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Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems
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We recently introduced the dynamical cluster approximation~DCA!, a technique that includes short-ranged
dynamical correlations in addition to the local dynamics of the dynamical mean-field approximation while
preserving causality. The technique is based on an iterative self-consistency scheme on a finite-size periodic
cluster. The dynamical mean-field approximation~exact result! is obtained by taking the cluster to a single site
~the thermodynamic limit!. Here, we provide details of our method, explicitly show that it is causal, systematic,
F derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by
applying it to a quantum Monte Carlo and exact enumeration study of the two-dimensional Falicov-Kimball
model. The resulting spectral functions preserve causality, and the spectra and the charge-density-wave tran-
sition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.
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I. INTRODUCTION

Strongly correlated-electron systems have been at the
ter of theoretical and experimental research interest for s
eral decades. This interest was greatly intensified by the
covery of heavy fermion metals and superconductors,
recently of the high-Tc superconductors. The observation
non-Fermi-liquid behavior first in the Cuprates and la
even in some heavy fermion systems has given further
petus. Away from a transition, these materials are charac
ized by short-ranged dynamical correlations such as the l
correlations responsible for the Kondo effect. In addition,
doped cuprates display short-ranged antiferromagnetic
namical correlations thought to be responsible for pair f
mation. Some of this physics is captured by the simp
models of strongly correlated electrons, such as the Hubb
model ~HM! and the periodic Anderson model~PAM!. De-
spite the short range of the dynamical correlations and
merous sophisticated techniques introduced since the in
tion of the models, they remain unsolved.

However, recently Metzner and Vollhardt showed1 that
these models undergo significant simplification in the lim
of infinite dimensions,D5`. In this limit, provided the ki-
netic energy is scaled as 1/AD, the self-energy and verte
functions may be taken to be purely local in space altho
they retain a nontrivial frequency dependence. Conseque
the HM and PAM can be mapped onto a self-consisten
embedded Anderson impurity problem; i.e., a single cor
lated site subject to a self-consistently determined ene
dependent hybridization with a conduction electron ‘‘bat
or ‘‘host’’ representing the remaining sites of the lattice,
equivalently~on eliminating this bath!, to a dynamical mean
PRB 610163-1829/2000/61~19!/12739~18!/$15.00
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field.2,3 The resulting dynamical mean-field theory~DMFT!
is exact in infinite dimensions and has been use to estab
the thermodynamic properties and phase diagrams of th
models using quantum Monte Carlo~QMC! and other
methods.2,4,5

A similar self-consistent single site theory can be obtain
by assuminga purely local self-energy~and vertex functions!
even in finite dimensions. This yields the natural mean-fi
theory for correlated lattice systems and is called the
namical mean-field approximation~DMFA!. While it has
been shown that this approximation captures many key
tures of strongly correlated systems even in a fini
dimensional context, the DMFA has some obvious and s
nificant limitations. For example, the only dynamic
correlations present are those that may be properly treate
a single site. Therefore, there are no nonlocal dynamical
relations. These are necessary, for example, to desc
phases with explicitly nonlocal order parameters or tho
with lower symmetry than the lattice, of whichd-wave su-
perconductivity is perhaps the most prominent example.
even phases with local order parameters~e.g., commensurate
magnetism! will certainly be affected by the nonlocal dy
namical correlations~spin waves! neglected by the DMFA.
In addition, as we show in this paper, the DMFA is not
conserving approximation, with violations of the Ward ide
tity associated with current conservation~the equation of
continuity! for any D, including the limitD→`.

Consequently, there have been efforts to extend
DMFA by inclusion of nonlocal correlations, which woul
correspond to 1/D corrections to the self-energy of theD
5` models.6,7 These efforts have failed to construct a cau
theory, one that preserves spectral weight and which ret
12 739 ©2000 The American Physical Society
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positive semidefinite spectral functions, out of nonloc
Green functions. Such violations of positivity have been s
explicitly and discussed in the work by van Dongen.6 Even
in the sophisticatedF derivable technique developed b
Schiller and Ingersent,7 violations of the sum rules occurre
for moderately large values of the interaction strength in
Falicov-Kimball model~FKM!.

A different approach by Smith and Si8 allows for the in-
corporation of nonlocal interactions in the original Ham
tonian~beyond the Hartree level! by rescaling them with the
same 1/AD factor in the limit D5` as the kinetic energy
The resulting self-energy remains local, and the system m
to an impurity model coupled to both a Fermionic bath~the
electrons on the host! as well as a bosonic bath~the two-
particle interactions!. While this approach is attractive w
believe that this scaling is difficult to justify formally. In
addition, since the resulting effective theory is still a sing
site theory, it does not allow one to address some of
problems discussed above.

In a recent paper9 we introduced the dynamical cluste
approximation~DCA!, an iterative self-consistency schem
on a finite-size periodic cluster of sizeNc . It extends the
DMFA through the inclusion of short-ranged dynamical co
relations, remains fully causal, and restores the conserva
laws of Ward10 and Baym11 when the cluster becomes larg
The essential approximation of the DCA is to take the ir
ducible self-energySc(K ,v) of the cluster as a good ap
proximation to the self-energy of the real system at the c
ter momentaK . WhenNc , the number of cluster momenta i
the first Brillouin zone, is relatively small, this approxim
tion can only be justified if the self-energy of the real syst
is weakly momentum dependent. Such a weak momen
dependence is realized in high dimensions~there isno mo-
mentum dependence inD5`). Then, a coarse grid ofK
points is sufficient to capture all the short-ranged~but non-
local! dynamics. In low dimensions, the validity of the a
proximation is less clear. However, in many correlated s
tems the momentum dependence of the self-energy is
important than its frequency dependence, for example in
effective-mass corrections arising from interactions in Fe
liquids and the marginal Fermi liquid12 ~MFL! or nearly an-
tiferromagnetic Fermi-liquid13 ~NAFL! phenomenology of
high-Tc superconductors. In addition, because of the c
pling of the cluster to a much larger host, the method allo
for a systematic finite size study that is likely to conver
faster than standard methods such as exact diagonaliza
lattice QMC, and the fluctuation exchange approximatio14

~FLEX!.
In this work we present the first detailed discussion of

DCA. The paper is organized as follows: First, we review
DMFA and discuss its limitations. Then, we review the ste
of the DCA and discuss the details of the formalism. W
then apply the DCA to the half-filled FKM using quantu
Monte Carlo and exact enumeration for the cluster prob
to obtain self-energies and Green functions. For simplic
we consider only the single-band model with neare
neighbor hopping on a periodic square lattice withN sites.
We demonstrate that the DCA algorithm converges syst
atically with increasing cluster size and remains fully caus
We then discuss the results and their implications. In
Appendixes, we provide the formalism needed to calcu
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the two-particle properties, generalize our formalism to mo
els with extended range interactions, prove that it is cau
and discuss its conserving properties.

II. DYNAMICAL MEAN-FIELD APPROXIMATION

The DMFA ~Ref. 1! may be derived in any dimension b
disregarding momentum conservation at the internal vert
of the self-energy.15 This approximation becomes exact
the limit of infinite dimensionsD→`, provided that the
near-neighbor electronic hopping integral is rescaled so
t;D21/2. Then, the single-particle Green functionG(r );t r

;D2r /2 and the self-energy becomes a purely local fun
tional of the local Green function only,S i , j5S i ,i(Gi ,i)d i , j ,
which is momentum independentS(k,v)5S i ,i(v)
1O(1/AD). The lattice problem may then be mapped onto
self-consistently embedded impurity problem. The result
DMFA algorithm, illustrated in Fig. 1, has the following
steps:~1! The procedure starts with a guess forS i i (v), usu-
ally zero.~2! Then, we calculate the local lattice Green fun
tion Gi ,i(v)5 1/N (k@Go

21(k,v)2S i ,i(v)#21, where
Go(k,v) is the bare lattice Green function andN is the ~in-
finite! number of points of the lattice.~3! Next, we compute
G(v) which includes self-energy processes at all lattice s
except at the ‘‘impurity’’ site i under consideration
G 21(v)5Gi ,i

21(v)1S i ,i(v). This step corresponds to a si
exclusion to prevent the overcounting of self-energy d
grams on sitei. G(v) defines the undressed Green functi
of a generalized Anderson impurity model.~4! We solve the
associated impurity problem with some technique, e.g.,
QMC method, which producesGimp(v), the Green function
of the generalized Anderson impurity model.~5! Then
S i ,i(v)5G 21(v)2Gimp

21 (v). S i ,i(v) may be used in~2! to
continue the procedure. The iteration typically continues
til Gi ,i(v)5Gimp(v) to within the desired accuracy, and th
procedure may be shown to be completely causal.

This DMFA algorithm may be applied in any dimensio
but it is only exact forD5`. In finite dimensions, it is very
difficult to formulate 1/D corrections to the DMFA which
are both causal and systematic. For example, consider
first nontrivial correction to the self-energy of a Hubba
model on a hypercubic lattice given by the self-energy d
grams evaluated between nearest-neighbor sitesi and j. This
contributes a term of orderO(1/AD) to the self-energy
which then assumes the form S(k,v)5S i i (v)
1ekS i j (v)/t, wheret is the hopping matrix element andek
the bare electronic dispersion. Note that whenS i j (v) and/or
ek is large, it is possible for the imaginary part of the se
energy ImS(k,v).0, for some (v,k). The corresponding

FIG. 1. Sketch of the DMFA algorithm.
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quasiparticle excitations grow exponentially in time; a cle
violation of causality.

III. DYNAMICAL CLUSTER APPROXIMATION

For this reason we formulated the DCA approach wh
includes systematic nonlocal corrections to the DMFA bu
not systematic in 1/D. Like the DMFA, the DCA is a self-
consistency scheme, although in the DCA the ‘‘impurity’’
replace by a finite-sized cluster. In Appendix C we prove t
the DCA is causal, a feature of fundamental importanc16

The DCA also restores momentum conservation as wel
the Ward identities systematically as the cluster size beco
large.

