PHYSICAL REVIEW B VOLUME 61, NUMBER 19 15 MAY 2000-I

Transport in quantum wells in the presence of interface roughness

Chung-Yu Mou and Tzay-ming Hong
Department of Physics, National Tsing-Hua University, Hsinchu, Taiwan 30043, Republic of China
(Received 2 September 1999; revised manuscript received 8 November 1999

The effective Hamiltonian for two-dimensional quantum wells with rough interfaces is formally derived.
Two terms are generated. The first term is identified with local energy-level fluctuations, and was introduced
phenomenologically in the literature for interface roughness scattering, however, is now shown to be valid only
for an infinite potential well or Hamiltonians with one single length scale. The other term is shown to modulate
the wave function and cause fluctuations in the charge density. This will further reduce the electron mobility to
a magnitude that is close to the experimental result.

The vast interest in the physics of charge transport irconfiguration. In an expansion ifa(r)/L, two lowest order
two-dimensional quantum wells stems from potential appli-terms are considered . The first term is identified to the local
cations in devices and subsequent integration with Si-baseshergy-level fluctuationsdE/JL)A(r). This term represents
chip technology. Experimentally, it is known that chargethe mismatch effect of the energy band. It was introduced
transport inside a quantum well is strongly affected by thephenomenologically in the literature for interface roughness
quality of the well. In particular, it is believed that interface scattering, but is now shown to be valid only for an infinite
roughness is inherent to the quantum-well systems, and playmtential well or Hamiltonians with one single length scale.
an important role for wells at low temperature with small The other term is shown to modulate the wave function and
well widths! On the theoretical side, starting from the semi- cause fluctuations in the charge density. This will further
nal work by Kardar, Parisi, and ZhafAag large effort has reduce the electron mobility.
been devoted to understanding the morphology of thin-film Let us consider a generic quantum well specified by two
growth® during the past decade. Nevertheless, these workisiterfaces atz=z. (r) and z=z_(r), wherer=(x,y) is a
only characterize long-wavelength properties of the surfacéwo-dimensional vector. The average distance between the
roughness; there has been no systematic attempt to investiwo surfaces id (see Fig. 1 For simplicity, we shall im-
gate how electronic properties, such as charge transport, apse a hard wall condition on the interfaces. Our formulation
affected by surface roughness. is easily generalized to the case when the potential well is

The study of the effects of surface roughness on elecfinite. To investigate effects that are due to the interface
tronic transport properties has a long history, tracing back t@oughness, it is convenient to do a transformation that maps
the work by Prange and N&en magnetic surface states in z,(r) to L and z_(r) to 0. This transformation is easily
metals. Later, a more complete model was reconsidered hiynplemented by’ =L[z—z_(r)]/[A(r)+L], r'=r, where
Ando?® Quite often, these works are summarized phenomA(r)=z,(r)— z_(r)—L. After transformation, the wave-
enologically by introducing a local energy-level fluctuation function can be generically expressed by
term in the potential, dE/JL)A(r), whereE is the energy
eigenvalue of the electroh, is the averaged well width, and
A(r) is the local change of the quantum-well width. Such a _(nm_, [L+A(r)
phenomenology finds its natural application in interpreting ‘I’n=¢n(x,y)sm(Tz )/ 5
the photoluminescence data of GaAs/AlAs quantum wéils.

In this case, it has been established that for temperatures less

than 80 K, the linewidth of the photoluminescence is mainly  For typical quantum wells, the Fermi wavelength is about
determined by the local energy level fluctuations. Transpor4o0 A. If L is less than 340 A, there will be no band cross-
properties of two-dimensiondPD) carrier gases at Si/S)O  ing at low temperatures, and we can take the average along
interfaces and in semiconductor quantum wells are als@ direction with respect to a given subband, i.e., average
shown to be strongly affected by the interfacewith respect to sin{m/L)zZ’ (n will be taken to be 1 After
roughnes£:21%In these studies, theoretical mobility was also

calculated based on the assumption that the local energy-

level fluctuation is the dominant effect. It is known, how-

ever, that the experimentally observed mobility cannot be -
explained solely by the roughness. In some parameter regim,

one has to introduce, for example, a phenomenologically

negative impurity charge to account for the extra reduction

of the mobility observed in experiment$!? X -

In this work, we shall systematically investigate the ef-
fects of surface roughness. Our starting point is an averaged FIG. 1. A schematic plot of a 2D quantum well with rough
version of the Hamiltonian specialized to the quantum wellinterfaces.
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the averaging, the effective Hamiltonian becomegls, strate its effect on the calculation of the electron mobility.
=(—#2/2m)V?+ 6V, where the Laplacian is over th&,¢)  The change of the wave function induces a local modulation

directions and in the density of electrons,
2m (VA)? 2 B ir? nmw_,
——25V:an—2+ﬂnKVA- VB—KVA S TZ A(r)
h A n(r,z')=n’'(r) exp{— )
) [L+A(r)]/2 L
+ v A%+| VB~ KVA) } with the understanding that the normalization is done with
respect ta. Heren’(r) is the 2D electron density after being
2 1_, perturbed by the local energy-level fluctuations,

