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We recently introduced the dynamical cluster approximat@@A), a technique that includes short-ranged
dynamical correlations in addition to the local dynamics of the dynamical mean-field approximation while
preserving causality. The technique is based on an iterative self-consistency scheme on a finite-size periodic
cluster. The dynamical mean-field approximatiemact resultis obtained by taking the cluster to a single site
(the thermodynamic limjt Here, we provide details of our method, explicitly show that it is causal, systematic,

& derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by
applying it to a quantum Monte Carlo and exact enumeration study of the two-dimensional Falicov-Kimball

model. The resulting spectral functions preserve causality, and the spectra and the charge-density-wave tran-
sition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.

I. INTRODUCTION field 22 The resulting dynamical mean-field thediMFT)
is exact in infinite dimensions and has been use to establish

Strongly correlated-electron systems have been at the cethe thermodynamic properties and phase diagrams of these
ter of theoretical and experimental research interest for sewnodels using quantum Monte Carl@MC) and other
eral decades. This interest was greatly intensified by the disnethods>*®
covery of heavy fermion metals and superconductors, and A similar self-consistent single site theory can be obtained
recently of the highF, superconductors. The observation of by assuminga purely local self-energfand vertex functions
non-Fermi-liquid behavior first in the Cuprates and latereven in finite dimensions. This yields the natural mean-field
even in some heavy fermion systems has given further imtheory for correlated lattice systems and is called the dy-
petus. Away from a transition, these materials are characterramical mean-field approximatiotOMFA). While it has
ized by short-ranged dynamical correlations such as the locédeen shown that this approximation captures many key fea-
correlations responsible for the Kondo effect. In addition, thetures of strongly correlated systems even in a finite-
doped cuprates display short-ranged antiferromagnetic dydimensional context, the DMFA has some obvious and sig-
namical correlations thought to be responsible for pair fornificant limitations. For example, the only dynamical
mation. Some of this physics is captured by the simplestorrelations present are those that may be properly treated on
models of strongly correlated electrons, such as the Hubbaral single site. Therefore, there are no nonlocal dynamical cor-
model (HM) and the periodic Anderson mod@?AM). De-  relations. These are necessary, for example, to describe
spite the short range of the dynamical correlations and nuphases with explicitly nonlocal order parameters or those
merous sophisticated techniques introduced since the incepsth lower symmetry than the lattice, of whiadkwave su-
tion of the models, they remain unsolved. perconductivity is perhaps the most prominent example. But

However, recently Metzner and Vollhardt showatiat  even phases with local order parameferg., commensurate
these models undergo significant simplification in the limitmagnetism will certainly be affected by the nonlocal dy-
of infinite dimensionsP =<. In this limit, provided the ki- namical correlationgspin waveg neglected by the DMFA.
netic energy is scaled as\I?, the self-energy and vertex In addition, as we show in this paper, the DMFA is not a
functions may be taken to be purely local in space althougltonserving approximation, with violations of the Ward iden-
they retain a nontrivial frequency dependence. Consequentlyity associated with current conservatigthe equation of
the HM and PAM can be mapped onto a self-consistentlycontinuity) for any D, including the limitD — .
embedded Anderson impurity problem; i.e., a single corre- Consequently, there have been efforts to extend the
lated site subject to a self-consistently determined energypMFA by inclusion of nonlocal correlations, which would
dependent hybridization with a conduction electron “bath” correspond to I corrections to the self-energy of tH2
or “host” representing the remaining sites of the lattice, or = models®’ These efforts have failed to construct a causal
equivalently(on eliminating this bath to a dynamical mean theory, one that preserves spectral weight and which retains
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positive semidefinite spectral functions, out of nonlocal Solve

Green functions. Such violations of positivity have been seen Impurity }» G .
explicitly and discussed in the work by van DondeBven /‘ Problem m‘\
in the sophisticatedb derivable technique developed by

Schiller and Ingerserityiolations of the sum rules occurred g:((}'~~1+zj1 s— olg
for moderately large values of the interaction strength in the N =g imp
Falicov-Kimball model(FKM).

A different approach by Smith and®llows for the in- G.w=ly 1
corporation of nonlocal interactions in the original Hamil- it N z-g-u-20)
tonian(beyond the Hartree leveby rescaling them with the
same 1{D factor in the limitD= as the kinetic energy.

The resulting self-energy remains local, and the system mapﬁ il . i f i d
to an impurity model coupled to both a Fermionic béthe the two-particle properties, generalize our formalism to mod-

electrons on the hosks well as a bosonic batfthe two- els with extended range interactions, prove that it is causal,

particle interactions While this approach is attractive we and discuss its conserving properties.

believe that this scaling is difficult to justify formally. In

addition, since the resulting effective theory is still a single !l DYNAMICAL MEAN-FIELD APPROXIMATION
site theory, it does not allow one to address some of the
problems discussed above.

In a recent papérwe introduced the dynamical cluster
approximation(DCA), an iterative self-consistency scheme
on a finite-size per_|0d|c _cluster of sidd. It extend_s the near-neighbor electronic hopping integral is rescaled so that
DMFA through the inclusion of short-ranged dynamical Cor-y__p-12 Then, the single-particle Green functi@(r)~t"

relations, remains fully causal, and restores the conservation

D2 and the self-energy becomes a purely local func-
laws of Ward® and Baynt" when the cluster becomes large. .~ o< the local Green ft?r):ction onig. :pz' ,(é vy
The essential approximation of the DCA is to take the irre- VTR

ducible self-energys ¢(K,w) of the cluster as a good ap- which is - momentum _independent(k,w) = ;(«)

proximation to the self-energy of the real system at the cIus—Jr O(1/D). The lattice problem may then be mapped onto a

ter momentz . WhenN,, the number of cluster momenta in self-consistently embedded impurity problem. The resulting

the first Brillouin zone, is relatively small, this approxima- DMFA algorithm, illustrated in Fig. 1, has the following

. LT steps:(1) The procedure starts with a guess , usu-
tion caﬂlonly be JUSt'f'eg if the dself-enerﬁy of thekreal Systemallypze(rtz 2 Tﬁen we calculate the Iogal Iattf:qer(gr)een func-
is weakly momentum dependent. Such a weal momenturp ' ' 1 7

on  Gji(w)=1/NZ[G; " (k,®)—2%;i(w)] *, where

d d i lized in high di igtieere i - : . \ , .
ependence is realized in high dimensigtiere isno mo G,(k,w) is the bare lattice Green function ahdis the (in-

mentum dependence iD==). Then, a coarse grid ok -0 . .
u P i =) gn finite) number of points of the latticé3) Next, we compute

points is sufficient to capture all the short-rangédt non- L ) .
local) dynamics. In low dimensions, the validity of the ap- G(w) which mclud(_es self—energy processes at aII_ Iatt|c_e sites
except at the “impurity” site i under consideration,

proximation is less clear. However, in many correlated sys=""""" “ ) .
tems the momentum dependence of the self-energy is le§s (@) =Gi i (@) +2;(w). This step corresponds to a site

important than its frequency dependence, for example in thExclusion to prevent the overcounting of self-energy dia-
effective-mass corrections arising from interactions in Ferm@rams on sité. §(w) defines the undressed Green function
liquids and the marginal Fermi liquiél(MFL) or nearly an-  ©f & generalized Anderson impurity mode}) We solve the
tiferromagnetic Fermi-liquitf (NAFL) phenomenology of associated impurity problem with some technique, e.g., the
high-T, superconductors. In addition, because of the couQ@MC method, which produceS;, (), the Green function
pling of the cluster to a much larger host, the method allowf the generalized flxnderson impurity modeb) Then

for a systematic finite size study that is likely to convergeii(®@)=G (@)= Gigp(®). % i(w) may be used irf2) to
faster than standard methods such as exact diagonalizatiofPntinue the procedure. The iteration typically continues un-
lattice QMC, and the fluctuation exchange approximafion til Gi (@)= Ginp(w) to within the desired accuracy, and the
(FLEX). procedure may be shown to be completely causal.

In this work we present the first detailed discussion of the This DMFA algorithm may be applied in any dimension,
DCA. The paper is organized as follows: First, we review thebut it is only exact forD = <. In finite dimensions, it is very
DMFA and discuss its limitations. Then, we review the stepgifficult to formulate 1D corrections to the DMFA which
of the DCA and discuss the details of the formalism. Weare both causal and systematic. For example, consider the
then apply the DCA to the half-filled FKM using quantum first nontrivial correction to the self-energy of a Hubbard
Monte Carlo and exact enumeration for the cluster probleninodel on a hypercubic lattice given by the self-energy dia-
to obtain self-energies and Green functions. For simplicitygrams evaluated between nearest-neighbor s#eslj. This
we consider only the single-band model with nearestcontributes a term of orde©(1/\D) to the self-energy
neighbor hopping on a periodic square lattice witlsites.  which  then assumes the formX(k,w)=3%(w)

We demonstrate that the DCA algorithm converges system+ €,2;(w)/t, wheret is the hopping matrix element argl
atically with increasing cluster size and remains fully causalthe bare electronic dispersion. Note that wig[() and/or
We then discuss the results and their implications. In thee, is large, it is possible for the imaginary part of the self-
Appendixes, we provide the formalism needed to calculatenergy Im(k,»)>0, for some f,k). The corresponding

FIG. 1. Sketch of the DMFA algorithm.

