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We reanalyze the Hubbard-lI approximation by showing that it is equivalent to an effective Hamiltonian
describing Fermionic charge fluctuations, which can be solved by Bogoliubov transformation. As the most
important correction in the limit of largel and weak spin correlations we augment this Hamiltonian by further
effective particles, which describe composite objects of a Fermionic charge fluctuation and a spin-, density-, or
7 excitation. The scheme is valid for positive and negativ&Ve present results for the single particle Green’s
function for the two-dimensional Hubbard model with and withtuandt” terms, and compare to quantum
Monte-Carlo results for the paramagnetic phase. The overall agreement is significantly improved over the
conventional Hubbard-1 or two-pole approximation.

I. INTRODUCTION discrepancy being the fact that one can rather clearly distin-

The Hubbard model is the simplest system which presumgu'Sh four “bands” in the spectral functions rather than the

. .2 bands predicted by the Hubbard-1 approximation. More
ably incorporates the key features of the strong Correlat'o'&enerally, exact diagonalization studigend to produce for

limit. Understanding this model will be crucial for making gyample a photoemission spectrum consisting of a relatively
any progress with cuprate superconductors, colossal magnetarow “quasiparticle band'twhich forms the first ioniza-

resistance systems or heavy fermions. The special problem gy state and an “incoherent continuum.” A simple two-

this model is that near half-filling it represents a dense sysphand form of the spectrum, as produced by the Hubbard-I

tem of strongly interacting fermions, a situation in which agapproximation, therefore cannot give a quantitative descrip-

perturbation expansion id may not be expected to give any tion of the spectrum. Motivated by these numerical results

meaningful results. In dealing with this model, one can thenye have reexamined the Hubbard | approximation and at-

pursue two opposing strategies: one might expect that deempted to find the most important corrections to this scheme

spite the strong interaction a perturbation expansiofJin for the limit of largeU and weak spin correlations. We will

remains a meaningful approximation, and apply conventionasee that the four-band structure observed in the QMC simu-

many-body theory. The latter means that one is treating thtations can be reproduced quite well by adding two new

kinetic energy exactly, and results in the validity of the Lut- effective particles which correspond to a composite object of

tinger theorem. On the other hand, by adiabatic continuitya “Hubbard quasiparticle” and a spin, charge, prexcita-

this approach will never produce an insulator at half-filling tion. These composite objects actually are the quite obvious

so that we can be sure of its breakdown in the limit of largeleading correction over the Hubbard-l approximation, and

U/t. we will see that including them into the equations of motion
The opposite point of view was taken by Hubbarfdin  leads to an almost quantitative agreement with the numerical

his approximations, the interaction part ifis treated ex- results for a variety of different systems.

actly and approximations are made to the kinetic energy.

This results in the breakdown of the Luttinger theorem, be- Il. A REFORMULATION OF THE HUBBARD-I

cause the physical electron is effectively split into two par- APPROXIMATION

ticles, one of them corresponding to an electron moving be- ) b .

tween empty sites, the otﬁer to gn electron moving betg\]Neen We can|der the Hubbarq Hamiltonian in-particle-hole

sites occupied by an electron of opposite spin. The energigdmmetric formH=H;+Hy with

of formation of these effective particles differ by, so that

for large U the single free-electron band splits up into two H=—t (ciTUc]- ++tH.c),

bands formed predominantly by the two types of effective ()

particles. Hubbard's approximations, and related schemes

such as the so-called two-pole approximatioifiave been U 1 1

dismissed by some authors as unphysical, because they do in Hy=U ~ |\ Mg T3]\ N ) @

fact violate the Luttinger theorem away from half-filling.

However, in a recent QMC study for the paramagnetic phasélerei,j) denotes summation over all pairs of nearest neigh-
of the Hubbard modéiwe have shown that such criticism is bors andni,g=CiT,UCi,g.

