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Chiral electromagnetic waves at the boundary of optical isomers:
Quantum Cotton-Mouton effect
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We demonstrate that the boundary of two optical isomers with opposite directions of the gyration vectors
(both parallel to boundajycan support propagation of electromagnetic waves in the direction perpendicular to
the gyration axegCotton-Mouton geometjy The components of electromagnetic field in this wave decay
exponentially into both media. The characteristic decay length is of the order of the Faraday rotation length for
the propagation along the gyration axis. The remarkable property of the boundary wawhisality. Namely,
the wave can propagate onlyamedirection determined by the relative sign of nondiagonal components of the
dielectric tensor in contacting media. We find the dispersion law of the boundary wave for the cases of abrupt
and smooth boundaries. We also study the effect of asymmetry between the contacting media on the boundary
wave and generalize the results to the case of two parallel boundaries. Finally we consider the arrangement
when the boundaries form a random network. We argue that at a point, when this network percolates, the
corresponding boundary waves undergo quantum delocalization transition, similar to the quantum Hall
transition.

Optical properties of gyrotropic and optically active me- tatory) and right-rotating dextrorotatory media. Two modi-
dia are well known and described in many textbogkse, fications of a crystal differing by the sign af are called
e.g., Ref. 1. A ‘homogeneous gyrotropic medium is charac-gptical isomers. For example, the parameters of teasor
terized by the following relation between the cjisplacementthe quartz crystal are known to be,=2.3839s,=2.4118
vector and electric fiel=¢E, where the tensos has the andg=1.1x10 “. Consequently,,~4 mm for yellow light

following form: (A =589 nm). Isomers with tensog in the form(1) can only
, belong to the certain crystalline symmetry classes listed, e.g.,
g0 19 0 in Ref. 2.
e=| —ig &9 O |. ) When the direction of propagation is perpendicular to the

gyration axis, there also exist two types of solutions of the
wave equatior(2). First, there is a trivial solution for which
only the E, component is nonzero and the spectrunwis
=kc/\/El. The nontrivial solution(Cotton-Mouton effegt
corresponds to polarization perpendicular to the axis of gy-
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A linear polarized wave, incident on this medium along the

axis of gyrationz splits into two circular polarized waves The phenomenon of surface electromagnetic waves is also
propagating with velocities/(e,*+g)Y? Sinceg is always a well-studied subjedfsee, e.g., Ref.)3 Surface waves can
much smaller tham, this can be viewed as rotation of the propagate along the boundary of two isotropic media with
plane of polarizatior{Faraday effegt The distance at which dielectric constants ,(w) and e,(w) when two conditions

the plane of polarization is rotated by 90° is equallfp are met (i) e,(w)ep(w)<0 and (i) e,(w)+ep(w)<O0.

= 7\/eoc/gw, wherew is the frequency of the wave. The The polarization of these waves(tsansverse-magne}idM.
direction of rotation is determined by the sign of the nondi-For such waves the localization of electromagnetic field at
agonal componeng of the tensor(1). Correspondingly, in the boundary is provided by the negative sigreah one of

the case of optical activity, there exist left-rotatifigvoro-  the contacting media. Interesting examples of surface elec-
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tromagnetic wave at the boundary of twansparent media Z
were given in Refs. 4 and 5. In Ref. 4 the boundary between "\
isotropic and uniaxial media is considered. In Ref. 5 both \

contacting media represent uniaxial crystals with certain mis-
match in the directions of optical axes. E, e
In the present paper we show that the boundary of two e
optical isomers with opposite directions of axes of optical ™= [ v
activity (both parallel to the boundarycan also support E
propagation of localized electromagnetic waves. In contrast KN

to the conventional surface plasmonthese states exist for \
positivevalues of components, ande,. The distinguishing \
feature of these boundary waves igradirectionalcharacter

of propagation, i.e., they propagate along the boundary of
two media with opposite gyration vectoesly in one direc- FIG. 1. The boundary of two optical isomers=0). Boundary
tion, which is determined by the relative Sign g)fWe also wave propagates along tlyeaxis. The decay oE, (dashed curve
argue that random arrangement of boundaries provides aihd E, (solid curvé components of electric field away from the
optical realization of the quantum delocalization transitionboundaryx=0 is shown schematically.

