ~31!

with jm5«m1gmBdHzm and the energy eigenvaluesET

5 1
2 @jm1jm86A(jm2jm8)

21Emm8
2

#. H̄T provides a valid
description as long as the level splitting remains smaller t
the level spacing, i.e.,

D5A~jm2jm8!
21Emm8

2
!u«m(8)2«m(8)61u. ~32!

We have checked that between two main resonances
condition is satisfied for the statesumT& and umT8& of the

FIG. 4. Full line: semilogarithmic plot of calculated relaxatio
time t as function of magnetic fieldHz at T51.9 K. Here u
50.5° has been chosen. Dots and error bars: data taken from R

FIG. 5. Full line: semilogarithmic plot of calculated relaxatio
time t as function of magnetic fieldHz at T51.9 K. Hereu52°
has been chosen. Dots and error bars: data taken from Ref. 7.
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PRB 61 1291SPIN TUNNELING AND PHONON-ASSISTED . . .
dominant paths and for each degenerate pair of statesum&,
um8& with «m ,«m8<«mT

,«m
T8

~see Sec. V!.

Next we insert the two-state HamiltonianH̄T into the gen-
eralized master equation~23!, which yields

ṙm5
iEmm8

2\
~rmm82rm8m!2Wmrm1 (

nÞm,m8
Wmnrn

~33!

and

ṙmm852S i

\
jmm81gmm8D rmm81

iEmm8
2\

~rm2rm8!,

~34!

where jmm85jm2jm8 , and likewise for m↔m8. Ulti-
mately, we are interested in the overall relaxation timet of
the quantityrs2r2s ~see Sec. V! due to phonon-induced
transitions. Thist turns out to be much longer thantd
51/gmm8 , which is the decoherence time of the decay of
off-diagonal elementsrmm8}e2t/td of the density matrixr.
Thus, we can neglect the time-dependence of the
diagonal elements, i.e.,ṙmm8'0. Physically this means tha
we deal with incoherent tunneling for timest.td .36 Insert-
ing then the stationary solution of Eq.~34! into Eq. ~33!,
which leads to the complete master equation including re
nant as well as nonresonant levels,

ṙm52Wmrm1 (
nÞm,m8

Wmnrn1Gm
m8~rm82rm!, ~35!

where

Gm
m85Emm8

2 Wm1Wm8

4jmm8
2

1\2~Wm1Wm8!
2

~36!

is the transition rate fromm to m8 ~induced by tunneling! in
the presence of phonon damping.38 The relaxation dynamics

of the resonances described by 1/Gm
m8;1027 s ~see Fig. 15!

turns out to be much faster than the phonon-induced ove

relaxation, i.e., 1/Gm
m8!t*1s ~see Fig. 3!. Thus, our deriva-

tion based on the assumptiont@td is self-consistent since

1/Gm
m8;td . Note that Eq.~35! is now of the usual form of a

master equation, i.e., only diagonal elements of the den
matrix r(t) occur. For levelskÞm,m8, Eq. ~35! reduces to

FIG. 6. Full line: semilogarithmic plot of calculated relaxatio
time t as function of magnetic fieldHz at T51.9 K. Hereu53°
has been chosen. Dots and error bars: data taken from Ref. 7.
e

f-

o-

ll

ty

ṙk52Wkrk1(
n

Wknrn . ~37!

We note thatGm
m8 has a Lorentzian shape with respect

the external magnetic fielddHz occurring injmm8 . The Hz
dependence ofWm around the resonances turns out to
much weaker~see below! and can be safely ignored. It i

thus thisGm
m8 that will determine the peak shape of the ma

netization resonances~see below and Figs. 3–8!. Note that in
Figs. 3–8 these Lorentzians aretruncatedat the center of the
peak by the spin-phonon transition ratesWm and Wm8 in
such a way that the effective linewidth~defined as the width
at half of the height of the truncated peak! is much larger
than (Wm1Wm8)/2. This needs some further explanation
which are given in Sec. VI, after we have discussed the
laxation times.

IV. RELAXATION TIME

A. Numerical diagonalization of the master equation

In this section we give the results of our exact evaluat
obtained by a numerical diagonalization of the master eq

FIG. 7. Full line: plot of calculated relaxation rateG51/t as
function of Hz for the first resonance peak atT52.6 K. The

Lorentzian shape is due toGm
m8 in Eq. ~36!. The optimal fit values

~see text! are A/kB50.56 K, B/kB51.331023 K, and B4 /kB

514.431025 K, u51°, andc52.03103 m/s. Dots: data taken
from Ref. 11.

FIG. 8. Full lines: semilogarithmic plots of calculated relaxati
rateG51/t as function ofHz for the first resonance peak at~a! T
52.5 K, ~b! T52.6 K, ~c! T52.7 K, and ~d! T52.8 K. All
peaks are of single Lorentzian shape. The optimal fit values are
same as in Fig. 7. Dots: data taken from Ref. 11.
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tion. For convenience we now write down the master eq
tion ~35! as a vector equation,

rẆ ~ t !5W̃rW ~ t !, ~38!

where the elements of the vectorrW (t) are the diagonal ele
ments of the density matrixr. Within the intervalI n1 ,n2

@see

Eq. ~65!# delimited by the two main resonancesn1 and n2

only the tunneling ratesG
m1

m18 and G
m2

m28 @Eq. ~36!#, for which

m11m185n1 andm21m285n2 ~see Sec. V A! are allowed to
be included for self-consistency reasons: the tunnel split
~32! enteringG is only valid within this intervalI n1 ,n2

. If

wi , i 51,2, . . .,21, are the eigenvalues of the rate matrixW̃,
the dominant relaxation time of the spin system is given

t5max
i

H 2
1

Rewi
J . ~39!