entirely unwarranted: the Fermi surface, if measured in an For bipartite lattices one can make use of two symmetry
“operational way” from the Fermi energy crossings of the transformations. The first one is the particle-hole transforma-
guasiparticle band, indeed does violate the Luttinger thecotion ciYUHeiQ'RicIU, whereQ=(m,, ... ,m). If the kinetic
rem. The doping dependence of the Fermi surface volume isnergy contains only nearest neighbor hopping, this transfor-
qualitatively consistent with Hubbard’s results and the mainmation leaves the Hamiltonian invariant and exchanges the
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electron addition spectrum for momentukmand removal Taking into account that the ordinary electron Green’s func-
spectrum for momenturk+Q at half filling. Similarly the  tion G and the Green’s function callddby Hubbard can be
transformatiorc; | €' @Ricl | c;;—c;; inverts the sign of ~Wwritten as
Hy .° At half filling this allows to transform solutions of the

positiveld model into those of the negatiwé-model. This
t_ransformati_on im_pl?es that the sing_l_e-particle spe<_:tra| func- I=Ga:+Gya, 6)

tion at half-filling is identical for positive and negatité In ' '

the Appendix some of the operators introduced in this workihe resulting equations of motions are precisely those derived
and their transformation properties under these transforman the Hubbard-I approximation:

tions are listed.

G=GgctGeatGactGaan

We proceed with the calculation of the single-particle Coa _B
Green’s function. As a first step, following Hubbdrdye 19G= (1) +| e 2 G+UT,
split the electron annihilation operator into the two eigenop-
erators of the interaction part: ) 1
|atF:§[5(t)+ekG+UF]. (7)

Ciy=Ci,s Mg tCio(1-M =0 ,+Ci,. 2 :
' ’ ' ' ' ' ’ The present formulation, on the other hand, allows for an
These obey [d, ,,Hy]=(U/2)d;, and [, ,H,]= appealing physical interpretation of the Hubbard-I approxi-
—(U/2)¢; ,. Next, we consider the commutators of theseMation: we introduce free Fermion operatbgs, and dl,q'
“effective particles” with the kinetic energy. After some Which correspond to “holes” and “double occupancies.
algebra, thereby using the identity ,=n,/2+ ¢S?, we find The Hubbard operators are identified with these as follows:

. (n) § & it
[CimHt]:—tj;N(i) [(1—7 Cj,+(ci 1 S+¢, S) ko™ \/Eh—k,a’
2o (= () +ef 6 iy d L (8)
j U oLt | o— —=y -
2 k, \/E K,
- (n) , B Then, we can formally obtain the set of equations of motion
[di . Hd= _tj EZNU) = G (€1S+¢,S) (5) from the following Hamiltonian for the holes and double

occupancies:

1
+Ecj,T(ni_<n>)_CjT,1Ci,LCi,T : ©) e+U

Ek_U
HEﬁ:k,E(r ( 2 dl,(fdk,l)'_Thl,(Thk,0'>
k

HereN(i) denotes the nearest neighbors of siteKeeping
only the first term in each of the square brackets on the €k .t t

right-hand sideRHS) (as we will do for the remainder of +; (Edk,Th—k,l+H'C' ' ©)
this section reproduces the Hubbard-I approximation. We o _ _ _
specialize to half-filling (n; ,)=1/2) and introduce the The Hamiltonian(9) is a quadratic form and readily solved

Green'’s functions by Bogoliubov transformation:
. — LI
G (K, = —(Ta (1) B0, (4) Y-k = U o O
wherea, B € {c,d}. Then, using the anticommutator relations Yt ko= "Uklk ot Ukhik;, (10
at 4 v — S = at A
digdioi=niz,  {Ci,Ciot=(1-Ni5),  {di,.Ciol  toyield the familiar dispersion relation
={ciT,(,,di,(,}=0 we obtain the following equations of mo-
tion: 1
E.(k)=5[ect Ver+U2]. (12)
i 1 €k_U €K i
|atGg,g=§5(t)+ TG&HEG‘A"&’ To compute the sp?ctral weight of the two bands we use
Cko=(1/V2)(dc ,+h', -), whence:
19Gys= G+ 9 Y g 1 1
10154,c=5 Ge et =5 Gades — €k
20 2 ’ Z.(K)=z(WFol=5| 1t——=|. (12
,( ) 2( k k 2 \/W
o &V L Again, this is the correct Hubbard-I result. The above discus-
|(9th a= ch+ Gddv i . .
' 2 ce2 sion shows the physical content of the Hubbard-1 approxima-