for the boundary waves, which is similar to the quantum Hall

transition for two-dimensional electrofs. Consider first the simplest case when the transitional re-
Let the planex=0 be a boundary between two isomers.gion between two media is infinitely narrowg(x)
For generality we considey to be some function of,g(x),  =-—gg[26(x)—1], whereg,>0 andd(x) is a step function
changing its value fromg(x)=gy to g(x)=—g, within (see Fig. L Then U(x) takes the form U(x)
some region aroung=0. In the Cotton-Mouton geometry, =—2gk&(x)/s,. It is seen that the potential is attractive for
when onlyx andy components of the electric field are non- the positive values df and repulsive for the negative This
zero, the system of equations fi,E, which follows from illustrates the above statement about tterality of the
Eq. (2) takes the form boundary states. It is well known that there exists only a
single bound state in attractiv@ potential with an arbitrary
P’E, Ex o _ magnitudé€’. The corresponding “binding energy” is equal to
Y - g[SOExJ“ Ig(x)Ey], ) e=_g2k?/e2. This leads to the following dispersion law for

electromagnetic wave propagating along the abrupt boundary

AR
PE, B, w? between two media witly= *g:

iy g~ gleoEyTIg0E. (7 9
w=— (12
Let u_sk search_Ior a solution propagating along yhaxis: \/Eo
| I
E,xe™, E,«e'. Then from Eq.(6) we can expres€, 1o grigin of the localized boundary state Hd2) is the
throughE, , following. It is seen from Eq(5) that the maximal possible
JE wave vector inside each of the contacting media is equal to
ikc2— —iw?E,g(x) (o/c)(e9—g5le0)Y% The wave vector determined by Eq.
E.— 9X ®) (12) exceeds this maximal wave vector. As a result, both
X 2 2.2 ’ ic fi i
gow?—k?c components of electric field decay to the left and to the right

_— . from the boundark=0:
Substituting Eq(8) into Eq. (7) we get

Ey(x)=E,(0)e” 9, (13
PE, | K ﬁg(x)Jr w? (20021 |E
- — 9°(x)— 9ol |Ey i(85+95)
2 2 (e
ax g0 IX  cZgg E, (X) =sign(x) ——2> Y E,(0)e ¥,
) ) 29oe0
® g
= —2<eo——o> —K?|E,. (99  whereq=|kgo|/e, (Fig. 1). The characteristic decay length
¢ &o 1/g can be expressed through the length of rotation of plane
Note now that Eq(9) has the form of the Schdinger equa- of polarization of light in the Faraday geometry:ql/
tion with an effective potential =l,/m. . . , .
It is easy to establish certain properties of chiral boundary
Kk ag(X) w2 ) states. .
U(x)=— +2_[92(X)_90]' (10) (&) Asymmetry between the contacting med@appose
g0 X c%g that the mirror symmetry between the contacting media is

lifted, say, due to external magnetic field applied in the

and energy direction. This amounts to the following modification of

2 2 g(x):g(x)=—go[26(x) —1]+g4, Whereg, is proportional
E= ﬂ(so_%) —K2 (11  tothe magnetic field. Then it is straightforward to check that
c? €0 the dispersion law Eq(12) remains unchanged, while the
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magnitude ofg; remains smaller thag,. Wheng, exceeds

0o the bound statelisappears abruptlyDespite the disper- »r
sion law being insensitive to the asymmetry tpr<g,, the
distribution E,(x) changes strongly. Fog,;+#0 instead of 20

Eqg. (13) we have

15 |-
w

Ey(X)=Ey(0)exr{ CJS—O(go—gl)x, x>0, (14) e

10 |

w
E,(x)=E,(0)ex +g1)x|, x<0. (15 °T
y( ) y( ) F{C\/S—O(go gl) ( ) I
0 T
(b) Two boundariesConsider now the case of two bound- 4 -
aries X
g(x)=—do, |x|>1/2, (16) FIG. 2. E,(x) component of electric field for the case of two

boundaries. The location of the boundariesxditg = + 1.25(dotted

9(x)=go, |x|<|/2. (17) line), x/l ,=*=0.75(dashed ling andx/l ,= £0.3 (solid line).

