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Strong-coupling theory for the Hubbard model

A. Dorneich, M. G. Zacher, C. Gro¨ber, and R. Eder
Institut für Theoretische Physik, Universita¨t Würzburg, Am Hubland, 97074 Wu¨rzburg, Germany

~Received 24 September 1999!

We reanalyze the Hubbard-I approximation by showing that it is equivalent to an effective Hamiltonian
describing Fermionic charge fluctuations, which can be solved by Bogoliubov transformation. As the most
important correction in the limit of largeU and weak spin correlations we augment this Hamiltonian by further
effective particles, which describe composite objects of a Fermionic charge fluctuation and a spin-, density-, or
h excitation. The scheme is valid for positive and negativeU. We present results for the single particle Green’s
function for the two-dimensional Hubbard model with and withoutt8 and t9 terms, and compare to quantum
Monte-Carlo results for the paramagnetic phase. The overall agreement is significantly improved over the
conventional Hubbard-I or two-pole approximation.
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I. INTRODUCTION

The Hubbard model is the simplest system which presu
ably incorporates the key features of the strong correla
limit. Understanding this model will be crucial for makin
any progress with cuprate superconductors, colossal mag
resistance systems or heavy fermions. The special proble
this model is that near half-filling it represents a dense s
tem of strongly interacting fermions, a situation in which
perturbation expansion inU may not be expected to give an
meaningful results. In dealing with this model, one can th
pursue two opposing strategies: one might expect that
spite the strong interaction a perturbation expansion inU
remains a meaningful approximation, and apply conventio
many-body theory. The latter means that one is treating
kinetic energy exactly, and results in the validity of the Lu
tinger theorem. On the other hand, by adiabatic continu
this approach will never produce an insulator at half-filli
so that we can be sure of its breakdown in the limit of lar
U/t.

The opposite point of view was taken by Hubbard:1,2 in
his approximations, the interaction part ofH is treated ex-
actly and approximations are made to the kinetic ener
This results in the breakdown of the Luttinger theorem,
cause the physical electron is effectively split into two p
ticles, one of them corresponding to an electron moving
tween empty sites, the other to an electron moving betw
sites occupied by an electron of opposite spin. The ener
of formation of these effective particles differ byU, so that
for large U the single free-electron band splits up into tw
bands formed predominantly by the two types of effect
particles. Hubbard’s approximations, and related sche
such as the so-called two-pole approximations3–6 have been
dismissed by some authors as unphysical, because they
fact violate the Luttinger theorem away from half-filling
However, in a recent QMC study for the paramagnetic ph
of the Hubbard model7 we have shown that such criticism
entirely unwarranted: the Fermi surface, if measured in
‘‘operational way’’ from the Fermi energy crossings of th
quasiparticle band, indeed does violate the Luttinger th
rem. The doping dependence of the Fermi surface volum
qualitatively consistent with Hubbard’s results and the m
PRB 610163-1829/2000/61~19!/12816~9!/$15.00
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discrepancy being the fact that one can rather clearly dis
guish four ‘‘bands’’ in the spectral functions rather than t
2 bands predicted by the Hubbard-I approximation. Mo
generally, exact diagonalization studies8 tend to produce for
example a photoemission spectrum consisting of a relativ
narrow ‘‘quasiparticle band’’~which forms the first ioniza-
tion states! and an ‘‘incoherent continuum.’’ A simple two
band form of the spectrum, as produced by the Hubba
approximation, therefore cannot give a quantitative desc
tion of the spectrum. Motivated by these numerical resu
we have reexamined the Hubbard I approximation and
tempted to find the most important corrections to this sche
for the limit of largeU and weak spin correlations. We wi
see that the four-band structure observed in the QMC si
lations can be reproduced quite well by adding two n
effective particles which correspond to a composite objec
a ‘‘Hubbard quasiparticle’’ and a spin, charge, orh excita-
tion. These composite objects actually are the quite obvi
leading correction over the Hubbard-I approximation, a
we will see that including them into the equations of moti
leads to an almost quantitative agreement with the numer
results for a variety of different systems.

II. A REFORMULATION OF THE HUBBARD-I
APPROXIMATION

We consider the Hubbard Hamiltonian in particle-ho
symmetric formH5Ht1HU with

Ht52t(
^ i , j &

~ci ,s
† cj ,s1H.c.!,

HU5U(
i

S ni ,↑2
1

2D S ni ,↓2
1

2D . ~1!