The general form of the DCA was given in Ref. 9. Her
we briefly review the formalism, and then give a more d
tailed description of the method and its approximations.
simplicity, we consider a single-band model with a loc
Hubbard-like interaction on a periodic hypercubic latti
with N sites. This is mapped onto a self-consistently emb
ded periodic cluster of sizeNc5LD. As illustrated in Fig. 2,
the corresponding crystal momentaK of the cluster are at the
centers of a set ofNc cells of size (2p/L)D inside the first
Brillouin zone~BZ! for the lattice. Although there is consid
erable latitude in the choice ofK , we typically chooseKa l
5p(2l /L21) ~where l is an integer 1< l<L, and a indi-
cates spatial direction!.17

The crucial assumption of the DCA is that the irreducib
self-energy of the clusterSc(K ,v) and the two-particle irre-
ducible vertex functions of the cluster are good approxim
tions to the irreducible self-energy and vertex functions
the real lattice for values of the lattice momenta inside
cells around the cluster momenta. This assumption is ju
fied if the momentum dependence of the irreducible s
energy and vertex functions of the real system is sufficien
weak; or equivalently, if the dynamical nonlocal correlatio
have a short rangeb&L/2. If this is the case, then, accordin
to Nyquist’s sampling theorem,18 to reproduce these correla
tions in the self-energy and vertex functions, we need o
sample the reciprocal space at an interval ofDk'2p/L; i.e.,

FIG. 2. The cluster momenta and coarse-graining cells fo
Nc5232 cluster covering the Brillouin zone of a real two
dimensional square lattice. The cluster momenta are indicate
filled circles, and the cells by different fill patterns. The solid line
the shape of a diamond is the Fermi surface of the noninterac
system at half filling. The cells adjacent to the BZ boundary exte
periodically to the opposite side.
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on a set ofNc5LD points within the first Brillouin zone.
Therefore,S(K1 k̃,v)'S(K ,v) for eachk̃ within a cell of
size (p/b)D aboutK , so the lattice self-energy is well ap
proximated by the self-energySc(K ) obtained from the clus-
ter. Similar arguments can be made for the vertex functi
as well.

Next, within the spirit of the same approximation, th
cluster self-energies and vertex functions can be equ
with the coarse-grained averagesof the lattice self-energies
and vertex functions over these momentum cells around
cluster momenta. For example, for the self-energy,

Sc~K ,v!5S̄ ~K ,v!5
Nc

N (
k̃

S~K1 k̃,v!, ~1!

where thek̃ summation runs over theN/Nc momenta of the
cell about the cluster momentumK . This assumption is con
sistent with that made in the previous paragraph, and ens
that all the states of the full system are represented once
problem is reduced to the cluster. Similar equations can
written down for the vertex functions.

The above two~related! sets of assumptions complete
prescribe the DCA and ensure that it reduces to an effect
self-consistently embedded cluster problem for any latt
problem with local interactions. For Hubbard-like model
such as the HM, PAM, and FKM, within a diagrammat
framework it is not hard to see that the skeleton graph
pansions for the coarse-grained self-energies and ve
functions defined above are then the same as the ske
graph expansions on a finite periodic cluster of sizeNc . The
cluster Green functionGc(K ,v) is given by thecoarse-
grained averageof the Green function of the real lattice,

Gc~K ,v!5Ḡ~K ,v!5
Nc

N (
k̃

1

v2eK1 k̃1m2Sc~K ,v!
.

~2!

Here,ek is the dispersion for the noninteracting lattice pro
lem andm is the chemical potential. The DCA assumptio
thatS(K1 k̃,v)'Sc(K ,v) has been explicitly put in for the
lattice Green function.

One can now ask what bare Green functionG(K ) on the
cluster this skeleton graph expansion corresponds to.
answer is determined by the Dyson equation on the clu
used in reverse,

G 21~K ,v!5Ḡ21~K ,v!1Sc~K ,v!. ~3!

This step corresponds to a ‘‘cluster exclusion’’ to preve
overcounting of self-energy contributions from the intera
tions on the sites belonging to the cluster, analogous to
‘‘site exclusion’’ of the DMFA ~which is the DCA if the
cluster consists of a single site only!. It is this step that de-
termines the self-consistent embedding of the cluster, sincG
includes the effects of self-energy processes at sites of
lattice other than the cluster sites, and thus has strong re
dation effects. The retardation effects can be interpreted
terms of hybridization of the cluster~cells! to ‘‘conduction
electron baths’’~one for eachK ! analogously to the interpre
tation of the single site in DMFA in terms of an Anderso
impurity problem.
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The DCA iteration procedure is now easily prescribed
is started by guessing an initialSc(K ,v), usually zero,
which is used to calculate the coarse-grained Green func
Ḡ(K ,v) using Eq.~2!. The cluster problem is then set u
with the bare Green functionG(K ,v) given by Eq.~3! and
interactions on the cluster sites.Sc(K ,v) may then be cal-
culated using any of a variety of methods, including pert
bation theory, QMC, the noncrossing approximation, etc.
appropriate.~If a skeletal graph perturbation expansion
used for the calculation, then the cluster exclusion step m
be skipped.! For Green-function techniques, such as QM
which produce the fully dressed cluster Green funct
Gc(K ,v) rather than the self-energy, the cluster self-ene
is calculated as

Sc~K ,v!5G 21~K ,v!2Gc~K ,v!21. ~4!

The iteration closes by calculating a newḠ(K ,v) with Eq.
~2!, and the iteration is continued untilḠ(K ,v)5Gc(K ,v)
to within the desired accuracy. The self-consistency loop
the DCA is illustrated in Fig. 3.

In analogous fashion we can also provide prescriptions
calculating two-particle properties of the lattice from the
reducible cluster two-particle self-energies~or vertex func-
tions!. Again, the basic assumption is that the moment
dependence of the irreducible vertex function of the real
tice is weak. This is elaborated on in more detail in Appe
dix A.

For lattice problems with nonlocal interactions such as
extended Hubbard model, the problem is first converted
one that has only local interactions by introducing auxilia
Hubbard-Stratonovich bosonic fields. The DCA can then
prescribed in a straightforward way for this interacti
Fermionic-bosonic problem with local interactions. The
fective cluster problem will necessarily involve coars
grained bosonic Green functions as well. The details
given in Appendix B.

IV. DISCUSSION OF THE DCA

In this section we provide a detailed discussion of some
the features of the DCA. We discuss the coarse-graining
cedure and offer a simple diagrammatic interpretation.
large but finiteD, we show that the DCA includes shor
ranged dynamical correlations without resorting to Nyquis
theorem, and we give a simple argument showing its cau
ity.

A. Coarse graining

One can think of other~perhaps moread hoc! prescrip-
tions for the calculation of the cluster self-energies and v

FIG. 3. Sketch of the DCA algorithm.
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tex functions, e.g., using a modifiedḠ where the coarse
graining overk involves a positive semidefinite weight func
tion f w(k,K ) which we can choose,

Ḡ~K ,v!5
1

N (
k

f w~k,K !

v2ek1m2Sc~K ,v!
, ~5!

where the sum onk is now over the whole Brillouin zone
Our choice of

f w~k,K !5Nc)
l

QS Dk

2
2ukl2Kl u D , ~6!

whereDk52p/L will reproduce the DMFA if the cluster is
a single site. In addition, even for larger clusters, the lo
lattice Green function and the local cluster Green funct
will be identical given our choice. We note that the choi
f w(k,K )5Nd(k2K ) corresponds to evaluating the syste
on the finite size cluster without any feedback of the ho
For a cluster of one site this is identical to the atomic lim
One could also imagine forms off w that allow for overlap of
the cells in the Brillouin zone, such as products of Gaussia
However, mostf w(k,K ) different from the two specified
above will lead to a calculation which does not have an
vious physical limit for the case of a single site ‘‘cluster.’

The DCA also has a simple diagrammatic interpretati
For Hubbard-like models, the local HubbardU is unchanged
by the coarse graining, and thus the momentum depend
of each vertex is completely characterized15 by the Laue
function,

D~k1 ,k2 ,k3 ,k4!5(
r

ei (k12k21k32k4)•r, ~7!

which expresses the conservation of momentak1 andk3 (k2
and k4) entering~leaving! each vertex. For example, in th
conventional diagrammatic approachD(k1 ,k2 ,k3 ,k4)
5Ndk11k3 ,k21k4

. If we reintroduce the cluster and cell mo

menta, such thatk i5K i1 k̃ i , i 51,4, then

D~k1 ,k2 ,k3 ,k4!5(
r

ei ( k̃12 k̃21 k̃32 k̃41K12K21K32K4)•r

5Nc(
n

1

n!
@~ k̃12 k̃21 k̃32 k̃4!•¹K1

#n

3dK11K3 ,K21K4
. ~8!

Within the DCA, only the first term in the sum (n50) is
kept so

DDCA~k1 ,k2 ,k3 ,k4!5NcdM (k1)1M (k3),M (k2)1M (k4)

5D~k1 ,k2 ,k3 ,k4!1O~Dk!, ~9!

whereM (k) is a function which mapsk onto the momenta
labelK of the cell containingk. Note that with this choice of
Laue function the momenta of each internal leg may
freely summed over the cell. Thus, each internal
G(k1 ,v) in the diagram is replaced byḠ„M (k1),v… defined
by Eq.~2!. Furthermore, since each external momentak also
enters the diagram only throughM (k), the self-energy be-
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comes momentum independent within each cell, i.e., it
tains the coarse-grained form defined in Eq.~1! and the ap-

proximation S(k,v)'S̄ „M (k),v… follows as a natural
consequence. In the DMFA, the cell momenta extend o
the entire Brillouin zone, so thatDDMFA(k1 ,k2 ,k3 ,k4)51
and momentum conservation is neglected.15 Thus, the above
choices of the Laue function serve as microscopic definiti
of the DCA, and of the DMFA. To interpret the choice fo
the DCA, note that small changes in each of the inter
momentum labels will not affectDDCA . Thus, momentum
conservation for small momentum transfers less thanDk
52p/Nc

1/D is neglected. However, note that for momentu
transfers larger thanDk momentum conservation is~par-
tially! observed at the vertex. Thus, the DCA systematica
restores the momentum conservation relinquished by
DMFA as the cluster size increases.

B. Nonlocal corrections

The range of the dynamical correlations included in
DCA is dictated by the cluster size and by the range of
Green functions used to calculate the irreducible graphs
the DMFA, the self-energy is a functional of the local Gre
function, but in the DCA nonlocal Green functions also a
used. Thus, the DMFA incorporates only local dynami
correlations which occur on the effective impurity, where
the DCA incorporates nonlocal dynamical correlations wh
occur on the cluster.