tion: the Hamiltonian(9) describes Fermionic particlelike
. 1 €k e+U and holelike charge fluctuations, createddi){, and hikf,
19Ga,a=3 00+ 5 Geat—5—Caa- ® respectively. These “live” in a background of singly occu-
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pied sites. Particlelike and holelike charge fluctuations ardll. EXTENSION OF THE HUBBARD-I APPROXIMATION
created in pairs on nearest neighbors, and individually can We now want to trv and derive an imoroved version of
hop between nearest neighbors. The hopping integral for th y P

holelike particle has opposite sign as that for the electronliki‘%e Hubbard-| approximation. Thereby we will address nei-

fluctuation as it has to be, and the hopping integrals for bot dhoeurbltehicglrjotgﬁgn OfCQrﬂ?oJﬁgggﬁgamzof f ?rllzere;l];rg czzlgie
effective particles are 1/2 times that for the ordinary elec- . pancy - '9 ) ;
L .2~ constraint—instead, in this work we will restrict ourselves
trons: this reflects the fact that due to the Pauli principle” .. , . .
i ¥ ; . entirely to an approximate way of treating the omitted terms
(say a spin up electron added to a “background” of singly . .
. . : . . ..In the commutator relation&3). We expect that the present
occupied sites can propagate to a neighboring site only with S .
- . . ) approximation is reasonable for largie (where the density
a probability of 1/2(we are neglecting any spin correlations

of the background of singly occupied sitedhe factor of of holes/double occupancies is small when the hard-core
constraint is of little importangeand weak spin correlations

1/\2 in Eq.(8) is due to the fact tha(tc] ,C; ,)=1/2. Finally,  (where the nonorthogonality problem is smalhroughout
the particle which stands for the double occupancy has afe stick to the case of half-filling and no spin polarization
energy of formation ofJ/2, the holelike particle has an en- (n; ,)=1/2. We return to the basic commutator relati¢ays
ergy of —U/2. As already mentioned, the Hubbard-l ap- anq consider the terms on the right-hand side which are
proximation therefore describes the splitting of the physicabmitted in the Hubbard-1 scheme. The second term in the
?rlleCtran into tt'WO nthVh effective partictlfs Wh;‘?hhcta”y I\’Vith square bracket is the Clebsch-Gordan contraction of the spin-
em information on the _environment  in which the €lec- 5 e a0, » and the spin-1 operatd; into yet another
tron has been created. One of thed ) moves between S in-1p/2 operlétor—it desgribes t?]e cgipling yof the created

sites occupied by an electron of opposite spin, the other on ole/annihilated double occupancy to spin excitations. This

(h“f;) between empty sites. This_ is a quite appealing phySi’[erm may be expected to be the most important one in the
cal idea, but the above formulation also very clearly high-

lights the weak points of the Hubbard-l approximation InIimit of large positive U. The third term describes in an
> . ) ' nal way th lin nsity fl ions, wher
addition to the mere truncation of the commutatd®s, analogous way the coupling to density fluctuations, whereas

S L the last term describes the coupling to the so-caljepair
which is an uncontrolled approximation, these are the fol- bing

. : SO excitation!! One may expect that in the caserafgative U
lowing: adopting this picture we would have to assume thal y exp g

the last two terms are the important ones

toqt T oqt istinaui P '

the states; ;d; ||0) andh,dj,|0) are distinguishabléand In keeping with the basic idea of the Hubbard approxima-
in fact orthogonal to one anotheiThis, however, is in gen-

tions, namely to treat the dominant interaction terms exactly,

eral not the case: both states have one double occupancy g, it also the composite operator into eigenoperators of
sitej and a hole on sitg and the only difference is that they o term and define

have been created in different ways. In fact, using Bpwe
find for their overlap

T S S
LT [ [ 2 LT VL TY

w]| oo

(dj thi bl dj )=—&S 'S/ )=-2(5-S), (13

P U ~t

Di =0, S+d;, S —5nidj e ¢, (14

where we have assumed a rotationally invariant ground state - N )

in the second line. The Hubbard-like approximation schem&vheren;=n;—(n). Under the positive/negativé transfor-

thus should work only for a state with vanishing spin mation we have for examplec; ;Sf+c; S —3znd;;

correlations—we will therefore henceforth assume the sping Ci,icmejT,w i.e., keeping the at first sight unimportaifar

correlation function(éiéj) to be zero. positive U) terms involving density and pairing fluctuations
A second problem is, that the effective Fermions have tds crucial for maintaining the exact symmetry under sign

obey a kind of hard-core constraint—a site cannot be simulehange ofU. We then have

taneously occupied by a hole and a double occupancy. This

constraint is not accounted for in the derivation of the A U,
Hubbard-l approximation: the equations of motion are ob- [Dijo.Hul= §Di«ix<f'
tained from the Hamiltoniani9) by treating theh andd as

ordinary free Fermion operators. This problem is the source R u.