The DMFA (Ref. 1) may be derived in any dimension by
disregarding momentum conservation at the internal vertices
of the self-energy® This approximation becomes exact in
the limit of infinite dimensionsD—«, provided that the
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on a set ofN.=LP points within the first Brillouin zone.
Therefore 3 (K +k,w)~3 (K, ®) for eachk within a cell of

®
& \\\ size (m/b)® aboutK, so the lattice self-energy i
) - gy is well ap-
\\EEEEN

proximated by the self-energy*(K) obtained from the clus-

i 7 7/ \\ ter. Similar arguments can be made for the vertex functions
</ / % \: ky as well.
) Next, within the spirit of the same approximation, the
N %,x’ cluster self-energies and vertex functions can be equated
N ~ with the coarse-grained averages the lattice self-energies
k & and vertex functions over these momentum cells around the

cluster momenta. For example, for the self-energy,

2n/L

FIG. 2. The cluster momenta and coarse-graining cells for a
N.=2X2 cluster covering the Brillouin zone of a real two-
dimensional square lattice. The cluster momenta are indicated byhere thek summation runs over thid/N, momenta of the
filled circles, and the cells by different fill patterns. The solid line in ce|| about the cluster momentuiy This assumption is con-
the shape of a diamond is the Fermi surface of the noninteractingjstent with that made in the previous paragraph, and ensures
system at half filling. The cells adjacent to the BZ boundary extengat gl the states of the full system are represented once the
periodically to the opposite side. problem is reduced to the cluster. Similar equations can be

written down for the vertex functions.
qU&SipartiCle excitations grow eXponentia”y in time; a clear The above twdre|ated sets of assumptions Comp|ete|y

— N ~
29K 0) =32 (K,0)=17 2 2(K+ko), (D)
k

violation of causality. prescribe the DCA and ensure that it reduces to an effective,
self-consistently embedded cluster problem for any lattice
IIl. DYNAMICAL CLUSTER APPROXIMATION problem with local interactions. For Hubbard-like models

such as the HM, PAM, and FKM, within a diagrammatic
For this reason we formulated the DCA approach whichframework it is not hard to see that the skeleton graph ex-
includes systematic nonlocal corrections to the DMFA but ispansions for the coarse-grained self-energies and vertex
not systematic in I. Like the DMFA, the DCA is a self- functions defined above are then the same as the skeleton
consistency scheme, although in the DCA the “impurity” is graph expansions on a finite periodic cluster of $ize The
replace by a finite-sized cluster. In Appendix C we prove thatluster Green functiorG¢(K,w) is given by thecoarse-
the DCA is causal, a feature of fundamental importalfice. grained averagef the Green function of the real lattice,
The DCA also restores momentum conservation as well as
the Ward identities systematically as the cluster size becomes _ N,
large. GC(K,w)=G(K,w)=WZ . . :
The general form of the DCA was given in Ref. 9. Here, K o— ekt um 2K, w)
we briefly review the formalism, and then give a more de- @
tailed description of the method and its approximations. FoHere, ¢, is the dispersion for the noninteracting lattice prob-
simplicity, we consider a single-band model with a locallem andu is the chemical potential. The DCA assumption
Hubbard-like interaction on a periodic hypercubic IatticethatE(KJrF 0)~3(K,®) has been explicitly put in for the
with N sites. This is mapped onto a self-consistently embedrattice Gree'n function.,

ded periodic cluster of sizh.=LP. As illustrated in Fig. 2, One can now ask what bare Green functig(i) on the
the corresponding crystal momenaof the cluster are atthe - oster this skeleton graph expansion corresponds to. The

. D . . .
centers of a set ol cells of size (27/L)" inside the first 5 qver is determined by the Dyson equation on the cluster
Brillouin zone (BZ) for the lattice. Although there is consid- used in reverse

erable latitude in the choice &€, we typically choose
=m(2l1/L—1) (wherel is an integer £Il=<L, and « indi- -1 —c-1 c
cate(s spatial)directi()r’r7 G (Kw)=G K, 0)+ 25K, @), @

The crucial assumption of the DCA is that the irreducibleThis step corresponds to a “cluster exclusion” to prevent
self-energy of the clust&°(K,w) and the two-particle irre- overcounting of self-energy contributions from the interac-
ducible vertex functions of the cluster are good approximations on the sites belonging to the cluster, analogous to the
tions to the irreducible self-energy and vertex functions of*site exclusion” of the DMFA (which is the DCA if the
the real lattice for values of the lattice momenta inside thecluster consists of a single site ohlyt is this step that de-
cells around the cluster momenta. This assumption is justitermines the self-consistent embedding of the cluster, since
fied if the momentum dependence of the irreducible selfincludes the effects of self-energy processes at sites of the
energy and vertex functions of the real system is sufficientlyattice other than the cluster sites, and thus has strong retar-
weak; or equivalently, if the dynamical nonlocal correlationsdation effects. The retardation effects can be interpreted in
have a short range<L/2. If this is the case, then, according terms of hybridization of the clustdcells) to “conduction
to Nyquist's sampling theoreff,to reproduce these correla- electron baths'{one for each) analogously to the interpre-
tions in the self-energy and vertex functions, we need onlytation of the single site in DMFA in terms of an Anderson
sample the reciprocal space at an intervah&f~27/L;i.e.,  impurity problem.

1
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Solve Cluster — tex functions, e.g., using a modifie@ where the coarse
(x) Problem . graining overk involves a positive semidefinite weight func-
A & (I;) tion f,,(k,K) which we can choose,
¢ K) =G K)+2(K) Z¢K) =GN K)- G°(K)! o 1 fu(k,K)
b . G(K,w)=5 = —
GK) =Sy — K o—et+u—2%K,w0)
N g w-egyic + - 5(K) _ -
where the sum ok is now over the whole Brillouin zone.
FIG. 3. Sketch of the DCA algorithm. Our choice of

The DCA iteration procedure is now easily prescribed. It
is started by guessing an initid(K,w), usually zero, fw(k'K):NCH ® 7_|kl_Kl| ' ©)
which is used to calculate the coarse-grained Green function
g(K ) using Eq.(2). The cluster problem is then set up whereAk=27/L will reproduce the DMFA if the cluster is

with the bare Green functiofi(K,w) given by Eq.(3) and & single site. In addition, even for larger clusters, the local
interactions on the cluster SitegiC(K ) may then be cal- lattice Green function and the local cluster Green function
culated using any of a variety of methods, including pertur-W'” be |olent|cal given our choice. We note _that the choice
bation theory, QMC, the noncrossing approximation, etc., adw(k,K) =Nd&(k—K) corresponds to evaluating the system

appropriate.(If a skeletal graph perturbation expansion is 2N the finite size cluster without any feedback of the host.
or a cluster of one site this is identical to the atomic limit.

used for the calculation, then the cluster exclusion step mag ) ;
be skipped. For Green-function techniques, such as QMC, ne coulld also imagine forms &f, that allow for overlap of
the cells in the Brillouin zone, such as products of Gaussians.

which produce the fully dressed cluster Green function

G(K,w) rather than the self-energy, the cluster self-energy1OWever, mostf,(k,K) different from the two specified
is calculated as above will lead to a calculation which does not have an ob-

vious physical limit for the case of a single site “cluster.”
SUK,0)=G Y(K,w)—GYK,w) L. (4) The DCA also has a simple diagrammatic interpretation.
_ For Hubbard-like models, the local Hubbdddis unchanged
The iteration closes by calculating a n&(K,w) with Eq. by the coarse graining, and thus the momentum dependence
(2), and the iteration is continued un@®(K,w)=G°(K,w) of each vertex is completely characterizedy the Laue
to within the desired accuracy. The self-consistency loop fofunction,
the DCA is illustrated in Fig. 3.
In analogous fashion we can also provide prescriptions for _ i(Kq— Kot ka—kj) 1
calculating two-particle properties of the lattice from the ir- A(kl’kz‘k3’k4)_2 glffafatiariary, ™
reducible cluster two-particle self-energies vertex func- ) )
tions. Again, the basic assumption is that the momentumVhich expresses the conservation of moméntandks (k,
dependence of the irreducible vertex function of the real lat2NdKa) entering(leaving each vertex. For example, in the
tice is weak. This is elaborated on in more detail in Appen-conventional — diagrammatic ~ approachd (ky,kz ks ,ky)
dix A. =Ny, 1k, k,+k, If we reintroduce the cluster and cell mo-
For lattice problems with nonlocal interactions such as thenenta, such that; =K; +Ri ,i=1,4, then
extended Hubbard model, the problem is first converted into
one that has only local interactions by introducing auxiliary
Hubbard-Stratonovich bosonic fields. The DCA can then be
prescribed in a straightforward way for this interacting

A(k11k2 ,k3 ,k4) — 2 ei(El—E2+E3—E4+ K1—=Ko+Kg—Ky)-r
T

Fermionic-bosonic problem with local interactions. The ef- 1 - - - - N
fective cluster problem will necessarily involve coarse- :NC; m[(kl_k2+k3_k4)'VK1]
grained bosonic Green functions as well. The details are

given in Appendix B. X O +Kg Kyt Ky 8

Within the DCA, only the first term in the sumED0) is
kept so

In this section we provide a detailed discussion of some of
the features of the DCA. We discuss the coarse-graining pro-  Apca(K1.K2,K3,K4) = NcOwk,)+M(ks) M(ky) +M(k,)
cedure and offer a simple diagrammatic interpretation. For
large but finiteD, we show that the DCA includes short- =A(ky,ka,k3,ka) + O(AK),  (9)

ranged dynamical (.:orrelayions without resorting to !\lyquist’s\NhereM(k) is a function which map& onto the momenta
theorem, and we give a simple argument showing its causafzpe|k of the cell containing. Note that with this choice of
ity. Laue function the momenta of each internal leg may be
o freely summed over the cell. Thus, each internal leg
A. Coarse graining G(ky,®) in the diagram is replaced K (M (k,), ) defined
One can think of othefperhaps moread hog prescrip- by Eq.(2). Furthermore, since each external momeatdso
tions for the calculation of the cluster self-energies and verenters the diagram only throug¥ (k), the self-energy be-

IV. DISCUSSION OF THE DCA
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comes momentum independent within each cell, i.e., it ob- T '

tains the coarse-grained form defined in E. and the ap- 05 étj $ 018 ] |

proximation 3 (k,w)~3 (M(k),w) follows as a natural ' @1 OL=6 T

consequence. In the DMFA, the cell momenta extend over _ 4 A\ AL=8 ) e |

the entire Brillouin zone, so thakpyea(ky Ko, kg, ky) =1 ﬁ \ GO0 Tl ]

and momentum conservation is neglecté@hus, the above ? 03 I \

choices of the Laue function serve as microscopic definitions G \ O T s 10

of the DCA, and of the DMFA. To interpret the choice for & 5 | \‘* Linear Dim. L

the DCA, note that small changes in each of the internal & §

momentum labels will not affecApcs. Thus, momentum o1t N U=2

conservation for small momentum transfers less thdn AN T=1

=27-r/Né’D is neglected. However, note that for momentum ol ey ——— O

transfers larger thaldk momentum conservation igar- : : ) ) -

tially) observed at the vertex. Thus, the DCA systematically 0 1 2 3 4 5 6

restores the momentum conservation relinquished by the

DMFA as the cluster size increases. FIG. 4. ReG(x,y=0, 7=0) versusx for various cluster sizes,

obtained from QMC simulations of the FKM. In the inset, @(a

B. Nonlocal corrections =1,y=0, 7=0) is plotted versus cluster sizperiodic clusters of

The range of the dynamical correlations included in the>2eL > L):

DCA is dicta_\ted by the cluster size ano_l by the range of theSee that forr=o0, E(O,w)zG(O,w), and for r<L/2,
Green functions used to calculate the irreducible graphs. Ia- 5 L
the DMFA, the self-energy is a functional of the local Green® (@) =~G(r, )+ O(rAk)”). Contributions  from G(r
function, but in the DCA nonlocal Green functions also are ™ R:@) for finite values ofR are cutoff by the sinusoidal
used. Thus, the DMFA incorporates only local dynamical_prefaCth and the expor_1ent|al fall-off of_wze Green function
correlations which occur on the effective impurity, whereas!!Self, since for large distanceG(r)~D " Thus, short-

the DCA incorporates nonlocal dynamical correlations whichranged correlations are accurately representedsby, ),
occur on the cluster. and longer-ranged contributions are cut off.