The eigenvalueswi turn out to be nondegenerate with th
smallest one being far separated by a factor of at least4

from the remaining ones. The result is plotted in Fig.
where the overall relaxation ratet is shown as a function o
Hz at T51.9 K. It is important to note that all the resonan
peaks are of Lorentzian shape. We note that in our mode
even resonances are induced by the quarticB4 anisotropy,
whereas the odd resonances are induced by product co
nations ofB4S6

4 andHxSx terms@see Eq.~30!#. For the plot
in Fig. 3 we setu51° in accordance with the experiment
uncertainty,11 leading to a maximal transversal fieldHx of
about 350 G.

B. Comparison with experimental data

For comparison we also include in Fig. 3 the data repor
by Thomaset al.7,39 We have optimized the fit~as explained
in the Introduction! in such a way that the fits of the mod
parameters, given by

A/kB50.54 K, ~40!

B/kB51.131023 K, ~41!

B4 /kB58.531025 K, ~42!

are roughly within the reported experimental uncertainties
Refs. 21 and 22~see above!. The value ofB4 is in excellent
agreement with recent measurements performed in Ref.
Our fit of the sound velocity yields

c51.453103 m/s. ~43!

There is a difference between odd and even resonances
the relaxation timet at an even resonance peak is about th
times smaller than the one at a subsequent odd reson
peak. It should be mentioned that almost identical plots
obtained for 0.5°&u&3°, as can be seen in Figs. 3–6. T
present theory holds foruHxu&1000 G~which is well satis-
fied here!; otherwise the shift of the levelsum& due to the
perturbationHxSx must be taken into account. For examp
for the resonancen53 the relevant tunneling takes plac
betweenu4& and u21&. The dominant second-order shift
-

g

y

0
,

he

bi-

d

f

0.

.e.,
e
ce

re

,

^1ugmBHxSxu0&^0ugmBHxSxu1&
«12«0

1
^1ugmBHxSxu2&^2ugmBHxSxu1&

«12«2

5kB340 mK

!u«1u5kB32.3 K ~44!

clearly shows that the unperturbed states$um&% are a good
zeroth-order approximation. It is also important to kno
whether the second-order shifts caused by the perturba
HT are negligible compared to the tunnel splittingEmTm

T8
.

Explicitly, we find

uD2
(2)2D26

(2)u/kB58.5 mK ~n54!,

uD1
(2)2D24

(2)u/kB513.2 mK ~n53!,

uD3
(2)2D25

(2)u/kB55.0 mK ~n52!,

uD2
(2)2D23

(2)u/kB50.5 mK ~n51!,

uD4
(2)2D24

(2)u/kB50 ~n50!, ~45!

whereDmT

(2) is the second-order shift of the unperturbed sta

umT& of the dominant paths. These renormalizations caus
very small shift of the resonance peaks, e.g., the shift fon
53 is 0.6 mT. The relevant tunnel splitting energies of t
odd and even resonances are about the same~exceptE4,21):

E4,24'E3,22'E5,23'kB345 mK ,

E4,21 /kB'130 mK , E6,22 /kB'40 mK. ~46!

For comparison,E2,22 /kB'1 K @see also Eq.~66!#. In con-
clusion, the diagonal elements of the shifts of the nondeg
erate perturbation theory are much smaller than the
diagonal elements of the shifts of the degenerate perturba
theory ~see Appendix B!. Thus our assumption of quaside
generacy is very well satisfied.

We note that there are satellite peaks in Figs. 3–6,
origin of which will be explained below in Sec. V.

In Figs. 7 and 8 we plot the peaks of the first resonanc
Hz50, which is induced only by theB4 anisotropy, for four
different temperatures, namelyT52.5, 2.6, 2.7, and 2.8 K
The four peaks~like all others! are of single Lorentzian

shape as a result of the two-state transition rateGm
m8 given in

Eq. ~36!. For comparison we plot in Figs. 7 and 8 the da
reported by Friedmanet al.11 for the same temperatures~no
error bars, however, are given in Ref. 11!. The optimal fit
values are

A/kB50.56 K, ~47!

B/kB51.331023 K, ~48!

B4 /kB514.431025 K, ~49!

c52.03103 m/s. ~50!
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Note that these values are the same for all four temp
tures, which means that our peaks fit also the tempera
dependence of the relaxation time. The fitting parame
turn out to be somewhat larger than the ones used in Fi
@see Eqs.~40!–~42!#, which could be caused by sample d
ferences, e.g., in volume-to-surface ratio and/or in shape
isotropy of the samples, etc. Indeed, the sample of Ref
consists of many small crystallites in contrast to the sin
crystal used by Thomaset al.7 In any case, the difference
are small, and the sound velocityc seems to be within the
expected order of magnitude. Clearly, it would be high
desirable to check this prediction by an independent and
rect measurement ofc. On the other hand,41 we can get an
independent estimate for c from the specific heat and
Debye temperatureQD which was recently measured i
Mn12.42 The reported value isQD5(3864) K, and making
use of the Debye relation43

kBQD5\vD5\ckD , with n5
kD

3

6p2
5

1

V0
, ~51!

we find

c5~1.7722.18!3103 m/s, ~52!

wherevD is the Debye frequency,kD the Debye wave vec
tor, andV053716 Å3 the unit-cell volume. Comparing thi
value forc with the one obtained before, see Eqs.~43! and
~50!, we see that the agreement is very good. This re
corroborates not only our prediction ofc but also our values
obtained for the spin-phonon coupling constantsgi .