Here^ i , j & denotes summation over all pairs of nearest nei
bors andni ,s5ci ,s

† ci ,s .
For bipartite lattices one can make use of two symme

transformations. The first one is the particle-hole transform
tion ci ,s↔eiQ•Rici ,s

† , whereQ5(p,p, . . . ,p). If the kinetic
energy contains only nearest neighbor hopping, this trans
mation leaves the Hamiltonian invariant and exchanges
12 816 ©2000 The American Physical Society
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PRB 61 12 817STRONG-COUPLING THEORY FOR THE HUBBARD MODEL
electron addition spectrum for momentumk and removal
spectrum for momentumk1Q at half filling. Similarly the
transformationci ,↓↔eiQ•Rici ,↓

† , ci↑→ci↑ inverts the sign of
HU .9 At half filling this allows to transform solutions of th
positive-U model into those of the negative-U model. This
transformation implies that the single-particle spectral fu
tion at half-filling is identical for positive and negativeU. In
the Appendix some of the operators introduced in this w
and their transformation properties under these transfor
tions are listed.

We proceed with the calculation of the single-partic
Green’s function. As a first step, following Hubbard,1 we
split the electron annihilation operator into the two eigeno
erators of the interaction part:

ci ,s5ci ,s ni ,s̄1ci ,s~12ni ,s̄!5d̂i ,s1 ĉi ,s . ~2!

These obey @ d̂i ,s ,HU#5(U/2)d̂i ,s and @ ĉi ,s ,HU#5

2(U/2)ĉi ,s . Next, we consider the commutators of the
‘‘effective particles’’ with the kinetic energy. After som
algebra, thereby using the identityni ,s5ni /21sSi

z , we find

@ ĉi ,↑ ,Ht#52t (
j PN( i )

F S 12
^n&
2 D cj ,↑1~cj ,↑Si

z1cj ,↓Si
2!

2
1

2
cj ,↑~ni2^n&!1cj ,↓

† ci ,↓ci ,↑G ,
@ d̂i ,↑ ,Ht#52t (

j PN( i )
F ^n&

2
cj ,↑2~cj ,↑Si

z1cj ,↓Si
2!

1
1

2
cj ,↑~ni2^n&!2cj ,↓

† ci ,↓ci ,↑G . ~3!

HereN( i ) denotes thez nearest neighbors of sitei. Keeping
only the first term in each of the square brackets on
right-hand side~RHS! ~as we will do for the remainder o
this section! reproduces the Hubbard-I approximation. W
specialize to half-filling (̂ni ,s&51/2) and introduce the
Green’s functions

Ga,b~kW ,t !52 i ^Tak,s
† ~ t !bk,s&, ~4!

wherea,bP$ĉ,d̂%. Then, using the anticommutator relatio

$d̂i ,s
† ,d̂i ,s%5ni s̄ , $ĉi ,s

† ,ĉi ,s%5(12ni s̄), $d̂i ,s
† ,ĉi ,s%

5$ĉi ,s
† ,d̂i ,s%50 we obtain the following equations of mo

tion:

i ] tGĉ,ĉ5
1

2
d~ t !1

ek2U

2
Gĉ,ĉ1

ek

2
Gd̂,ĉ ,

i ] tGd̂,ĉ5
ek

2
Gĉ,ĉ1

ek1U

2
Gd̂,ĉ ,

i ] tGĉ,d̂5
ek2U

2
Gĉ,d̂1

ek

2
Gd̂,d̂ ,

i ] tGd̂,d̂5
1

2
d~ t !1

ek

2
Gĉ,d̂1

ek1U

2
Gd̂,d̂ . ~5!
-

k
a-

-

e

Taking into account that the ordinary electron Green’s fu
tion G and the Green’s function calledG by Hubbard1 can be
written as

G5Gĉ,ĉ1Gĉ,d̂1Gd̂,ĉ1Gd̂,d̂ ,

G5Gd̂,ĉ1Gd̂,d̂ , ~6!

the resulting equations of motions are precisely those der
in the Hubbard-I approximation:

i ] tG5d~ t !1S ek2
U

2 DG1UG,

i ] tG5
1

2
@d~ t !1ekG1UG#. ~7!

The present formulation, on the other hand, allows for
appealing physical interpretation of the Hubbard-I appro
mation: we introduce free Fermion operatorshk,s

† anddk,s
† ,

which correspond to ‘‘holes’’ and ‘‘double occupancies
The Hubbard operators are identified with these as follow

ĉk,s→ 1

A2
h2k,s̄

† ,

d̂k,s→ 1

A2
dk,s . ~8!

Then, we can formally obtain the set of equations of mot
~5! from the following Hamiltonian for the holes and doub
occupancies:

Heff5(
k,s

S ek1U

2
dk,s

† dk,s2
ek2U

2
hk,s

† hk,sD
1(

k
S ek

2
dk,↑

† h2k,↓
† 1H.c.D . ~9!

The Hamiltonian~9! is a quadratic form and readily solve
by Bogoliubov transformation:

g2,k,s5ukdk,s1vkh2k,s̄
† ,

g1,k,s52vkdk,s1ukh2k,s̄
† , ~10!

to yield the familiar dispersion relation

E6~k!5
1

2
@ek6Aek

21U2#. ~11!

To compute the spectral weight of the two bands we
ck,s5(1/A2)(dk,s1h

2k,s̄
† ), whence:

Z6~k!5
1

2
~uk7vk!

