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lon-dose-dependent microstructure in amorphous Ge
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Implantation-induced, microstructural modifications including increased bond length and non-Gaussian
static disorder have been measured in amorphous Ge using extended x-ray absorption fine-structure spectros-
copy. The evolution of theamorphous phaseteratomic distance distribution as functions of ion dose and
implant temperature demonstrates the influence of implantation conditiorssnonphous phasstructure.

Results are attributed to increased fractions of three- and fivefold coordinated atoms as a means of accommo-
dating implantation-induced point defects.

Implantation-induced structural changes in semiconductoformed by ion implantation were determined using the
substrates can include the crystalline-to-amorphoaisd  model-independent cumulant methb@his means of analy-
continuous-to-porodstransformations at low £10"%cn?)  sis is based on the expansion of the EXAFS amplitudes and
and high &10'%cn?) ion doses, respectively. Though such phases as a moment series of the interatomic distance distri-
phenomena have been previously investigated, the atomibution and is appropriate for the amorphous-Ge materials
scale structure of thamorphous phasérmed by ion im-  system with low to moderate anharmonic disorter.
plantation has not been determined in detail nor has the po- As demonstrated previously, ion implantation is an effec-
tential influence of the implant conditions on such structuretive methodology for the fabrication of amorphous semicon-
been considered. Herein, we demonstrate that the microstruductor EXAFS sample§For the present report, a crystalline
ture of the semiconductor Ge evolves, in tamorphous Ge layer of thickness-2 um was deposited by molecular
phase as functions of both ion dose and implant tempera-beam epitaxy at 600 °C on a Si-on-insulator heterostructure
ture. The four moments of the amorphous-Ge interatomi¢ Si(0.2,.m)/SiOx(0.4 um)/Si(substratg]. Samples were an-
distance distribution have been determined using extendegealed bothin situ and ex situto fully relax the epitaxial
x-ray absorption fine-structure spectroscafXAFS) and layer. The lattice-mismatched Ge layer was then masked
unambiguously show the presence of implant-conditionwith Apezion black wax and detached, with the Si layer of
dependent non-Gaussian static disorder. thickness 0.2um, from the Si substrate by selective chemical

EXAFS is a proven technique for the measurement of theetching of the Si@layer in HF:H,0 (1:2) solution. Utilizing
structural parameters of disordered materials such as amathe black wax for structural stability and C dag for electrical
phous semiconductofsOf the latter, amorphous Ge has and thermal conductivity, the thin Ge layer was then amor-
been studied extensively, though conflicting experimental rephized with a multiple-energy, multiple-dose Ge-ion-
sults have been reported due to differences in both datanplantation sequencéFor the given ion energy and dose
analysis and sample fabrication methodolodieSor ex- combinationg the nuclear energy deposition density was ap-
ample, thouglerystalline Ge can be correctly analyzed with proximately constant over the extent of the Ge lgyer.
the standard EXAFS formalism that assumes a Gaussian diSamples were implanted at both196 and 21 °C(+3°C)
tribution of interatomic distances, anharmonicity in the formwith an ion-dose range extending approximately two orders
of non-Gaussian static disorderamorphousGe can require of magnitude beyond that required for amorphization
a model-independent approach to avoid significant errors i~ 10" cn?). The amorphous-Ge films were then ground to
analysi  Similarly, with a common analytical a fine powdeP,evenly dispersed in a BN binder, and pressed
methodology* different results have been reported forinto an Al support between Kapton films such that~1,
samples fabricated by sputtering and evaporation. For thevhere u is the x-ray attenuation coefficient amds the ef-
present report, the structural parameters of amorphous (ective Ge sample thicknes@\ crystalline reference sample
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L B S R A B next-nearest neighborg\ote that the EXAFS amplitude for
a0l (a) ] a given shell is proportional to exp@o?k?) and the damping
due to disorder results from the disorder-induced increase of
the Debye-Waller factord?) value]

Back-transformed spectra were then calculated using an
r-space window over the range 1.73-2.63 A to extract the
separate first-shell amplitude and phase functions required
for the cumulant expansion. Following Dalkaal.* the co-
ordination number of the amorphized samph) and the
first four relative cumulant®AC; , whereAC;=C; —C; ) of

the effectiveinteratomic distance distribution were calculated

] from a comparison of the amplitude and phase of an amor-

20 phized samplés) to that of the crystalline referende) over

thek range 4-14 A, (Specifically,Ng, AC,, andAC, are

determined from the logarithm of the amplitude ratio whilst

N 0 A T AC,; and AC; are determined from the phase differefige.
(b) The coordination numbem\;) and bond Iength((:lr) of the