Finally we also mention that the prefacto
A2s61/12prc5\4 of our spin-phonon rates@Eq. ~28!# is in
excellent agreement with the value of the parameter den
by C in a recent paper.44 Note that their fit of the parameter44

C is not as precise as ours, becauseC is assumed to be
independent of the spin states$um&%.

To summarize our results obtained so far, we see that
agreement between theory and experiment is satisfactor
particular we emphasize that there is no free fit parame
Thus, our model and its evaluation seems to contain the
sential physics responsible for the magnetization relaxa
in Mn12.

C. Comparison with previous results

In comparison to previous results we obtain much be
agreement between theory and experiment for the follow
reasons. For this comparison we can restrict ourselves to
work of Fortet al.,18 since — as far as we are aware of —
has produced the best agreement with the relaxation d7

thus far. First, the spin-phonon coupling constantsg1 , g2,
andg3 are explicitly given in our work (g4 has been found
before14!. As shown in Sec. II we find them to be of ord
A50.56 K, and it is this value which leads to good agre
ment with all known experimental data which involve the
coupling constants.6,7,44 In contrast, Fortet al.18 set arbi-
trarily the gi ’s to values of 15 K and 30 K, which is clearl
in contradiction to our microscopic values. Moreover, o
value for the fit parameterB4 fulfills the constraints of inde-
pendent measurements,13,16,21,22while Fort et al.18 obtain a
B4 value which is about 30 times smaller than the measu
a-
re
rs
3

n-
1
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e
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ed
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r
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value in Ref. 21. From Figs. 7 and 8 we see that the te
perature dependence of the relaxation time agrees quite
with the measurements of Friedmanet al.11

V. RELAXATION PATHS

A. Analytical result

In order to get a better physical understanding for
relaxation process of the spin system it is instructive to
termine the dominant transition paths via which the spin c
relax into its ground state. For this we derive an approxim
analytic expression for the relaxation time denoted byt* ~to
distinguish it from the exactt obtained in the previous sec
tion!. First, we solve the master equation for oneparticular
transition pathn which does not intersect with other path
For Hz>0 we find ~derivation is given below!

tn5
1

11eb(«2s2«s)
(

$mi %n

eb(«mi
2«s)

Vmi

mi 11
, ~53!

FIG. 9. Spin relaxation paths~from m510 to m5210) for 0
<gmBHz<A113B. Full lines: thermal transitions due to phonon
Dashed lines: dominant tunneling transitions due toB4 and Hx

terms. Dotted lines: tunneling transitions that lead to satellite pe
@included in the numerical diagonalization of the master equa
~38!#. The states where paths intersect are denoted as vertices

FIG. 10. Serially reduced diagram associated with Fig. 9.
order to understand the analytical evaluation of the relaxation
gram in Fig. 9 better, tunneling transitions that lead to satel
peaks are excluded. The relaxation timestn are given in Eq.~53!.
For uHzu&0.05 T only the patht1→t3→t7 is dominant~see Figs.
7 and 8!.
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whereVmi

mi 115Vmi→mi 11
5Wmi 11mi

or Gmi 11

mi , depending on

the particular pathn characterized by the sum over the leve
m ~see Figs. 9 and 10!. Equation ~53! holds for arbitrary
initial (« i) and final (« f) energies, and for arbitrary step
Dm5mi 112mi ~see below!.

We now turn to the derivation of the relaxation time of
cascade including the external fieldHz . For this we need to
go beyond the results obtained previously17 for Hz50,
which requires a non-trivial extension. We start with rewr
ing the master equation~35! as

ṙs5Vm1

s rm1
2Vs

m1rs ,

ṙmj
5Vmj 11

mj rmj 11
1Vmj 21

mj rmj 21
2Vmj

mj 11rmj
2Vmj

mj 21rmj
,

ṙ2s5Vmp

2srmp
2V

2s
mpr2s , ~54!

with mjP] 2s,s@ , mj.mj 11 , j 51, . . . ,p<2s21, and
ṙmj

5drmj
/dt. We consider now the stationary limit of Eq

~54! which we define by

ṙs52J, ṙmj
50, ṙ2s5J, ~55!

where the first and last equation express conservation o
probability currentJ, which we assume positive forHz>0
and independent ofm. Equation~55! leads top11 equa-
tions,

J~ t !5Vmi

mi 11rmi
2Vmi 11

mi rmi 11
, ~56!

and by solving forrmi 11
we get

rmi
5

Vmi 11

mi

Vmi

mi 11
rmi 11

1
J

Vmi

mi 11
, ~57!

where we have introducedi 50, . . . ,p<2s21, and m0
5s. To simplify the following treatment we assume detail
balance also for the tunneling processes. This approxima
has little effect on the final result which turns out to agr
very well with the exact relaxation timet where no such
approximations are invoked. Inserting then the detailed b
ance relationVmi 11

mi /Vmi

mi 115eb(«mi 11
2«mi

) one obtains

rmi
5eb(«mi 11

2«mi
)rmi 11

1
J

Vmi

mi 11
. ~58!

In order to get an equation that depends onr2s andrs only
one has to sum over the followingp11 equations:

rs5eb(«m1
2«s)rm1

1
J

Vs
m1

,

eb(«m1
2«s)rm1

5eb(«m2
2«s)rm2

1
Jeb(«m1

2«s)

Vm1

m2
,

he

on

l-

eb(«m2
2«s)rm2

5eb(«m3
2«s)rm3

1
Jeb(«m2

2«s)

Vm2

m3
,

A

eb(«mp
2«2s)rmp

5eb(«2s2«s)r2s1
Jeb(«mp

2«s)

Vmp

2s
,

rs5eb(«2s2«s)r2s1J(
mi

eb(«mi
2«s)

Vmi

mi 11
. ~59!