This may be seen by exploring the coarse-graining step in This behavior is seen even in two-dimensional systems, as
detail, and in real space. For this purpose, we consider shown in Fig. 4 whereG(x,y=0, 7=0) calculated with a
lattice in large but finiteD which we divide intoLP-sized QMC simulation of the two-dimensional half-filed FKM
clusters. Letr denote vectors within a cluster, al the  (see Sec. Yis plotted versus for various cluster sizes. The
vectors between the centers of the clusters. The points of the-g result is fixed by the filling,G(x=0, y=0, 7=0)

original lattice can be repres_ented Rs r. The relation be- =0.5; however, the near-neighbor result shows some signifi-
tween the real Green functioB(R+r,w) and the cluster cant dependence on the cluster sx=1,y=0, r=0) is

Green functionG(r,w) is given by plotted versus the linear cluster size in the inset to Fig. 4.
o 1 B Note that it quickly converges tds(x=1,y=0, 7=0)
G(rw)=— > > k=g kRIGRYT w). ~0.143 as the cluster size increases, indicating that short-

Nk R (10 ranged correlations are correctly described by the DCA for

this model. For largek, G(x, y=0, 7=0) falls quickly to
The sum oveK forcesr’=r. ForR=0 the additional phase nearly zero.

factore k" is essentially 1 over the entire range foffor _ _ _ N
short distances on the clustex2#/Ak, which leads to a C. The role of reducible and irreducible quantities

contribution tog(r,w)%G(r,w). Contributions from larger In Appendix D we show that the DCfand the DMFA is
R are suppressed both by the oscillations in the phase factet conserving, thus the calculations of different measurable
which suppresses the integral and from the smallness ajuantities are not unique. For example, we approximate the

G(R+r',w) itself. More precisely, with the choic& lattice self-energys (k,w)~3 (M(k),w), and_calculate the

=m(2l/L—1) (wherel is an integer ¥1<L, and « indi- . . i
cates spatial directionwe can complete the sums on mo- C'€€N function using B(k,w) = 1/G%(k,®) X (M(k),0);
menta exactly to obtain howev_er, a (_jlffere_nt approximation, corresponding toa dif-
ferent implicit choice forX (k,w) would be to approximate
sin{ w(x,+X,)/L] G(k,w)~G(k,w). We show in Appendix A that the former
G(R+r1,0), prescription is the unique choice which minimizes the DCA
(11) free energy, and thus is the correct choice. A similar problem
exists for the calculation of two-particle properties such as
wherex; (X)) is thelth component of the vector(R). Thus, the magnetic susceptibility. However, as discussed in Appen-

G(r,w) is composed of a sum ovés(r+R,w) with each  dix A, the approximatiol’~I" = § 3/ 5G for the lattice two-
term weighted by a sinusoidal prefactor that falls off llke  particle vertex yields an estimate for the susceptibilEg.
+R|~P. For smallr, the leading term in the sum comes from (A15)] equivalent to that calculated from the second deriva-
R=0. Then, by expanding the sinusoidal prefactor, we carnive of the free energy with respect to the external field.

D
G(ro)=> I

R i=1 | #m(x+X)/L
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Thus, in generalthe cluster calculation should only be Zg Gl
used to provide the irreducible quantitieshese, together NN
with the bare real-lattice Green functions, may be used to ~  -=---7 5--;F- =
construct the corresponding reducible quantities. Im % (Kf, =

At least for the single-particle Green functions, this pre- '/ S
scription may also be motivated physically. Short-ranged ! aK )
correlations are accurately represented by the cluster irreduc- \ ™ o 21
ible single-particle self-energy. Following the discussion of o] =K
the preceding section, one may show that foxL/2,

SC(r,w)~3(r,w) + O((rAk)?), since it is calculated from

cluster quantities. In addition, since the self-energy is formed FIG. 5. lllustration of the essential steps of the proof that the
from higher-order products of the Green function, e.g.DCA is causal(see text

3(r)~[G(r)]3~D°"2 for the second-order contribution in

the Hubbard model, in high dimensions it falls faster withit is then apparent thaf~1/w so that spectral weight is
increasing’ than the Green function itself. Thus, the correc-preserved. The second part of the argument is sketched in
tion terms coming fronR+ 0 will be smaller for irreducible  Fig. 5. The imaginary part ofG(K,w)=[G(K,») !

guantities such as the self-energy than it will be for reducible+EC(K'w)]fl is negative provided that [fG(K,w) 1]=

qu;arn?t|t<iasnl|k§1 t:]erGt[(;:ent fgnirc]tmr)n. Sln(\:/sit:]hfh ranlgetorf t?ze—ImEC(K,w). G(K,®) can be written asE(K,w)
correlations that are treated increases e cluster s e:l(Nc/N)EE(ZK+E)7l(w)a where thez, , () are complex

away from a transition, the irreducible quantities calculateohumbers with a positive semidefinite imaginar art
on the cluster will have converged to acceptable values be;Im S¢(K, ). For a%yK andw. the set of pointg ~(yw)p
y . 3 K+k

fore their reducible counterparts. are on a segment of the dasheakizontalline in the upper

Finally, we note that while in Secs. IVA and IVB we . . . i
used 1D arguments to justify the approximations made in half pIaDe due to th? fact that the |mag|n§1ry parinsepen
dentof k. The mappingz— 1/z maps this line segment onto

the DCA, the DCA is not systematic in[/ For example, X ;
even for short distances which would correspond to low & segment of the dashed circle shown in the lower half plane.
G(K,w) is obtained by summing the points on the circle

orders in 1D, G(r,w) contains contribution$G(r + R, w) e S
corresponding to much larger distances and higher orders #f9ment, yielding the empty dot that must liethin the
1/D. Furthermore, since the density of states of the finitedashed circle. The inverse necessary to t&(,») to
dimensional lattice is used to calculate the host propagator 1/G(K,w) maps this point onto the empty dot in the upper
the approximation includes corrections to all orders iD.1/ half plane which must li@bovethe dashed line. Thus, the
In fact, we have shown in this section that the cluster quanimaginary part ofG(K,w) ! is greater than or equal to
tities differ from those of the real lattice by terms of order _|m s¢(K, ). This argument may easily be extended for
(Ak)2=47?INZP . Thus, the DCA is a systematic approxi- G(z) for anyzin the upper half plane. Thug is completely
mation in 1N;, not 1D. analytic in the upper half plane.

D. Causality V. DCA FOR THE FALICOV-KIMBALL MODEL

We can also show that the DCA algorithm is fully causal, Here we illustrate the power of the DCA with a QMC
i.e., that the spectral weight is conserved and that the imagkimulation of the two-dimensional Falicov-Kimball model.
nary parts of the single-particle retarded Green functions antthe FKM is studied, instead of, for example, the much more
self-energies are negative definite. Here, since many metho@®mplicated Hubbard modefor which there is work in
can be used to solve the cluster problem, we will assume thggrogres$’), for several reasons. First, the FKM is perhaps
all are causal, i.e., given a causalthen the resulting.© and  the simplest model of correlated electrons which retains a
G° are also ensured to be causal by the method chosen tmmplex phase diagram, including a Mott transition and a
solve the cluster problem. Furthermo®(K,e) is causal —charge-density-waveCDW) ordering transitiori Second, it
sinceX °(K,w) is causal. Thus, Ed3) is the only step in the has been extensively studied by de Vrasal. with QMC
algorithm where problems with causality could occur. Insimulation$® of finite-sized systems which may be compared
Ref. 9 we argued using a continued fraction expansion thd© our results. Third, it is possibleto calculate the real-
the k averaging(coarse grainingof Eq. (2) adds a causal frequency spectra without the need for computationally ex-

. — : pensive numerical analytic continuation. Finally, it is of con-
piece to the self-energy @ that allowsg to remain causal iderabl . tal inter&t
even after the subtraction ef2°(K,) in Eq. (3). Here, we siaerable experimentar Interest P

. — trical 't( hich A t, The FKM can be considered as a simplified Hubbard
?cl)\r/r(‘anaall ;omo?‘ ?ng?prggl::;i ?tr?#;igu\évallify hlf)lézi%sr r:tsh(jr model in which one spin species is prohibited to hop. In the
general models, including the HM and the FKM. particle-hole symmetric case the Hamiltonian reads

There are two steps to the argument: first, we must show

that weight is conserved, and second, that the imaginary part ~ H=—t>, dfd;— x> (n+n)+U> n’n{, (12
of G is negative semidefinite. The first part follows from the (L : :
causality ofX¢ and G which both fall off inversely with  with n=d'd,, ni=flf,, and u=U/2. For a two-
frequency at large, and in particulaG~ 1/w. From Eq.(3)  dimensional(2D) square lattice with nearest-neighbor hop-
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ping ((i,j)) the dispersion ise = —2t(cosk+ cosk). We ing. Consequently, there is no sign problem as there is, e.g.,
measure energies in units of the hopping elente@onse- N the Hubbard model away from half filling. .