2 5
1

2 S 16
ek

Aek
21U2D . ~12!

Again, this is the correct Hubbard-I result. The above disc
sion shows the physical content of the Hubbard-I approxim
tion: the Hamiltonian~9! describes Fermionic particlelike
and holelike charge fluctuations, created bydk,s

† andh
2k,s̄
† ,

respectively. These ‘‘live’’ in a background of singly occu
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pied sites. Particlelike and holelike charge fluctuations
created in pairs on nearest neighbors, and individually
hop between nearest neighbors. The hopping integral for
holelike particle has opposite sign as that for the electron
fluctuation as it has to be, and the hopping integrals for b
effective particles are 1/2 times that for the ordinary el
trons: this reflects the fact that due to the Pauli princi
~say! a spin up electron added to a ‘‘background’’ of sing
occupied sites can propagate to a neighboring site only w
a probability of 1/2~we are neglecting any spin correlation
of the background of singly occupied sites!. The factor of
1/A2 in Eq.~8! is due to the fact that̂ĉi ,s

† ĉi ,s&51/2. Finally,
the particle which stands for the double occupancy has
energy of formation ofU/2, the holelike particle has an en
ergy of 2U/2. As already mentioned, the Hubbard-I a
proximation therefore describes the splitting of the physi
electron into two new effective particles which carry wi
them information on the ‘‘environment’’ in which the elec
tron has been created. One of them (dk,s) moves between
sites occupied by an electron of opposite spin, the other
(h2k,s̄) between empty sites. This is a quite appealing phy
cal idea, but the above formulation also very clearly hig
lights the weak points of the Hubbard-I approximation.
addition to the mere truncation of the commutators~3!,
which is an uncontrolled approximation, these are the
lowing: adopting this picture we would have to assume t
the stateshi ,↑

† dj ,↓
† u0& andhi ,↓

† dj ,↑
† u0& are distinguishable~and

in fact orthogonal to one another!. This, however, is in gen-
eral not the case: both states have one double occupanc
site j and a hole on sitei, and the only difference is that the
have been created in different ways. In fact, using Eq.~8! we
find for their overlap

^dj ,↑hi ,↓hi ,↑
† dj ,↓&524^Si

2Sj
1&52

8

3
^SW i•SW j&, ~13!

where we have assumed a rotationally invariant ground s
in the second line. The Hubbard-like approximation sche
thus should work only for a state with vanishing sp
correlations—we will therefore henceforth assume the s
correlation function̂ SW i•SW j& to be zero.

A second problem is, that the effective Fermions have
obey a kind of hard-core constraint—a site cannot be sim
taneously occupied by a hole and a double occupancy.
constraint is not accounted for in the derivation of t
Hubbard-I approximation: the equations of motion are o
tained from the Hamiltonian~9! by treating theh and d as
ordinary free Fermion operators. This problem is the sou
of the violation of certain sum rules when the Hubbar
approximation is applied in the doped case, see the dis
sion given by Avellaet al.10

One last remark is that the commutators~3! are invariant
under the particle-hole transformation, i.e., they are tra
formed into each others Hermitian conjugate. This rema
true for the truncated commutators, which give t
Hubbard-I approximation, so that the spectral function o
tained from this is particle-hole symmetric. This can also
verified directly using Eqs.~11! and ~12!. Finally, the spec-
tral function is manifestly invariant under sign change ofU,
as it has to be.
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III. EXTENSION OF THE HUBBARD-I APPROXIMATION

We now want to try and derive an improved version
the Hubbard-I approximation. Thereby we will address n
ther the problem of nonorthogonality of different hol
double-occupancy configurations nor the hard-c
constraint—instead, in this work we will restrict ourselv
entirely to an approximate way of treating the omitted ter
in the commutator relations~3!. We expect that the presen
approximation is reasonable for largeU ~where the density
of holes/double occupancies is small when the hard-c
constraint is of little importance! and weak spin correlation
~where the nonorthogonality problem is small!. Throughout
we stick to the case of half-filling and no spin polarizatio
^ni ,s&51/2. We return to the basic commutator relations~3!
and consider the terms on the right-hand side which
omitted in the Hubbard-I scheme. The second term in
square bracket is the Clebsch-Gordan contraction of the s
1/2 operatorcj ,s and the spin-1 operatorSW i into yet another
spin-1/2 operator—it describes the coupling of the crea
hole/annihilated double occupancy to spin excitations. T
term may be expected to be the most important one in
limit of large positive U. The third term describes in a
analogous way the coupling to density fluctuations, wher
the last term describes the coupling to the so-calledh-pair
excitation.11 One may expect that in the case ofnegative U
the last two terms are the important ones.