of the violation of certain sum rules when the Hubbard-I [Cijo.Hul=— 5Cije

approximation is applied in the doped case, see the discus-
|_10

sion given by Avellaet a 1
One last remark is that the commutat¢8s are invariant [c; LHI=—t =¢ T+éi Pot D, J ”}
under the particle-hole transformation, i.e., they are trans- NGy [ 2

formed into each others Hermitian conjugate. This remains

true for the truncated commutators, which give the [d 1 H=—t
Hubbard-l approximation, so that the spectral function ob- LTt jé
tained from this is particle-hole symmetric. This can also be R R
verified directly using Eqs(11) and(12). Finally, the spec- The operatorE; ; , andD; ; , may be thought of describing
tral function is manifestly invariant under sign changdf ‘“composite objects” consisting of a charge fluctuation and a
as it has to be. spin, density, ory excitation on a nearest neighbor. Ulti-

1 - .
Eci,T_Ci,j,a_Di,j,a}- (15

~

D)
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FIG. 1. Possible hopping processes which coupl€itp, . The + 5"'[Clvlc"l d"ldJ’l]'

cross denotes the spin, density, prexcitation, the black dot the R - PP
hole. {Dij1.ciit=alc, 0 +dj ci ] (18
Taking the expectation value in the ground state most of the

mately these composite operators carry the quantum numbetrg

) . . rms vanish on the basis of symmetries d’ +d' c;
of a single electron, i.e., spin 1/2 and charge 1. We also note_ . . . Y G i, 4}, .Gl
. . vanishes due to inversion symmetry of the ground state,
that under particle-hole transformation

¢; .l —d; dl | andn; vanish due to particle-hole symme-
O.RAT try at half filling. All terms containing unpaired spin opera-
Cij,o—€ "D 4 (16) tors vanish if we assume that the ground state is invariant

under spin rotationgwhich excludes ferromagnetic or anti-
i.e., the composite particles transform in the same way as thrromagnetic solutionsFinally we obtain

E:i,(, andai,(,. Moreover, the commutatoKd5) are invariant

under particle-hole transformation, i.e., this transformation . ~t < = gLy

transforms them into each others Hermitian conjugates. {Cijcih=95 Si'sj’LT’LCi,TCi,iCJ,TCi,i '
We now enlarge the set of Green’s functions by allowing

a,Be{c,d,C,D} in Eq. (4); in the language of the “effec- ({Di ;1.6 h=0. (19)

tive Fermions” this means that we are introducing additional ) .
Fermions corresponding to the composite objects. To obtaitf iS €asy to see that the expressions whose expectation val-
a closed system of equations of motion for these Green'ses are taken are invariant under particle-hole transforma-
functions, we need equations for t& ; andGp ;. As a  tion, and under the positive/negative U transformation we

first step we turn to the commutator[sf:i,j,U,Ht] and have

[Iﬁiyj,(,,Ht]. Here we have to distinguish three cagese s

Fig. 1): (a) the hopping term may act along the boridj ) #HSZSJ-Z,
and transport the hole back froprto i, (b) it may transport 4

the hole even further away from (c) it may transport the
spin, density, oy excitation away from sité If we want to
restrict ourselves to the four types of operat(@s,jyg, The expectation value of the anticommutator would be in-

Dij. Ci.o, andd; ,, we have to neglect the contributions variant under this positive/negatiié-symmetry.

from the processeh) and(c). These processes would pro-  For large positiveJ the termsn;n;/4 anchTcIle,TCj,L
duce “strings” of excitations along a path of length 2 lattice have a negligible expectation value and the only important
spacings, and we would have to introduce even more conterm comes from the spin correlation. In keeping with our
plicated operator products to describe these. Restricting ouabove remarks concerning the role of spin correlations in the
selves to processes of the type a, i.e., repladihg- Hubbard-I approximation we will henceforth take the RHS
—tEU(ciT’ch,UJr H.c.), straightforward computatithgives of Eq. (19) to be zero. As was discussed above, the

¢l el e —S'S (20)

the surprisingly simple result Hubbard-1 approximation implicitly assumetS - S;)=0,
and we will therefore keep this value also in Ef9). We
. 3t . t. 3t . . will discuss the consequences of not making this approxima-
[Cijr Hid= 5D+ 5C0— 7 (Cip—dig), tion later on.