E crystalline reference were set equal to four atoms and the
] x-ray diffraction standard of 2.4496 A, respectively. Abso-
lute values of the amorphous-sample cumulants were ob-
tained by addingAC; to the absolute values of the
crystalline-reference cumulants, the latter determined assum-
ing a Gaussian interatomic distance distribution. A value of
0.0018+0.0003 & was determined fol‘::zr using thexrIT

code® and errors were calculated by varyirg, and the

a0 kb amorphous

I crystalline
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FIG. 1. (a) EXAFS and(b) Fourier-transformed spectra compar- are such that
ing crystalline and amorphized Ge.
P(r,\)=p(r)[exp(—2r/\)]/r?, (1)
was fabricated in an identical manner excluding ion implan-
tation) with C; ~C{* for i=21! The average position of the real
Transmission EXAFS measurements at the iS@dge  distribution C}_was calculated following Ref. 12 wherein a

were performed on unoxidized samples at a temperature gf .
12 K at the Stanford Synchrotron Radiation LaboratoryféZS;peedndem photoelectron mean free pathof 8 A was

(beamlines 2-3 and 4)3and the Photon Factory, Japan Fi ;
X gures 2a) and Zb) show examples of the ion-dose and
(beamline 20-B. EXAFS data were extracted from the ab- ; plant-temperature dependence of the structural parameters

. . . |
sorption spectra in a conventional manner and for SpECtI’%? amorphized Ge. For an implant temperature—df% °C

comparison, a common energy origity) and reference % . : .
(the absorption-spectra first-derivative maximwwvere uti- the bond Iength’;ls progressively increased as a function of

lized to align the absorption edges within 0.1 eV. Thelon dose.with a significantlyllesser change apparent for
k3-weighted EXAFS(wherek is the photoelectron momen- Samples implanted at 21°CFig. 2@)]. In contrast, the
tum) was then Fourier transformed overkaange of 2—16 Debye-Waller fact0|C’2‘S (not shown exhibited no ion-dose
AL or implant-temperature dependence within experimental er-
Figures 1a) and Xb) show EXAFS and Fourier- ror. For all amorphized samples, the experimemésl and

transformed spectra, respectively, f(_)r both crystalline antt; values(=2.458+0.002 A and=0.0028+0.0005 A2, re-
amorphous samples. For the crystalline sample of Fig., 1 s .
spectively exceeded those of the crystalline reference

the complicated EXAFS spectrum resulted from the super A J ;
position of the scattering contributions from multiple atomic _(2'4496 and 0.00180.0003 4, respectively. In general,

shells. In the corresponding Fourier-transformed spectrum dfcreased values of both bond length and Debye-Waller fac-

Fig. 1(b), first, second, and third nearest neighbors werdor, the latter consistent with the presence of structural dis-
readily apparent. In contrast, the single-frequency ExAELrder, have been reported for amorphous Ge independent of

spectrum of the amorphous sample was characteristic of scaf1® [r)]reparanon tec?mqfe. o tosted b
tering from a single shell, and thus only contributions from "€ Presence of anharmonicity was manifested by non-

the nearest neighbors were resolvable in the Fourier?€™© values of the cumulan@s_and Cj_which measured,
transformed spectrum. Beyond the first shell, disorderfespectively, asymmetric and symmetric deviations of the in-
induced broadening of the interatomic distance distributiorferatomic distance distribution from Gaussian behavior.
was sufficient to damp out scattering contributions fromFrom Fig. Zb), a progressive increase m;s value as a
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w 21°C
1.0}
structural parameter values. In contrast, note the asymmetry
in the high-dose-sample spectrum or equivalently, the in-

Asym. Anharmonicity (4®)

amorphized i creased proportion of bond lengths greater than the most
1 probable value.
crystalline ] We suggest the observed trends in structural evolution
I \ ] presented in Figs. 2 and 3 were consistent with an
00 -Fo=mmmm o= T s implantation-induced increase in the fraction of defective
oe ot JpeT atomic  configurations. Ab initio molecular-dynamics
Total Ion Dose (/cm?) calculationd? predict that amorphous Ge is comprised of