In keeping with the basic idea of the Hubbard approxim
tions, namely to treat the dominant interaction terms exac
we split also the composite operator into eigenoperators
the U term and define

Ĉi , j ,↑5 ĉ j ,↑Si
z1 ĉ j ,↓Si

22
1

2
ñi ĉ j ,↑1ci ,↓ci ,↑d̂ j ,↓

† ,

D̂ i , j ,↑5d̂ j ,↑Si
z1d̂ j ,↓Si

22
1

2
ñi d̂ j ,↑1ci ,↓ci ,↑ĉ j ,↓

† , ~14!

where ñi5ni2^n&. Under the positive/negativeU transfor-
mation we have for exampleĉ j ,↑Si

z1 ĉ j ,↓Si
2→ 1

2 ñi d̂ j ,↑
1ci ,↓ci ,↑ĉ j ,↓

† , i.e., keeping the at first sight unimportant~for
positiveU) terms involving density and pairing fluctuation
is crucial for maintaining the exact symmetry under si
change ofU. We then have

@D̂ i , j ,s ,HU#5
U

2
D̂ i , j ,s ,

@Ĉi , j ,s ,HU#52
U

2
Ĉi , j ,s ,

@ ĉi ,↑ ,Ht#52t (
j PN( i )

F1

2
cj ,↑1Ĉi , j ,s1D̂ i , j ,sG ,

@ d̂i ,↑ ,Ht#52t (
j PN( i )

F1

2
cj ,↑2Ĉi , j ,s2D̂ i , j ,sG . ~15!

The operatorsĈi , j ,s andD̂ i , j ,s may be thought of describing
‘‘composite objects’’ consisting of a charge fluctuation and
spin, density, orh excitation on a nearest neighbor. Ult
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PRB 61 12 819STRONG-COUPLING THEORY FOR THE HUBBARD MODEL
mately these composite operators carry the quantum num
of a single electron, i.e., spin 1/2 and charge 1. We also n
that under particle-hole transformation

Ĉi , j ,s→eiQ•Ri D̂ i , j ,s
† , ~16!

i.e., the composite particles transform in the same way as
ĉi ,s and d̂i ,s . Moreover, the commutators~15! are invariant
under particle-hole transformation, i.e., this transformat
transforms them into each others Hermitian conjugates.

We now enlarge the set of Green’s functions by allowi
a,bP$ĉ,d̂,Ĉ,D̂% in Eq. ~4!; in the language of the ‘‘effec-
tive Fermions’’ this means that we are introducing additio
Fermions corresponding to the composite objects. To ob
a closed system of equations of motion for these Gree
functions, we need equations for theGĈ,ĉ and GD̂,ĉ . As a
first step we turn to the commutators@Ĉi , j ,s ,Ht# and

@D̂ i , j ,s ,Ht#. Here we have to distinguish three cases~see
Fig. 1!: ~a! the hopping term may act along the bond (i , j )
and transport the hole back fromj to i, ~b! it may transport
the hole even further away fromi, ~c! it may transport the
spin, density, orh excitation away from sitei. If we want to
restrict ourselves to the four types of operatorsĈi , j ,s ,
Di , j ,s , ĉi ,s , and d̂i ,s , we have to neglect the contribution
from the processes~b! and ~c!. These processes would pro
duce ‘‘strings’’ of excitations along a path of length 2 lattic
spacings, and we would have to introduce even more c
plicated operator products to describe these. Restricting
selves to processes of the type a, i.e., replacingHt→
2t(s(ci ,s

† cj ,s1H.c.), straightforward computation12 gives
the surprisingly simple result

@Ĉi , j↑ ,Ht#5
3t

2
D̂ j ,i ,↑1

t

2
Ĉj ,i ,↑2

3t

4
~ ĉi ,↑2d̂i ,↑!,

@D̂ i , j↑ ,Ht#5
3t

2
Ĉj ,i ,↑1

t

2
D̂ j ,i ,↑2

3t

4
~ ĉi ,↑2d̂i ,↑!. ~17!

Again, these relations are particle-hole invariant, i.e., th
are turned into each others Hermitian conjugates by parti
hole transformation. In passing we note that had we redu
the operatorsĈi , j↑ and D̂ i , j↑ to comprise only the terms in
volving spin excitations~as might seem appropriate in th
case of large positiveU), the commutators would have bee
much more complicated and in fact the ‘‘Hamilton matrix
Hk to be defined below would have been non-Hermitian.

Next, we need the anticommutators

FIG. 1. Possible hopping processes which couple toĈi , j ,s . The
cross denotes the spin, density, orh excitation, the black dot the
hole.
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$Ĉi , j ,↑ ,ĉl ,↑
† %5d j ,lFSi

zSj
z1Si

2Sj
11

ñi ñ j

4
1cj ,↑

† cj ,↓
† ci ,↑ci ,↓&G

1d j ,lF1

2
Si

z2
1

4
ñi2

1

2
~ ñiSj

z1ñ jSi
z!G

1d i ,l@ ĉ j ,↓ĉi ,↓
† 2d̂i ,↓d̂ j ,↓

† #,

$D̂ i , j ,↑ ,ĉl ,↑
† %5d i ,l@ ĉ j ,↓d̂i ,↓

† 1d̂ j ,↓
† ĉi ,↓#. ~18!