In the special case ofHz50, i.e., «s2«2s50, Eq. ~59!
agrees with previous results.14

Taking the time derivative of Eq.~59! and usingṙ2s / ṙs
521 we find

ṙ6s56
J̇

11eb(«2s2«s)
(
mi

eb(«mi
2«s)

Vmi

mi 11
, ~60!

and thus

ṙs2 ṙ2s52
J̇

11eb(«2s2«s)
(
mi

eb(«mi
2«s)

Vmi

mi 11
522J. ~61!

The solution of the last differential equation is

J~ t !5J0e2t/t* , ~62!

with the relaxation time

t* 5
1

11eb(«2s2«s)
(
mi

eb(«mi
2«s)

Vmi

mi 11
, Hz>0. ~63!

Finally, the summation($mi %n
in Eq. ~53! is defined as the

summation(mi
in Eq. ~63! taken only fromminitial to mfinal

11, whereuminitial&,umfinal& denote any two neighboring ver
tices ~where paths intersect! in Figs. 9, 16, 18, and 20~see
below!.

Similarly one can solve the rate equations~55! for J
,0⇔Hz<0. Then we obtain

t* 5
1

11eb(«s2«2s)
(
mi

eb(«mi
2«2s)

Vmi 11

mi
, Hz<0, ~64!

which for Hz50 ~i.e., «2s5«s) and stepsDm561 reduces
to the result found in Ref. 14.

If there is more than one path contributing to the rela
ation ~which is typically the case in the region between tw
resonances!, we have to account for intersections at vertic
For this we associate with each path a probability curr
Jn5 ṙn , and interpret Eq.~53! in terms of a serial circuit
with the summands playing the role of ‘‘resistances.’’ Th
allows us then to set up flow diagrams forJn ~see Figs. 9, 10,
and 16–21!, which obey the analog of Kirchhoff’s rules:

~K1! (nJn50: The sum over all incoming and outgoin
currents vanishes at a vertex~current conservation!.
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~K2! (nJntn5DN: The sum over all voltage drop
(Jntn) is equal to the source-drain voltageDN5rs2r2s for
any closed path~probability conservation!.

The total probability current is given byJ5DṄ. For every
interval

I n1 ,n2
5@H

z

mT,1mT,18
,H

z

mT,2mT,28
# ~65!

@see Eq.~4!#, where n15mT,11mT,18 , n25mT,21mT,28 , 0
<n15n211<3, a set of equations is given by the rul
~K1! and ~K2!. For every set we derive the relaxation tim
tn1 ,n2
* 5DN/J.

Figure 9 shows the complete, Fig. 10 its serially reduc
flow diagram for 0<Hz<(1/gmB)(A113B). From ~K1! we
get
9
in
r-
e

ic
ns
ca

t

d

d

J5J11J2, J21J55J6 ,

J15J31J4 , J31J65J7,

J45J51J8 , J71J85J,

while from ~K2! we get

DN5J1t11J3t31J7t7 ,

J3t35J4t41J5t51J6t6 ,

J2t25J1t11J4t41J5t5 ,

J8t85J5t51J6t61J7t7 .

From these equations we obtain
t0,1* ~Hz!5~t4t1t5t21t8t4t1t21t8t1t5t21t8t4t1t61t4t7t5t21t4t7t2t61t8t7t5t61t8t7t2t41t4t7t5t6

1t8t7t2t31t4t7t2t31t8t4t3t71t8t3t5t71t4t3t5t71t8t3t2t61t8t4t3t21t4t3t2t61t8t4t3t6

1t8t3t5t21t8t3t5t61t8t7t5t21t8t1t2t61t8t1t5t61t3t1t5t61t8t3t1t61t7t1t5t21t3t1t2t6

1t3t1t5t71t7t1t2t61t7t1t5t61t7t1t2t41t8t6t1t71t4t1t5t71t8t4t1t71t8t3t1t21t7t1t2t3

1t8t3t1t71t3t1t5t21t8t1t5t71t8t7t2t61t8t4t7t61t4t3t5t61t4t3t5t21t4t1t2t6

1t4t1t5t6!/~t8t5t21t8t5t61t8t3t21t8t4t31t4t5t61t8t4t61t8t4t21t4t2t61t4t7t61t8t3t5

1t7t2t61t7t5t61t7t5t21t7t2t31t4t1t51t3t1t51t8t1t51t8t3t11t3t2t61t3t5t61t3t5t21t3t5t7

1t4t3t71t4t3t51t8t6t11t3t1t71t7t1t61t4t1t61t3t1t61t4t1t71t8t4t11t8t2t61t4t5t21t4t3t6

1t2t4t71t7t1t5!.
ith

ower
of
Whent0,1* is plotted as function ofHz there is no visible
difference between the exactt obtained in Sec. IV and this
approximatet* , which confirms that the diagram in Fig.
contains the physically relevant relaxation paths for the
terval I 0,1. Similar results are obtained for the other inte
vals, whose diagrams and calculations are shown in App
dix C.

Finally, near a resonance@ udHzu,w8, see Eq.~74!# the
above expression fort* ; Eq. ~53!, strongly simplifies since
we find that there is only one dominant relaxation path wh
involves only one tunneling channel. This finally explai
why the peak shape is given by a single Lorentzian. We
the five strongest broadened resonances in Figs. 3–6
main resonances. For every main resonancen we have iden-
tified @using Eq.~53!# its dominant path and its associate
tunneling channel between the statesumT& and umT8&. These
states are
-

n-

h

ll
he

n mT mT8

0 4 24
1 3 22
2 5 23
3 4 21
4 6 22

~66!
Our calculation of the intermediate relaxation timestn

provides a further prediction which could be tested w
NMR techniques of the type described in Ref. 44.

