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Transport in quantum wells in the presence of interface roughness

Chung-Yu Mou and Tzay-ming Hong
Department of Physics, National Tsing-Hua University, Hsinchu, Taiwan 30043, Republic of China

~Received 2 September 1999; revised manuscript received 8 November 1999!

The effective Hamiltonian for two-dimensional quantum wells with rough interfaces is formally derived.
Two terms are generated. The first term is identified with local energy-level fluctuations, and was introduced
phenomenologically in the literature for interface roughness scattering, however, is now shown to be valid only
for an infinite potential well or Hamiltonians with one single length scale. The other term is shown to modulate
the wave function and cause fluctuations in the charge density. This will further reduce the electron mobility to
a magnitude that is close to the experimental result.
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The vast interest in the physics of charge transport
two-dimensional quantum wells stems from potential ap
cations in devices and subsequent integration with Si-ba
chip technology. Experimentally, it is known that char
transport inside a quantum well is strongly affected by
quality of the well. In particular, it is believed that interfac
roughness is inherent to the quantum-well systems, and p
an important role for wells at low temperature with sm
well widths.1 On the theoretical side, starting from the sem
nal work by Kardar, Parisi, and Zhang,2 a large effort has
been devoted to understanding the morphology of thin-fi
growth3 during the past decade. Nevertheless, these w
only characterize long-wavelength properties of the surf
roughness; there has been no systematic attempt to inv
gate how electronic properties, such as charge transport
affected by surface roughness.

The study of the effects of surface roughness on e
tronic transport properties has a long history, tracing bac
the work by Prange and Nee4 on magnetic surface states
metals. Later, a more complete model was reconsidered
Ando.5 Quite often, these works are summarized pheno
enologically by introducing a local energy-level fluctuatio
term in the potential, (]E/]L)D(r ), whereE is the energy
eigenvalue of the electron,L is the averaged well width, an
D(r ) is the local change of the quantum-well width. Such
phenomenology finds its natural application in interpret
the photoluminescence data of GaAs/AlAs quantum wells1,6

In this case, it has been established that for temperatures
than 80 K, the linewidth of the photoluminescence is mai
determined by the local energy level fluctuations. Transp
properties of two-dimensional~2D! carrier gases at Si/SiO2
interfaces and in semiconductor quantum wells are a
shown to be strongly affected by the interfa
roughness.7,8,10In these studies, theoretical mobility was al
calculated based on the assumption that the local ene
level fluctuation is the dominant effect. It is known, how
ever, that the experimentally observed mobility cannot
explained solely by the roughness. In some parameter reg
one has to introduce, for example, a phenomenologic
negative impurity charge to account for the extra reduct
of the mobility observed in experiments.10,12

In this work, we shall systematically investigate the e
fects of surface roughness. Our starting point is an avera
version of the Hamiltonian specialized to the quantum w
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configuration. In an expansion inD(r )/L, two lowest order
terms are considered . The first term is identified to the lo
energy-level fluctuations (]E/]L)D(r ). This term represents
the mismatch effect of the energy band. It was introduc
phenomenologically in the literature for interface roughne
scattering, but is now shown to be valid only for an infini
potential well or Hamiltonians with one single length sca
The other term is shown to modulate the wave function a
cause fluctuations in the charge density. This will furth
reduce the electron mobility.

Let us consider a generic quantum well specified by t
interfaces atz5z1(r ) and z5z2(r ), where r5(x,y) is a
two-dimensional vector. The average distance between
two surfaces isL ~see Fig. 1!. For simplicity, we shall im-
pose a hard wall condition on the interfaces. Our formulat
is easily generalized to the case when the potential we
finite. To investigate effects that are due to the interfa
roughness, it is convenient to do a transformation that m
z1(r ) to L and z2(r ) to 0. This transformation is easily
implemented byz85L@z2z2(r )#/@D(r )1L#, r 85r , where
D(r )[z1(r )2 z2(r )2L. After transformation, the wave
function can be generically expressed by

Cn5cn~x,y!sinS np

L
z8D YAL1D~r !

2
.

For typical quantum wells, the Fermi wavelength is abo
400 Å. If L is less than 340 Å, there will be no band cros
ing at low temperatures, and we can take the average a
z direction with respect to a given subband, i.e., avera
with respect to sin(np/L)z8 (n will be taken to be 1!. After

FIG. 1. A schematic plot of a 2D quantum well with roug
interfaces.
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the averaging, the effective Hamiltonian becomesHn
5(2\2/2m)“21dV, where the Laplacian is over the (x,y)
directions and

2
2m

\2
dV5an

~“A!2

A2
1bn

2

A
“A•S“B2

B

A
“AD

1gnFA21S“B2
B

A
¹AD 2G

1dnS 2

A
“A•“1

1

A
“

2AD . ~1!

Here A[L/@D(r )1L#, B[2@Lz2(r )#/@D(r )1L#, an
[^z82(]2/]z82)&n , bn[^z8(]2/]z82)&n , gn[^]2/]z82&n
and dn[^z8(]/]z8)&n . It is easy to show thatdn521/2 is
generally true.