Taking the expectation value in the ground state most of
terms vanish on the basis of symmetriesĉ j ,↓d̂i ,↓

† 1d̂ j ,↓
† ĉi ,↓

vanishes due to inversion symmetry of the ground sta
ĉ j ,↓ĉi ,↓

† 2d̂i ,↓d̂ j ,↓
† and ñi vanish due to particle-hole symme

try at half filling. All terms containing unpaired spin opera
tors vanish if we assume that the ground state is invar
under spin rotations~which excludes ferromagnetic or ant
ferromagnetic solutions!. Finally we obtain

^$Ĉi , j ,↑ ,ĉl ,↑
† %&5d j ,l K SW i•SW j1

ñi ñ j

4
1ci ,↑

† ci ,↓
† cj ,↑cj ,↓L ,

^$D̂ i , j ,↑ ,ĉl ,↑
† %&50. ~19!

It is easy to see that the expressions whose expectation
ues are taken are invariant under particle-hole transfor
tion, and under the positive/negative U transformation
have

ñi ñ j

4
↔Si

zSj
z ,

ci ,↑
† ci ,↓

† cj ,↑cj ,↓↔Si
1Sj

2 . ~20!

The expectation value of the anticommutator would be
variant under this positive/negative-U symmetry.

For large positiveU the termsñi ñ j /4 andci ,↑
† ci ,↓

† cj ,↑cj ,↓
have a negligible expectation value and the only import
term comes from the spin correlation. In keeping with o
above remarks concerning the role of spin correlations in
Hubbard-I approximation we will henceforth take the RH
of Eq. ~19! to be zero. As was discussed above, t
Hubbard-I approximation implicitly assumeŝSW i•SW j&50,
and we will therefore keep this value also in Eq.~19!. We
will discuss the consequences of not making this approxim
tion later on.

Using the above commutators and~expectation values of!
anticommutators we are now in a position to set up a clo
system of equations of motion. In the following we giv
explicit formulas only for a 1D chain with nearest-neighb
hopping, but the generalization to higher dimensions and
longer range hopping integrals will be self-evident. We
troduce the Fourier transforms

Ĉ6,s~k!5A 4

3N(
j

eikW•RW j Ĉ j , j 61,s

~and analogously for theD̂ ’s! and define the vectorGW c

5(Gĉ,ĉ ,Gd̂,ĉ ,GĈ1,ĉ ,GĈ2,ĉ ,GD̂1,ĉ ,GD̂2,ĉ). Here Ĉ6 is
shorthand forĈ6,s(k). Combining Eqs.~3!, ~14!, and ~17!,
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and performing a spatial Fourier transformation the equations of motion are readily found to be

~ i ] t2Hk!GW c5d~ t !Bc , ~21!

where the Hermitian matrixHk is given by

Hk5

¨

ek2U

2
,

ek

2
, 2 t̃ e2 ikx/2, 2 t̃ eikx/2, 2 t̃ e2 ikx/2, 2 t̃ eikx/2

ek

2
,

ek1U

2
, t̃ e2 ikx/2, t̃ eikx/2, t̃ e2 ikx/2, t̃ eikx/2

2 t̃ eikx/2, t̃ eikx/2, 2
U

2
,

t

2
, 0,

3t

2

2 t̃ e2 ikx/2, t̃ e2 ikx/2,
t

2
, 2

U

2
,

3t

2
, 0

2 t̃ eikx/2, t̃ eikx/2, 0,
3t

2
,

U

2
,

t

2

2 t̃ e2 ikx/2, t̃ e2 ikx/2,
3t

2
, 0,

t

2
, 2

U

2
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and Bc5( 1
2 ,0,0,0,0,0). The equation system~21! can be

solved for each momentum and frequency by using the s
tral resolution of the Hamilton matrixHk . This yields the
Green’s functionsGĉ,ĉ and Gd̂,ĉ for each momentum and
frequency. In an analogous way we can also derive an e
tion system forGĉ,d̂ andGd̂,d̂ . Thereby the matrixHk stays
unchanged, whereas the RHS is changed intoBd
5(0,1/2,0,0,0,0). Finally, the full electron Green’s functio
is obtained by adding up the four Green’s functions acco
ing to Eq.~6!. Upon forming the Laplace transformG(k,z)
we finally obtain the spectral density

A~k,v!52 lim
h→0

1

p
Im G~k,v1 ih!. ~22!

In passing we note that this way of computingA(k,v) guar-
antees the validity of the sum rule

E
2`

`

A~k,v!dv51. ~23!

Since the particle-hole symmetry of the relations~15!, ~17!,
and ~19! in turn guarantees particle-hole symmetry of t
entire spectral function, we find that the sum rule for t
particle number is fulfilled automatically:

(
k
E

2`

0

A~k,v!dv5
N

2
. ~24!