This may be seen by exploring the coarse-graining ste
detail, and in real space. For this purpose, we conside
lattice in large but finiteD which we divide intoLD-sized
clusters. Letr denote vectors within a cluster, andR the
vectors between the centers of the clusters. The points o
original lattice can be represented asR1r . The relation be-
tween the real Green functionG(R1r ,v) and the cluster
Green functionḠ(r ,v) is given by

Ḡ~r ,v!5
1

N (
K ,k̃

(
R,r8

eiK•(r2r8)e2 i k̃•(R1r8)G~R1r 8,v!.

~10!

The sum overK forcesr 85r . For R50 the additional phase
factor e2 i k̃•r is essentially 1 over the entire range ofk̃ for
short distances on the clusterr !2p/Dk, which leads to a
contribution toḠ(r ,v)'G(r ,v). Contributions from larger
R are suppressed both by the oscillations in the phase fa
which suppresses the integral and from the smallness
G(R1r 8,v) itself. More precisely, with the choiceKa l
5p(2l /L21) ~where l is an integer 1, l ,L, and a indi-
cates spatial direction!, we can complete the sums on m
menta exactly to obtain

Ḡ~r ,v!5(
R

)
l 51

D S sin@p~xl1Xl !/L#

p~xl1Xl !/L
DG~R1r ,v!,

~11!

wherexl (Xl) is thel th component of the vectorr (R). Thus,
Ḡ(r ,v) is composed of a sum overG(r1R,v) with each
term weighted by a sinusoidal prefactor that falls off likeur
1Ru2D. For smallr, the leading term in the sum comes fro
R50. Then, by expanding the sinusoidal prefactor, we c
-
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see that for r50, Ḡ(0,v)5G(0,v), and for r !L/2,
Ḡ(r ,v)'G(r ,v)1O„(rDk)2

…. Contributions from G(r
1R,v) for finite values ofR are cutoff by the sinusoida
prefactor and the exponential fall-off of the Green functi
itself, since for large distancesG(r );D2r /2. Thus, short-
ranged correlations are accurately represented byḠ(r ,v),
and longer-ranged contributions are cut off.

This behavior is seen even in two-dimensional systems
shown in Fig. 4 whereḠ(x,y50, t50) calculated with a
QMC simulation of the two-dimensional half-filled FKM
~see Sec. V! is plotted versusx for various cluster sizes. The
r50 result is fixed by the filling,Ḡ(x50, y50, t50)
50.5; however, the near-neighbor result shows some sig
cant dependence on the cluster size.Ḡ(x51, y50, t50) is
plotted versus the linear cluster size in the inset to Fig.
Note that it quickly converges toḠ(x51, y50, t50)
'0.143 as the cluster size increases, indicating that sh
ranged correlations are correctly described by the DCA
this model. For largerx, Ḡ(x, y50, t50) falls quickly to
nearly zero.

C. The role of reducible and irreducible quantities

In Appendix D we show that the DCA~and the DMFA! is
not conserving, thus the calculations of different measura
quantities are not unique. For example, we approximate

lattice self-energyS(k,v)'S̄ „M (k),v…, and calculate the

Green function using 1/G(k,v)51/G0(k,v)2S̄ „M (k),v…;
however, a different approximation, corresponding to a d
ferent implicit choice forS(k,v) would be to approximate
G(k,v)'Ḡ(k,v). We show in Appendix A that the forme
prescription is the unique choice which minimizes the DC
free energy, and thus is the correct choice. A similar probl
exists for the calculation of two-particle properties such
the magnetic susceptibility. However, as discussed in App

dix A, the approximationG'Ḡ [d S̄/dG for the lattice two-
particle vertex yields an estimate for the susceptibility@Eq.
~A15!# equivalent to that calculated from the second deri
tive of the free energy with respect to the external field.

FIG. 4. ReḠ(x,y50, t50) versusx for various cluster sizes

obtained from QMC simulations of the FKM. In the inset, ReḠ(x
51, y50, t50) is plotted versus cluster size~periodic clusters of
sizeL3L).
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Thus, in general,the cluster calculation should only b
used to provide the irreducible quantities. These, togethe
with the bare real-lattice Green functions, may be used
construct the corresponding reducible quantities.

At least for the single-particle Green functions, this p
scription may also be motivated physically. Short-rang
correlations are accurately represented by the cluster irre
ible single-particle self-energy. Following the discussion
the preceding section, one may show that forr !L/2,
Sc(r ,v)'S(r ,v)1O„(rDk)2

…, since it is calculated from
cluster quantities. In addition, since the self-energy is form
from higher-order products of the Green function, e.
S(r );@G(r )#3;D23r /2 for the second-order contribution i
the Hubbard model, in high dimensions it falls faster w
increasingr than the Green function itself. Thus, the corre
tion terms coming fromRÞ0 will be smaller for irreducible
quantities such as the self-energy than it will be for reduci
quantities like the Green function. Since the range of
correlations that are treated increases with the cluster s
away from a transition, the irreducible quantities calcula
on the cluster will have converged to acceptable values
fore their reducible counterparts.

Finally, we note that while in Secs. IV A and IV B w
used 1/D arguments to justify the approximations made
the DCA, the DCA is not systematic in 1/D. For example,
even for short distancesr, which would correspond to low
orders in 1/D, Ḡ(r ,v) contains contributionsG(r1R,v)
corresponding to much larger distances and higher orde
1/D. Furthermore, since the density of states of the fin
dimensional lattice is used to calculate the host propagatoG,
the approximation includes corrections to all orders in 1D.
In fact, we have shown in this section that the cluster qu
tities differ from those of the real lattice by terms of ord
(Dk)254p2/Nc

2/D . Thus, the DCA is a systematic approx
mation in 1/Nc , not 1/D.

D. Causality

We can also show that the DCA algorithm is fully caus
i.e., that the spectral weight is conserved and that the im
nary parts of the single-particle retarded Green functions
self-energies are negative definite. Here, since many met
can be used to solve the cluster problem, we will assume
all are causal, i.e., given a causalG, then the resultingSc and
Gc are also ensured to be causal by the method chose
solve the cluster problem. Furthermore,Ḡ(K ,v) is causal
sinceSc(K ,v) is causal. Thus, Eq.~3! is the only step in the
algorithm where problems with causality could occur.
Ref. 9 we argued using a continued fraction expansion
the k̃ averaging~coarse graining! of Eq. ~2! adds a causa
piece to the self-energy ofḠ that allowsG to remain causa
even after the subtraction of2Sc(K ,v) in Eq. ~3!. Here, we
give a simplegeometricalargument~which is recast as a
formal proof in Appendix C! that causality holds for rathe
general models, including the HM and the FKM.

There are two steps to the argument: first, we must sh
that weight is conserved, and second, that the imaginary
of G is negative semidefinite. The first part follows from th
causality ofSc and Ḡ which both fall off inversely with
frequency at largev, and in particularḠ;1/v. From Eq.~3!
to
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it is then apparent thatG;1/v so that spectral weight is
preserved. The second part of the argument is sketche
Fig. 5. The imaginary part ofG(K ,v)5@Ḡ(K ,v)21

1Sc(K ,v)#21 is negative provided that Im@Ḡ(K ,v)21#>

2Im Sc(K ,v). Ḡ(K ,v) can be written as Ḡ(K ,v)
5(Nc /N)( k̃(zK1 k̃)

21(v), where thezK1 k̃(v) are complex
numbers with a positive semidefinite imaginary pa
2Im Sc(K ,v). For anyK andv, the set of pointszK1 k̃(v)
are on a segment of the dashedhorizontal line in the upper
half plane due to the fact that the imaginary part isindepen-

dentof k̃. The mappingz→1/z maps this line segment ont
a segment of the dashed circle shown in the lower half pla
Ḡ(K ,v) is obtained by summing the points on the circ
segment, yielding the empty dot that must liewithin the
dashed circle. The inverse necessary to takeḠ(K ,v) to
1/Ḡ(K ,v) maps this point onto the empty dot in the upp
half plane which must lieabovethe dashed line. Thus, th
imaginary part ofḠ(K ,v)21 is greater than or equal to
2Im Sc(K ,v). This argument may easily be extended f
G(z) for any z in the upper half plane. ThusG is completely
analytic in the upper half plane.

V. DCA FOR THE FALICOV-KIMBALL MODEL

Here we illustrate the power of the DCA with a QM
simulation of the two-dimensional Falicov-Kimball mode
The FKM is studied, instead of, for example, the much mo
complicated Hubbard model~for which there is work in
progress19!, for several reasons. First, the FKM is perha
the simplest model of correlated electrons which retain
complex phase diagram, including a Mott transition and
charge-density-wave~CDW! ordering transition.20 Second, it
has been extensively studied by de Vrieset al. with QMC
simulations21 of finite-sized systems which may be compar
to our results. Third, it is possible21 to calculate the real-
frequency spectra without the need for computationally
pensive numerical analytic continuation. Finally, it is of co
siderable experimental interest.22

The FKM can be considered as a simplified Hubba
model in which one spin species is prohibited to hop. In
particle-hole symmetric case the Hamiltonian reads

H52t(
^ i , j &

di
†dj2m(

i
~ni

d1ni
f !1U(

i
ni

dni
f , ~12!

with ni
d5di

†di , ni
f5 f i

†f i , and m5U/2. For a two-
dimensional~2D! square lattice with nearest-neighbor ho

FIG. 5. Illustration of the essential steps of the proof that
DCA is causal~see text!.
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ping (^ i , j &) the dispersion isek522t(coskx1 cosky). We
measure energies in units of the hopping elementt. Conse-
quently, the bandwidth of the noninteracting system isW
58. For D>2 the system has a phase transition from
homogeneous high-temperature phase with^ni

d&5^ni
f&51/2

to a checkerboard phase@a charge density wave with orde
ing vectorQ5(p,p, . . . )] with ^ni

d&Þ^ni
f& for 0,U,`.23

A. Exact enumeration

In contrast to the Hubbard and related models, the D
for the FKM can be solved without the application of QM
since thef electrons are static, acting as a kind of annea
disorder potential to the dynamicd electrons. Here, we gen
eralize the algorithm of Brandt and Mielsch24 to a finite-size
cluster. We first compute the Boltzmann weightswf of all
configurations$f% of f electrons on the cluster, given an initi
host Green functionGi j of the d electrons viawf5wf

0/Z,
where

wf
052Nc)

vn

det
Gi j

21~ ivn!2Uni
fd i j

ivnd i j
~13!

is the unnormalized weight, andZ5($ f %wf
0 is the ‘‘partition

sum.’’ The determinant is to be taken over the spatial in
ces. This expression is written such that the product c
verges at large frequencies. Given the weights, the n
d-electron cluster Green function is given by

Gi j
c ~z!5(

$ f %
wf@G i j

21~z!2Uni
fd i j #

21 ~14!

for an arbitrary complex frequency argumentz, in particular
also for z5 ivn ~Matsubara! and z5v1 ih ~retarded!. The
self-consistency loop closes by use of the Eqs.~2!, ~3!, and
~4!.