Using the above commutators atekpectation values pf
anticommutators we are now in a position to set up a closed
= 3t t. 3t . . system of equations of motion. In the following we give
[Dijr.Hid= ?CJ\LT“L EDJM_ Z(Ci~T_di~T)' (17) explicit formulas only for a 1D chain with nearest-neighbor
hopping, but the generalization to higher dimensions and/or
Again, these relations are particle-hole invariant, i.e., theyonger range hopping integrals will be self-evident. We in-
are turned into each others Hermitian conjugates by particleroduce the Fourier transforms
hole transformation. In passing we note that had we reduced 1
the operator:éi,n and f)m to comprise only the terms in- C. (K=\==> e”z'éjéj (10
volving spin excitationgas might seem appropriate in the - 3NT T
case of large positive)), the commutators would have been A i =
much more complicated and in fact the “Hamilton matrix” (@nd analogously for thé's) and define the vectoG,
Hy to be defined below would have been non-Hermitian. =(G¢c,Gac.Ge+¢.Ge-6,Go+,6,Gp- ). Here C= is
Next, we need the anticommutators shorthand forC.. (k). Combining Eqs(3), (14), and(17),
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and performing a spatial Fourier transformation the equations of motion are readily found to be

(i9—HGe= (1B, (21
where the Hermitian matri is given by
fk; U, % _Te k2 _Talk2  _Te-iki2  _Teikii2
ﬂ‘, GKZ“J’ Te k2 Fakd2  Feoikd2  Faike2

“Telkx2  Teikd2, % % 0, %
= “Te k2 Feikd2 % _ E % 0
—Telk2  Telke2, 0, % % %

“Te k2 Feikd2 % 0, % B %

and B.=(%,0,0,0,0,0). The equation systef@1) can be whom we denote by') to the HamiItoniAan, we h:alve to add
solved for each momentum and frequency by using the spe@z’ rows and columns, containing thg; ; and D; ; with
tral resolution of the Hamilton matrik, . This yields the second or third nearest neighbarandj. In each case these
Green's functionsG; ; and G;; for each momentum and additional rows and columns contain only mixing terms
frequency. In an analogous way we can also derive an equ@mongst themselves or wit; ; and G ¢, so that the ex-
tion system forG; g andGg . Thereby the matri, stays  tension is completely trivial.

unchanged, whereas the RHS is changed irBg

=(0,1/2,0,0,0,0). Finally, the full electron Green’s function

is obtained by adding up the four Green'’s functions accord- IV. COMPARISON WITH NUMERICS

ing to Eq.(6). Upon forming the Laplace transfor@(k,z) Following the discussion in the preceding section we can
we finally obtain the spectral density calculate the full electron Green'’s function, including the
1 (presumably most important corrections over the Hubbard-I
T . approximation in the limit of weak spin correlations and
Alk,w) Jllinowlm Glkwtin). (22 large U. We now proceed to a comparison of the obtained

. _ . results for the spectral densify(k, ), with the spectral den-
In passing we note that this way of computiAgk,w) guar-  sity obtained from quantum Monte Carl@MC) simula-

antees the validity of the sum rule tions. Thereby the temperature for the QMC simulati®n,
=0.33, was chosen such that the spin correlation length is
fw A(K,w)dw=1. (23) only approximately 1.5 lattice spacings—the results thus are
— probably quite representative for the paramagnetic regime

) i . which our approximation aims to describe. Moreover, the
Since the particle-hole symmetry of the relatidds), (17),  yajye ofU/t=8 is already rather large, so that we may also

and (19 in turn guarantees particle-hole symmetry of thepgne 15 have a small density of holes/double occupancies

entire spectral function, we find that the sum rule for theyng the neglect of the hard-core constraint be justified. As a

particle number is fulfilled automatically: general remark concerning the QMC spectra we note that the
0 N MaxEnt procedure used for the analytic continuation to the

> j Ak, 0)do=—=. (24)  real axis is most reliable for “features” with large weight—

ki J-o 2 this means that the position of tiny peaks is less accurate than

. . . that of large ones.

