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Chiral electromagnetic waves at the boundary of optical isomers:
Quantum Cotton-Mouton effect
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We demonstrate that the boundary of two optical isomers with opposite directions of the gyration vectors
~both parallel to boundary! can support propagation of electromagnetic waves in the direction perpendicular to
the gyration axes~Cotton-Mouton geometry!. The components of electromagnetic field in this wave decay
exponentially into both media. The characteristic decay length is of the order of the Faraday rotation length for
the propagation along the gyration axis. The remarkable property of the boundary wave is itschirality. Namely,
the wave can propagate only inonedirection determined by the relative sign of nondiagonal components of the
dielectric tensor in contacting media. We find the dispersion law of the boundary wave for the cases of abrupt
and smooth boundaries. We also study the effect of asymmetry between the contacting media on the boundary
wave and generalize the results to the case of two parallel boundaries. Finally we consider the arrangement
when the boundaries form a random network. We argue that at a point, when this network percolates, the
corresponding boundary waves undergo quantum delocalization transition, similar to the quantum Hall
transition.
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Optical properties of gyrotropic and optically active m
dia are well known and described in many textbooks~see,
e.g., Ref. 1!. A homogeneous gyrotropic medium is chara
terized by the following relation between the displacem
vector and electric fieldD5 «̂E, where the tensor«̂ has the
following form:

«̂5S «0 ig 0

2 ig «0 0

0 0 «1

D . ~1!

For a wave propagating along thez direction, the wave
equation

¹~¹E!2¹2E52
1

c2

]2D

]t2
~2!

has two circular polarized solutions characterized by the
persion laws

k65
v

c
A«06g. ~3!

A linear polarized wave, incident on this medium along t
axis of gyrationz splits into two circular polarized wave
propagating with velocitiesc/(«06g)1/2. Sinceg is always
much smaller than«0, this can be viewed as rotation of th
plane of polarization~Faraday effect!. The distance at which
the plane of polarization is rotated by 90° is equal tol v

5pA«0c/gv, wherev is the frequency of the wave. Th
direction of rotation is determined by the sign of the non
agonal componentg of the tensor~1!. Correspondingly, in
the case of optical activity, there exist left-rotating~levoro-
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tatory! and right-rotating~dextrorotatory! media. Two modi-
fications of a crystal differing by the sign ofg are called
optical isomers. For example, the parameters of tensor«̂ for
the quartz crystal are known to be1 «052.3839,«152.4118
andg51.131024. Consequently,l v'4 mm for yellow light
(l5589 nm!. Isomers with tensor«̂ in the form~1! can only
belong to the certain crystalline symmetry classes listed, e
in Ref. 2.

When the direction of propagation is perpendicular to
gyration axis, there also exist two types of solutions of t
wave equation~2!. First, there is a trivial solution for which
only the Ez component is nonzero and the spectrum isv
5kc/A«1. The nontrivial solution~Cotton-Mouton effect!
corresponds to polarization perpendicular to the axis of
ration

E5E0S 1,
c2ky

22v2«0

c2kxky1 igv2
,0D eikxx1 ikyy, ~4!

with the dispersion law

kx
21ky

25
v2

c2 S «02
g2

«0
D . ~5!

The phenomenon of surface electromagnetic waves is
a well-studied subject~see, e.g., Ref. 3!. Surface waves can
propagate along the boundary of two isotropic media w
dielectric constants«a(v) and «b(v) when two conditions
are met:3 ~i! «a(v)«b(v),0 and ~ii ! «a(v)1«b(v),0.
The polarization of these waves is~transverse-magnetic! TM.
For such waves the localization of electromagnetic field
the boundary is provided by the negative sign of« in one of
the contacting media. Interesting examples of surface e
12 842 ©2000 The American Physical Society
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tromagnetic wave at the boundary of twotransparent media
were given in Refs. 4 and 5. In Ref. 4 the boundary betw
isotropic and uniaxial media is considered. In Ref. 5 b
contacting media represent uniaxial crystals with certain m
match in the directions of optical axes.