quently, the bandwidth of the noninteracting system\is A configuration change is accepted by comparing a ran-
=8. For D=2 the system has a phase transition from adom number in the interval (0,1) ®/(1+R) (“heat bath
homogeneous high-temperature phase itf) = (n')=1/2 method”) or to R itself (“Metropolis method™). Once the
to a checkerboard phaga charge density wave with order- change at siteis accepted, the Green function is updated via

ing vectorQ= (m,, . ..)] with (n%)#(n) for 0<U< .23
(i) #(no NGE (i) ®GF (i wy)

G'ik(iw,)=GC (iw,)+
( n) J,k( n) 1—)\iGiC’i(iwn)

. , (16
A. Exact enumeration

In contrast to the Hubbard and related models, the DCA . . .

for the FKM can be solved without the application of QMC where © denotes a direct matrix produGto summation

since thef electrons are static, acting as a kind of annealecgoSt of the total CPU time is consumed by this updating

disorder potential to the dynamitelectrons. Here, we gen- ep. However, the fact that we can work with frequencies
eralize the algorithm of Brandt and MielZéHo a finite-size rather than imaginary time drastically reduces the amount of

- ) time required. Note that although Ed.6) is written for Mat-
clust_er. V\/_e first compute the Boltzmann Welgms of f"‘". . subara Green functions an analogous relation holds for the
configurationdf} of f electrons on the cluster, given an initial

host G functi t the d elect W= w97 real frequency Green functions which allows us to calculate
W?wsere reen functiorfj; of the d electrons viaws=w/Z, dynamical properties without the need for analytic continua-

tion. On the other hand, the ratidis completely determined
1, f by the Matsubara Green function. This means that we deter-
W =2Ne]] det i (13)  Mmine the acceptance from the Matsubara Green function and
@n | wn i) then update both the Matsubara and the real-frequency re-
is the unnormalized weight, arig= E{f}w? is the “partition tarded Green function “simultaneously. .
The measurement of the two-particle properties consumes

e e e Pl "Merge amounts of memory and CPU tim. Since they are o
: P . ) °p required for the self-consistency cy¢leg. 2), they are mea-
verges at large frequencies. Given the weights, the ne

Lo Wured only after convergence of the single-particle properties.
d-electron cluster Green function is given by In fact, due to the enormous size of the susceptibility matrix
it is often worthwhile to separate the single- and two-particle

Gﬁ-(z)z Z wf[gﬁl(z)— Unifﬁij]*l (14 calculations to different computer runs.
{f}
for an arbitrary complex frequency argumenin particular VI. RESULTS
also forz=iw, (Matsubara and z= w+i 7 (retarded. The
self-consistency loop closes by use of the Eg3. (3), and In this section we present results from both exact enu-
(4). meration and QMC simulation of the two-dimensional FKM

Because the number dfconfigurations grows exponen- for a variety of parameters and cluster sizes. There is consid-
tially with the cluster size the exact enumeration method iserable latitude in the selection of the cluster momenta. This
confined to small cluster@p to 4x 4 in the broken symme- IS becausél_) the sites on th_e cluster do not really correspond
try state, see belowWe first simultaneously determine the t0 the physical lattice, andi) because for large clusters any
weights and the Matsubara Green function. Then, we usélifferences due to this choice should vanish. Here, for an
knowledge of the weights to find the retarded Green funcl XL cluster we choose eithek, =m(2l/L—1), or K,
tion. Convergence of the algorithm is fast for Matsubara fre-= m(2I/L—1)— /L (wherel is an integer &I<L, anda

quencies, but relatively slow for real frequencies. =x or y). These choices, respectively, correspond to peri-
odic or antiperiodic boundary conditions for the cluster

Green functiorG¢(x+L,y,w) =+ G%(X,y,w). Unless other-
wise noted we use periodic boundary conditions in both spa-

The FKM is particularly suitable to a QMC evaluation of tj5| directions. Antiperiodic boundary conditiofis both di-
the configuration sums since thie electrons are them- ectiong are used only for some data in Fig. 10.

selves like classical Ising spin variables. Following De Raedt
and von der LindeR! given a particular configuration, we
can propose “spin flips,” corresponding to a change of the

B. Quantum Monte Carlo

A. Density of states and spectral function

f—occupationnif—>1—nif at a single sitel. The ratioR of We begin by discussing th@ocal) density of states
weightsw; of the proposed configuration to the weigitof ~ (DOS) and theK -dependent spectral function shown in Figs.
the original configuration igat half filling) 6-8. In Fig. 6 we show the local DOS for various cluster

sizes up to & 8 for the half-filled model and display only
the positive frequencies. The full spectrum is symmetric, due
to particle-hole symmetry, as shown in the inset. With the
exception of a peak which developsat =U/2, the spec-
with \;=—Us(i) ands(i)=2n{—1. Note that the ratidRis  trum converges quickly a.. increases. In fact, the conver-
always real and positive since the Matsubara Green functiogence to the thermodynamic limit is apparently much faster
is HermitianGﬁi(— iwn) =Gﬁ’f(i wy,). This holds for any fill-  than that seen in finite-sized lattice simulatiéhshere even

R= HO[1—xieﬁi(iwn>][1—meﬁ?<iwnn, (15

wn>
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FIG. 6. Local density of states for various cluster sizes. The density of states is essentially converged a8 ttladéer, though some
fine structure neaw= +U/2 continues to emerge for the larger cluster sige® discussion in text

for an 8xX8 system, the broadened spectra are often comerdering fluctuations. This pseudogap is absent when
posed of a set of discrete spikes. =1 (as are the charge-ordering fluctuatipremd it becomes
Furthermore, the DOS develops three distinct primarymore pronounced as the cluster size increases. Third, as the
features also seen in the finite-size calculati$hBirst, as charge ordering becomes more pronounced, either by lower-
shown in Fig. 6, for larg&J=Uy the DOS develops a Mott ing the temperature or increasing the cluster size, a sharp
gap centered ab=0, even thougi>T,. The value olUy  peak begins to develop in the DOS shown in Figs. 6 and 7 at
at this temperature changes slowly with cluster size, with,,= + /2. In the ordered state, each occupidd)forbital is
Uyn~5. Second, as shown in Fig. 7, fok<Uy, upon de-  gyrrounded by four occupied(@) orbitals. Thus, for large)

creasing the temperature the DOS fg>1 develops a nq |owT the electrons become highly localized so the spec-
pseudogap at the Fermi energy associated with charge-

0.20
05 T !
U=8 ——— K=(r,0)
015 | N,=64 — Ke(w/2,52) j
. K=(m,m)
Local DOS i ;
wn [l
Q 0.10 i i
a — i
3 L
< o
0.05 | J
PN
A
; ~ W\.¢
0.00 L4 : : ‘ 8 4 7 N
-6 -4 -2 0 2 4 6 ) ’ N \
v ; D v
Frequency o L nd A
0 4 8

FIG. 7. Local density of states whéh=4 for a 4xX 4 cluster at
various temperatures. The DOS develops a pseudogap as the tem-
perature approacheBb.~0.189. This shows the influence of the FIG. 8. Spectral functiop(K,w) for various cluster momenta
nonlocal CDW fluctuations present in the DCAI{>1). In the K. Note the three peak feature f&r= (7, 7r) at the upper edge of
DMFA (N.=1), there is nol dependence of the DOS aboVg. the lower band.

Frequency ®
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trum will develop very narrow “atomic” peaks atv= 03
+U/2.
In addition, there are a surprising number of smaller fea-

) 5—6 Ne=1, DMFA
Uniform  + Nc=4, MC
A—A Ne=8, exact

tures which emerge in the DOS. This is true even for the *—% Nc=16, MC
largest cluster, in some sense even more so, as some fine 02 ¢ &—= Nc=36, MC
structure in Fig. 6 seems to develop for the 8 cluster that 5—=2D lsing
was only vaguely present for smaller clusters. This fine struc- g

ture is more visible in the momentum-resolved spectral func- ‘

tion p(K,w)=(1/7)Im G(K,w), see Fig. 8. In particular, 01 - 7

note the three peak feature at negative frequencieKfor
=(r,). Of course, we really do not know how the DOS for

i oo . W= CDhW
the infinite lattice is supposed to look like. The extremely
smooth form the DMFA provides is mostly due to the lack of 00, 10 20
associated energy scales. In the DCA we have at lg¢astd U

J=t?/2U, and, in principle, many other scales can be con-

structed representing collective excitations of the cluster FIG. 9. Phase diagram for various cluster sidgs With the
charges. That such features emerge as the cluster size is frception ofNc=4 (see text the T. monotonically converge with
creased can be understood by the following argument. [#icréasing cluster size. At lardé the system maps to a 2D Ising
addition to the self-energy arising from interactions on theModel withJ=1/(2U).

cluster the host also provides a self-energy and therefore a

broadening. Consequently, features that are in principléor somewhat larger values @f—T..) This again allows a
present for smaller clusters likexd4 are washed out by the precise estimate 6f.. The computational drawback here is
host's broadening. Only as the host becomes less importaffie enormous memory requirements of the susceptibility ma-
(as cluster size increasedo the smaller energy features trix needed at intermediate steps of the calculation.

emerge from the background. After these preliminaries we now discuss the results of
these calculations in Figs. 9 and 10. Figure 9 shows the
B. Phase diagram and finite-size scaling phase diagram for various cluster sizes, all of them equipped

. . . with periodic boundary conditiongPBC). In addition, we
We now discuss the phase diagram and its dependence Oﬂow the T, of the 2D Ising model given byT'cS'“g

cluster size. In Ref. 9 we showed that the transition temperas— . ) )
ture of the CDW transition was significantly suppressed with— 2-268 with a couplingJ=1/(2U). We show the Ising
respect to the DMFA when nonlocal correlations come into"®Sult because the half-filled FKM reduces to an Ising model
play. We have since extended this analysis in two directions¥ith such a coupling in the limit of large/>W. The FKM

In Ref. 9 the result for the 2 2 cluster was computed via data are all obtained from the evaluation of the susceptibility
the exact enumeration method in the broken symmetryvith the MC method except for thh =8 data which are
phase. This means we actually simulated two2clusters obtained by the exact enumeration method in the broken
forming a bipartite cluster of 2x2=8 sites. The exten- symmetry(two 2X2 cluster$. For the DMFA the two meth-
sion of the above described exact enumeration method igds give identical resultéwithin 1% accuracy The phase
straightforward and involves Green functions that are nowboundary has always the same general shape for the FKM
2X 2 matrices with respect to the bipartite clustérgndB  data, with a slightly cluster size dependent maximum at
sublattice index T, was then obtained by three ste§$)  about half the bandwidthv.