+n KVA'V“L KV Al (1) (0E,/IL)A(r). It is easy to show that

Here A=L/[A(r)+L], B=—-[Lz_(r)J/[A(r)+L], «a, 2m  JE,

=2 277, Ba=(Z (1027, Yy=(152'), n’<r>=no{”—z 0
and 8,=(z'(d/3z")),. It is easy to show thad,=—1/2 is mThKg k=ke

generally true. (0—K).r
If we expandsV to the linear order oA/L and keep only % E [A(k—p)-eP 9"+ Hc] ’
up to O(z_), we obtain P k?—p?
2E, #2111 1 wheren0=k§/27-r is the equilibrium electron density at two
N=Eq— 1AM+ | VA -V+ ZVZAU) dimensions, and H.c. denotes a Hermitian conjugate of the
previous term. We shall assume that the density of positive
13V (z,—L)-Vz_ charge background remains unchanged, so that the local
~Pn mL ' 2 charge modulation is entirely due to electrons. The change of

charge density is
where we have identified- y,4%/2m asE,. Note that the

resulting Hamiltonian is invariant under reflection=—z_ op(r,z)=en(r,z’')6(z—z_)0(L+A—z)
—z,andL—z,—z_ . If z.(r) andz_(r) are uncorrelated,
the last term is of higher order and can be neglected. Sin2<n_ﬂz)
In general, the second term in E(R) has no definite L
relation withE,,. Only whenL is the unique length scale in ey 5 #(2)eL-2). ©)

the Hamiltonian(e.g., an infinite potential wellwill E,, be

proportional to 1/? and —2E,/L=JE,/dL. Equation(2) For convenience, we shall assurme=0, and neglect the

can then be written curvature effect due to the roughné$sr instance, the spe-
cial case when both interfaces fluctuate while their spacing

9E, 211 1 remainsL). To the first order inA(r), the total electric po-
N=Ep+ ——A(N) = 5|7 VAN - V+ ZVZA(V) : tential 5¢ satisfies
) 2
Physically the second term in E¢3) describes the local —<V2+ —2) o¢(r,2)
energy-level fluctuation, which was introduced phenomeno- 9z
logically in the literature for interface roughness na
scattering”!° The third term can be combined with the ki- sir? TZ) g
netic energy to become = _ S B i
A7pingt4men L2 [S 2|1+ L
H h? ( N VA(r))2 @ A
== 5 na r m JE
2m 2L Xcof —z Q+——”f d%k
L L thzno JL k<kg
(a second order term has been neglect€tis has the effect
of modulating the wave function for every particle by A(k—p)-eP R T+Hc,
x%[ ( p)kz_pz ] 0(z)6(L—2),

F{ A(r)
P(r)—w(r)ex T

: ©) )

Note that this result isndependenof the depth of the well. WNere ping is the induced charge density. The associated
We shall show later that this fluctuation in the electron den-Scattering matrix within a given subband is given by
sity suppresses the mobility ti)-écl)th from the screening effect 26 (L 0
and from the Landauer formufa. . ™
SM(q)=(k|8V|g—K),=—| dzd¢(q,z)sir?| —z]|,
In the following, we discuss the many-particle effect that (@) =kl ovia—k)n L fo 20¢(q,2)s ( L Z)
is due to the wave-function modulation. We shall demon- (8
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where 8¢(q,z) is of the order of A. We shall denote where
J5dz 8¢(a,2)sin[(nm/L)z] by 5¢(q).

We now express the induced charge density in terms of I(q)EJ % lu(k,)|? s
5¢(q). This can be achieved in the conventional linear re- 2m g?+k2’
sponse theory by
3 )_Jdkz v*u a7
pmd(q,w=0,z)=J dz'Rell(q,w=022")e?5¢(q,2), V=] 27 q2+Kk2

9 For a narrow quantum well satisfyingL<2kgL<1 (this

wherell(q,0=022") is the polarization insertiof? If we  requiresL<33 A for ng~2x10"> m~? in quantum well

focus on thenth subband, the one-loop contribution is 1(g)~L?%8q and J(q)~—L?/16q, and Eq.(15) reduces to
the standard 2D screening form

Rell(q,w=0,2,2")