B. Satellite peaks

Beside the main resonances there are also other narr
resonances~see Figs. 3–6! that are a direct consequence
the fourth-order anisotropy constantB @see Eq.~1!#. Indeed,
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if the plots around one peak are magnified further, sate
peaks become visible~see Figs. 11–14!. In order to under-
stand the occurrence of these satellite peaks it is instruc
to look at Fig. 18 below. There are several paths which
be used in the relaxation process. As we include the fou
order anisotropy term,2BSz

4 , the resonance condition is no
the same for every level@see Eq.~4!#. Hence, very narrow
peaks show up, which can be seen only at high resolution
Fig. 18 several additional tunneling paths, some of which
responsible for the satellite peaks in Figs. 11 and 12, hav
be drawn~represented by the dotted lines in Fig. 18!. For
example, the tunnel splitting energy of the path fromu4& to
u22& is proportional toHxB4Hx ~third-order perturbation!,
where the ordering of the factors corresponds to the cho
path. Due to the presence ofHx

2 the width of the satellite
peak ~see next section! depends on the misalignment ang
u. If one takes a close look at our high resolution plots t
difference between Fig. 11 and Fig. 12 is observable. It m
be noted that we consider only tunnel splitting energies u
second order inB4 and third order inHx ~also combinations
such asB4

2Hx
3) for all the main and satellite peaks. Narrow

satellite peaks are neglected.45 The distanced
m1m

18

m2m28 between a

satellite peak and its associated main peak caused by a
resonance is given by Eq.~4!,

FIG. 11. Full line: semilogarithmic plot of calculated relaxatio
time t as function of magnetic fieldHz at T51.9 K in the interval
3A/2gmB<Hz<5A/2gmB with a higher resolution. The tunnelin
transition fromu5& andu23& is responsible for the main peak. Tw
satellite peaks are visible. The left~right! one is due to the tunneling
channel betweenu4& and u22& (u6& and u24&). Hereu52° has
been chosen. Dots and error bars: data taken from Ref. 7.

FIG. 12. Same plot as in Fig. 11, but with a misalignment an
of u53°. Dots and error bars: data taken from Ref. 7.
e

ve
n

h-

In
e
to

en

s
st
to

ain

d
m1m

18

m2m285uH
z

m1m182H
z

m2m28u5U nB

gmB
~m1

21m18
22m2

22m28
2!U,
~67!

where m1 , m18 (m2 , m28) are responsible for the satellit
~main! peak, andn5m11m185m21m28 . It would be inter-
esting to search experimentally for these satellite pea
which requires a higher experimental resolution of the pe
than achieved so far.

VI. WIDTH OF THE LORENTZIANS

In this section we give a physical interpretation of t
effective half-width of the Lorentzian peaks in our plots.
order to get an expression for the width of our main a
satellite peaks consider a LorentzianG(Hz) with linewidth w
~see Fig. 15!. If the upper part of this Lorentzian is cut of
~where the curve is already very narrow! and both ends are
connected by a horizontal line one obtains a curve that
has the same single Lorentzian shape for all practical p
poses but now with an effective linewidthw8.w. Changing
the tunnel matrix elementEmm8 results in a different trunca
tion of the Lorentzian, thus changing the effective linewid
w8. We shall now estimate the effective linewidthw8 and
compare it with the one obtained from the exact 1/t. Taking
only the largest terms of Eq.~53! gives a rough approxima

e

FIG. 13. Full line: semilogarithmic plot of calculated relaxatio
time t as function of magnetic fieldHz at T51.9 K in the interval
7A/2gmB<Hz<9A/2gmB with a higher resolution. The tunneling
transition fromu6& andu22& is responsible for the main peak. Tw
satellite peaks are visible. The left~right! one is due to the tunneling
channel betweenu5& and u21& (u7& and u23&). Hereu52° has
been chosen. Dots and error bars: data taken from Ref. 7.

FIG. 14. Same plot as in Fig. 13, but with a misalignment an
of u53°. Dots and error bars: data taken from Ref. 7.
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tion of the relaxation time near a resonance where the st
um& and um8& are degenerate,

t85
1

11eb(«2s2«s) S eb(«m122«s)

Wm,m12
1

eb(«m82«s)

Wm822,m8

1
eb(«m2«s)

Gm
m8 D . ~68!

Using the detailed balance relation

Wm,m12

Wm12,m
5eb(«m122«m) ~69!

we obtain the following approximation:

t85
eb(«m122«s)

11eb(«2s2«s) S 2

Wm,m12
1

1

Gm
m8D , ~70!

where we assumed thatWm,m12'Wm822,m8 .46 In the limit

jmm8→0 the phonon-damped tunneling rateGm
m8 is much

larger thanWm,m12, so

lim
jmm8→0

t8'
2eb(«m122«s)

~11eb(«2s2«s)!Wm,m12

. ~71!

The half-width oft8(Hz), denoted byw8, is then determined
by the conditiont8(w8/2)5t8(0)/2. This condition is ful-
filled when

Gm
m85

Wm,m12

2
. ~72!

Thus we obtain the expression for the effective linewidthw8,

w85
2AWm1Wm8

um2m8ugmB

F Emm8
2

Wm,m12
2

\2~Wm1Wm8!

4
G1/2

.

~73!

Since the heightEmm8
2 /\2(Wm1Wm8) of the LorentzianGm

m8

is very large compared to its linewidthum2m8ugmBw/\
5(Wm1Wm8)/2 and Wm1Wm8'2Wm,m12 for the domi-

FIG. 15. Truncated LorentzianG4
24 with A/kB50.56 K, B/kB

51.331023 K, and B4 /kB514.431025 K, u51°, and c52.0
3103 m/s, w8537.4 mT (w8 agrees very well with the width o
the Lorentzian in Fig. 7!, andG4

24(w8/2)52.43106 s21. The trun-
cation is indicated by the dashed line.
tes

nant paths~see Sec. V! we get the following reasonably ac
curate approximation for the effective linewidths in o
plots:

w85
23/2Emm8

um2m8ugmB

. ~74!