We apply a staggered field at low enough temperat(res The results from the MC method converge monotonically
low the expectedr,) to drive the system into the broken- with cluster size with one notable exception: The 2 clus-
symmetry state with(n_,)#(n{_g). (2) We remove the ter (N.=4) has the lowesT. of all, and even seems to fall
staggered field. The system relaxes but stays in the broken jfelow the Ising results for alll. The reason for this excep-
T<T.. (3) We increasd until the system enters the uniform tional behavior is not entirely clear to us. At first one might
phase with(n{_,)=(n{_g). This method is very precise, but consider a double counting of neighbors and a resulting dou-
for larger clusters very time consuming. Using the QMChbling of the energy scale common in standard lattice methods
method in the broken-symmetry phase is possible, Taut to be the reason. But clearly, thie’s of all clusters agree
cannot be determined precisely due to critical fluctuationswell at smallU where only local correlations are important.
So the above described method is limited to at most4  This rules out a simple doubling of the energy scale. A likely
clusters, or a total of 32 sites. This also means that a systemeason for this unusual behavior lies in the particular way the
atic finite-size analysis with this method alone would not beBZ is sampled in the X2 cluster, see Fig. 2. The only
possible. points on the Fermi surface ai€=(,0),(0). These,

In order to gefT . for larger clusters we choose a different however, are also the points responsible for the van Hove
route. We compute the staggered charge susceptikily  singularity of the noninteracting system. In comparison to
= (ar,7)) with the method discussed in Appendix A. Be- other momenta on the Fermi surface these points have ex-
cause the host always provides a mean-field environment, thteaordinary large scattering rates, making them unfavorable
susceptibility diverges ag(Q=(m, 7)) (T—T,) ¥ with a  for the formation of CDW fluctuations driving the transition.
mean-field exponeny=1 for T close enough td .. (Criti- As a consequence, the. for this cluster is exceptionally
cal fluctuations cause to deviate from the mean-field value low.
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0.35 the T.'s of the 2X2 cluster(not shown in Fig. 1Dare in
OU=8 oz | u=8 o o excellent agreement with the cluster extrapolated values and
03 | zﬂjg . | t_he Ising r(_asult for largéJ. We have currently no explar)a-_
u Ising = 15| g° O v APBC tion for this phenomenon. Though probably pure coinci-
0.25 | ®de Vries ) o g;\‘fg dence, the fact remains: tfig of the 2x2 cluster seems to
04 vy o provide a good estimate of thie, of the D=2 FKM.
© o2l 0 02040608 1 The inset shows the sanie’s as in the main plotall
= VL determined via MCfor U =8 of various cluster sizes, and in
015 | addition theT_’s for the same clusters equipped with antipe-
riodic boundary conditiongAPBC). As noted before, the
DCA does not intrinsically determine the choice of cluster
0.1 momenta. But different choice of cluster momenta will also
in general affect . and other quantities. As PBC and APBC
0.05 o2 od 0.6 seem to span the entire range it is interesting to see by how
Inverse Linear Dimension 1/L much theT.'s differ. As illustrated in the inset it matters

quite a bit for very small clusters, but not much once we
FIG. 10. T, as a function of inverse linear cluster dimension for -gnsider clusters of the 66 size?® The difference for
the larger clusters and various. The lIsing limit, and de Vries 5> clysters is extreme for the following reason: we noted
et al?% estimates ofl; from simulations of finite-sized clusters are above that the X 2 cluster with PBC has the lowest, of all
shown for comparison. The extrapolat€ds generally fall below clusters with PBC. The 22 cluster with APBC. on the
the finite-size estimates as well as the Ising lirfvithich should other hand. is ideﬁtical to the single site clus(lwh’ich has

serve as an upper bound and become exact for Mjgérhe inset the maximumT,) by virtue of the symmetry of the square
shows the influence of the cluster boundary conditiong onThe lattice?” Simil CI tﬁ 4 clust y'th AP)L;»C is b q

effect of boundary conditions becomes smaller with increasing clus® |ce._ 'm' arly, the cluster W' IS by Ssym-
ter size. metry identical to the X2 cluster with PBC. But once we

go to cluster sizes beyond this such identifications are no

Although theT, results from a given method are mono- longer possible. Concurrently, the.'s of the clusters also
tonically decreasingwith the one exception noted abgvie  depend less and less on the boundary conditiohgourse,
is not obvious how to scale the data as a function of clusteboundary conditions are irrelevant in the thermodynamic
size; for, to our knowledge, a rigorous finite-size scalinglimit). For 6X 6 clusters the difference is down to about 5%.
theory for a quantum-dynamicalcluster coupled to a
guantum-dynamicdiost does not exist. However, such ques-
tions have been addressed in the context of systematic self-
consistent cluster approximations fdassicalstatistical sys- The DCA differs from the DMFA through the introduc-
tems, in particular, the 2D Ising mod@ which should be tion of nonlocal dynamical correlations. For example, in the
relevant to our problem, at least for large Furthermore, on  FKM, the DCA exhibits fluctuations associated with charge
general grounds one expects that for critical phenomena ardering that are absent in the DMFA. To illustrate this, we
finite temperatureshe asymptotic scaling properties even of calculated specific heat divided by the temperature shown in
a quantumsystem will be determined by the same universal-Fig. 11, using a recently developed maximum-entropy
ity class as for the corresponditassicalsystem(i.e., with  method?® The DMFA (N.=1) result displays a single peak
the same order-parameter symmetry and the same spatial @it C/T associated with the suppression of local charge fluc-
mensionality. Hence, one exped that our results for tuations and the formation of the Mott gap in the single-
To(L)—T.() should scale asymptotically 4s *”, i.e., as  particle density of stategFig. 6). As shown in the inset to
1/L, sincev=1 for the 2D Ising Model. In Fig. 10 we there- Fig. 11, the integrated weight in the peak is Gs6f(2);
fore plot theT, data as a function of 1L/ (or 1/J/N, for the ~ however, the infinite temperature entropf(C/T)dT
broken-symmetry resultsin the main part of the plot we =2In(2) for the half-filed model. Thus, only half of the
show the results for large clusters with PBC which scaleentropy is quenched, with the remainder associated with the
approximately linearly with 1/. The N.=32 result(broken  disorder inn;; i.e.,n;=0 orn;=1 with equal probability on
symmetry for U=8 andU=12 is a bit lower than th&_ for ~ each site wherN.=1, regardless of the configurations of
N.=36 (MC). This shows that the two methods are not easyneighboring sites. However, whev,=4, C/T displays an
to combine, but the difference seems small enough not tadditional lower-temperature peak slightly below=T..
disrupt the predominant linear scaling with_1/ We believe this peak is due to critical fluctuations associated

For U= 16 the clusteiT.'s scale well and the extrapola- with charge ordering.
tion to the infinite system comes very close to the Ising limit To test the identification of the two peaks seen in the
(or the results of de Vriegt al). For smallerU the Ising  DCA specific heat, we ploE(T) for a variety of values ot
model is not appropriate, and it shows, as the Isiigis  whenN.=4 in Fig. 12. The location of the upper peak in-
much higher than the extrapolat&d of the clusters. How- creases monotonically withl, consistent with the associa-
ever, the extrapolated cluster results are very close to thion of this peak with local charge flucuations. However, the
results obtained from finite-sized lattice simulations. The faciocation of the lower peak does not depend monotonically on
that the cluster estimates df, consistently fall below de U, but rather changes in rough proportion to the CDW or-
Vries results is likely due to finite-sized effectde Vries dering temperature shown in Fig. 9. Similar results have
et al. simulated lattices of up to 64 sitedVe also note that been obtained in Ref. 20, though we want to point out that in

C. Energy, entropy, and specific heat
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A 5 L VII. CONCLUSIONS
/\

We described in detail the recently introdutelgnamical
cluster approximatiodDCA) and explained its assumptions
\ 1r P 1 and approximations. The DCA systematically introduces
05 s 1 nonlocal corrections to the DMFA. The DMFA is recovered
2+ ‘\ g by taking the cluster to be a single site, whereas the exact
/ \ O o e e result is obtained when the cluster becomes large. We have
L T shown explicitly that the DCA is causal, systematic, aind
\ derivable. Furthermore, as the cluster size increases, it sys-
1F \ : uil’ ?fg:?ﬁ tematically restores momentum conservation neglected in the
\ e DMFA. Consequently, the DCA becomes conserving in the
T \ thermodynamic limit. We have applied it to an exact enu-
G(N°=4)A meration and quantum Monte Carlo study of the two-
%'01 0.10 100 10.00 100.00 dimensional Falicov-Kimball model and discussed the den-
T sity of states and the spectral function, including their
_ _causality and cluster size dependence. A pseudogap opens in
FIG. 11. Specific heat versus temperature for one- and four-sitghe density of states at intermediate interactions as the tem-
clusters calculated with exact enumeration Wiér-8. For No  haratyre is lowered, a single-particle precursor of the CDW
=1, there is a single peak with integrated weight In(2) associate ransition at lower temperature. The phase diagram con-
with the suppression of local charge fluctuations. Rer=4, there erges monotonically with cluster size, with the notable ex-
is an additional peak at lower temperatures associated with critica}f i f the X 2 cluster. The CDW t ! ition t ¢
fluctuations near the charge ordering transition temperaiyréor ception of the < 2 cluster. The ransition temperature
N,=4 is indicated by an amow. The entropyS(T') scales linearaly in the inverse linear dimension of the cluster,
o ] _ _ o as expected for a system in the 2D Ising model universality
=Jo dTLC(T)/T] is shown in the inset divided by In(2). class. The specific heat clearly displays the critical fluctua-
tions associated with the phase transition, in contrast to the
our case the position of the lower peak is bel®wfor the  dynamical mean-field theory where such nonlocal fluctua-
given parameters. The rise of this lower peak witfior low  tions are absent.
U (below the maximunT . and the opening of the Mott gap
is similar to the half-filled Hubbard mod&!.
The total entropy in these lower peaks can be subs,tantial. It is a pleasure to acknowledge discussions with N. E.
For ~example, when U=8, the entropy S(T')  pgjckers P. G. J. van Dongen, J. K. Freericks, D. W. Hess,
=f$ dT[C(T)/T] in the lower peak is 0.41 whereas that in

J. E. Gubernatis, M. Ma, Th. Maier, Th. Pruschke, A.
the upper peak is 0.691n 2. Thus, the fluctuations associ- Schiller, V. Sudhindra, and F.-C. Zhang. This work was sup-

ated with charge ordering quench most of the entropy needegbrted by NSF Grant Nos. DMR-9704021 and DMR-
to form a proper ground state with=0. 9357199, the U.S. Department of Energy Contract No.