It is straightforward to analyze Eq9) in this case. Indeed,

2 202 1+exp—2L* 49, \
N J1 go+ of K)(1+ 91)

the effective potential takes the form K 3" 5
k90 e l—exp—2L%«k) JokK
000 =29 sx—112) - s(x+ 112 18 (do—01)
(=", (60— 112) = 8x+12). (19 gy (@0 1 )
€0

The corresponding dispersion law for the boundary state be-
comes with L*==l/l,. In Fig. 3 we present the critical line of

01/go as a function ofL*, which determines the domain
w2 gé where the solution of Eq22) exists. Note, that the bound-
k2=—2<80— — +q,2, (29 aries are asymmetric with respect to the change of the direc-
c £o tion of magnetic fieldthe sign ofg,).
(d) Smooth boundaryNext we consider the case when the
boundary is smooth and has a characteristic width. ghis,
for example, can be a result of mutual diffusion of isomers.

whereq, is determined by the equation

2 2.2 2
2 1  9%|_@%|. % Theng(x) can be modeled bg(x)= —g,tanhf/b). Thus,
A —2qy! 2| = |17 2 (20 ; ;
1-e 2l g5 % eg for the effective potentiall (x) we get
In t_he limit I—>_<>_c we return to the dispersion law E@L2), _ Jo(kc2+ w?geb)
which for positivek corresponds to the wave propagating Ux)=-— (23

along the boundark=1/2; negativek corresponds to the eobc’cost(x/b)

wave propagating along the boundary —1/2. Inspection of
Eq. (20) shows that it has solution f@n arbitrary small | In
the case when the distance between boundaries is mu

The solutions of the Schdinger equation with potential Eq.
%3) are well known?

smaller than the localization lengtl), we get from Eq(20), 100
| 0.75 |
q=—z<<I,*. (21) i
77l . 050 |
This means that both statésith positive and negativk) are o

“weakly bound.” This is illustrated in Fig. 2 for different
[/1, and positivek. For negativek the distribution of electric
field corresponds to the change» —x. 025
(c) Two boundaries with external magnetic fielle have

also studied the suppression of the states associated with I
pair of boundaries by an external magnetic field. In this case .7}
the critical value ofg, depends on the distance between h L L . L
boundaries. The electric field in the regipg<I represents
the superposition of exponents expk/l,) and
exp(—m«x/l,), where the dimensionless parametesatisfies FIG. 3. Critical lineg; /g, as a function oL* for two opposite
the equation directions of external magnetic field.
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FIG. 4. Dispersion relations for the guided modes with

=0,1,2,3,4 are plotted using E8). For illustration purposes we
chose an unrealistically large value of parameter0.5.

\/1+4<
(24)

The mode witm=0 has no threshold frequency. The thresh-
old frequenciesv, for the modes witm>0 are determined
from the conditiong,,=0:

202 2 2

gob“w
2

kggb

€0

+

2 )—(2n+1)

SOC

C\SO \/ g(% \/ gé
= 2n+1)2-=-\/1-=|. (25
0()r'l zgob ( ) 8% 8% ( )

The corresponding dispersion laws,(k) can be conve-

niently presented after introducing a dimensionless fre-

guency() and the wave vecta®:

TVegh
= @ Q=7bk, (26)
where the dimensionless parametes defined as
T= @. (27)
€0

Then from Eqs(11) and (24) we have

1
Q= 3{l(2n+1)72

+(2Q+1—7%)?—4n(n+1)7(1— %) ]?
—(1+4Q)}2 (29

The dispersion law for the first five modes is shown in Fig. 4.

Let us consider qualitatively the situation when the non-

diagonal component of the tenseris a random function of
both coordinatesx andy. Suppose for simplicity that the
correlation length of(x,y) is much bigger thah,, . Then it
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a)

FIG. 5. The contourg(x,y) =0 are shown schematically for the
cases(a g(x,y)<0 and(b) g(x,y)>0. The arrows show the di-
rection of propagation of boundary waves.

localized. Asg(x,y) approaches zero, the contours, defined
by the conditiong(x,y)=0, grow in size and form a net-
work. The correlation size of the network diverges as
[g(x,y)] "1, wherev,~4/3 is the critical exponent of the
percolation problem in two dimensiofisAlong with de-
creasing ofg(x,y), the neighboring contourg(x,y)=0
come closer thah,, and the scattering between the left- and
right-moving boundary waves, encircling these contours, be-
comes increasingly important. As a result of this scattering,
the interference of different unidirectional paths comes into
play. The crucial role of interference effects, allowed by the
coupling, was first pointed out in a seminal pageef. 9 in
relation to the integer quantum Hall effect. In Ref. 9 unidi-
rectional waves modeled the motion of a two-dimensional
electron in a strong perpendicular magnetic field and a
smooth random potentidedge states It was demonstrated

in Ref. 9 that, with interference taken into account, the delo-
calization transition in the system of edge states occurs at
discreteenergies, i.e., it remains infinitely shafps is the
case for the classical percolatjoitdowever, due to the cou-

is obvious from the above consideration that the boundaryjing and interference, the size of the eigenstates in the criti-

waves would circulate along the contowgéx,y)=0. If the
average valug(x,y) is negativd Fig. 5(@)] or positive[Fig.
5(b)], and comaparable tpg?(x,y)]*? these contours are
disconnected, and, correspondingly, the boundary waves a

cal region(localization radiusis much bigger than the cor-
relation radius of the network and diverges with the
exponert v,~2.3. The correspondence between the edge
gtates of electrons and the boundary electromagnetic waves