If we expanddV to the linear order ofD/L and keep only
up to O(z2), we obtain

dV5En2
2En

L
D~r !1dn

\2

m S 1

L
“D~r !•“1

1

2L
“

2D~r ! D
2bn

\2
“~z12L !•“z2

mL
, ~2!

where we have identified2gn\2/2m as En . Note that the
resulting Hamiltonian is invariant under reflection:L2z2

→z1 andL2z1→z2 . If z1(r ) andz2(r ) are uncorrelated
the last term is of higher order and can be neglected.

In general, the second term in Eq.~2! has no definite
relation withEn . Only whenL is the unique length scale i
the Hamiltonian~e.g., an infinite potential well! will En be
proportional to 1/L2 and 22En /L5]En /]L. Equation~2!
can then be written

dV5En1
]En

]L
D~r !2

\2

2m F1

L
“D~r !•“1

1

2L
“

2D~r !G .
~3!

Physically the second term in Eq.~3! describes the loca
energy-level fluctuation, which was introduced phenome
logically in the literature for interface roughnes
scattering.8,10 The third term can be combined with the k
netic energy to become

H852
\2

2m S ¹1
¹D~r !

2L D 2

~4!

~a second order term has been neglected!. This has the effect
of modulating the wave function for every particle by

C~r !→C~r !expS 2
D~r !

2L D . ~5!

Note that this result isindependentof the depth of the well.
We shall show later that this fluctuation in the electron d
sity suppresses the mobility both from the screening ef
and from the Landauer formula.11

In the following, we discuss the many-particle effect th
is due to the wave-function modulation. We shall demo
-

-
ct

t
-

strate its effect on the calculation of the electron mobili
The change of the wave function induces a local modulat
in the density of electrons,

n~r ,z8!5n8~r !

sin2S np

L
z8D

@L1D~r !#/2
expS 2

D~r !

L D ,

with the understanding that the normalization is done w
respect toz. Heren8(r ) is the 2D electron density after bein
perturbed by the local energy-level fluctuation
(]En /]L)D(r ). It is easy to show that

n8~r !5n0H 11
2m

p\2kF
2

]En

]L E
k<kF

d2k

3(
p

@D~k2p!•ei (p2k)•r1H.c.#

k22p2 J ,

wheren05kF
2/2p is the equilibrium electron density at tw

dimensions, and H.c. denotes a Hermitian conjugate of
previous term. We shall assume that the density of posi
charge background remains unchanged, so that the l
charge modulation is entirely due to electrons. The chang
charge density is

dr~r ,z!5en~r ,z8!u~z2z2!u~L1D2z!

2en0

sin2S np

L
zD

L/2
u~z!u~L2z!. ~6!

For convenience, we shall assumez250, and neglect the
curvature effect due to the roughness~for instance, the spe
cial case when both interfaces fluctuate while their spac
remainsL). To the first order inD(r ), the total electric po-
tential df satisfies

2S“21
]2

]z2D df~r ,z!

54pr ind14pen0

sin2S np

L
zD

L/2 H s22F11
npz

L

3cotS np

L
zD G D~r !

L
1

m

p2\2n0

]En

]L E
k<kF

d2k

3(
p

@D~k2p!•ei (p2k)•r1H.c.#

k22p2 J u~z!u~L2z!,

~7!

where r ind is the induced charge density. The associa
scattering matrix within a given subband is given by

dM ~q!5^kudVuq2k&n5
2e

L E
0

L

dzdf~q,z!sin2S np

L
zD ,

~8!
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12 614 PRB 61BRIEF REPORTS
where df(q,z) is of the order of D. We shall denote
*0

Ldzdf(q,z)sin2@(np/L)z# by df̃(q).
We now express the induced charge density in terms

df̃(q). This can be achieved in the conventional linear
sponse theory by

r ind~q,v50,z!5E dz8ReP~q,v50,z,z8!e2df~q,z8!,

~9!

whereP(q,v50,z,z8) is the polarization insertion.13 If we
focus on thenth subband, the one-loop contribution is

ReP~q,v50,z,z8!

5sin2S np

L
zD sin2S np

L
z8D216m

\2L2
PE d2k

~2p!2

3u~12k!
1

qk~cosu1x!
, ~10!

whereq andk are measured in terms ofkF , u(12k) is the
step function,x[q/2k, andP denotes the Cauchy principl
value. Since the momentum transferq is always less than
2kF , x,1 for the range ofk integration. We find that

PE d2k

~2p!2
u~12k!

1

qk~cosu1x!
5

1

4p
. ~11!

As a result, we obtain

r ind~q,v50,z!52
4me2

L2p\2
sin2S np

L
zD df̃~q!. ~12!