As a last remark we note that going over to higher dim
sions or adding longer ranged hopping integrals poses
problem whatsoever—for each spatial dimensiona we have
to add four additional rows and columns containing theĈi , j

and D̂ i , j where i and j are nearest neighbors in the6a di-
rection. Similarly, if we add an additional hopping integralt8
between second or third nearest neighbors~the number of
c-

a-

-

-
o

whom we denote byz8) to the Hamiltonian, we have to ad
2z8 rows and columns, containing theĈi , j and D̂ i , j with
second or third nearest neighborsi and j. In each case thes
additional rows and columns contain only mixing term
amongst themselves or withGĉ,ĉ and Gd̂,ĉ , so that the ex-
tension is completely trivial.

IV. COMPARISON WITH NUMERICS

Following the discussion in the preceding section we c
calculate the full electron Green’s function, including th
~presumably! most important corrections over the Hubbard
approximation in the limit of weak spin correlations an
large U. We now proceed to a comparison of the obtain
results for the spectral densityA(k,v), with the spectral den-
sity obtained from quantum Monte Carlo~QMC! simula-
tions. Thereby the temperature for the QMC simulation,T
50.33t, was chosen such that the spin correlation length
only approximately 1.5 lattice spacings—the results thus
probably quite representative for the paramagnetic reg
which our approximation aims to describe. Moreover, t
value ofU/t58 is already rather large, so that we may al
hope to have a small density of holes/double occupan
and the neglect of the hard-core constraint be justified. A
general remark concerning the QMC spectra we note that
MaxEnt procedure used for the analytic continuation to
real axis is most reliable for ‘‘features’’ with large weight—
this means that the position of tiny peaks is less accurate
that of large ones.

Figure 2 then compares the spectral density obtained f
the Hubbard-I approximation, our extended Hubbard
proximation~EHA! and QMC simulation. The Hubbard-I ap
proximation gives only a relatively crude fit to the actu
spectral density obtained by QMC. The extended Hubb
approximation, on the other hand, gives an all in all qu
correct description of the spectral density. Out of the 1052
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1414 bands produced by diagonalizingHk , only four
bands do have an appreciable spectral weight. Analysi
the eigenvectors ofHk shows that the bands with appreciab
spectral weight in photoemission correspond to combinati

of the Fouriere transforms of the ‘‘bare’’ holeĉi ,s and the

symmetric combination( j PN( i )Ĉi , j ,s . There is also a sligh

admixture of d̂i ,s and the symmetric combinatio
( j PN( i )D̂ i , j ,s . In other words, the quasiparticle consis
mainly of the bare hole plus the bare hole coupled to a s
excitation on a nearest neighbor, whereby the states co
sponding to thez different neighbors all contribute with
equal phase. The four~combinations of! operatorsĉi ,s , d̂i ,s ,

FIG. 2. Single particle spectral function for the Hubbard mo
with U/t58 from the Hubbard-I approximation, the extended Hu
bard approximation, and QMC simulations on a 20320 lattice at
temperatureT5t/3. In this as well as in all following figures, th
approximate spectra have been given an artificial Lorentzian br
ening h50.20t. To compensate for the stronger broadening
QMC spectra have been multiplied by an additional factor of 2
of

s

in
re-

( j PN( i )Ĉi , j ,s , and ( j PN( i )D̂ i , j ,s then produce the four ob
servable bands. These four intense bands correspond r
well to four broad ‘‘bands’’ of intense spectral weight whic
can be roughly identified in the QMC result. It is interestin
to note that a recent strong-coupling expansion for the H
bard model by Pairaultet al.13 also produced a four-ban
structure, although only for the 1D model. The dispersion
the spectral weight along the bands is also reproduced q
satisfactorily be the extended Hubbard approximation. T
main difference is the apparently stronglyk dependent width
of the spectra produced by QMC, which, however, is outs
the scope of the present approximation, which~in the limit
h→0) produces sharpd peaks without any broadening. A
more severe deficiency of the EHA is, that it tends to pred
too high excitation energies, resulting in a somewhat
large value of the Hubbard gap. In any way, however,
magnitude of the Hubbard gap comes out better than in
Hubbard-I approximation.

We proceed to the Hubbard model with an additional ho
ping integral t8 between second nearest@i.e., ~1,1! like#
neighbors. Figure 3 again compares the Hubbard-I appr
mation, the EHA, and the results of a QMC simulation on
838 lattice. The agreement between EHA and the QM
result is again quite good, the main discrepancy being ag
an overall overestimation of the binding energies. On
other hand, the apparent four-band structure, the disper
of the peak energies and the spectral weight agrees well
the numerical result. In particular, the two bands in inve
photoemission~i.e., v.0) predicted by the EHA can be
seen very clearly in the QMC spectra. All in all the agre
ment is even better than for the caset850, which most prob-
ably is due to the fact that the spin correlations are wea
with t8, so that the assumption of an uncorrelated spin s
is better justified in this case.