A.S a last re“?a”‘ we note that going over to higher dimen- Figure 2 then compares the spectral density obtained from

sions or adding longer ranged hop_plng mtegrals POSES Nfhe Hubbard-I approximation, our extended Hubbard ap-

problem whatsoever—for each spatial dimensiowe hAave proximation(EHA) and QMC simulation. The Hubbard-I ap-

to add four additional rows and columns containing@®g  proximation gives only a relatively crude fit to the actual

andD; ; wherei andj are nearest neighbors in thea di-  spectral density obtained by QMC. The extended Hubbard

rection. Similarly, if we add an additional hopping integral ~ approximation, on the other hand, gives an all in all quite

between second or third nearest neighb@hg® number of correct description of the spectral density. Out of the=20
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S eniCij.or and2 yiyDi .o then produce the four ob-
servable bands. These four intense bands correspond rather
well to four broad “bands” of intense spectral weight which
can be roughly identified in the QMC result. It is interesting
to note that a recent strong-coupling expansion for the Hub-
bard model by Pairaulet al'® also produced a four-band
structure, although only for the 1D model. The dispersion of
the spectral weight along the bands is also reproduced quite
satisfactorily be the extended Hubbard approximation. The
main difference is the apparently strongdylependent width

of the spectra produced by QMC, which, however, is outside
the scope of the present approximation, whighthe limit
n—0) produces sharp peaks without any broadening. A
more severe deficiency of the EHA is, that it tends to predict
too high excitation energies, resulting in a somewhat too
large value of the Hubbard gap. In any way, however, the
magnitude of the Hubbard gap comes out better than in the
Hubbard-1 approximation.

We proceed to the Hubbard model with an additional hop-
ping integralt’ between second nearefte., (1,1) like]
neighbors. Figure 3 again compares the Hubbard-l approxi-
mation, the EHA, and the results of a QMC simulation on an
8% 8 lattice. The agreement between EHA and the QMC
result is again quite good, the main discrepancy being again
an overall overestimation of the binding energies. On the
other hand, the apparent four-band structure, the dispersion

Qamc of the peak energies and the spectral weight agrees well with
the numerical result. In particular, the two bands in inverse
(0,0) photoemission(i.e., ®>0) predicted by the EHA can be
(w2.m2) — seen very clearly in the QMC spectra. All in all the agree-
' A JA@ ment is even better than for the cd$e 0, which most prob-
(r,m) A N— ably is due to the fact that the spin correlations are weaker
N% with t’, so that the assumption of an uncorrelated spin state
(m,0) %kﬁ is better justified in this case.
’ D— e S ——

(0,0)

UL

X
1 1 bw |

6 4 2 0 2 4 6 8

We proceed to the case of a hopping integral integtal
between third nearegt.e., (2,0) like] neighbors. Here we
have chosert”/t=0.25, because for the larger valt&'t
=0.5 the QMC simulation still predicted a metallic state at
U/t=8. Figure 4 shows the spectral functions. Again, we
can roughly identify four bands and there is reasonable

FIG. 2. Single particle spectral function for the Hubbard model
with U/t=8 from the Hubbard-1 approximation, the extended Hub-
bard approximation, and QMC simulations on ax2ZD lattice at
temperaturel =t/3. In this as well as in all following figures, the
approximate spectra have been given an artificial Lorentzian broa
ening »=0.2Q@. To compensate for the stronger broadening the
QMC spectra have been multiplied by an additional factor of 2.

agreement for the dispersion. The weight of the quasiparticle
band in photoemission neatr(7) (at w~ —2) is not repro-
duced very well by the EHA, but again the ubiquitous four-
Qand structure is rather clearly visible.