Because the number off configurations grows exponen
tially with the cluster size the exact enumeration method
confined to small clusters~up to 434 in the broken symme
try state, see below!. We first simultaneously determine th
weights and the Matsubara Green function. Then, we
knowledge of the weights to find the retarded Green fu
tion. Convergence of the algorithm is fast for Matsubara f
quencies, but relatively slow for real frequencies.

B. Quantum Monte Carlo

The FKM is particularly suitable to a QMC evaluation
the configuration sums since thef electrons are them
selves like classical Ising spin variables. Following De Ra
and von der Linden,21 given a particular configuration, w
can propose ‘‘spin flips,’’ corresponding to a change of t
f-occupationni

f→12ni
f at a single sitei. The ratio R of

weightswf8 of the proposed configuration to the weightwf of
the original configuration is~at half filling!

R5 )
vn.0

@12l iGi ,i
c ~ ivn!#@12l iGi ,i

c* ~ ivn!#, ~15!

with l i52Us( i ) ands( i )52ni
f21. Note that the ratioR is

always real and positive since the Matsubara Green func
is HermitianGi ,i

c (2 ivn)5Gi ,i
c* ( ivn). This holds for any fill-
a

A

d

i-
n-
w

s

e
-
-

t

e

n

ing. Consequently, there is no sign problem as there is, e
in the Hubbard model away from half filling.

A configuration change is accepted by comparing a r
dom number in the interval (0,1) toR/(11R) ~‘‘heat bath
method’’! or to R itself ~‘‘Metropolis method’’!. Once the
change at sitei is accepted, the Green function is updated

G8 j ,k
c

~ ivn!5Gj ,k
c ~ ivn!1

l iGj ,i
c ~ ivn! ^ Gi ,k

c ~ ivn!

12l iGi ,i
c ~ ivn!

, ~16!

where ^ denotes a direct matrix product~no summation!.
Most of the total CPU time is consumed by this updati
step. However, the fact that we can work with frequenc
rather than imaginary time drastically reduces the amoun
time required. Note that although Eq.~16! is written for Mat-
subara Green functions an analogous relation holds for
real frequency Green functions which allows us to calcul
dynamical properties without the need for analytic continu
tion. On the other hand, the ratioR is completely determined
by the Matsubara Green function. This means that we de
mine the acceptance from the Matsubara Green function
then update both the Matsubara and the real-frequency
tarded Green function ‘‘simultaneously.’’

The measurement of the two-particle properties consu
large amounts of memory and CPU time. Since they are
required for the self-consistency cycle~Fig. 2!, they are mea-
sured only after convergence of the single-particle propert
In fact, due to the enormous size of the susceptibility ma
it is often worthwhile to separate the single- and two-parti
calculations to different computer runs.

VI. RESULTS

In this section we present results from both exact e
meration and QMC simulation of the two-dimensional FK
for a variety of parameters and cluster sizes. There is con
erable latitude in the selection of the cluster momenta. T
is because~i! the sites on the cluster do not really correspo
to the physical lattice, and~ii ! because for large clusters an
differences due to this choice should vanish. Here, for
L3L cluster we choose eitherKa l5p(2l /L21), or Ka l
5p(2l /L21)2p/L ~where l is an integer 1< l<L, anda
5x or y). These choices, respectively, correspond to p
odic or antiperiodic boundary conditions for the clust
Green functionGc(x1L,y,v)56Gc(x,y,v). Unless other-
wise noted we use periodic boundary conditions in both s
tial directions. Antiperiodic boundary conditions~in both di-
rections! are used only for some data in Fig. 10.

A. Density of states and spectral function

We begin by discussing the~local! density of states
~DOS! and theK -dependent spectral function shown in Fig
6–8. In Fig. 6 we show the local DOS for various clust
sizes up to 838 for the half-filled model and display only
the positive frequencies. The full spectrum is symmetric, d
to particle-hole symmetry, as shown in the inset. With t
exception of a peak which develops atv56U/2, the spec-
trum converges quickly asNc increases. In fact, the conve
gence to the thermodynamic limit is apparently much fas
than that seen in finite-sized lattice simulations,20 where even
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FIG. 6. Local density of states for various cluster sizes. The density of states is essentially converged for the 636 cluster, though some
fine structure nearv56U/2 continues to emerge for the larger cluster sizes~see discussion in text!.
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for an 838 system, the broadened spectra are often c
posed of a set of discrete spikes.

Furthermore, the DOS develops three distinct prim
features also seen in the finite-size calculations.20 First, as
shown in Fig. 6, for largeU*UM the DOS develops a Mot
gap centered atv50, even thoughT@Tc . The value ofUM
at this temperature changes slowly with cluster size, w
UM'5. Second, as shown in Fig. 7, forU,UM , upon de-
creasing the temperature the DOS forNc.1 develops a
pseudogap at the Fermi energy associated with cha

FIG. 7. Local density of states whenU54 for a 434 cluster at
various temperatures. The DOS develops a pseudogap as the
perature approachesTc'0.189. This shows the influence of th
nonlocal CDW fluctuations present in the DCA (Nc.1). In the
DMFA (Nc51), there is noT dependence of the DOS aboveTc .
-

y

h

e-

ordering fluctuations. This pseudogap is absent whenNc

51 ~as are the charge-ordering fluctuations!, and it becomes
more pronounced as the cluster size increases. Third, a
charge ordering becomes more pronounced, either by low
ing the temperature or increasing the cluster size, a sh
peak begins to develop in the DOS shown in Figs. 6 and
v56U/2. In the ordered state, each occupied f~d! orbital is
surrounded by four occupied d~f! orbitals. Thus, for largeU
and lowT the electrons become highly localized so the sp

m-
FIG. 8. Spectral functionr(K ,v) for various cluster momenta

K . Note the three peak feature forK5(p,p) at the upper edge o
the lower band.
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trum will develop very narrow ‘‘atomic’’ peaks atv5
6U/2.

In addition, there are a surprising number of smaller f
tures which emerge in the DOS. This is true even for
largest cluster, in some sense even more so, as some
structure in Fig. 6 seems to develop for the 838 cluster that
was only vaguely present for smaller clusters. This fine str
ture is more visible in the momentum-resolved spectral fu
tion r(K ,v)5(1/p)Im G(K ,v), see Fig. 8. In particular
note the three peak feature at negative frequencies foK
5(p,p). Of course, we really do not know how the DOS f
the infinite lattice is supposed to look like. The extreme
smooth form the DMFA provides is mostly due to the lack
associated energy scales. In the DCA we have at leastU and
J5t2/2U, and, in principle, many other scales can be co
structed representing collective excitations of the clus
charges. That such features emerge as the cluster size
creased can be understood by the following argument
addition to the self-energy arising from interactions on
cluster the host also provides a self-energy and therefo
broadening. Consequently, features that are in princ
present for smaller clusters like 434 are washed out by th
host’s broadening. Only as the host becomes less impo
~as cluster size increases! do the smaller energy feature
emerge from the background.

B. Phase diagram and finite-size scaling

We now discuss the phase diagram and its dependenc
cluster size. In Ref. 9 we showed that the transition temp
ture of the CDW transition was significantly suppressed w
respect to the DMFA when nonlocal correlations come i
play. We have since extended this analysis in two directio

In Ref. 9 the result for the 232 cluster was computed vi
the exact enumeration method in the broken symme
phase. This means we actually simulated two 232 clusters
forming a bipartite cluster of 2323258 sites. The exten-
sion of the above described exact enumeration metho
straightforward and involves Green functions that are n
232 matrices with respect to the bipartite cluster (A andB
sublattice index!. Tc was then obtained by three steps:~1!
We apply a staggered field at low enough temperatures~be-
low the expectedTc) to drive the system into the broken
symmetry state witĥ ni PA

d &Þ^nj PB
d &. ~2! We remove the

staggered field. The system relaxes but stays in the brok
T,Tc . ~3! We increaseT until the system enters the uniform
phase witĥ ni PA

d &5^nj PB
d &. This method is very precise, bu

for larger clusters very time consuming. Using the QM
method in the broken-symmetry phase is possible, butTc
cannot be determined precisely due to critical fluctuatio
So the above described method is limited to at most 434
clusters, or a total of 32 sites. This also means that a sys
atic finite-size analysis with this method alone would not
possible.

In order to getTc for larger clusters we choose a differe
route. We compute the staggered charge susceptibilityx„Q
5(p,p)… with the method discussed in Appendix A. B
cause the host always provides a mean-field environment
susceptibility diverges asx„Q5(p,p)…}(T2Tc)

2g with a
mean-field exponentg51 for T close enough toTc . ~Criti-
cal fluctuations causeg to deviate from the mean-field valu
-
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for somewhat larger values ofT2Tc .) This again allows a
precise estimate ofTc . The computational drawback here
the enormous memory requirements of the susceptibility m
trix needed at intermediate steps of the calculation.

After these preliminaries we now discuss the results
these calculations in Figs. 9 and 10. Figure 9 shows
phase diagram for various cluster sizes, all of them equip
with periodic boundary conditions~PBC!. In addition, we
show the Tc of the 2D Ising model given byTc

Ising

52.268J with a couplingJ51/(2U). We show the Ising
result because the half-filled FKM reduces to an Ising mo
with such a coupling in the limit of largeU@W. The FKM
data are all obtained from the evaluation of the susceptib
with the MC method except for theNc58 data which are
obtained by the exact enumeration method in the bro
symmetry~two 232 clusters!. For the DMFA the two meth-
ods give identical results~within 1% accuracy!. The phase
boundary has always the same general shape for the F
data, with a slightly cluster size dependent maximum
about half the bandwidthW.