In the present paper we show that the boundary of
optical isomers with opposite directions of axes of opti
activity ~both parallel to the boundary! can also suppor
propagation of localized electromagnetic waves. In cont
to the conventional surface plasmons,3 these states exist fo
positivevalues of components«0 and«1. The distinguishing
feature of these boundary waves is aunidirectionalcharacter
of propagation, i.e., they propagate along the boundary
two media with opposite gyration vectorsonly in one direc-
tion, which is determined by the relative sign ofg. We also
argue that random arrangement of boundaries provide
optical realization of the quantum delocalization transiti
for the boundary waves, which is similar to the quantum H
transition for two-dimensional electrons.6

Let the planex50 be a boundary between two isome
For generality we considerg to be some function ofx,g(x),
changing its value fromg(x)5g0 to g(x)52g0 within
some region aroundx50. In the Cotton-Mouton geometry
when onlyx andy components of the electric field are no
zero, the system of equations forEx ,Ey which follows from
Eq. ~2! takes the form

]2Ey

]x]y
2

]2Ex

]y2
5

v2

c2
@«0Ex1 ig~x!Ey#, ~6!

]2Ex

]x]y
2

]2Ey

]x2
5

v2

c2
@«0Ey2 ig~x!Ex#. ~7!

Let us search for a solution propagating along they axis:
Ex}eiky, Ey}eiky. Then from Eq.~6! we can expressEx
throughEy ,

Ex5

ikc2
]Ey

]x
2 iv2Eyg~x!

«0v22k2c2
. ~8!

Substituting Eq.~8! into Eq. ~7! we get

2
]2Ey

]x2
1F k

«0

]g~x!

]x
1

v2

c2«0

@g2~x!2g0
2#GEy

5Fv2

c2 S «02
g0

2

«0
D 2k2GEy . ~9!

Note now that Eq.~9! has the form of the Schro¨dinger equa-
tion with an effective potential

U~x!5
k

«0

]g~x!

]x
1

v2

c2«0

@g2~x!2g0
2#, ~10!

and energy

E5
v2

c2 S «02
g0

2

«0
D 2k2. ~11!
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Consider first the simplest case when the transitional

gion between two media is infinitely narrow:g(x)
52g0@2u(x)21#, whereg0.0 andu(x) is a step function
~see Fig. 1!. Then U(x) takes the form U(x)
522g0kd(x)/«0. It is seen that the potential is attractive fo
the positive values ofk and repulsive for the negativek. This
illustrates the above statement about thechirality of the
boundary states. It is well known that there exists only
single bound state in attractived potential with an arbitrary
magnitude.7 The corresponding ‘‘binding energy’’ is equal t
E52g0

2k2/«0
2. This leads to the following dispersion law fo

electromagnetic wave propagating along the abrupt bound
between two media withg56g0:

v5
ck

A«0

. ~12!

The origin of the localized boundary state Eq.~12! is the
following. It is seen from Eq.~5! that the maximal possible
wave vector inside each of the contacting media is equa
(v/c)(«02g0

2/«0)1/2. The wave vector determined by Eq
~12! exceeds this maximal wave vector. As a result, b
components of electric field decay to the left and to the ri
from the boundaryx50:

Ey~x!5Ey~0!e2quxu, ~13!

Ex~x!5sign~x!
i ~«0

21g0
2!

2g0«0
Ey~0!e2quxu,

whereq5ukg0u/«0 ~Fig. 1!. The characteristic decay lengt
1/q can be expressed through the length of rotation of pl
of polarization of light in the Faraday geometry: 1/q
5 l v /p.

It is easy to establish certain properties of chiral bound
states.