~ o
(nw \ . (nm \—16m d2k op(q)= a+q [—A(a)] (18)
=sir? TZ sir? TZ’ > Z’Pj—z s
fi°L (2m) [the second term in the denominator of E@5) does not

exist in two pure dimensiods where q¢=2me*/#?
, (100 =1/(0.25 A) anda= men,.
gk(cosf+x) However, ifqL~1, one shall have to use the full expres-
whereq andk are measured in terms &f, 6(1—k) is the  Sion of1(g) andJ(q). Since (16n€’/L*4%)=10*> m* and
step functionx=q/2k, and P denotes the Cauchy principle !(d)=10"2" m®, the second term in the denominator of Eg.
value. Since the momentum transfgris always less than (19) dominates and(q)~ (7ny%2/2em)A(q). The result-

X 6(1—k)

2ke, x<1 for the range ok integration. We find that ing scattering matrix within a given subband is thus given by
2\ 2
d*k | ) o 1( 9B, 2ngmh
—— (1K) = —— M(@)|*=(|oV(q)|*)~ 5| 2= — s(q),
Pf (2m)? 6(1~K) gk(cosf+x) 4w’ (11 N\ dL mL 9
As a result, we obtain whereN is the normalization an8(q) is the power spectrum

of A(q), givert® by (|A(g)|?). Given the scattering matrix,

pina(@w=02)=— Ame’ sz(n_wz) sh(q). (12 wecan calculate the relaxation time via the relation
’ , L27h? L .
1 1
Substituting the above into E7) and performing Fourier R HJ d?k’|M(k—k’)|*(1—cosd)
transformations on both andz, we find
X S[E(k)—E(k")], (20
(9%+Kk2)8¢(q,k,)=— ! ezv(kz) S5é(q)— 16men where® denotes the angle between the initial and final wave
L%r? L? vectorsk andk’. The mobility of the electron can then be
solved by
A K K 16me JE,
(@huter el Zre ot o] at p(E)(E)(E) on
a AnksT cost (E—Eg)/2kgT]’

X fkgk mv(kz), (13 e see that the interparticle interaction reduces the electron
F mobility estimated by the energy-level fluctuations by at
where u(k,) = (nm/2L) [se*Zz sif(2nm/L)Z]dz and wv(k,) least three quarters. Sinek,,/JL<0, the second term in
=f5eikzzsin2[(m-r/L)z]dz Thek integration was done in Eq. Ed.(19) due to wave-function modulation increases the scat-
(12). It is also easy to show that tering matrix and further reduces the mobility. The overall
reduction of the mobility in comparison to previous approach
~ dk, . is about one-fourth.
6¢(q)=f e 5¢(q,kz)v" (kz). (14) We note in passing that in general, in addition to
the above Coulomb interaction, the density modulation
Substitutingd¢(q,k,) into the above equation, we obtain  induced by the surface roughness also affects any interac-
tions that depend on the electron density. If, in the absence of

©

16men 43 B 8me aEnl surface roughness, the interaction is described by
B L2 [Ha@)+J(a)] L2 oL (a) Jdrfdr'n(r)Vo(r,r')n(r’), then formally the effect of sur-
o¢(q)= lome [—A(a)], face roughness can be simply included by replasigdy
1+ ——=1(q)

Lh? V(r,r')~vo(r,r')(1—w). 22

(19
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The validity of this effective Hamiltonian can be checked
by solving the Schidinger equation for a simple step, i.e.,
z.=LO(—x)+(L+A)O(x) and z_=0. We find that the
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This number when combined with the contribution from Eq.
(21) (~10° cn?/Vsec) predicts that the mobility is at the
order of 1 cn?/V sec, close to the experimental reshilt.

fluctuations in both the energy level and the electron density In conclusion, we have derived an effective Hamiltonian
are indeed reproduced by calculating the transmissioffor two-dimensional quantum wells with rough interfaces.

amplitude!* Let us now briefly re-examine the effect due to

Two terms are generated. The first term is identified with the

the change of the single-particle state in the ballistic regimelocal energy-level fluctuations, which were introduced phe-

For a single step, according to the Landauer formtitne
conductance due to the step is given by
T
" wh R’
whereT andR are transmission and reflection probabilities.
A simple analysis shows that the mobility is given by

(23

el T el [L(1+afkEL?)
K= Zhng R whng A -

L(1+ w2/k2L?)
:483%TF—1 cné/Vsec.  (24)

For many stepsA needs to be replaced A, . But since
A; can be either positive or negati8A;~A~3-4 A.The
mobility is then about 1b-10° cn?/Vsec forL=100 A.

nomenologically in the literature, but the previous form is
now shown to be valid only when the Hamiltonian has one
single length scale. The effect of this term on the electron
mobility has been discussed before. The other term is a new
finding, to our knowledge, which is shown to modulate the
wave function and cause fluctuations in the charge density.
We discuss its effects on the reduction of the electron mo-
bility both at the level of the single-particle state and by
including the many-particle interactions. An estimate of the
electron mobility is made, and gives rise to the correct order
in comparison to experimental data.
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