Next, we turn to a somewhat indirect check of the ap-
proximation. The ordinary electron creation operator is the
symmetric combination of the Hubbard operators. However,

) o we might also define the antisymmetric combination
+4+4 bands produced by diagonalizing,, only four

bands do have an appreciable spectral weight. Analysis of
the eigenvectors dfl, shows that the bands with appreciable

(25

spectral weight in photoemission correspond to combinationg_hIS operator has the same quantum numbers as the original
electron operator, and therefore obeys the same selection

of the Fouriere transforms of the "bare” hotg , and the a5 It follows that when acting on the ground state, this
symmetric combinatior, ni)Cij.o- There is also a slight operator probes the same final states as the electron operator,
admixture of dw and the symmetric combination the only difference being the matrix element viz. the spectral
EJE_N(i)f)i,j,zr- In other words, the quasiparticle consists_ weight of t,he respectlve peak in the spectral density. In fact
mainly of the bare hole plus the bare hole coupled to a spifil® Green’s function

excitation on a nearest neighbor, whereby the states corre-
sponding to thez different neighbors all contribute with

equal phase. The fodcombinations ofoperatorg; ,,, d ,,

Ci,o=Ci,oNi 57— Ci o(1—N; 7).

G(kt)=—i(TC] ,(t)C,o)

can be expressed as

(26)
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FIG. 3. Single particle spectral function for the Hubbard model  FIG. 4. Single particle spectral function for the Hubbard model
with U/t=8, t'=t/2 from the Hubbard-l approximation, the ex- with U/t=8, t"=t/4 from the Hubbard-I approximation, the ex-
tended Hubbard approximation, and QMC simulations on 2188 tended Hubbard approximation, and QMC simulations on 88
lattice at temperatur€=1t/3. To compensate for the stronger broad- lattice at temperatur€=t/3. To compensate for the stronger broad-
ening the QMC spectra have been multiplied by an additional factoening the QMC spectra have been multiplied by an additional factor
of 4. of 4.

~ the RHS of the equation system(21l) to B,
G=Gec=Guc™ Geat Gua- (27) =(1/2,0,/47%, . ..) butleaves the matrisd, unchanged. In
other words, thedispersionof the bands, which is deter-
It therefore is easy to calculate within our approximation,mined by the eigenvalues ®f, stays unchanged and only
and comparison with the QMC result provides an additionathe spectral weight of the peaks changes. Moreover the sum
check for our description of the electronic structure. Noteryles(23) and(24) retain their validity also in this case. For
that the operato?:k,g enhances the practically dispersionlesslarge positive U and n=1 charge fluctuations will be
bands atw= *=6-—since these bands now have a largerstrongly suppressed and double occupancies will have a
weight, their position and dispersion are more reliable tharsmall probability, so that the dominant contribution xo
in the “ordinary” photoemission spectrum. This is shown in comes from the spin correlation functi()éi . §j>, whence we
Fig. 5, where indeed quite good agreement is found betweeghould choosex<0. Assuming for example a negatieof
the EHA and the numerical result. moderate valuex=—0.2, then leads to little change in the
Finally, we turn to the discussion of choosing a nonvan-aiculated spectral densitgee Fig. & the same two bands
ishing expectation value of the anticommutator in EX),  which had a large spectral weight far=0 retain a large
i.e., we assume tha(t{Ci'j'U,clT})zaj',x¢0. This changes spectral weight also in this case. There is, however, a rather



PRB 61 STRONG-COUPLING THEORY FOR THE HUBBARD MODEL 12 823
T T T T U T
Hubbard | —— EHA ——
©00) s ©.0)
(m/2,m/2) ﬁmi (r/2,m/2)
(n,n) ﬁ (n;n)
=
=
(r,0)
(TI:,O) L
7 —N—
(0,0) 1 I I i L
(0,0) 8 -6 4 2 0 2 4 6 8
EHA FIG. 6. Spectral function calculated with the extended Hubbard
approximation forx=—0.2.
(0,0)
(n/2,1/2) tion to the matrix elements may lead, as an artifact of the
e g % approximation, to negative eigenvalues. Since we are using
) only approximate values for the overlaps, it may happen that
(mm) — ) : ) :
J we obtain states with a nominally negative norm, whence we
A A ﬂ/\ can get poles of negative weight. Settirg-0 throughout
(m,0) Mf\ ~MAA amounts to assuming that all our effective particles are or-
' —M\AA thogonal to one another and obviously removes the problem
g ] with nonorthogonalities. This seems reasonable, because we
0.0 are neglecting overlap terms proportional to the spin corre-
©.0) QMC lation function already in the Hubbard-I approximation. The
lesson then is basically the same as discussed before: the
(0,0) k% Hubbard-1 approximation is well defined only when applied
’ _/\_/‘\ to an “ideally paramagnetic” state with no correlations of
(m/2,m/2) /\__/\ finite range, and applying it to a state with finite spin corre-
(m,m) Mﬁ lations represents an approximation.
(1.0 %_M V. CONCLUSION
/\—//\ In summary, we have investigated the most important cor-
(0,0) N i S rections over the Hubbard-I approximation in the lirgitt