(a) Asymmetry between the contacting media. Suppose
that the mirror symmetry between the contacting media
lifted, say, due to external magnetic field applied in thez
direction. This amounts to the following modification o
g(x):g(x)52g0@2u(x)21#1g1, whereg1 is proportional
to the magnetic field. Then it is straightforward to check th
the dispersion law Eq.~12! remains unchanged, while th

FIG. 1. The boundary of two optical isomers (x50). Boundary
wave propagates along they axis. The decay ofEx ~dashed curve!
and Ey ~solid curve! components of electric field away from th
boundaryx50 is shown schematically.
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magnitude ofg1 remains smaller thang0. Wheng1 exceeds
g0 the bound statedisappears abruptly. Despite the disper-
sion law being insensitive to the asymmetry forg1,g0, the
distribution Ey(x) changes strongly. Forg1Þ0 instead of
Eq. ~13! we have

Ey~x!5Ey~0!expF2
v

cA«0

~g02g1!xG , x.0, ~14!

Ey~x!5Ey~0!expF v

cA«0

~g01g1!xG , x,0. ~15!

(b) Two boundaries. Consider now the case of two boun
aries

g~x!52g0 , uxu. l /2, ~16!

g~x!5g0 , uxu, l /2. ~17!

It is straightforward to analyze Eq.~9! in this case. Indeed
the effective potential takes the form

U~x!5
2g0k

«0
@d~x2 l /2!2d~x1 l /2!#. ~18!

The corresponding dispersion law for the boundary state
comes

k25
v2

c2 S «02
g0

2

«0
D 1ql

2 , ~19!

whereql is determined by the equation

ql
2F 1

12e22ql l
2

g0
2

«0
2G5

v2g0
2

c2«0
F12

g0
2

«0
2G . ~20!

In the limit l→` we return to the dispersion law Eq.~12!,
which for positivek corresponds to the wave propagati
along the boundaryx5 l /2; negativek corresponds to the
wave propagating along the boundaryx52 l /2. Inspection of
Eq. ~20! shows that it has solution foran arbitrary small l. In
the case when the distance between boundaries is m
smaller than the localization lengthl v , we get from Eq.~20!,

ql5
l

p l v
2

,, l v
21 . ~21!

This means that both states~with positive and negativek! are
‘‘weakly bound.’’ This is illustrated in Fig. 2 for differen
l / l v and positivek. For negativek the distribution of electric
field corresponds to the changex→2x.

(c) Two boundaries with external magnetic field. We have
also studied the suppression of the states associated w
pair of boundaries by an external magnetic field. In this c
the critical value ofg1 depends on the distance betwe
boundaries. The electric field in the regionuxu, l represents
the superposition of exponents exp(pkx/lv) and
exp(2pkx/lv), where the dimensionless parameterk satisfies
the equation
e-

ch

a
e

k2F11
2

k2

g1

g0
2

2g0
2

«0
2

1
11exp~22L* k!

12exp~22L* k!
S 11

4g1

g0k2D 1/2G
52F12

~g02g1!2

«0
2 G , ~22!

with L* 5p l / l v . In Fig. 3 we present the critical line o
g1 /g0 as a function ofL* , which determines the domai
where the solution of Eq.~22! exists. Note, that the bound
aries are asymmetric with respect to the change of the di
tion of magnetic field~the sign ofg1).

(d) Smooth boundary. Next we consider the case when th
boundary is smooth and has a characteristic width ofb. This,
for example, can be a result of mutual diffusion of isome
Then g(x) can be modeled byg(x)52g0 tanh(x/b). Thus,
for the effective potentialU(x) we get

U~x!52
g0~kc21v2g0b!

«0bc2cosh2~x/b!
. ~23!

The solutions of the Schro¨dinger equation with potential Eq
~23! are well known:7

FIG. 2. Ey(x) component of electric field for the case of tw
boundaries. The location of the boundaries arex/ l v561.25~dotted
line!, x/ l v560.75 ~dashed line!, andx/ l v560.3 ~solid line!.

FIG. 3. Critical lineg1 /g0 as a function ofL* for two opposite
directions of external magnetic field.
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En52
1

4b2 FA114S kg0b

«0
1

g0
2b2v2

«0c2 D 2~2n11!G 2

.

~24!

The mode withn50 has no threshold frequency. The thres
old frequenciesvn for the modes withn.0 are determined
from the conditionEn50:

vn5
cA«0

2g0b FA~2n11!22
g0

2

«0
2
2A12

g0
2

«0
2 G . ~25!