W-31-109-ENG-38, the Ohio Board of Regents Research
Challenge AwardH.R.K.), and the University Grants Com-

N4 U= mission, India(H.R.K.). Computer support was provided by
¢ - U= the Ohio Supercomputer Center.
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APPENDIX A: TWO-PARTICLE PROPERTIES

Here we discuss the calculation of the lattice two-particle
properties, such as spin and charge susceptibilities, in terms
of the two—particle quantities on the cluster. This is a subtle
issue which requires some formal discussion of what quan-
tities from the cluster and lattice should and should not be
employed. We will show using the “Baym-Kadanoff” for-
malism that there is a unique construction for which the sus-
ceptibities correspond to the second derivatives of the corre-
0.01 0.10 1.00 10.00 100.00 sponding extremal free energy with respect to external fields.

This optimal choice corresponds to employing only the irre-

ducible quanties from the cluster when constructing these
FIG. 12. Specific heat versus temperature for four-site custergysceptibilites.

calculated with exact enumeration. The position and height of the

lower peak, associated_ with charge ordering, is nonmonotonik in 1. Lattice quantities and matrix notation

For smallU the peak rises and moves to higher temperatures, for

largeU the trend is opposite. This tracks the behaviol gfvith U. As discussed in standard texts on quantum many-body
The upper peak, associated with lo¢ilott) charge fluctuations, theory, the charge and spin susceptibilities at wave vectors
moves higher temperatures and becomes more pronounced asand frequencyiv can be calculated from the two-particle
increases. Green functiongy as

Specific Heat C
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3. Coarse-grained quantities

(S%ch(q,iv)) (keT)? o
S Em— 2 Xaivew(KiogiKiog) We now define coarse-grained two-particle Green func-
Xsp Q1) N" on’ oo tion ; the equivalent ofG for the single-particle Green
" 1 ) (AD) quction. For ~this purpose, we writgj=Q+q, k=K
o'’ +k, k'=K’+k’, etc., whereQ,K,K’ are cluster momenta

andq,k .k’ are inside the corresponding momentum ceyls.

where y is the appropriate Matsubara frequency Fourie
X PProp d y is then given by

component o(TTchU (7) Cko (") cl_qg,(f’)ck,c,(f”’)).

In diagrammatic perturbation theory, gets related to the = . _T . K i RPN
. . . n . iv= iv,oo! Al HK Al

one-particle irreducible vertex functioR®® or the particle- XQ+aiv=XQ+ainee (Kil@n @n)

hole irreducible vertex functiol’ in the standard way as N2 s 5 5
=— 2, Xo+ginoo (K+tK,jiwy K +K' iwy),
Xq,iv:Xg,w"’Xg,ivTEfi)ng,iv (AZ) N2 Kk
(A10)
:Xg,iv+Xg,inq,ivXq,iv- (A3)

where the first equation again shows the matrix notation.

i i ina. : (2) :
Here, a matrix notation, regarding,,, T andly;, as Similarly ;nga i, is the diagonal matrix with entries given

q,iv?
matrices with row and column indices labeled Wi ¢,0)
1 ! i H H y
and k'iw,o"), respectively, has been used to compactify
the equations.di v) constitute passive, parametric labels for 0 (K, iw, K’ io!)
these matrices. The bare two-particle Green functifip, is PARLEC G
the diagonal matrix given by

N -
=Ne8yyr S Snn| 7y 2 ColK+Kiiwy)
k

Xerivor (Kiwn iK' T0n) =N, 4 S S G (K i wp)
G, (k+q,iw,+iv). (A4) X G, (K+k+Q+qiw, +iv)|. (A11)
From the above it follows that 5 5 5
[Té%i)y]71:[Fq,iv]il_Xg,iv' (A6) Yen(Q+3i V)) (kgT)? _
ror compleencss, those equatons may be dagoraized i |51 T N i 1
[Xa,q,iv]ilz[)(g,iv]il_Fa,q,iuv (A7) X (Kiwy ;K’iwn/)( Uff,)- (A12)
[Tszz,t)n,iv]_lz[Fa,q,iv]_l_xg,iv’ (A8) For the single-particle Green function we h@d= G°, since

where @ denotes either the spin or charge chanrsg or  in that case the coarse graining is done with éx¢ernal

ch), andl'g,=T, _,—TI, ,andl =L, _,+T momentum. For the two-particle case, the above-defined
’ og,— 0 o, g,— 0 g,0 " . . . . .
: coarse-grained quantities armt identical with X((:Q,iv and
2. Cluster quantities X&i,- The coarse-grained quantities are defined for all ex-

) ) ternal lattice momenta, not just the cluster momentQ.

On thg cluster, the two-particle Green functions and Velowever, the matrix size is determined by the number of
tex functions are calculated (‘;"t the zcluster momeéts K’ ¢jyster momenta rather than tkiefinite) number of lattice
which we denote by, . xqiv TGY, andI'g;,, where  momenta. As we will see below, this is a significant numeri-
now the matrix labels correspond toK({iw,,0) and gl simplification, since the calculation of the susceptibilities
(K",iwy,0") (momenta confined to the cluster momenta can be reduced to the solution of a set of linear equations
These are then related to each other by the same equationsdined on the cluster momenta instead of the momenta of
Egs. (A5) and (A6), except that the lattice momentpare  the infinite lattice.
replaced by the cluster momenfa In a diagrammatic per-
turbation theory treatment of the cluster probleRy,;, is 4. Two prescriptions
calculated approximately as a function of the cluster propa- _
gators. In other treatments of the cluster, such as QMC, one Two different prescriptions for computingout of cluster
calculatesyd’;, andx§;, and infersI'y ;, by using the ana- quantities suggest themselvés third possibility, approxi-

log of Eq. (A5) in reverse as mating xq+g,i» bY Xg,iy, is obviously too crude to be dis-
cussed furthgr The first one corresponds to replacing

¢ =% 1 xS (A9) ) T T ) oo

Qiv Qiv Qiivd Totainee (KtKion K +K iwg) by Toi, /(K iwn;

and thenT&)¢ using the analog of EqA6). Both lattice and  K',iw/) in the expression foryg. g, derived from Eg.
cluster quantities are now uniquely defined. (A2). We then get the equation
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T . 0 . T0 o (2)e 0 in principle still a lattice momentum; however, the self-
= o+ TS - Al13 , :
XQ+ain=Xoian T XorgnToiXaig: (A9 energy will only depend through the functidm(k) on k. If
This means we have identified theducible two-particle  we use this self-energy in, e.g., the calculation of its contri-
vertex T(?) of the cluster and the lattice at the cluster mo-bution to thed functional, the Laue function on the vertices

menta. will “reduce” both the self-energy as well as the diagram
The second prescription, that we argue below isdbe  closing Green function to their corresponding coarse-grained

rect prescription, is to replaCQSia,iy,ag'(K +k,iw, K’ expressions. Consequently, the D@Afunctional reads

+K'iwp) by TES (KoK’ i) in the integral B

equation foryq. 3, derived from Eq(A3). This leads to the q)DCA(G):El pi t[2],G, 1. (A18)

equation

_ 0 0 _ In correspondence to the lattice system,
= Xeur it xe. s TS, o (A14)
XQ+q,iv XQ+q,IV XQ+q’|V Q,IVXQ+q,IV1

whence

5(I)DCA S5 _ 5q)DCA

—= e (A19)

o~ =0 -1_yc -1
= ~ -y, L (A15) . . ;
Xe+ai= (Xqig] Qir) where the second equality follows since the varia®aG,,
Here, we have identified thereducible two-particle vertex corresponds to cutting a Green-function line, so that
I' of the cluster and the lattice at the cluster momenta. E|theBGUK/5GU,k, = Sk (k) S0 - It follows that the DCA es-

Egs.(A13) or (A15) can then be used in EGA12) to com-  timate of the lattice free energy Bpca= —ksTWoea,
pute xcp and s, . At this stage it is not clear which prescrip- where

tion is better or whether both could be feasible approxima-

tions. We will now show that internal consistency asd Wpea=Ppea—t2,G,]—trin[ —G,]. (A20)
derivability in the Baym-Kadanoff sense do single out the

second prescription, EGA15). Now Wpc is stationary with respect tG,,,

5. Relation to ® derivability 9Jpcal G, =~y +%,=0, (A21)
The Baym-Kadanotf & functional is diagrammatically which means thal?a is the proper approximation for the
defined as lattice self-energy corresponding oy 4 -
The susceptibilities are thermodynamically defined as sec-
@(G)=E o, tr[E'UGU]. (A16) qnd derivatives of the freg energy with respect to external
[ fields. Now®ca(G) and 3, and henceipc, depend on
qthese fields only througB,, andGy . Following Baynt* it is

The trace indicates summation over frequency, momentu i T :
easy to verify that, the prescriptigi12)+(A15), with

and spin. HereE'U is the set of irreducible self-energy dia-
grams ofith order in the interactiorG,, is the dressed Green =~
function related tc&,, and the bare lattice Green functi@f. o5 ~Tg51=062,16G,, (A22)

via the Dyson equatio, *=G) *—3,, andp is a count- yields the same estimate that would be obtained from the
ing factor equal to the number of occurrences3gfin each  second derivative 0V, with respect to the applied field.
term (for Hubbard-like modelsp;=1/). The free energ¥  For example, the first derivative of the partition function
can be expressed in terms of the “linked cluster expansion’iy/, ., with respect to a spatially homogeneous external mag-
W asJ=—kgTW with netic fieldh is the magnetization,