The results from the MC method converge monotonica
with cluster size with one notable exception: The 232 clus-
ter (Nc54) has the lowestTc of all, and even seems to fa
below the Ising results for allU. The reason for this excep
tional behavior is not entirely clear to us. At first one mig
consider a double counting of neighbors and a resulting d
bling of the energy scale common in standard lattice meth
to be the reason. But clearly, theTc’s of all clusters agree
well at smallU where only local correlations are importan
This rules out a simple doubling of the energy scale. A like
reason for this unusual behavior lies in the particular way
BZ is sampled in the 232 cluster, see Fig. 2. The onl
points on the Fermi surface areK5(p,0),(0,p). These,
however, are also the points responsible for the van H
singularity of the noninteracting system. In comparison
other momenta on the Fermi surface these points have
traordinary large scattering rates, making them unfavora
for the formation of CDW fluctuations driving the transition
As a consequence, theTc for this cluster is exceptionally
low.

FIG. 9. Phase diagram for various cluster sizesNc . With the
exception ofNc54 ~see text! the Tc monotonically converge with
increasing cluster size. At largeU the system maps to a 2D Isin
model withJ51/(2U).
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Although theTc results from a given method are mon
tonically decreasing~with the one exception noted above! it
is not obvious how to scale the data as a function of clu
size; for, to our knowledge, a rigorous finite-size scali
theory for a quantum-dynamicalcluster coupled to a
quantum-dynamicalhost does not exist. However, such que
tions have been addressed in the context of systematic
consistent cluster approximations forclassicalstatistical sys-
tems, in particular, the 2D Ising model,25 which should be
relevant to our problem, at least for largeU. Furthermore, on
general grounds one expects that for critical phenomen
finite temperaturesthe asymptotic scaling properties even
a quantumsystem will be determined by the same univers
ity class as for the correspondingclassicalsystem~i.e., with
the same order-parameter symmetry and the same spati
mensionality!. Hence, one expects25 that our results for
Tc(L)2Tc(`) should scale asymptotically asL21/n, i.e., as
1/L, sincen51 for the 2D Ising Model. In Fig. 10 we there
fore plot theTc data as a function of 1/L ~or 1/ANc for the
broken-symmetry results!. In the main part of the plot we
show the results for large clusters with PBC which sc
approximately linearly with 1/L. The Nc532 result~broken
symmetry! for U58 andU512 is a bit lower than theTc for
Nc536 ~MC!. This shows that the two methods are not ea
to combine, but the difference seems small enough no
disrupt the predominant linear scaling with 1/L.

For U516 the clusterTc’s scale well and the extrapola
tion to the infinite system comes very close to the Ising lim
~or the results of de Vrieset al.!. For smallerU the Ising
model is not appropriate, and it shows, as the IsingTc is
much higher than the extrapolatedTc of the clusters. How-
ever, the extrapolated cluster results are very close to
results obtained from finite-sized lattice simulations. The f
that the cluster estimates ofTc consistently fall below de
Vries results is likely due to finite-sized effects~de Vries
et al. simulated lattices of up to 64 sites!. We also note that

FIG. 10. Tc as a function of inverse linear cluster dimension f
the larger clusters and variousU. The Ising limit, and de Vries
et al.20 estimates ofTc from simulations of finite-sized clusters ar
shown for comparison. The extrapolatedTc’s generally fall below
the finite-size estimates as well as the Ising limit~which should
serve as an upper bound and become exact for largeU). The inset
shows the influence of the cluster boundary conditions onTc . The
effect of boundary conditions becomes smaller with increasing c
ter size.
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the Tc’s of the 232 cluster~not shown in Fig. 10! are in
excellent agreement with the cluster extrapolated values
the Ising result for largeU. We have currently no explana
tion for this phenomenon. Though probably pure coin
dence, the fact remains: theTc of the 232 cluster seems to
provide a good estimate of theTc of the D52 FKM.

The inset shows the sameTc’s as in the main plot~all
determined via MC! for U58 of various cluster sizes, and i
addition theTc’s for the same clusters equipped with antip
riodic boundary conditions~APBC!. As noted before, the
DCA does not intrinsically determine the choice of clus
momenta. But different choice of cluster momenta will al
in general affectTc and other quantities. As PBC and APB
seem to span the entire range it is interesting to see by
much theTc’s differ. As illustrated in the inset it matter
quite a bit for very small clusters, but not much once w
consider clusters of the 636 size.26 The difference for
232 clusters is extreme for the following reason: we not
above that the 232 cluster with PBC has the lowestTc of all
clusters with PBC. The 232 cluster with APBC, on the
other hand, is identical to the single site cluster~which has
the maximumTc) by virtue of the symmetry of the squar
lattice.27 Similarly, the 434 cluster with APBC is by sym-
metry identical to the 232 cluster with PBC. But once we
go to cluster sizes beyond this such identifications are
longer possible. Concurrently, theTc’s of the clusters also
depend less and less on the boundary conditions~of course,
boundary conditions are irrelevant in the thermodynam
limit !. For 636 clusters the difference is down to about 5%

C. Energy, entropy, and specific heat

The DCA differs from the DMFA through the introduc
tion of nonlocal dynamical correlations. For example, in t
FKM, the DCA exhibits fluctuations associated with char
ordering that are absent in the DMFA. To illustrate this, w
calculated specific heat divided by the temperature show
Fig. 11, using a recently developed maximum-entro
method.28 The DMFA (Nc51) result displays a single pea
in C/T associated with the suppression of local charge fl
tuations and the formation of the Mott gap in the sing
particle density of states~Fig. 6!. As shown in the inset to
Fig. 11, the integrated weight in the peak is 0.69' ln(2);
however, the infinite temperature entropy*0

`(C/T)dT
52 ln(2) for the half-filled model. Thus, only half of th
entropy is quenched, with the remainder associated with
disorder innf ; i.e.,nf50 or nf51 with equal probability on
each site whenNc51, regardless of the configurations o
neighboring sites. However, whenNc54, C/T displays an
additional lower-temperature peak slightly belowT5Tc .
We believe this peak is due to critical fluctuations associa
with charge ordering.

To test the identification of the two peaks seen in t
DCA specific heat, we plotC(T) for a variety of values ofU
when Nc54 in Fig. 12. The location of the upper peak in
creases monotonically withU, consistent with the associa
tion of this peak with local charge flucuations. However, t
location of the lower peak does not depend monotonically
U, but rather changes in rough proportion to the CDW
dering temperature shown in Fig. 9. Similar results ha
been obtained in Ref. 20, though we want to point out tha

s-
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our case the position of the lower peak is belowTc for the
given parameters. The rise of this lower peak withU for low
U ~below the maximumTc and the opening of the Mott gap!
is similar to the half-filled Hubbard model.29

The total entropy in these lower peaks can be substan
For example, when U58, the entropy S(T8)

5*0
T8

dT@C(T)/T# in the lower peak is 0.41 whereas that
the upper peak is 0.69' ln 2. Thus, the fluctuations assoc
ated with charge ordering quench most of the entropy nee
to form a proper ground state withS50.

FIG. 11. Specific heat versus temperature for one- and four
clusters calculated with exact enumeration whenU58. For Nc

51, there is a single peak with integrated weight ln(2) associa
with the suppression of local charge fluctuations. ForNc54, there
is an additional peak at lower temperatures associated with cri
fluctuations near the charge ordering transition temperature.Tc for
Nc54 is indicated by an arrow. The entropyS(T8)

5*0
T8

dT@C(T)/T# is shown in the inset divided by ln(2).

FIG. 12. Specific heat versus temperature for four-site cus
calculated with exact enumeration. The position and height of
lower peak, associated with charge ordering, is nonmonotonic inU.
For smallU the peak rises and moves to higher temperatures,
largeU the trend is opposite. This tracks the behavior ofTc with U.
The upper peak, associated with local~Mott! charge fluctuations,
moves higher temperatures and becomes more pronouncedU
increases.
al.

ed

VII. CONCLUSIONS

We described in detail the recently introduced9 dynamical
cluster approximation~DCA! and explained its assumption
and approximations. The DCA systematically introduc
nonlocal corrections to the DMFA. The DMFA is recovere
by taking the cluster to be a single site, whereas the ex
result is obtained when the cluster becomes large. We h
shown explicitly that the DCA is causal, systematic, andF
derivable. Furthermore, as the cluster size increases, it
tematically restores momentum conservation neglected in
DMFA. Consequently, the DCA becomes conserving in
thermodynamic limit. We have applied it to an exact en
meration and quantum Monte Carlo study of the tw
dimensional Falicov-Kimball model and discussed the d
sity of states and the spectral function, including th
causality and cluster size dependence. A pseudogap ope
the density of states at intermediate interactions as the t
perature is lowered, a single-particle precursor of the CD
transition at lower temperature. The phase diagram c
verges monotonically with cluster size, with the notable e
ception of the 232 cluster. The CDW transition temperatu
scales linearaly in the inverse linear dimension of the clus
as expected for a system in the 2D Ising model universa
class. The specific heat clearly displays the critical fluct
tions associated with the phase transition, in contrast to
dynamical mean-field theory where such nonlocal fluct
tions are absent.
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APPENDIX A: TWO-PARTICLE PROPERTIES

Here we discuss the calculation of the lattice two-parti
properties, such as spin and charge susceptibilities, in te
of the two–particle quantities on the cluster. This is a sub
issue which requires some formal discussion of what qu
tities from the cluster and lattice should and should not
employed. We will show using the ‘‘Baym-Kadanoff’’ for
malism that there is a unique construction for which the s
ceptibities correspond to the second derivatives of the co
sponding extremal free energy with respect to external fie
This optimal choice corresponds to employing only the ir
ducible quanties from the cluster when constructing th
susceptibilites.

1. Lattice quantities and matrix notation

As discussed in standard texts on quantum many-b
theory, the charge and spin susceptibilities at wave vectoq
and frequencyin can be calculated from the two-partic
Green functionsx as
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S x̃ch~q,in!

x̃sp~q,in!
D 5

~kBT!2

N2 (
kk8nn8,ss8

xq,in,ss8~kivn ;k8ivn8!

3S 1

ss8
D , ~A1!

where x is the appropriate Matsubara frequency Four
component of̂ Tt ck1qs

† (t) cks (t8) ck82qs8
† (t9)ck8s8(t-)&.