The corresponding dispersion lawsvn(k) can be conve-
niently presented after introducing a dimensionless
quencyV and the wave vectorQ:

V5
tA«0b

c
v, Q5tbk, ~26!

where the dimensionless parametert is defined as

t5
g0

«0
. ~27!

Then from Eqs.~11! and ~24! we have

V~Q!5
1

2
$@~2n11!t2

1A~2Q112t2!224n~n11!t2~12t2!#2

2~114Q!%1/2. ~28!

The dispersion law for the first five modes is shown in Fig.
Let us consider qualitatively the situation when the no

diagonal component of the tensor«̂ is a random function of
both coordinatesx and y. Suppose for simplicity that the
correlation length ofg(x,y) is much bigger thanl v . Then it
is obvious from the above consideration that the bound
waves would circulate along the contoursg(x,y)50. If the
average valueg(x,y) is negative@Fig. 5~a!# or positive@Fig.
5~b!#, and comaparable to@g2(x,y)#1/2, these contours are
disconnected, and, correspondingly, the boundary waves

FIG. 4. Dispersion relations for the guided modes withn
50,1,2,3,4 are plotted using Eq.~28!. For illustration purposes we
chose an unrealistically large value of parametert50.5.
-

-

.
-

ry

re

localized. Asg(x,y) approaches zero, the contours, defin
by the conditiong(x,y)50, grow in size and form a net
work. The correlation size of the network diverges
@g(x,y)#2n1, wheren1'4/3 is the critical exponent of the
percolation problem in two dimensions.8 Along with de-
creasing of g(x,y), the neighboring contoursg(x,y)50
come closer thanl v , and the scattering between the left- a
right-moving boundary waves, encircling these contours,
comes increasingly important. As a result of this scatteri
the interference of different unidirectional paths comes i
play. The crucial role of interference effects, allowed by t
coupling, was first pointed out in a seminal paper~Ref. 9! in
relation to the integer quantum Hall effect. In Ref. 9 unid
rectional waves modeled the motion of a two-dimensio
electron in a strong perpendicular magnetic field and
smooth random potential~edge states!. It was demonstrated
in Ref. 9 that, with interference taken into account, the de
calization transition in the system of edge states occur
discreteenergies, i.e., it remains infinitely sharp~as is the
case for the classical percolation!. However, due to the cou
pling and interference, the size of the eigenstates in the c
cal region~localization radius! is much bigger than the cor
relation radius of the network and diverges with t
exponent9 n2'2.3. The correspondence between the ed
states of electrons and the boundary electromagnetic w

FIG. 5. The contoursg(x,y)50 are shown schematically for th
cases~a! g(x,y),0 and ~b! g(x,y).0. The arrows show the di-
rection of propagation of boundary waves.
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allows us to conclude that withg(x,y)→0 the radius of
localized boundary waves behaves as@g(x,y)#2n2.

By analogy to the integer quantum Hall transition, whi
originates from the competition of the unidirectional moti
of an electron in a magnetic field and quantu
interference,10,11the delocalization transition of the bounda
waves atg(x,y)50 ~when optical activity of the system i
zeroon average! can be called the quantum Cotton-Mouto
effect.

Note that throughout the paper we assumed that the
tem is uniform in thez direction. The situation relevant fo
experiment is a thin-film geometry, in which two contactin
optically active media are confined within the regionuzu
,d/2 with the thicknessd of the film being much smalle
than l v . If «0 exceeds the dielectric constants of the med
between which the film is sandwiched, the solutions of
Maxwell equations are the waveguide modes, propaga
along the plane of the film. The components of electric a
magnetic fields in these modes are confined within the reg
of the order ofd. Suppose first, thatg is constant within the
film: g(z)5g0u(d/22uzu). To modify the Cotton-Mouton
dispersion law@Eq. ~5!# to the case of the waveguide mod
propagating in they direction, it is convenient to rewrite th
system of Maxwell’s equations in the following form:

2
]2Ex

]z2
2S «0~z!

v2

c2
2k2D Ex

52
v2

c2

g2~z!

«0~z!
Ex2

v

c

g~z!

«0~z!