W=CI>(G)—tr[2(,GU]—trIn[—GU]. (Al?) m=tr[0'G,,]. (A23)

With the above definitions it holds th&, = 5®/5G,, as

required for a ‘®©-derivable” theory, and the free energy is The susceptibility is given by the second derivative,

stationary under variations @. In addition, the irreducible om 9G
vertex function is obtained by a second variation ®f —h=tr o h" . (A24)
T, .= 820(5G,5G,/)=8%,15G, . J J

The DCA can be microscopically motivated by our choice

; _(~0-1_§ -1 A
of the Laue functionApcp in Eq. (9). The effect of the We substitutez,= (G, %) ", and evaluate the deriva

chosen Laue function is the replacement of ¥heandI’,, tive,

by the corresponding coarse-grained quantifiedicated by =

the bars. For example, consider the relati@= TG (or- a_m:” ‘Tﬁeg} —tr1 G2| 14+ 0 9%y G, (A25)
der by order in the diagrammatic sepie¥he vertices con- dh dh 7 G, oh ||’

necting the Green function t6(® do not preserve momen- _
tum within the cells about the cluster momentum due to thevhere dm/dh=xs(q=0, iv=0). If we identify x, .,
DCA Laue function. Consequently, the lattice Green func-=o(dG,/dh) and X?,:Gi, collect all of the terms within

tion G, is replaced by the coarse-grained Green functiomoth traces, and sum over the cell momentave obtain the
G, . The external momentum labek) of the self-energy is two-particle Dyson’s equation
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2(Xoo=Xo—0)=2X2+ 2X°Ty o= Ty )Xo 0= Xo A B, - ,
(Xo',o’ Xo, a') Xo XO'( o0 o, U)(XO’,O’ Xo('Aérg) ZC:j f exp— f d,rj dr 2 {CIT(T)QIJ 1(7__7_)
cctJ ¢ 0 0 ij
which is equivalent to EqA15). We see that indeed it is the xcj(7')+ qﬁi(r)Di]l(r— T’)¢j(7’)}
irreducible quantity, i.e., the vertex function, for which clus- 5
ter and lattice correspond. +J' d Un (DN (1) +Vnd: ()N
In summary, the choice of the Laue function and the re- 0 1-Ei: 0N (DN (7) F Vo (nNy (1)} |

quirement of ad-derivable theory ultimately determine the (B3)
way lattice properties are constructed out of cluster proper- _ .

ties. The usefulness of the DCA lies in the fact that both theThe 'cluster problem is to be treated by some technique to
single- and the two-particle irreducible properti&gndIl’) ~ obtain fthe hcluslter propaggt?rs and selff e”irgﬁ?%fg)*

can be determined from the cluster problem, &= 3° and 25(K) for the electrons an®™(Q), 11%(Q) for the fie d’

— ) o X at cluster moment& andQ. One has the Dyson equations
I'=T"*. Note that although this construction is unique and

derivable, because of the partial violation of momentum con- [GY(K)] t=G Y(K)—3%K), (B4)
servation at each internal vertex describedAyc 4 certain
Ward identities will be violated in any dimension, even for [DS(Q)] =P YQ)-II%Q), (B5)

the single-site cluste(DMFA) appropriate inD=o. This

will be discussed in Appendix D. where the frequency arguments have been suppressed for

convenience.
The self-consistent embedding of the above cluster in the
APPENDIX B: DCA FOR PROBLEMS WITH EXTENDED effective medium defined by the rest of the sites of the origi-
RANGE OR ELECTRON-PHONON INTERACTIONS nal lattice is obtained by assuming that(K), andI1¢(Q)

In this appendix we present an extension of the DCA torepresent good approximations o tfwarse-grained aver-

H » H C
problems with extended range interactions, such as in th@des of thﬁlitt'ce self ener_g|e§,, and th@lc(}i)handD (Q) di
extended Hubbard model. must equal the coarse-grained averages of the corresponding

Consider the partition function for such a model written in lattice Green functions

terms of Fermionic functional integrals: 1

GY(K)=G(K)=2 —= —, (B6)
B k loptu— ek —2(K)
Z:f exp— fo dT{; cl(D{(0,— ) & —tihej(7)
cc 1 _ 1
DY(Q)=D(Q=2 =—1————. (B7)
“ R 1 “ R = ~_TJIC
FUS A ()55 B S Vi) @ Vorg~ IHQ

Thus, the self-consistency loop is closed by recalculating
(B1)  G¢'andDg' using the Dyson equations backwards as

By introducing a real, continuous Hubbard-Stratonovich G K)=G YK)+3K), (B8)
field ¢;(7) which couples to the local charge dens'ﬁny . —_ .
=3 ,n;,, We can write DH(Q =D (Q+IIXQ). (B9)

We note that for the one-site cluster, the resulting DMFA
B + ~ does not correspond to the approximation resulting from
Z= JCCTJ’(beXP_ fo dr %: ¢ (M{(d,— p) & —tijlei(7) scalingV asV*/d (whence in theD—o limit only the Har-
tree contribution t@ survives, but is a rather different ap-
5 V; ~ proximation which includes local dynamical charge fluctua-
+ UZ Ny (7)n; (1) + 70 2 ¢i(r)(V)*1ij oi(7) tions and local screening effe&dt is formally similar to the
: g problem obtained in the DMFA of the Holstein-Hubbard
model. Correspondingly, the DCA for this latter model can
+V,> ¢i(7)ﬁi(7)] (82)  be formulated analogously to the above.
I

APPENDIX C: PROOF OF CAUSALITY

Here,V;;=V,8; — V;; with V,, so chosen as to maké posi- n thi .
. - . L~ ~ ~ n this appendix we prove that the DCA formally pre-
tive definite (and hence invertible U=(U+V,), and 1 gerves the condition of positive semidefiniteness of the
=p—3V,. For example, for the extended Hubbard modelsingle-particle spectral functions. The proof requires that the
with nearest-neighbor interaction of strength V,=zV, cluster problem is solved by methods that preserve causality
wherez is the coordination number of the lattice. (exact enumeration, QMC, efc.For simplicity of notation
Now it is straightforward to devise the DCA for this the proof is explicitly given for Hubbard-like models, but it
coupled Fermion-boson problem. The cluster problem wesan be easily generalized to the PAM, multiband models and
need to solve corresponds to the functional integral given bynodels with nonlocal interactions.
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Most steps of the DCA algorithm are easily seen to prewhere we have used the triangular inequality. The bijective
serve the causality property. We assume a ca@sab that functionz= 1A maps a pointv strictly inside the circle to a
—Im G>0, as a starting point of the iteration. If the method point z with Im(z) >a (and conversely
to solve the cluster problem preserves causality the resulting
cluster Green functioG® will also be causal. With Dyson’s —v
equation we obtain a causal cluster self-energy. This self- Im z=
energy is also assumed to be the lattice self-energy of the
infinite lattice at the cluster momenta. Therefore, the latticef and only if
Green functionthe summand of Eq.2)] is also causal. As

the coarse-grained Green functiGnis obtained by an aver-

age of causal Green functions it must be causal, too.
The nontrivial step is to show that E() does not lead to _

an acausaf; for the next iteration. The spectral function@f Hence, ImG~*)=a, where equality holds if and only i,

>a
u?+p?

2
<

1 2

2
u-+ —
2a

v+ —
2a

will be positive semidefinite if === =12y,
Because of the infinitesimaj we hada>0 for the above
IM[G(K,®) 1= —Im 3K, ) (C1) proof. However, if ImX°(K,w) =0, the resulting imaginary

part of G is proportional to— %. This is the case, e.g., for
We write E(K ©) as E(K ©)=(Ng/N) S ¢ 1) ] frequencies larger than the bandwid_th. Hence, the bandwidth
With 2 . 7() = xe(K.@)+1a(K.). Now zy.7(w) is the Of G is identical to the bandwidth b andG?, i.e., there is
inverse of our estimate of the Green function of the infinite"® band broadening induced by the coarse-graining proce-
lattice with a real partx(K,w)=w— e i~ ReS(K,0)  dure. o _ _
and an imaginary parta(K,w)=—Im 3¢(K,w), with Generalization to multiband models such as the PAM is
a(K,w) a positive semidefinite function ok and o but straightforward. Without going into the details of the model

. - . . we note that there are two species of fermions which are
't?;é%eirr]]dgigt %k' Graphically, the proof of E¢(C1) is illus- coupled by on-site hybridization. Thetelectrons are itiner-

- . nt and noninteracting, wher lectrons are localiz
We now proceed to show the validity of E¢C1) in a ant and noninteracting, whereas thelectrons are localized

rigorous fashion. To simplify notation we will suppress the (no bare hopping and have a Hubbard interaction. The

indice and w. We al ity to th tarded f-electron Green function has two self-energies, from the
common INGICEsA andw. YVe aiso spec!fy 0 the retarded 1 \phard interaction and the hybridization, respectively. Both
Green functions withw— w+ 17 with positive infinitesimal

~ o — self-energies are caus@legative semidefinite and decaying
7. The sum overk in the definition of G runs overn |ike 1/w). In contrast to the Hubbard self-energy the self-
=N/N, terms. Each term is a complex number with a posi-energy due to the hybridization is known explicitly and does
tive definite imaginary pam that isindependenbf the sum- depend on all the lattice momenta, therefore also onkthe

matlon_t|_ndex. EquatioiC1) is now cast into the following momenta in the cells about the cluster momenta. For a given
proposition. K and w the imaginary part of this self-energy is bounded

Proposition.For j=1, ... n, Iet_zj e C, whereC is the from above by some value b,;(K,w). Consequently, we
set of complex numbers, and lgf=a>0. If can prove in analogous fashion that

n

g::% D zi then IMG H=a, IM[G(K,0)~*]=a(K, )+ byin(K, ),
=14 where—a(K, o) is the self-energy due to the Hubbard inter-
with equality if and only ifzy=- - =z;=--- =2z,. action of thef electrons.