8 6 4 2 0 2 4 6 8 —o and electron densityh=1. We have seen that the
o Hubbard-l1 approximation describes charge fluctuations
) - (holes and double occupanciés a “background” of singly
FIG. 5. Spectral function of the operator for the Hubbard ccypied sites. The latter thereby is assumed to have zero
model with U/t=8 from the Hubbard-l approximation, the ex- gnin correlations. The charge fluctuations are pointlike, and
tended Hubbard approximation, and QMC simulations on &88 ., ragnond to an electron moving between empty sites and
I;:?':etizt%%pgrsatigztgvzobzwrﬁazafzgoéth:ns;?(;gggzlr ?:g;)an electron moving between singly occupied sites. We note
of 49 P P Y that a very similar construction can also be applied to the
' Kondo latticé* and in fact reproduces the single particle
spectra very well. This is probably due to the fact that the
undesirable feature associated with the bands with smaKondo lattice has a unique ground state in the limit of zero
spectral weight: numerical evaluation shows, that for soméinetic energy, whereas the ground state of the Hubbard
regions ofk space these bands acquire a smallrmgative  model is highly degenerate in the case0.
weight. In our extended scheme for the Hubbard model we have
The physical origin of this problem is probably related to augmented the point-like charge fluctuations by additional
nonorthogonalities of basis states: in principle we could in-“particles” which are extended in real space and consist of a
terpret the matrixH, as a Hamiltonian describingn 2D  hole or double occupancy coupled to a spin, densityyor
with only nearest neighbor hoppingix types of Fermionic excitation on a nearest neighbor. Here for large positive
“effective particles.” Quite generally, the anticommutator- spin excitations are the most important one, whereas density
relation{a,b™} =x+0 implies that the wave functions corre- and 7 excitation are important for negativg. Analysis of
sponding to the Fermi operatoad andb' are nonorthogo- the numerical solution showed, that the symmetric combina-
nal. While an exact overlap matrix can never have negativéion of these composite particles is the most important one.
eigenvalues but at most develop zero eigenvaflireicating  “Symmetric combination” here means that thestates with
that the set of basis states is overcompled@y approxima- a hole on sitei and a spin excitation on any one of the
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nearest neighbors are coupled with equal phase. This was tnechanism for the crossover from the Hubbard-I like disper-
be expected, because the “bare” hole itself also is fullysion in the paramagnetic phase to the spin-density-wave-like
“symmetric.” The observable band structure thus is essendispersion in the antiferromagnetic phase. Similarly, one
tially spanned by four types of effective particles: hole, might think of formulating the entire Hubbard-1 approxima-
double occupancy, and symmetrically dressed hole anton also in the antiferromagnetic phase, by constructing the
double occupancy. This immediately explains the four-bandHamiltonian for charge fluctuations explicitly for a’ dleor-
structure seen in the simulations. dered spin background.

Comparison of the obtained single-particle spectral den-
sity with QMC results for a variety of systems showed a
quite reasonable agreement. In particular the apparent four-
band structure seen in the numerical spectra finds its natural \we thank H.-G. Evertz and W. Hanke for discussions.

explanation in the extended Hubbard approximation. Werhjs work was supported by BMBEO5SB8WWAJ, com-

also note that QMC simulations where the spectra of theyytations were performed at HLRS Stuttgart, LRZ d¥ian,
composite excitations have actually been comptRédither  and HLRZ Jiich.

support the present interpretation. We thus have a quite suc-
cessful method of computing the full quasiparticle band
structure of the Hubbard model, at least in the paramagnetic APPENDIX
case and at half filling.

The present scenario for the nature of the composite e
citations also allows us to make a connection with variou
theories for the hole motion in an antiferromagtet!
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