three-, four-, and fivefold coordinated atoms. Similar con-
FIG. 2. (a) Nearest-neighbor bond leng@_and(b) asymmet-  centrations of the two defective configuratia&6 and 11%
ric anharmoni(:it)(:}fS as functions of ion dose and implant tempera- for three- and fivefold coordinated atoms, respectivedgult
ture. in an average theoretical coordination number of 4.05 atoms,
where the three- and five-fold coordinated atom bond lengths
function of ion dose was observed for an implant temperaﬁz'52 and_2.57 A, respe_ctlvélyexceed the \{alue for '_[he te-
ture of —196 °C. As above, a lesser change was apparent f agonal sitg2.47 A). An ion-dosedependenincrease in the

samples implanted at 21 °@J; values(not shown exhib- ractions of the two defective configurations should thus
_ i s _ yield an increase in average bond length and anharmonicity
ited comparable behavior. For the crystalline referenc%)arameter valueincluding an increased proportion of bond

(where a Gaussian interatomic distance. distribution was a3angths exceeding the most probable valyet produce an
sumed, C3 =Cj =0. In previously published reports, the jon-doseindependent coordination number as measured
presence and extent of anharmonicity in amorphous Ge waserein®® Also, the lesser change in all structural parameter
specific to the fabrication methodology. values measured for samples implanted at 21 °C was consis-
In contrast to the results presented above, the first-shetent with increased defect mobility and dynamic annealing
coordination numbeN was, within experimental error, ion- relative to a temperature 6196 °C.
dose independentwith measured values of 3.820.2 and Implantation-induced porosity in Ge substrates has been
3.94+0.2 atoms for implant temperatures ef196 and attributed to the nucleation and growth of voidlike cavities
21°C, respectively. Such values did not differ from those ofvia vacancy clustering. Though readily induced at room
the crystalline referencéour atoms$ and, though represen- temperature with ion doses &f 10'%cn?, the onset of po-
tative of the superposition of all interatomic configurations,rosity has not been observed at196 °C* At this lower
were consistent with the general retention of tetrahedral cotemperature, we suggest the implantation-induced Frenkel-
ordination in the local atomic environment as previously re-pair components—vacancy- and interstitial-like defeicts
ported for amorphous Ge prepared with differentthe amorphous phasethat do not recombine may preferen-
technique$. tially be accommodated via three- and fivefold coordinated
Figure 3 shows the real distribution of interatomic dis-atoms, respectively. The production and retention of such
tances for a pair of nearest-neighbor atoms in amorphous Geefects in the bulk yields the ion-dose-dependent changes in
as a function of ion dose(The implant temperature was structural parameter values determined herein using EXAFS.
—196 °C and for clarity, only the spectra for the two dose[Note that structural changes were evident using EXAFS at
extrema have been includédror the lowest-dose-sample ion doses £10“cn?) significantly less than that required
spectrum only, the deviation from a Gaussian distributionto observe porosity using transmission electron microscopy
was insignificant and as a consequence, analysis with eithé=10'%cn?).2] In contrast, implantation-enhanced defect
the standard formalism or cumulant method yielded equainobility at 21 °C is evidently sufficient to initiate porostty.
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At this higher temperature, we further suggest that thephousGe. Increases in bond length and anharmonicity were
vacancy- and interstitial-like defects that do not recombineobserved without a change in coordination number. The in-
may, respectively, preferentially diffuse to voidlike sinks andteratomic distance distribution @morphousGe was shown
self-anneal through bond rearrangements with nearesp evolve as functions of both ion dose and implant tempera-
neighbors® A reduced fraction of defects was thus retainedture, demonstrating the influence of implantation conditions
within the bulk, and, accordingly the Change in all StrUCtUralon amorphous phasﬁructure_ For an |mp|ant temperature Of
parameter values was less relative to samples implanted at]gg °C, we suggest the structural modifications resulted
—196 °C ) ) ) from an implantation-induced increase in the three- and five-
Additional evidence for an ion-dose-dependent fraction o, 4 coordinated atom fractions and represented a mecha-
defective configurations in amorphous Ge was obtained frofig, of accommodating vacancy- and interstitial-like defects

Raman rr_weasuremeri't%For samples implanted _at196 C, within the amorphous phase. For an implant temperature of
changes in the frequency and width of the TO-like band WErS1 oC, the structural evolution was less as attributed to a

consistent with increased disordering of the amorphous . : . i
structure as a function of ion dose. Thermal annealing 0](educed fraction of point defects retained within the bulk.

such defective configurations was also investigated—
selected samples used in the present report were subse-
quently annealed at a temperat@2€0 °O which was insuf-
ficient to induce recrystallization. Using EXAESstructural
relaxation of amorphous Ge was readily apparent through
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