12 846 L. E. ZHUKOV AND M. E. RAIKH PRB 61

allows us to conclude that witlg(x,y)—0 the radius of a2 (E(M)?
localized boundary waves behaves[ géx,y)]™ 2. J a2 7 (2)
[ to the integer quantum Hall transition, which L)y2_ q2| 2% 0T 32

By analogy ger g Il transition, wh (95°=08| — : (32
originates from the competition of the unidirectional motion f dz(E(M)2
of an electron in a magnetic field and quantum — x
interferencé®*the delocalization transition of the boundary and
waves atg(x,y) =0 (when optical activity of the system is
zeroon average can be called the quantum Cotton-Mouton o B(Xm)Eﬁ(")
effect. . 4 £0(2)

Note that throughout the paper we assumed that the sys¢g(2})2=g2| > 5
tem is uniform in thez direction. The situation relevant for mo(= me(m 9 _

' ) i s S . dzB™WE(N—[eg(2)" ¥

experiment is a thin-film geometry, in which two contacting o X 472-00
optically active media are confined within the regifm
<d/2 with the thickness of the film being much smaller a2 EY B (a2 9 B{"
thanl, . If &, exceeds the dielectric constants of the media, —d2 Zso(z) 9z ) _ap 5o e0(2)

between which the film is sandwiched, the solutions of the
Maxwell equations are the waveguide modes, propagating fm dz(E(“))sz d
along the plane of the film. The components of electric and —w % —w
magnetic fields in these modes are confined within the region

of the order ofd. Suppose first, thaj is constant within the (33
film: g(z)=9,0(d/2—|z]). To modify the Cotton-Mouton The correction ¢{}))? originates from they? term in the rhs
dispersion lawEq. (5)] to the case of the waveguide mode of Eq. (29), whereas ¢2))? results from the mixing of the
propagating in the direction, it is convenient to rewrite the TE moden with all TM modes. Generally speakings; and

(Bs(m))z

77—

£o(2)

system of Maxwell’'s equations in the following form: g2} are of the same order. This means that, whefepends
on x and changes sign, the corresponding boundary wave
9°E, w? ) would represent a mixture of TE and TM modes. The situa-
T2 So(Z)g—k Ex tion simplifies if, for numerical reasong(}; appears to be
much bigger tharg'3). This is the case when the thickness
w? g2(2) w g(z) JB, of the film is much smaller than the transverse size of the
= oD T een) a7 (299  waveguide mode. Then the dispersion law for the boundary
¢ ®o 0 wave, analogous to Eq(12), takes a simple formk
=k(T”E)(w), and the electromagnetic field decays away from
d( 1 0By w?  eo(2) the boundary=0 as exp—(w/c)gx|].
_80(2)5 eo(z) 9z | 80(Z)§_k e1(2) Bx In conclusion, in this paper we have demonstrated that the

Maxwell equations for the wave, propagating along the
® J boundary of two optical isomers, possess a nontrivial solu-
=< 77 (9(2Ex, (30 tion localized at the boundaryThis solution is chiral, in the
sense that it can propagate only in one direction. We have
whereeg(z) ande4(z) describe the profile of the diagonal also traced the analogy between the boundary electromag-
components of in thez direction. Forg,=0, the right-hand  Netic waves and the edge states in the integer quantum Hall
sides(rhs’s) in Egs.(29) and(30) are zeros, so that the above €ffect. By virtue of this analogy, we argue that in a medium
equations yield the sets of TE and TM waveguide modesWith & random nondiagonal componeyi,y) of the dielec-
respectively. With the right-hand sides included, the correciric tensor the boundary waves undergo the delocalization
tion to the wave vectok is quadratic ing. For the TE mode ~ transition wheng(x,y) is zero on average.
with a numbem, after some algebra one can get the follow-
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