Comparison with our exact calculations of the relaxati
time shows thatw8 of Eq. ~74! gives a very good estimat
for the effective linewidth of the peaks in our plots~see Figs.
3–8 and 11–15!.

VII. CONCLUSION

We have presented a comprehensive theoretical des
tion of spin relaxation due to phonon-induced transitions a
tunnel resonances. Deriving a generalized master equa
~in Born and Markoff approximation! we obtain an exact
numerical evaluation of the overall relaxation timet as func-
tion of the longitudinal magnetic fieldHz comprising
Lorentzian-shaped peaks. In order to perform this evalua
we calculate the phonon-assisted transition rates of the sp
the spin-phonon coupling constants, and the tunnel split
energy, for which a generalized formula is derived. T
fourth-order diagonal terms in the Hamiltonian give rise
satellite peaks, the experimental observation of which
quires a higher resolution oft(Hz) than achieved so far. Ou
approximate analytical solution of the master equation yie
a clear physical understanding of the relaxation process
revealing the relaxation paths that are followed by the sp
This solution provides the prediction of all involved interm
diate relaxation timestn , which can be tested experimen
tally. The results of our model calculation agree well withall
known data. We have been able to get agreement betw
theory and the entire relaxation curve. In addition, we ha
obtained reasonable agreement between theory and
single resonance peaks recently measured to high accura
four different temperatures. The formalism presented in t
work has been applied to the specific parameter value
Mn12, but many results derived here are generally valid a
can be used for similar spin systems as well.

ACKNOWLEDGMENTS

We are grateful to H. Schoeller and T. Pohjola for use
comments. This work has been supported by the Swiss
tional Science Foundation.

APPENDIX A: SPIN-PHONON RATES

In order to evaluate the spin-phonon ratesWmn of Eq. ~27!
we first change to the Fourier representation. Ifq is a phonon
wave vector, we can writeu~x! as follows:

u~x!5
1

AN
(

q
u~q!eiq–x, ~A1!

with N being the number of unit cells. Hence

e~x!5
i

AN
(

q F qxux~q! qxuy~q! qxuz~q!

qyux~q! qyuy~q! qyuz~q!

qzux~q! qzuy~q! qzuz~q!
G eiq–x.

~A2!
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After ~anti!symmetrization, these matrix elements can be
serted into the expression~7!,

Hsp5
1

AN
(
j ,q

i H 1

2
g1@qxux~q!2qyuy~q!# ^ ~S1

2 1S2
2 !

1
i

8
g2@qxuy~q!1qyux~q!# ^ ~S2

2 2S1
2 !

1
1

8
g3@qxuz~q!1qzux~q!2 i „qyuz~q!1qzuy~q!…#

^ $S1 ,Sz%1
1

8
g3@qxuz~q!1qzux~q!1 i „qyuz~q!

1qzuy~q!…# ^ $S2 ,Sz%1
1

8
g4@qxuz~q!1qzux~q!

2 i „qyuz~q!1qzuy~q!…# ^ $S1 ,Sz%1
1

8
g4@qxuz~q!

2qzux~q!1 i „qyuz~q!2qzuy~q!…# ^ $S2 ,Sz%J eiq–Rj .

~A3!

Rj are the positions of the Mn12 molecules.
We proceed with the canonical transformation (u,p)

→(c†,c). c(†)5eqcq
(†) annihilates~creates! a phonon with

wave vectorq and polarizationeq , and

u~q!5A \

2Mvq
~c†1c!, ~A4!

whereM is the mass per unit cell. Inserting Eq.~A4! into Eq.
~A3! and considering only the spin of the Mn12 molecule at
Rj50 yields

Hsp5(
q

iA \

2NMvq
H 1

2
g1@qx~cx

†1cx!2qy~cy
†1cy!#

^ ~S1
2 1S2

2 !1
i

8
g2@qx~cy

†1cy!1qy~cx
†1cx!#

^ ~S2
2 2S1

2 !1
1

8
g3@~qx2 iqy!~cz

†1cz!1qz~cx
†1cx

2 icy
†2 icy!# ^ $S1 ,Sz%1

1

8
g3@~qx1 iqy!~cz

†1cz!

1qz~cx
†1cx1 icy

†1 icy!# ^ $S2 ,Sz%1
1

8
g4@~qx2 iqy!

3~cz
†1cz!2qz~cx

†1cx2 icy
†2 icy!# ^ $S1 ,Sz%

1
1

8
g4@~qx1 iqy!~cz

†1cz!2qz~cx
†1cx1 icy

†1 icy!#

^ $S2 ,Sz%J . ~A5!

This expression can be used to evaluate the transition p
ability. We employ the following standard relations:
-

b-

cun&5Anun21&,

c†un&5An11un11&,

S2us,m&5A~s1m!~s2m11!us,m21&,

S1us,m&5A~s2m!~s1m11!us,m11&. ~A6!