We proceed to the case of a hopping integral integrat9
between third nearest@i.e., ~2,0! like# neighbors. Here we
have chosent9/t50.25, because for the larger valuet9/t
50.5 the QMC simulation still predicted a metallic state
U/t58. Figure 4 shows the spectral functions. Again, w
can roughly identify four bands and there is reasona
agreement for the dispersion. The weight of the quasipart
band in photoemission near (p,p) ~at v'22) is not repro-
duced very well by the EHA, but again the ubiquitous fou
band structure is rather clearly visible.

Next, we turn to a somewhat indirect check of the a
proximation. The ordinary electron creation operator is
symmetric combination of the Hubbard operators. Howev
we might also define the antisymmetric combination

c̃i ,s5ci ,sni ,s̄2ci ,s~12ni ,s̄!. ~25!

This operator has the same quantum numbers as the ori
electron operator, and therefore obeys the same selec
rules. It follows that when acting on the ground state, t
operator probes the same final states as the electron ope
the only difference being the matrix element viz. the spec
weight of the respective peak in the spectral density. In f
the Green’s function

G̃~k,t !52 i ^Tc̃k,s
† ~ t !c̃k,s& ~26!

can be expressed as

l
-

d-
e



n
na
t
ss
e
a

in
e

n

-
y
sum
r

e a

e

ther

de
-

d-
cto

el
-

d-
ctor

12 822 PRB 61A. DORNEICH, M. G. ZACHER, C. GRO¨ BER, AND R. EDER
G̃5Gcc2Gdc2Gcd1Gdd . ~27!

It therefore is easy to calculate within our approximatio
and comparison with the QMC result provides an additio
check for our description of the electronic structure. No
that the operatorc̃k,s enhances the practically dispersionle
bands atv566—since these bands now have a larg
weight, their position and dispersion are more reliable th
in the ‘‘ordinary’’ photoemission spectrum. This is shown
Fig. 5, where indeed quite good agreement is found betw
the EHA and the numerical result.

Finally, we turn to the discussion of choosing a nonva
ishing expectation value of the anticommutator in Eq.~19!,
i.e., we assume that̂$Ĉi , j ,s ,ĉl

†%&5d j ,lxÞ0. This changes

FIG. 3. Single particle spectral function for the Hubbard mo
with U/t58, t85t/2 from the Hubbard-I approximation, the ex
tended Hubbard approximation, and QMC simulations on an 838
lattice at temperatureT5t/3. To compensate for the stronger broa
ening the QMC spectra have been multiplied by an additional fa
of 4.
,
l

e

r
n

en

-

the RHS of the equation system~21! to Bc

5(1/2,0,A4/3x, . . . ) butleaves the matrixHk unchanged. In
other words, thedispersionof the bands, which is deter
mined by the eigenvalues ofHk stays unchanged and onl
the spectral weight of the peaks changes. Moreover the
rules~23! and~24! retain their validity also in this case. Fo
large positive U and n51 charge fluctuations will be
strongly suppressed and double occupancies will hav
small probability, so that the dominant contribution tox

comes from the spin correlation function^SW i•SW j&, whence we
should choosex,0. Assuming for example a negativex of
moderate value,x520.2, then leads to little change in th
calculated spectral density~see Fig. 6!: the same two bands
which had a large spectral weight forx50 retain a large
spectral weight also in this case. There is, however, a ra

l

r

FIG. 4. Single particle spectral function for the Hubbard mod
with U/t58, t95t/4 from the Hubbard-I approximation, the ex
tended Hubbard approximation, and QMC simulations on an 838
lattice at temperatureT5t/3. To compensate for the stronger broa
ening the QMC spectra have been multiplied by an additional fa
of 4.
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PRB 61 12 823STRONG-COUPLING THEORY FOR THE HUBBARD MODEL
undesirable feature associated with the bands with sm
spectral weight: numerical evaluation shows, that for so
regions ofk space these bands acquire a small butnegative
weight.

The physical origin of this problem is probably related
nonorthogonalities of basis states: in principle we could
terpret the matrixHk as a Hamiltonian describing~in 2D
with only nearest neighbor hopping! six types of Fermionic
‘‘effective particles.’’ Quite generally, the anticommutato
relation$a,b†%5xÞ0 implies that the wave functions corre
sponding to the Fermi operatorsa† andb† are nonorthogo-
nal. While an exact overlap matrix can never have nega
eigenvalues but at most develop zero eigenvalues~indicating
that the set of basis states is overcomplete!, any approxima-

FIG. 5. Spectral function of thec̃ operator for the Hubbard
model with U/t58 from the Hubbard-I approximation, the ex
tended Hubbard approximation, and QMC simulations on an 838
lattice at temperatureT5t/3. To compensate for the stronger broa
ening the QMC spectra have been multiplied by an additional fa
of 4.
ll
e

-

e

tion to the matrix elements may lead, as an artifact of
approximation, to negative eigenvalues. Since we are u
only approximate values for the overlaps, it may happen t
we obtain states with a nominally negative norm, whence
can get poles of negative weight. Settingx50 throughout
amounts to assuming that all our effective particles are
thogonal to one another and obviously removes the prob
with nonorthogonalities. This seems reasonable, becaus
are neglecting overlap terms proportional to the spin co
lation function already in the Hubbard-I approximation. T
lesson then is basically the same as discussed before
Hubbard-I approximation is well defined only when appli
to an ‘‘ideally paramagnetic’’ state with no correlations
finite range, and applying it to a state with finite spin corr
lations represents an approximation.