In diagrammatic perturbation theory,x gets related to the
one-particle irreducible vertex functionT(2) or the particle-
hole irreducible vertex functionG in the standard way as

xq,in5xq,in
0 1xq,in

0 Tq,in
(2) xq,in

0 ~A2!

5xq,in
0 1xq,in

0 Gq,inxq,in . ~A3!

Here, a matrix notation, regardingxq,in , Tq,in
(2) , andGq,in as

matrices with row and column indices labeled by (kivns)
and (k8ivn8s8), respectively, has been used to compac
the equations. (qin) constitute passive, parametric labels f
these matrices. The bare two-particle Green functionxq,in

0 is
the diagonal matrix given by

xq,in,ss8
0

~kivn ;k8ivn8!5Ndss8dnn8dkk8Gs~k,ivn!

Gs~k1q,ivn1 in!. ~A4!

From the above it follows that

@xq,in#215@xq,in
0 #212Gq,in , ~A5!

@Tq,in
(2) #215@Gq,in#212xq,in

0 . ~A6!

For completeness, these equations may be diagonalize
the spin label to yield the more familiar forms

@xa,q,in#215@xq,in
0 #212Ga,q,in , ~A7!

@Ta,q,in
(2) #215@Ga,q,in#212xq,in

0 , ~A8!

where a denotes either the spin or charge channel (sp or
ch), andGsp5Gs,2s2Gs,s andGch5Gs,2s1Gs,s .

2. Cluster quantities

On the cluster, the two-particle Green functions and v
tex functions are calculated at the cluster momentaQ,K ,K 8;
which we denote byxQ,in

c ,xQ,in
0c ,TQ,in

(2)c , and GQ,in
c , where

now the matrix labels correspond to (K ,ivn ,s) and
(K 8,ivn8 ,s8) ~momenta confined to the cluster moment!.
These are then related to each other by the same equatio
Eqs. ~A5! and ~A6!, except that the lattice momentaq are
replaced by the cluster momentaQ. In a diagrammatic per-
turbation theory treatment of the cluster problem,GQ,in

c is
calculated approximately as a function of the cluster pro
gators. In other treatments of the cluster, such as QMC,
calculatesxQ,in

0c andxQ,in
c and infersGQ,in

c by using the ana-
log of Eq. ~A5! in reverse as

GQ,in
c 5@xQ,in

0c #212@xQ,in
c #21, ~A9!

and thenTQ,in
(2)c using the analog of Eq.~A6!. Both lattice and

cluster quantities are now uniquely defined.
r

in

r-

s as

-
ne

3. Coarse-grained quantities

We now define coarse-grained two-particle Green fu
tion x̄, the equivalent ofḠ for the single-particle Green
function. For this purpose, we writeq5Q1q̃, k5K
1 k̃, k85K 81 k̃8, etc., whereQ,K ,K 8 are cluster momenta
and q̃,k̃,k̃8 are inside the corresponding momentum cellsx̄
is then given by

x̄Q1q̃,in[x̄Q1q̃,in,ss8~K ,ivn ,;K 8,ivn8!

5
Nc

2

N2 (
k̃k̃8

xQ1q̃,in,ss8~K1 k̃,ivn ;K 81 k̃8,ivn8!,

~A10!

where the first equation again shows the matrix notati
Similarly x̄Q1q̃,in

0 is the diagonal matrix with entries give
by

x̄Q1q̃,in,ss8
0

~K ,ivn ;K 8,ivn8!

5Ncdss8dKK 8dnn8FNc

N (
k̃

Gs~K1 k̃,ivn!

3Gs~K1 k̃1Q1q̃,ivn1 in!G . ~A11!

For the purposes of calculatingx̃ch(Q1q̃,in) and x̃sp(Q
1q̃,in), it is enough to computex̄Q1q̃,in , since

S x̃ch~Q1q̃,in!

x̃sp~Q1q̃,in!
D 5

~kBT!2

Nc
2 (

KK 8nn8,ss8
x̄Q1q̃,in,ss8

3~K ivn ;K 8ivn8!S 1

ss8
D . ~A12!

For the single-particle Green function we hadḠ5Gc, since
in that case the coarse graining is done with theexternal
momentum. For the two-particle case, the above-defi
coarse-grained quantities arenot identical with xQ,in

c and
xQ,in

0c . The coarse-grained quantities are defined for all
ternal lattice momentaq, not just the cluster momentaQ.
However, the matrix size is determined by the number
cluster momenta rather than the~infinite! number of lattice
momenta. As we will see below, this is a significant nume
cal simplification, since the calculation of the susceptibiliti
can be reduced to the solution of a set of linear equati
defined on the cluster momenta instead of the moment
the infinite lattice.

4. Two prescriptions

Two different prescriptions for computingx̄ out of cluster
quantities suggest themselves~a third possibility, approxi-
mating x̄Q1q̃,in by xQ,in

c , is obviously too crude to be dis
cussed further!. The first one corresponds to replacin
TQ1q̃,in,ss8

(2) (K1 k̃,ivn ;K 81 k̃8,ivn8) by TQ,in,ss8
(2)c (K ,ivn ;

K 8,ivn8) in the expression forx̄Q1q̃,in derived from Eq.
~A2!. We then get the equation
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x̄Q1q̃,in>x̄Q1q̃,in
0

1x̄Q1q̃,in
0 TQ,in

(2)c x̄Q1q̃,in
0 . ~A13!

This means we have identified thereducible two-particle
vertex T(2) of the cluster and the lattice at the cluster m
menta.

The second prescription, that we argue below is thecor-

rect prescription, is to replaceGQ1q̃,in,ss8
(2) (K1 k̃,ivn ;K 8

1 k̃8,ivn8) by GQ,in,ss8
(2)c (K ,ivn ;K 8,ivn8) in the integral

equation forx̄Q1q̃,in derived from Eq.~A3!. This leads to the
equation

x̄Q1q̃,in>x̄Q1q̃,in
0

1x̄Q1q̃,in
0

GQ,in
c x̄Q1q̃,in , ~A14!

whence

x̄Q1q̃,in5~@ x̄Q1q̃,in
0

#212GQ,in
c !21. ~A15!

Here, we have identified theirreducible two-particle vertex
G of the cluster and the lattice at the cluster momenta. Eit
Eqs.~A13! or ~A15! can then be used in Eq.~A12! to com-
putex̃ch andx̃sp . At this stage it is not clear which prescrip
tion is better or whether both could be feasible approxim
tions. We will now show that internal consistency andF
derivability in the Baym-Kadanoff sense do single out t
second prescription, Eq.~A15!.

5. Relation to F derivability

The Baym-Kadanoff11 F functional is diagrammatically
defined as

F~G!5(
l

pl tr@Ss
l Gs#. ~A16!

The trace indicates summation over frequency, moment
and spin. Here,Ss

l is the set of irreducible self-energy dia
grams ofl th order in the interaction,Gs is the dressed Gree
function related toSs and the bare lattice Green functionGs

0

via the Dyson equationGs
215Gs

0212Ss , andpl is a count-
ing factor equal to the number of occurrences ofGs in each
term ~for Hubbard-like models,pl51/l ). The free energyI
can be expressed in terms of the ‘‘linked cluster expansio
W asI52kBTW with

W5F~G!2tr@SsGs#2tr ln@2Gs#. ~A17!

With the above definitions it holds thatSs5dF/dGs , as
required for a ‘‘F-derivable’’ theory, and the free energy
stationary under variations ofG. In addition, the irreducible
vertex function is obtained by a second variation ofF,
Gs,s85d2F/(dGsdGs8)5dSs /dGs8 .

The DCA can be microscopically motivated by our choi
of the Laue functionDDCA in Eq. ~9!. The effect of the
chosen Laue function is the replacement of theSs andGs,s8
by the corresponding coarse-grained quantities~indicated by
the bars!. For example, consider the relationS5T(2)G ~or-
der by order in the diagrammatic series!. The vertices con-
necting the Green function toT(2) do not preserve momen
tum within the cells about the cluster momentum due to
DCA Laue function. Consequently, the lattice Green fun
tion Gs is replaced by the coarse-grained Green funct
Ḡs . The external momentum label (k) of the self-energy is
-

er

-

,

’’

e
-
n

in principle still a lattice momentum; however, the se
energy will only depend through the functionM (k) on k. If
we use this self-energy in, e.g., the calculation of its con
bution to theF functional, the Laue function on the vertice
will ‘‘reduce’’ both the self-energy as well as the diagra
closing Green function to their corresponding coarse-grai
expressions. Consequently, the DCAF functional reads

FDCA~G!5(
l

pl tr@S̄s
l Ḡs#. ~A18!

In correspondence to the lattice system,

dFDCA

dḠs

5S̄5
dFDCA

dGs
, ~A19!

where the second equality follows since the variationd/dGs

corresponds to cutting a Green-function line, so th
dḠsK /dGs8k85dK ,M (k8)ds,s8 . It follows that the DCA es-
timate of the lattice free energy isIDCA52kBTWDCA ,
where

WDCA5FDCA2tr@SsGs#2tr ln@2Gs#. ~A20!

Now WDCA is stationary with respect toGs ,

dIDCA /dGs52S̄s1Ss50, ~A21!

which means thatS̄s is the proper approximation for th
lattice self-energy corresponding toFDCA .

The susceptibilities are thermodynamically defined as s
ond derivatives of the free energy with respect to exter
fields. NowFDCA(G) and S̄s , and henceIDCA depend on
these fields only throughGs andGs

0 . Following Baym11 it is
easy to verify that, the prescription~A12!1~A15!, with

Gs,s8'Ḡs,s8[dS̄s /dGs8 , ~A22!

yields the same estimate that would be obtained from
second derivative ofWDCA with respect to the applied field
For example, the first derivative of the partition functio
WDCA with respect to a spatially homogeneous external m
netic fieldh is the magnetization,

m5tr@sGs#. ~A23!

The susceptibility is given by the second derivative,

]m

]h
5trFs ]Gs

]h G . ~A24!