Substituting the above into Eq.~7! and performing Fourier
transformations on bothr andz, we find

~q21kz
2!df~q,kz!52

16me2

L2\2
y~kz!df̃~q!2

16pen0

L2

3D~q!@u~kz!1y~kz!#1
16me

pL\2

]En

]L

3E
k<kF

d2k
D~q!

k22uk2qu2
y~kz!, ~13!

where u(kz)5(np/2L)*0
Leikzzz sin@(2np/L)z#dz and y(kz)

5*0
Leikzzsin2@(np/L)z#dz. The k integration was done in Eq

~11!. It is also easy to show that

df̃(q)5E
2`

` dkz

2p
df~q,kz!y* ~kz!. ~14!

Substitutingdf(q,kz) into the above equation, we obtain

df̃(q)5

16pen0

L2
@ I ~q!1J~q!#2

8me

L\2

]En

]L
I ~q!

11
16me2

L2\2
I ~q!

@2D~q!#,

~15!
of
-

where

I ~q![E dkz

2p

uy~kz!u2

q21kz
2

, ~16!

J~q![E dkz

2p

v* u

q21kz
2

. ~17!

For a narrow quantum well satisfyingqL<2kFL!1 ~this
requiresL!33 Å for n0'231015 m22 in quantum wells!,
I (q)'L2/8q and J(q)'2L2/16q, and Eq.~15! reduces to
the standard 2D screening form9

df̃(q)5
a

q1qs
@2D~q!# ~18!

@the second term in the denominator of Eq.~15! does not
exist in two pure dimensions# where qs52me2/\2

.1/(0.25 Å) anda5pen0.
However, ifqL'1, one shall have to use the full expre

sion of I (q) andJ(q). Since (16me2/L2\2).1030 m23 and
I (q).10227 m3, the second term in the denominator of E
~19! dominates anddf̃(q)'(pn0\2/2em)D(q). The result-
ing scattering matrix within a given subband is thus given

uM ~q!u25^udV~q!u2&'
1

: S 2
]En

]L
2

2n0p\2

mL D 2

S~q!,

~19!

where: is the normalization andS(q) is the power spectrum
of D(q), given10 by ^uD(q…u2&. Given the scattering matrix
we can calculate the relaxation time via the relation

1

t~k!
5

1

2p\E d2k8uM ~k2k8!u2~12cosF!

3d@E~k!2E~k8!#, ~20!

whereF denotes the angle between the initial and final wa
vectorsk and k8. The mobility of the electron can then b
solved by

m5eE dE
r~E!yx

2~E!t~E!

4nkBT cosh2@~E2EF!/2kBT#
. ~21!

We see that the interparticle interaction reduces the elec
mobility estimated by the energy-level fluctuations by
least three quarters. Since]En /]L,0, the second term in
Eq. ~19! due to wave-function modulation increases the sc
tering matrix and further reduces the mobility. The over
reduction of the mobility in comparison to previous approa
is about one-fourth.

We note in passing that in general, in addition
the above Coulomb interaction, the density modulat
induced by the surface roughness also affects any inte
tions that depend on the electron density. If, in the absenc
surface roughness, the interaction is described
*dr*dr 8n̂(r )V0(r,r 8)n̂(r 8), then formally the effect of sur-
face roughness can be simply included by replacingV0 by

V~r ,r 8!'V0~r ,r 8!S 12
D~r !1D~r 8!

L D . ~22!
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The validity of this effective Hamiltonian can be check
by solving the Schro¨dinger equation for a simple step, i.e
z15Lu(2x)1(L1D)u(x) and z250. We find that the
fluctuations in both the energy level and the electron den
are indeed reproduced by calculating the transmiss
amplitude.14 Let us now briefly re-examine the effect due
the change of the single-particle state in the ballistic regim
For a single step, according to the Landauer formula,11 the
conductance due to the step is given by

G5
e2

p\

T

R
, ~23!

whereT andR are transmission and reflection probabilitie
A simple analysis shows that the mobility is given by

m5
ueu

p\n0

T

R
.

ueu
p\n0

FL~11p2/kF
2L2!

D
21G

.4836FL~11p2/kF
2L2!

D
21G cm2/V sec. ~24!

For many steps,D needs to be replaced by(D i . But since
D i can be either positive or negative,(D i'D'3 –4 Å. The
mobility is then about 1042105 cm2/V sec for L5100 Å.
,
s.
ty
n

e.

.

This number when combined with the contribution from E
~21! (;105 cm2/V sec) predicts that the mobility is at th
order of 104 cm2/V sec, close to the experimental result.15

In conclusion, we have derived an effective Hamiltoni
for two-dimensional quantum wells with rough interface
Two terms are generated. The first term is identified with
local energy-level fluctuations, which were introduced ph
nomenologically in the literature, but the previous form
now shown to be valid only when the Hamiltonian has o
single length scale. The effect of this term on the elect
mobility has been discussed before. The other term is a
finding, to our knowledge, which is shown to modulate t
wave function and cause fluctuations in the charge dens
We discuss its effects on the reduction of the electron m
bility both at the level of the single-particle state and
including the many-particle interactions. An estimate of t
electron mobility is made, and gives rise to the correct or
in comparison to experimental data.
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