A last remark on the possibility of self-energy interpola-
tion is in order here. At first glance one might try to improve
the calculation by employing an interpolation of the cluster
self-energy between the cluster momenta in the coarse-
graining step, Eq(2), rather than using the “rectangular”

approximation for the lattice self-energy (K +Kk,o)

. . . . ~Y°K,w). However, as one can easily convince oneself
is mapped in a one-to-one fashion onto the circle given the above proofinyinterpolation scheme will violate
causality if ImX°(K,w) has a minimum somewhere in the
BZ. This will generally be so except in the case of the single
site cluster, in which there is nothing to interpolate. This
further limits the freedom of the coarse-graining procedure.
in the extendedv plane, with center-i/2a and a radius of

Proof. If w=u+iv=1/z with z=x+iy, then the line
Im z=a in the extended plane, given by

Im(z)=y=a= ——,
2=y u?+v?

2 2

1

2 _
us+ =|—
2a

v+ —
2a

r=1/2a. It follows thatG lies on or inside this circle, APPENDIX D: CONSERVATION OF THE DMFA AND
DCA
. n . n
= (1.2 EJF i< 1 D 1 11 An approximation which satisfies the various Ward iden-
2al| n|=1\z; 2a ni=1ilz; 2a] 2a’ tities is identified as a “conserving approximation” since the

Ward identities are derived from conservation laws. Baym
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and Kadanoft®!! showed that a sufficient condition to guar- i, + vy, k+q
antee that an approximation is conserving is for it todbe iy, .q T(z)
derivable and self-consistent. Energy, particle number, an o Bk

momentum are also assumed to be conserved at each interi.... n’
vgrtex, which may be 'assured by properlly constructing the FIG. 13. Definition ofiv,A, and g-A. Here, each solid line
diagrams from the lattice propagatGy using well-known o ¢,/ jattice propagato@(k. o), the filled box is the full particle-
Feynman rules. Specifically, the funCt'O@‘(G(_k’w)’U) IS hole reducible two-particl@-matrix, and the filled circle  isv, or
a set of closed graphs formed from the lattice propagatorg, ¢, for i, Ao or g-A, respectively.

G(k,w) and interactiond). The one- and two-particle self-
energies are calculated from functional derivatives Ofyere T(2) js the corresponding particle-hole reducible two-

®(G(k,w),U), 2 (k,w) = 0P/ 6G(k,w), s particle T matrix

=5°D/6G,86G,,. The equation (k,w)=6P/5G(Kk,w)

must be solved self-consistently urd(k,») converges. As T, =Th, (1—x3,, TP,

an additional consequence, Baym showed that quantities cal- : “ o _ _
culated within such an approximation were unique. and I',y,=I', ,+1'; —, is the particle-hole irreducible

In the infinite-dimensional formalism of Metzner and two-particle self-energy, with Kiw,) and «',iw,) as
Vollhardt momentum conservation is violated at internal verthe matrix indices, andy® is the diagonal matrix with
tices. Consequentlyb is a functional of the local propagator entries Xg,i,,a(iwn d00) =N8yn S G(K,iwn) G(K+ i w,
Gii(w) rather than the lattice propagat@(k,»), and the  +j, ), and ¢,/ the bare electronic dispersion. The corre-
corresponding self-energies are obtained from functionaéponding diagrams are illustrated in Fig. 13.
derivatives of ®(Gji(w),U) and are therefore also local.  When this formalism is applied as the DMFA in finite
However, we may also expect violations of some con-dimensions, the conservation of Ward identities does not fol-
servation laws. If a propeb (G(k,®),U) is taken, all non-  |ow from the arguments of Baym and Kadanoff. If we write
local diagrams which are higher order inDlAhanish, so  down a proper®(G(k,w),U), the only way to obtain the
that ®(G(k,w),U)=®(Gji(w),U)+O(1/D). Each func- |ocal generating functio®(G;,(w),U) used in the DMFA is
tional derivative with respect to the Green function breakso ignore momentum conservation within each graph and
an internal line _and so reduces the order of the appsum over each internal momenta independently. This clearly
roximation by VD.*® It follows then that the self-energy violates the requirement for a conserving approximation that
is also local 6®(G(k,w),U)/6G(k,w)=2(G(k,w),U) momentum be conserved at each internal vefteso the
=3(G;;(w),U)+O(1/{/D). However, a problem emerges at conserving property of the theory is lost.
the two-particle, or higher, level sincd (G(k,w),U) This can be seen from a direct examination of Ward’s
=I'(Gji(w),U)+O(1) for anyD, with the difference due to original identity, i.e., the Ward identity, E4D1), is not sat-
needed nonlocal corrections. Equivalentlydifis evaluated isfied for a generat] except wheriv, is zero. To see this,
in the limit D—o before the functional derivatives are note that from Eqs(D2) and(D3) and some simple algebra
evaluated, therl'(G(k,w),U)=I'(G;(w),U); however, if one can write
the order1 is reversed, then corrections of order unity are -
required® Thus, due to the lack of momentum conservation, AO_Q'A:N > HG(Kk iw)—G(K' + i, +iv,)}

: . O iv,
the DMFA does not provide a unique prescription for the v

k’,n’
calculation of two-particle properties and thus it need not be , ) ) .
conserving. +{Z(k'+q,ivytio,)—2(k iy}
For example, the equation of continuity; J— dp/dt=0, Y Gk TGk +diw +i
which describes charge conservation by electric currents, (K, twn) G( Giwntive)]
yields the original Wart? identity XTE, (Kiwg K iwp). (D4)

iv,Ao— Q- A=3(k+q,iv,tio,)—2(K,iw,), (D1)  Specializing now to the DMFA, the required Ward identity

whereA, andA are the scalar and vector components of the®@n be written as

dressed vertex function such that S(iv,+ion)—S(ioy)

a n n
. . _T E ’ o ’ ’ H ’ H T
Aotkqlonlvg) =g 2 G lon) G+ lontivy) =5 2 [Giiop—Gy(iwop+iv,)}a
)y Jn!
XTE, (Kiwgik' iwp) (D2) +H{3(iv,tiwy)—2(ioy)}

and Xexp(iq-rij) G (i)

XGji(iwp+iv)ITE, (iw,,iw), (D5)

T o,
A Ak, Qi wn,iv,) =5 2 (€ +q— € )G(K ' iwp)
ki.n where we have used the DMFA in the second step and as-

XG(K'+0q,iw)+iv,) sumed that> and I'™" are momentum independent, so
TR, =T (1-x3;, TP})~* has only the momentum de-

XTE, (Kiwg;K o). (D3)

pendence it inherits fron)(g’i,, . Clearly, wheniv, is zero,
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the right-hand sidéRHS) vanishes for arbitrarg and the there is a set off of measure zero within the Brillouin zone,
Ward identity is satisfied. But whein, is nonzero, the sec- which unfortunately includes the valueg=0 and g

ond term on the right-hand side has a nontrivdatlepen- = (,, ...), for which X(q) is finite and Xg(iwn,iva)
dence in general, and the Ward identity is violated since thez x{ (i w,,iv,), with corrections of order unity. For these
left-hand side(LHS) of Eq. (D5) is g independent. values ofq the nonlocal parts in the second term can no

Even in theD—o limit the Ward identity is not always longer be discarded, and the Ward identity is again violated.
satisfied. From the form of E@D5) it is clear that the Ward Consistent with this observation one may show to all orders
identity is only satisfied when in perturbation theory that nonlocal corrections to the

0. . ) ) ) = two-particle self-energy remain finite for a set of mea-
Xq(ioniva) =(IN)ZG(Kiwn)G(k+aion+iv,) sure zero points in the Brillouin zone. Apparently, for these
0N ; : : points, the nonlocal corrections to the two-particle self-
=Xii(ion 1) =Gii(i0n)Gii(fontivy). energy are needed to satisfy the Ward identity, or, equiva-
This is true for a generic q where X(q) lently, the theory is only conserving if the limit &— o0 is
=(1/D)=, cosq=0.2° Then, the nonlocal parts of the second evaluated only after the functional derivatives ®f (e.g.,
term in the RHS of Eq(D5) can be neglected, and the Ward I, ., = §°®/5G,5G,,) are evaluated®
identity, which now involves only the local, T" andG is In a similar way, one may explore violation of the Ward
exactly satisfied, as can be directly shown from the effectivedentities by the DCA. The required Ward identity in this
single site problem using equations of motion. Howevercase can be written as

T

So(K+Qiivg+ion) =K iwy) =1 > [G(K'+K,iw)—G(K'+k+Q+0,iw,+iv,)}

K’,k,n’
H{S(K'+Qiivytiwy) —S(K io)G(K' +K,iw))G(K'+k+Q+q,iw,+iv,)]

2 H o ’
ngfayiva(K,.wn;K i), (D6)

where we have used the DCA in assuming thaandT” are  DMFA when Ak==w/L—0 with corrections of order
dependent only on the cluster momenta, afd° is defined O(AK?).
in Appendix A. Now it is clear that, to the extent that the  In this appendix we have shown that due to violations of
RHS depends on, the Ward identity will not be satisfied, momentum conservation, the DMFA is not a conserving ap-
even in the static case. proximation in any dimensioD. Violations of Ward'’s origi-
However, the DCA will be conserving in the limit of large nal identity also emerge for the DMFA even whigr- o for
cluster size, since momentum conservation at the interng vanishingly small set of momentawhich includesq=0,
vertices is restoredwith corrections of ordeAk). Here, we  but not for general momentg There are concomitant reg-
assume that the method used to solve the cluster is exact, YiSit¢ nonlocal corrections to the infinite-dimensional irre-
that if an approximate methods used, that the correspondinéfc'ble vertex functions for a set of measure zero points in
self-energy diagrams are formed from derivatives of a genfoeré';];'gr'ée'tﬂgn\?vn;r'gr;ggiwo%? azl;)nlen \?ilr?ilfeh d"’}:ﬁerr‘gfoenssary
erating functional and employ fully dressgd propagafoes, the DMFA violates conservation in a finite fraction of the
G(k,w), not G(k,w)] so that we approximaté(G(k,»))  Brillouin zone due to the lack of momentum conservation in
~®(G(k,w)). Then, the DCA is conserving to the extent the internal vertices of the generating functional. Momentum
that I'y(k,k") andX, are well approximated by the cluster conservation is restored by DCA systematically as the cluster
quantities. Sinc& =TI+ O(Ak?) andS =3°+O(Ak?), the size increases, and so the DCA restores the conserving nature
DCA is able to restore the conservation properties lost in thef the approximation.
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