We substituteGs5(Gs
0212S̄s)21, and evaluate the deriva

tive,

]m

]h
5trFs ]Gs

]h G5trFGs
2S 11s

]S̄s

]Gs8

]Gs8
]h D G , ~A25!

where ]m/]h5x̃sp(q50, in50). If we identify xs,s8
5s(]Gs /]h) and xs

05Gs
2 , collect all of the terms within

both traces, and sum over the cell momentak̃, we obtain the
two-particle Dyson’s equation
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2~ x̄s,s2x̄s,2s!52x̄s
012x̄s

0~Ḡs,s2Ḡs,2s!~ x̄s,s2x̄s,2s!
~A26!

which is equivalent to Eq.~A15!. We see that indeed it is th
irreducible quantity, i.e., the vertex function, for which clu
ter and lattice correspond.

In summary, the choice of the Laue function and the
quirement of aF-derivable theory ultimately determine th
way lattice properties are constructed out of cluster prop
ties. The usefulness of the DCA lies in the fact that both
single- and the two-particle irreducible properties (S̄ andḠ)
can be determined from the cluster problem, i.e.,S̄5Sc and
Ḡ5Gc. Note that although this construction is unique andF
derivable, because of the partial violation of momentum c
servation at each internal vertex described byDDCA certain
Ward identities will be violated in any dimension, even f
the single-site cluster~DMFA! appropriate inD5`. This
will be discussed in Appendix D.

APPENDIX B: DCA FOR PROBLEMS WITH EXTENDED
RANGE OR ELECTRON-PHONON INTERACTIONS

In this appendix we present an extension of the DCA
problems with extended range interactions, such as in
extended Hubbard model.

Consider the partition function for such a model written
terms of Fermionic functional integrals:

Z5E
cc†

exp2E
0

b

dtF(
i j

ci
†~t!$~]t2m!d i j 2t i j %cj~t!

1U(
i

n̂i↑~t!n̂i↓~t!1
1

2 (
iÞ j

(
ss8

Vi j n̂is~t!n̂ j s8~t!G .

~B1!

By introducing a real, continuous Hubbard-Stratonov
field f i(t) which couples to the local charge densityn̂i

[(sn̂is , we can write

Z5E
cc†
E

f
exp2E

0

b

dtF(
i j

ci
†~t!$~]t2m̃ !d i j 2t i j %cj~t!

1Ũ(
i

ni↑~t!ni↓~t!1
Ṽo

2

2 (
i j

f i~t!~Ṽ!21
i j f j~t!

1Ṽo(
i

f i~t!n̂i~t!G . ~B2!

Here,Ṽi j 5Ṽod i j 2Vi j with Ṽo so chosen as to makeṼ posi-
tive definite ~and hence invertible!, Ũ5(U1Ṽo), and m̃

5m2 1
2 Ṽo . For example, for the extended Hubbard mod

with nearest-neighbor interaction of strengthV, Ṽo5zV,
wherez is the coordination number of the lattice.

Now it is straightforward to devise the DCA for thi
coupled Fermion-boson problem. The cluster problem
need to solve corresponds to the functional integral given
-

r-
e

-

o
e

l

e
y

Zc5E
cc†
E

f
exp2F E

0

b

dtE
0

b

dt8(
i j

$ci
†~t!G i j

21~t2t8!

3cj~t8!1f i~t!D i j
21~t2t8!f j~t8!%

1E
0

b

dt(
i

$Ũn̂i↑~t!n̂i↓~t!1Ṽ0f i~t!n̂i j ~t!%G .
~B3!

The cluster problem is to be treated by some technique
obtain the cluster propagators and self energies:Gc(K ),
Sc(K ) for the electrons andDc(Q), Pc(Q) for the fieldf,
at cluster momentaK andQ. One has the Dyson equation

@Gc~K !#215G 21~K !2Sc~K !, ~B4!

@Dc~Q!#215D 21~Q!2Pc~Q!, ~B5!

where the frequency arguments have been suppresse
convenience.

The self-consistent embedding of the above cluster in
effective medium defined by the rest of the sites of the or
nal lattice is obtained by assuming thatSc(K ), andPc(Q)
represent good approximations to the~coarse-grained aver
ages of the! lattice self-energies, and thatGc(K ) andDc(Q)
must equal the coarse-grained averages of the correspon
lattice Green functions

Gc~K !5Ḡ~K ![(
k̃

1

ivn1m̃2e k̃1K2Sc~K !
, ~B6!

Dc~Q!5D̄~Q![(
q̃

1

ṼQ1q̃
21

2Pc~Q!
. ~B7!

Thus, the self-consistency loop is closed by recalculat
GK

21 andDQ
21 using the Dyson equations backwards as

G 21~K !5Ḡ21~K !1Sc~K !, ~B8!

D 21~Q!5D̄21~Q!1Pc~Q!. ~B9!

We note that for the one-site cluster, the resulting DMF
does not correspond to the approximation resulting fr
scalingV asV* /d ~whence in theD→` limit only the Har-
tree contribution toS survives!, but is a rather different ap
proximation which includes local dynamical charge fluctu
tions and local screening effects.8 It is formally similar to the
problem obtained in the DMFA of the Holstein-Hubba
model. Correspondingly, the DCA for this latter model c
be formulated analogously to the above.

APPENDIX C: PROOF OF CAUSALITY

In this appendix we prove that the DCA formally pre
serves the condition of positive semidefiniteness of
single-particle spectral functions. The proof requires that
cluster problem is solved by methods that preserve caus
~exact enumeration, QMC, etc.!. For simplicity of notation
the proof is explicitly given for Hubbard-like models, but
can be easily generalized to the PAM, multiband models
models with nonlocal interactions.
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Most steps of the DCA algorithm are easily seen to p
serve the causality property. We assume a causalG, so that
2Im G.0, as a starting point of the iteration. If the meth
to solve the cluster problem preserves causality the resu
cluster Green functionGc will also be causal. With Dyson’s
equation we obtain a causal cluster self-energy. This s
energy is also assumed to be the lattice self-energy of
infinite lattice at the cluster momenta. Therefore, the latt
Green function@the summand of Eq.~2!# is also causal. As
the coarse-grained Green functionḠ is obtained by an aver
age of causal Green functions it must be causal, too.

The nontrivial step is to show that Eq.~3! does not lead to
an acausalG for the next iteration. The spectral function ofG
will be positive semidefinite if

Im@Ḡ~K ,v!21#>2Im Sc~K ,v!. ~C1!

We write Ḡ(K ,v) as Ḡ(K ,v)5(Nc /N)( k̃@zK1 k̃(v)#21

with zK1 k̃(v)5xk̃(K ,v)1 ia(K ,v). Now zK1 k̃(v) is the
inverse of our estimate of the Green function of the infin
lattice with a real partxk̃(K ,v)5v2eK1 k̃2Re Sc(K ,v)
and an imaginary parta(K ,v)52Im Sc(K ,v), with
a(K ,v) a positive semidefinite function ofK and v but
independent ofk̃. Graphically, the proof of Eq.~C1! is illus-
trated in Fig. 5.

We now proceed to show the validity of Eq.~C1! in a
rigorous fashion. To simplify notation we will suppress t
common indicesK and v. We also specify to the retarde
Green functions withv→v1ıh with positive infinitesimal
h. The sum overk̃ in the definition of Ḡ runs over n
5N/Nc terms. Each term is a complex number with a po
tive definite imaginary parta that isindependentof the sum-
mation index. Equation~C1! is now cast into the following
proposition.

Proposition.For j 51, . . . ,n, let zjPC, whereC is the
set of complex numbers, and Im(zj )5a.0. If

Ḡª

1

n (
j 51

n
1

zj
then Im~Ḡ21!>a,

with equality if and only ifz15•••5zj5•••5zn .
Proof. If w5u1 iv51/z with z5x1 iy , then the line

Im z5a in the extendedz plane, given by

Im~z!5y5a5
2v

u21v2
,

is mapped in a one-to-one fashion onto the circle

u21S v1
1

2aD 2

5S 1

2aD 2

in the extendedw plane, with center2 i /2a and a radius of
r 51/2a. It follows that Ḡ lies on or inside this circle,

UḠ2S 2 i

2a D U51

nU(j 51

n S 1

zj
1

i

2aDU< 1

n (
j 51

n U 1

zj
1

i

2aU5 1

2a
,

~C2!
-

g

lf-
e

e

-

where we have used the triangular inequality. The biject
functionz51/w maps a pointw strictly inside the circle to a
point z with Im(z).a ~and conversely!

Im z5
2v

u21v2
.a

if and only if

u21S v1
1

2aD 2

,S 1

2aD 2

.

Hence, Im(Ḡ21)>a, where equality holds if and only ifz1
5•••5zj5•••5zn .

Because of the infinitesimalh we hada.0 for the above
proof. However, if ImSc(K ,v)50, the resulting imaginary
part of G is proportional to2h. This is the case, e.g., fo
frequencies larger than the bandwidth. Hence, the bandw
of G is identical to the bandwidth ofḠ andGc, i.e., there is
no band broadening induced by the coarse-graining pro
dure.

Generalization to multiband models such as the PAM
straightforward. Without going into the details of the mod
we note that there are two species of fermions which
coupled by on-site hybridization. Thed electrons are itiner-
ant and noninteracting, whereas thef-electrons are localized
~no bare hopping! and have a Hubbard interaction. Th
f-electron Green function has two self-energies, from
Hubbard interaction and the hybridization, respectively. B
self-energies are causal~negative semidefinite and decayin
like 1/v). In contrast to the Hubbard self-energy the se
energy due to the hybridization is known explicitly and do
depend on all the lattice momenta, therefore also on thk̃
momenta in the cells about the cluster momenta. For a gi
K and v the imaginary part of this self-energy is bound
from above by some value2bmin(K ,v). Consequently, we
can prove in analogous fashion that

Im@Ḡf~K ,v!21#>a~K ,v!1bmin~K ,v!,

where2a(K ,v) is the self-energy due to the Hubbard inte
action of thef electrons.