]Bx

]z
, ~29!

2«0~z!
]

]z S 1

«0~z!

]Bx

]z D2S «0~z!
v2

c2
2k2

«0~z!

«1~z!D Bx

5
v

c

]

]z
~g~z!Ex!, ~30!

where«0(z) and «1(z) describe the profile of the diagona
components of«̂ in thez direction. Forg050, the right-hand
sides~rhs’s! in Eqs.~29! and~30! are zeros, so that the abov
equations yield the sets of TE and TM waveguide mod
respectively. With the right-hand sides included, the corr
tion to the wave vectork is quadratic ing. For the TE mode
with a numbern, after some algebra one can get the follo
ing dispersion law:

k25@kTE
(n)~v!#22

v2

c2
@~ge f f

(1)!22~ge f f
(2)!2#, ~31!

where
s

s-

,
e
g

d
n

s,
-

-

~ge f f
(1)!25g0

2F E2d/2

d/2

dz
~Ex

(n)!2

«0~z!

E
2`

`

dz~Ex
(n)!2 G , ~32!

and

~ge f f
(2)!25g0

2F(m E
2`

`

dz
Bx

(m)Ex
(n)

«0~z!

E
2`

`

dzBx
(m)Ex

(n) ]2

]z2
@«0~z!21/2#

3

E
2d/2

d/2

dz
Ex

(n)

«0~z!

]Bx
(m)

]z E
2d/2

d/2

dzEx
(n) ]

]z S Bx
(m)

«0~z!
D

E
2`

`

dz~Ex
(n)!2E

2`

`

dz
~Bx

(m)!2

«0~z!
G .

~33!

The correction (ge f f
(1))2 originates from theg2 term in the rhs

of Eq. ~29!, whereas (ge f f
(2))2 results from the mixing of the

TE moden with all TM modes. Generally speaking,ge f f
(1) and

ge f f
(2) are of the same order. This means that, wheng depends

on x and changes sign, the corresponding boundary w
would represent a mixture of TE and TM modes. The situ
tion simplifies if, for numerical reasons,ge f f

(1) appears to be
much bigger thange f f

(2) . This is the case when the thicknessd
of the film is much smaller than the transverse size of
waveguide mode. Then the dispersion law for the bound
wave, analogous to Eq.~12!, takes a simple formk
5kTE

(n)(v), and the electromagnetic field decays away fro
the boundaryx50 as exp@2(v/c)gef f

(1)uxu#.
In conclusion, in this paper we have demonstrated that

Maxwell equations for the wave, propagating along t
boundary of two optical isomers, possess a nontrivial so
tion localized at the boundary. This solution is chiral, in the
sense that it can propagate only in one direction. We h
also traced the analogy between the boundary electrom
netic waves and the edge states in the integer quantum
effect. By virtue of this analogy, we argue that in a mediu
with a random nondiagonal componentg(x,y) of the dielec-
tric tensor the boundary waves undergo the delocaliza
transition wheng(x,y) is zero on average.
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4M.I. D’yakonov, Zh. Éksp. Teor. Fiz.94, 119 ~1988! @Sov. Phys.
JETP67, 714 ~1988!#.



PRB 61 12 847CHIRAL ELECTROMAGNETIC WAVES AT THE . . .
5N.S. Averkiev and M.I. Dyakonov, Opt. Spektrosk.68, 1118
~1990! @Opt. Spectrosc.68, 653 ~1990!#.

6B. Huckestein, Rev. Mod. Phys.67, 357 ~1995!.
7L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Perga-

mon, New York, 1977!.
8D. Stauffer and A. Aharony,Introduction to Percolation Theory
~Taylor & Francis, London, 1992!.
9J.T. Chalker and P.D. Coddington, J. Phys. C21, 2665~1988!.

10H. Levine, S.B. Libby, and A.M.M. Pruisken, Phys. Rev. Lett.51,
1915 ~1983!.

11D.E. Khmelnitskii, Pis’ma Zh. E´ksp. Teor. Fiz.38, 454 ~1983!
@JETP Lett.38, 552 ~1983!#.