The transition rateW225Wm22,m @see Eq.~27!# for m→m
22 («m22:«m) can now be calculated in second quantiz
tion (na5nq,a , a5x,y,z denotes the number of phonon
with wave vectorq, polarization model, and oscillation
direction a, and the thermal average over phonons is l
implicit!,

W225
2p

\ (
q8

u^nq871,m22uHspunq8 ,m&u2d68

5(
q

p

NMvq
Fg1

2

4
~qx^nx71ucx

(†)unx&

2qy^ny71ucy
(†)uny&!2u^m22uS2

2 um&u2

1
g2

2

64
~qx^ny71ucy

(†)uny&1qy^nx71ucx
(†)unx&!2

3u^m22uS2
2 um&u2Gd6

5
1

4 (
q

ps22

NMvq
S nq1

1
0D

3Fg1
2~qx2qy!21

g2
2

16
~qx1qy!2Gd6 , ~A7!

where s225(s1m)(s2m11)(s1m21)(s2m12), and
d 6

(8)5d(6(«m222«m)2\vq(8)).
With the approximationg15A'g2 and the thermal aver

age^nq&51/(eb\vq21) one obtains

W225
1

4 (
q

pA2s22

NMvq

~qx2qy!21
1

16
~qx1qy!2

6~e6b\vq21!
d6 .

~A8!

As a next step the sum is replaced by an integral„(1/N)(q
→@a3/(2p)3#*d3q… and the densityr5M /a3 is inserted,

W225
A2s22

32p2r
E d3q

vq

~qx2qy!21
1

16
~qx1qy!2

6~e6b\vq21!
d6 .

~A9!

After changing to spherical coordinates one gets
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W225
17A2s22

192pr E
0

`dq

vq

q4

6~e6b\vq21!
d6 . ~A10!

Assuming a linear dispersion relationvq5cq, wherec is the
sound velocity, and using«5\vq5\cq one obtains

W225
17A2s22

192prc5\4E0

`

d«
«3

6~e6b\vq21!
d6

5
17A2s22

192prc5\4

~«m222«m!3

eb(«m222«m)21
. ~A11!

In the same way we get

W125
17A2s12

192prc5\4

~«m122«m!3

eb(«m122«m)21
, ~A12!

with s125(s2m)(s1m11)(s2m21)(s1m12).
The transition rates form→m61 can be calculated in th

same manner as above withg452A'g3,

W615
A2s61

12prc5\4

~«m612«m!3

eb(«m612«m)21
, ~A13!

where s615(s7m)(s6m11)(2m61)2, and r51.83
3103 kg/m3.33

APPENDIX B: LEVEL SPLITTING

In this appendix we derive a formula for the tunnel sp
ting energy which is applicable to potentialsVmi ,mi 11

PR
with arbitrary Dm5mi2mi 11 (m.mi.mi 11.m8, i
51, . . . ,N21). According to Kato’s theory47 the expansion
of the resolvent

G~z!5
1

z2H02lV
~B1!

FIG. 16. Spin relaxation paths~from m510 to m5210) for
(1/gmB)(A113B)<Hz<(2/gmB)(A134B). Full lines: thermal
transitions due to phonons. Dashed lines: dominant tunneling t
sitions due toB4 andHx terms. Dotted lines: tunneling transition
that lead to satellite peaks@included in the numerical diagonaliza
tion of the master equation~38!#.
leads to a rigorous treatment of the perturbation theo
which is very useful to evaluate high-order perturbati
terms. We use the notation of Messiah.47

Let N be the order of the perturbation. Then the projecti
operatorP5(mum&^mu, consisting of the degenerate stat
$um&%, and the operator (H2Ea

0)P are expanded as follows

P5P01 (
N51

`

lNA(N), ~H2Ea
0!P5 (

N51

`

lNB(N),

with

A(N)52(
(N)

Sk1VSk2V•••VSkN11,

B(N)52 (
(N21)

Sk1VSk2V•••VSkN11,

where

n-

FIG. 17. Serially reduced diagram associated with Fig. 16.
order to understand the analytical evaluation of the relaxation
gram in Fig. 16 better, tunneling transitions that lead to sate
peaks are excluded. The relaxation timestn are given in Eq.~53!.

FIG. 18. Spin relaxation paths~from m510 to m5210) for
(2/gmB)(A134B)<Hz<(3/gmB)(A117B). Full lines: thermal
transitions due to phonons. Dashed lines: dominant tunneling t
sitions due toB4 andHx terms. Dotted lines: tunneling transition
that lead to satellite peaks@included in the numerical diagonaliza
tion of the master equation~38!#.
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Sk5H 2P0 , if k50,

Q0

ak
, if k>1,

Q0512P0 ,
Q0

ak
5Q0

1

~Ea
02H0!k

Q0 ,

and the sum( (N) has to be taken over all combination
k1 ,k2 ,•••,kN11 with the restriction k11k21 . . . 1kN11
5N.

The following general secular equation must be solve

det~Ha2xKa!5det~Ca!50, ~B2!

where we have introduced the abbreviationCa5Ha2xKa .
Thex are the eigenvalues of the perturbed states.Ha andKa
are defined by

Ha5P0HPP05Ea
0Ka1P0 (

N51

`

lNB(N)P0 , ~B3!

FIG. 19. Serially reduced diagram associated with Fig. 18
order to understand the analytical evaluation of the relaxation
gram in Fig. 18 better, tunneling transitions that lead to sate
peaks are excluded. The relaxation timestn are given in Eq.~53!.

FIG. 20. Spin relaxation paths~from m510 to m5210) for
(3/gmB)(A117B)<Hz<(4/gmB)(A140B). Full lines: thermal
transitions due to phonons. Dashed lines: dominant tunneling t
sitions due toB4 andHx terms. Dotted lines: tunneling transition
that lead to satellite peaks@included in the numerical diagonaliza
tion of the master equation~38!#.
Ka5P0PP05P01P0 (
N51

`

lNA(N)P0 . ~B4!

Thus we have now

Ca5~Ea
02x!P01~Ea

02x! (
N51

`

lNP0A(N)P0

1 (
N51

`

lNP0B(N)P0 . ~B5!