A last remark on the possibility of self-energy interpol
tion is in order here. At first glance one might try to improv
the calculation by employing an interpolation of the clus
self-energy between the cluster momenta in the coa
graining step, Eq.~2!, rather than using the ‘‘rectangular’
approximation for the lattice self-energyS(K1 k̃,v)
'Sc(K ,v). However, as one can easily convince ones
given the above proof,any interpolation scheme will violate
causality if ImSc(K ,v) has a minimum somewhere in th
BZ. This will generally be so except in the case of the sin
site cluster, in which there is nothing to interpolate. Th
further limits the freedom of the coarse-graining procedu

APPENDIX D: CONSERVATION OF THE DMFA AND
DCA

An approximation which satisfies the various Ward ide
tities is identified as a ‘‘conserving approximation’’ since th
Ward identities are derived from conservation laws. Ba
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and Kadanoff30,11 showed that a sufficient condition to gua
antee that an approximation is conserving is for it to beF
derivable and self-consistent. Energy, particle number,
momentum are also assumed to be conserved at each int
vertex, which may be assured by properly constructing
diagrams from the lattice propagatorGk using well-known
Feynman rules. Specifically, the functionalF„G(k,v),U… is
a set of closed graphs formed from the lattice propaga
G(k,v) and interactionsU. The one- and two-particle self
energies are calculated from functional derivatives
F„G(k,v),U…, S(k,v)5dF/dG(k,v), Gs,s8
5d2F/dGsdGs8 . The equation S(k,v)5dF/dG(k,v)
must be solved self-consistently untilG(k,v) converges. As
an additional consequence, Baym showed that quantities
culated within such an approximation were unique.

In the infinite-dimensional formalism of Metzner an
Vollhardt momentum conservation is violated at internal v
tices. Consequently,F is a functional of the local propagato
Gii (v) rather than the lattice propagatorG(k,v), and the
corresponding self-energies are obtained from functio
derivatives ofF„Gii (v),U… and are therefore also loca
However, we may also expect violations of some co
servation laws. If a properF„G(k,v),U… is taken, all non-
local diagrams which are higher order in 1/D vanish, so
that F„G(k,v),U…5F„Gii (v),U…1O(1/D). Each func-
tional derivative with respect to the Green function brea
an internal line and so reduces the order of the a
roximation by AD.15 It follows then that the self-energ
is also local dF„G(k,v),U…/dG(k,v)5S„G(k,v),U…

5S„Gii (v),U…1O(1/AD). However, a problem emerges
the two-particle, or higher, level sinceG„G(k,v),U…

5G„Gii (v),U…1O(1) for anyD, with the difference due to
needed nonlocal corrections. Equivalently, ifF is evaluated
in the limit D→` before the functional derivatives ar
evaluated, thenG„G(k,v),U…5G„Gii (v),U…; however, if
the order is reversed, then corrections of order unity
required.31 Thus, due to the lack of momentum conservatio
the DMFA does not provide a unique prescription for t
calculation of two-particle properties and thus it need not
conserving.

For example, the equation of continuity,¹•J2]r/]t50,
which describes charge conservation by electric curre
yields the original Ward10 identity

inaL02q•L5S~k1q,ina1 ivn!2S~k,ivn!, ~D1!

whereL0 andL are the scalar and vector components of
dressed vertex function such that

L0~k,q,ivn ,ina!5
T

N (
k8,n8

G~k8,ivn8!G~k81q,ivn81 ina!

3Tq,ina

(2) ~k,ivn ;k8,ivn8! ~D2!

and

q•L~k,q,ivn ,ina!5
T

N (
k8,n8

~ek81q2ek8!G~k8,ivn8!

3G~k81q,ivn81 ina!

3Tq,ina

(2) ~k,ivn ;k8,ivn8!. ~D3!
d
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e
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,

e
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Here T(2) is the corresponding particle-hole reducible tw
particleT matrix

Tq,ina

(2) 5Gq,ina

ph ~12xq,ina

0 Gph!21,

and Gph5Gs,s1Gs,2s is the particle-hole irreducible
two-particle self-energy, with (k,ivn) and (k8,ivn8) as
the matrix indices, andx0 is the diagonal matrix with
entries xq,ina

0 ( ivn ,ivn8)[Ndnn8dkk8G(k,ivn)G(k1q,ivn

1 ina), and ek8 the bare electronic dispersion. The corr
sponding diagrams are illustrated in Fig. 13.

When this formalism is applied as the DMFA in finit
dimensions, the conservation of Ward identities does not
low from the arguments of Baym and Kadanoff. If we wri
down a properF„G(k,v),U…, the only way to obtain the
local generating functionF„Gii (v),U… used in the DMFA is
to ignore momentum conservation within each graph a
sum over each internal momenta independently. This cle
violates the requirement for a conserving approximation t
momentum be conserved at each internal vertex,11 so the
conserving property of the theory is lost.

This can be seen from a direct examination of War
original identity, i.e., the Ward identity, Eq.~D1!, is not sat-
isfied for a generalq except whenina is zero. To see this
note that from Eqs.~D2! and ~D3! and some simple algebr
one can write

inaL02q•L5
T

N (
k8,n8

@$G~k8,ivn8!2G~k81q,ivn81 ina!%

1$S~k81q,ina1 ivn!2S~k8,ivn!%

3G~k8,ivn8!G~k81q,ivn81 ina!#

3Tq,ina

(2) ~k,ivn ;k8,ivn8!. ~D4!

Specializing now to the DMFA, the required Ward identi
can be written as

S~ ina1 ivn!2S~ ivn!

5
T

N (
j ,n8

@$Gii ~ ivn8!2Gii ~ ivn81 ina!%d i j

1$S~ ina1 ivn!2S~ ivn!%

3exp~ iq•r i j !Gi j ~ ivn8!

3Gji ~ ivn81 ina!#Tq,ina

(2) ~ ivn ,ivn8!, ~D5!

where we have used the DMFA in the second step and
sumed thatS and Gph are momentum independent, s
Tq,ina

(2) 5Gina

ph (12xq,ina

0 Gina

ph )21 has only the momentum de

pendence it inherits fromxq,ina

0 . Clearly, whenina is zero,

FIG. 13. Definition of inaL0 and q"L. Here, each solid line
is a full lattice propagatorG(k,v), the filled box is the full particle-
hole reducible two-particleT-matrix, and the filled circle • isina or
ek1q2ek for ina L0 or q"L, respectively.



-

th

d
rd

tiv
er

,

e
no
ed.
ers

a-
se
lf-

iva-

rd
is

PRB 61 12 755DYNAMICAL CLUSTER APPROXIMATION: NONLOCAL . . .
the right-hand side~RHS! vanishes for arbitraryq and the
Ward identity is satisfied. But whenina is nonzero, the sec
ond term on the right-hand side has a nontrivialq depen-
dence in general, and the Ward identity is violated since
left-hand side~LHS! of Eq. ~D5! is q independent.

Even in theD→` limit the Ward identity is not always
satisfied. From the form of Eq.~D5! it is clear that the Ward
identity is only satisfied when

xq
0~ ivn,ina![~1/N!(kG~k,ivn!G~k1q,ivn1 ina!

5x i i
0 ~ ivn,ina![Gii ~ ivn!Gii ~ ivn1 ina!.

This is true for a generic q where X(q)
5(1/D)( l cosql50.15 Then, the nonlocal parts of the secon
term in the RHS of Eq.~D5! can be neglected, and the Wa
identity, which now involves only the localS, G and G is
exactly satisfied, as can be directly shown from the effec
single site problem using equations of motion. Howev
e
,

e
rn

t,
di
en

nt
r

th

6

x

d

e

e
,

there is a set ofq of measure zero within the Brillouin zone
which unfortunately includes the valuesq50 and q
5(p,p, . . . ), for which X(q) is finite and xq

0( ivn ,ina)
Þx i i

0 ( ivn ,ina), with corrections of order unity. For thes
values ofq the nonlocal parts in the second term can
longer be discarded, and the Ward identity is again violat
Consistent with this observation one may show to all ord
in perturbation theory that nonlocal corrections to theD
5` two-particle self-energy remain finite for a set of me
sure zero points in the Brillouin zone. Apparently, for the
points, the nonlocal corrections to the two-particle se
energy are needed to satisfy the Ward identity, or, equ
lently, the theory is only conserving if the limit asD→` is
evaluated only after the functional derivatives ofF ~e.g.,
Gs,s85d2F/dGsdGs8) are evaluated.32

In a similar way, one may explore violation of the Wa
identities by the DCA. The required Ward identity in th
case can be written as
Sc~K1Q,ina1 ivn!2Sc~K ,ivn!5
T

N (
K8,k̃,n8

@$G~K 81 k̃,ivn8!2G~K 81 k̃1Q1q̃,ivn81 ina!%

1$Sc~K 81Q,ina1 ivn!2Sc~K 8,ivn!%G~K 81 k̃,ivn8!G~K 81 k̃1Q1q̃,ivn81 ina!#

3TQ1q̃,ina

(2)c
~K ,ivn ;K 8,ivn8!, ~D6!
of
ap-

-
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where we have used the DCA in assuming thatS andG are
dependent only on the cluster momenta, andT(2)c is defined
in Appendix A. Now it is clear that, to the extent that th
RHS depends onq, the Ward identity will not be satisfied
even in the static case.

However, the DCA will be conserving in the limit of larg
cluster size, since momentum conservation at the inte
vertices is restored~with corrections of orderDk). Here, we
assume that the method used to solve the cluster is exac
that if an approximate methods used, that the correspon
self-energy diagrams are formed from derivatives of a g
erating functional and employ fully dressed propagators@i.e.,
Ḡ(k,v), not G(k,v)] so that we approximateF„G(k,v)…
'F„Ḡ(k,v)…. Then, the DCA is conserving to the exte
that Gq(k,k8) and Sk are well approximated by the cluste
quantities. SinceG5Gc1O(Dk2) andS5Sc1O(Dk2), the
DCA is able to restore the conservation properties lost in
al

or
ng
-

e

DMFA when Dk5p/L→0 with corrections of order
O(Dk2).

In this appendix we have shown that due to violations
momentum conservation, the DMFA is not a conserving
proximation in any dimensionD. Violations of Ward’s origi-
nal identity also emerge for the DMFA even whenD→` for
a vanishingly small set of momentaq which includesq50,
but not for general momentaq. There are concomitant req
uisite nonlocal corrections to the infinite-dimensional irr
ducible vertex functions for a set of measure zero points
the infinite-dimensional Brillouin zone which are necessa
to restore the Ward identity for allq. In finite dimensions,
the DMFA violates conservation in a finite fraction of th
Brillouin zone due to the lack of momentum conservation
the internal vertices of the generating functional. Moment
conservation is restored by DCA systematically as the clu
size increases, and so the DCA restores the conserving n
of the approximation.
s
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