V. CONCLUSION

In summary, we have investigated the most important c
rections over the Hubbard-I approximation in the limitU/t
→` and electron densityn51. We have seen that th
Hubbard-I approximation describes charge fluctuatio
~holes and double occupancies! in a ‘‘background’’ of singly
occupied sites. The latter thereby is assumed to have
spin correlations. The charge fluctuations are pointlike, a
correspond to an electron moving between empty sites
an electron moving between singly occupied sites. We n
that a very similar construction can also be applied to
Kondo lattice14 and in fact reproduces the single partic
spectra very well. This is probably due to the fact that t
Kondo lattice has a unique ground state in the limit of ze
kinetic energy, whereas the ground state of the Hubb
model is highly degenerate in the caset50.

In our extended scheme for the Hubbard model we h
augmented the point-like charge fluctuations by additio
‘‘particles’’ which are extended in real space and consist o
hole or double occupancy coupled to a spin, density, oh
excitation on a nearest neighbor. Here for large positiveU
spin excitations are the most important one, whereas den
and h excitation are important for negativeU. Analysis of
the numerical solution showed, that the symmetric combi
tion of these composite particles is the most important o
‘‘Symmetric combination’’ here means that thez states with
a hole on sitei and a spin excitation on any one of th

r

FIG. 6. Spectral function calculated with the extended Hubb
approximation forx520.2.
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12 824 PRB 61A. DORNEICH, M. G. ZACHER, C. GRO¨ BER, AND R. EDER
nearest neighbors are coupled with equal phase. This wa
be expected, because the ‘‘bare’’ hole itself also is fu
‘‘symmetric.’’ The observable band structure thus is ess
tially spanned by four types of effective particles: ho
double occupancy, and symmetrically dressed hole
double occupancy. This immediately explains the four-ba
structure seen in the simulations.

Comparison of the obtained single-particle spectral d
sity with QMC results for a variety of systems showed
quite reasonable agreement. In particular the apparent f
band structure seen in the numerical spectra finds its na
explanation in the extended Hubbard approximation.
also note that QMC simulations where the spectra of
composite excitations have actually been computed,15 further
support the present interpretation. We thus have a quite
cessful method of computing the full quasiparticle ba
structure of the Hubbard model, at least in the paramagn
case and at half filling.

The present scenario for the nature of the composite
citations also allows us to make a connection with vario
theories for the hole motion in an antiferromagnet.16–21

There, one is describing holes dressed by antiferromagn
spin fluctuations. When acting on the Ne´el state the operator
Ĉi , j ,s obviously describe precisely a hole together with
‘‘spin wave’’ on a nearest neighbor or, put another way
‘‘string’’ of length one. The terms which were omitted from
the equation of motion for theĈi , j ,s then would correspond
to strings of length two and so on. While such longer-rang
strings are apparently of minor importance in the param
netic phase, one may expect that they become more
more important for the description of the dispersion t
stronger the antiferromagnetic correlations. The relative
portance of such longer ranged strings therefore may be
ev
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mechanism for the crossover from the Hubbard-I like disp
sion in the paramagnetic phase to the spin-density-wave-
dispersion in the antiferromagnetic phase. Similarly, o
might think of formulating the entire Hubbard-I approxim
tion also in the antiferromagnetic phase, by constructing
Hamiltonian for charge fluctuations explicitly for a Ne´el or-
dered spin background.
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APPENDIX

Transformation properties of various operators un
particle-hole and positive/negativeU transformation.

Operator particle-hole positive/negativeU

ĉi ,↑ eiQ•Ri d̂i ,↑
† d̂i ,↑

ĉi ,↓ eiQ•Ri d̂i ,↓
† eiQ•Ri ĉi ,↓

†

d̂i ,↑ eiQ•Ri ĉi ,↑
† ĉi ,↑

d̂i ,↓ eiQ•Ri ĉi ,↓
† eiQ•Ri d̂i ,↓

†

Si
1 2Si

2 eiQ•Rici ,↑
† ci ,↓

†

Si
2 2Si

1 eiQ•Rici ,↓ci ,↑
Si

z 2Si
z 1

2 (ni21)
ni21 12ni 2Si

z

Ĉi , j ,↑ eiQ•Ri Ĉi , j ,↑
† 2D̂ i , j ,↑

Ĉi , j ,↓ eiQ•Ri Ĉi , j ,↓
† 2eiQ•Ri D̂ i , j ,↑

†

-
-
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