Equation ~B5! is the general formula for finding the pe
turbed eigenvalues and eigenstates. We apply it now to
situation of our two degenerate spin statesum& and um8&.
The following derivation refers to the off-diagonal elemen
of Eq. ~B5!.

The factorsP0A(N)P0 and P0B(N)P0 do not vanish ifk1
5kN1150. As we look for the lowest-order perturbatio
that gives a contribution to the tunnel splittingEmm8 , the
projection operatorsSki, i 52, . . . ,N, must not be equal to
2P0, i.e., kiÞ0, i 52, . . . ,N. Hence, we get the following
combinations for the lowest-order perturbation,

for A(N): k25k35•••5ki 2151,ki52,

ki 115•••5kN51, i 52, . . . ,N, ~B6!

for B(N): k25k35•••5kN51. ~B7!

In the case of weak perturbation the second term of Eq.~B5!
is much smaller than the third one. Thus the secular equa
reads as follows:

n
a-
e

n-

FIG. 21. Serially reduced diagram associated with Fig. 20.
order to understand the analytical evaluation of the relaxation
gram in Fig. 20 better, tunneling transitions that lead to sate
peaks are excluded. The relaxation timestn are given in Eq.~53!.

FIG. 22. Cascade withDm521 andH50.
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Ca5~Ea
02x!P01~diagonal elements!

1 (
N51

`

lN (
m1 , . . . ,mN

miÞm,m8

um&
Vm,m1

«m2«m1

3 )
i 51

N21 Vmi ,mi 11

«m2«mi 11

VmN ,m8^m8u. ~B8!

Thus we arrive at formula~30!.

APPENDIX C: APPLICATION OF KIRCHHOFF’S RULES

In this appendix we make use of Kirchhoff’s rules~K1!
and ~K2! in order to evaluate the diagrams of the relaxatio
paths. Each diagram and its evaluation is valid for the inte
val between two main peaks. The solutiontn1 ,n2

* of the

Kirchhoff equations between the peaksn15m11m18 and
n25m21m28 is not written down explicitly, since it is too
lengthy and the calculation is straightforward.

~1! (1/gmB)(A113B)<Hz<(2/gmB)(A134B): From J
5J11J2,J15J31J4 ,J45J51J8,J21J55J6 ,J31J65J7 ,J7
1J85J, and DN5J1t11J3t31J7t7 ,J3t35J4t41J5t5
1J6t6 ,J2t25J1t11J4t41J5t5 ,J8t8 5 J5t51J6t61J7t7,
one can immediately evaluate the relaxation timet1,2* (H)
5DN/J ~see Figs. 16 and 17!.

~2! (2/gmB)(A134B)<Hz< 3/gmB (A117B): From
J5J11J2 ,J15J31J41J7 ,J21J45J5 ,J3 1 J55J6 ,J61J7
5J, and DN5J1t11J3t31J6t6 ,J3t35J4t41J5t5 ,J2t2
5J1t11J4t4 ,J7t75J4t41J5t51J6t6, one can immedi-
ately evaluate the relaxation timet2,3* (H)5DN/J ~see Figs.
18 and 19!.

~3! (3/gmB)(A117B)<Hz<(4/gmB)(A140B): From
J5 J11J2 ,J15J31J4 ,J45J51J7 ,J21J31J55J6 ,J61J7
5J, and DN5J1t11J3t31J6t6 ,J3t35J4t41J5t5 ,J2t2
5J1t11J4t41J5t5 ,J7t75J5t51J6t6, one can immedi-
ately evaluate the relaxation timet3,4* (H)5DN/J ~see Figs.
20 and 21!.

APPENDIX D: FIRST-ORDER vs SECOND-ORDER
TRANSITION

We show in this section that second-order transitions le
to a much faster relaxation of the spin system than first-ord
transitions if the coupling constants are equal. The relaxati
rateG (1) of the cascade with transitionsDm561 has been
calculated by Villainet al.17 ~see Fig. 22!,
r

r-

d
er
n

G (1)5
3

2p

uV1,0u2

\4rc5
~«02«1!3

e2bD

12e2b(«02«1)

5
3

2p

uV1,0u2

\4rc5 F D

s2G 3
e2bD

12e2bD/s2 . ~D1!

D5100A is the energy barrier.
We have extended this expression by taking higher-or

transitions into account. If we take a cascade with transitio
Dm562, for the cases510, we obtain

G (2)5
3

2p

uV2,0u2

\4rc5
~«02«2!3

e2bD

12e2b(«02«2)

5
3

2p

uV2,0u2

\4rc5 F D

~s/2!2G 3
e2bD

12e2b
D

(s/2)2

. ~D2!

Comparing to the relaxation rateG (1) with s510, an in-
crease by a factor

G (2)

G (1)
'

106

56
564 ~D3!

is obtained, assumingV(1)'V(2) ~see Abragam and
Bleaney,28 p. 563, for experimental evidence!.

Now we calculate the relaxation rate by means of formu
~63! with G (1)51/t* , Dm561, and G (2)51/t* , Dm5
62. If there is a fast transition via tunneling between leve
m54 andm8524 for Hz50 at T51.9 K, we get the fol-
lowing more accurate estimation:

G (2)

G (1)
511.7. ~D4!

The same can be done if the fastest transition takes place
tunneling between levelsm52 andm8522 for Hz50 at
T51.9 K,

G (2)

G (1)
549.0. ~D5!

From these results it is obvious that second-order transiti
lead to a faster relaxation. Note that it is Eq.~19! together
with Eq. ~28! which imply that the ratios~D4! and ~D5! are
of the same order as the ratio~D3!. This provides a theoret-
ical justification for the approximationV(1)'V(2).
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