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Screened interaction and self-energy in an infinitesimally polarized electron gas
via the Kukkonen-Overhauser method
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The screened electron-electron interactionWs,s8 and the electron self-energy in an infinitesimally polarized
electron gas are derived by extending the approach of Kukkonen and Overhauser. Various quantities in the
expression forWs,s8 are identified in terms of the relevant response functions of the electron gas. The
self-energy is obtained fromWs,s8 by making use of the GW method which in this case represents a consistent
approximation. Contact with previous calculations is made.
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Kukkonen and Overhauser1 ~KO! proposed an approxi
mate analytic scheme for calculating the effects of excha
and correlations in an electron gas which accounts for b
charge and spin fluctuations. KO were the first to exploit,
its fullest extent for the case of paramagnetic jellium, t
many-body local field methodology introduced by Hubba
to account for vertex corrections.2 The main merits of the
KO method are its simplicity and physical clarity. One of t
main results of the KO theory was an expression for
quasiparticle effective interaction for an unpolarized elect
gas. Although this was not initially appreciated, these res
were later confirmed for the paramagnetic case, by mean
a more complex, less physically transparent, diagramm
technique by Vignale and Singwi.3 The diagrammatic analy
sis was then extended to the case of an infinitesimally po
ized electron gas by Ng and Singwi.4 The situation was even
tually clarified by the present authors who derived equival
results within the framework of a theory of the electron g
based on the concept of quasiparticle pseudo-Hamiltonia5,6

This theory found successful application to the study
many-body effects in two-dimensional electronic systems7

A popular alternative approach for calculating the phy
cal properties of the Landau quasiparticles in an electron
is represented by the total energy method.8 In this approach a
key step is represented by the determination of a suita
expression for the electron gas total energy as a functiona
the particle occupation numbers. Although the procedur
quite standard and has been in use for quite some time, it
only recently realized that, in order to be able to achiev
correct microscopic theory, it is necessary to carefully ke
separate track of the spin up and spin down occupa
numbers.9,6 Accordingly even when studying the physics
an electron gas in its paramagnetic state, it is necess
within this framework, to determine the energy of an infin
tesimally polarized electron gas. This problem was tackle
Ref. 6 via the pseudo-Hamiltonian method. The self-ene
obtained by this procedure proved to be equivalent to
independently derived by Ng and Singwi.4

The purpose of the present paper is to generalize
simple, elegant procedure developed by KO to the case o
PRB 610163-1829/2000/61~19!/12556~4!/$15.00
e
th
o
e

e
n
ts
of
ic

r-

t
s

f

-
as

le
of
is
as
a
p
n

ry,

in
y
at

e
an

infinitesimally polarized electron gas. To obtain a result u
ful also for multicomponent systems, we derive the scree
interaction between two electrons by generalizing the th
ries of Refs. 1 and 10 to an infinitesimally polarized dege
erate multivalley system. Then the electron self-energy
obtained in a consistent fashion by making use of the low
order diagram within what is commonly referred to as t
GW approximation.11 We also show that the self-energy o
tained following this procedure, although not identical,
very similar to that derived by the present authors in Ref

The first step in the KO procedure consists in obtainin
suitable expression for the total effective potential felt by a
given electron of the liquid as a result of the introduction
a perturbing electron. To this end we adopt the same form
ism utilized in Appendix A of Ref. 6 for obtaining the vari
ous response functions. We begin by introducing a spin
electron, represented by a~number! density of Fourier am-
plituder↑ , into the Fermi sea. LetDns be the linear density
fluctuation of spins561, set up by the introduction of this
electron. Furthermore letG6

v be the generalized many-bod
multivalley local fields defined in Ref. 6 with the same sim
plifying approximations holding between the intra and inte
valley exchange and correlation related many-body lo
fields. Then, on assuming that the density fluctuations in
the valleys are the same, and by following the standard lin
response analysis, a complete expression for the potentia
by a spectator electron of spins in the Fermi sea can be
obtained in the following compact form:

fs↑5v~q!$~12G1
v 2sG2

v !r↑1@Dn↑1Dn↓#~12G1
v !

2s@Dn↑2Dn↓#G2
v %, ~1!

where it is understood that the potentialfs↑ , the density
fluctuations, and the many-body local fieldsG are all func-
tions of bothqW andv. Furthermore, in obtaining the abov
expression, explicit account has been taken of the excha
and correlation effects between the perturbing and the s
tator electrons. We next recognize that within linear respo
one can write
12 556 ©2000 The American Physical Society
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Dns5nvx0
sfs↑ , ~2!

wherex0
s is the spins response for a noninteracting electro

gas. Then using Eqs.~1! and ~2!, we obtain the following
relationships for the potentials:

f↑↑5
v~q!@~12G1

v 2G2
v !14v~q!nvx0

↓G2
v ~12G1

v !#

D v
r↑

~3!

and

f↓↑5
v~q!~12G1

v 1G2
v !

D v
r↑ , ~4!

with D v defined as follows:

D v[12v~q!~nvx0
↑1nvx0

↓!~12G1
v 2G2

v !

24v2~q!nv
2x0

↑x0
↓G2

v ~12G1
v !. ~5!

At this point, in order to obtain the screened electro
electron interaction from the effective potentialsfs↑ in the
KO method one argues as follows. To correctly describe
physics of the problem, several different contributions ste
ming from exchange and correlation effects have been
proximately accounted for through the local fieldsG6

v in the
formulas forfs↑ . A physically satisfactory expression fo
the electron-electron screened interactionWs↑ between two
electrons can then be obtained by simply subtracting fr
such expressions the terms accounting for the explicit
change and correlation contributions between the spec
and the perturbing electron. Accordingly following KO w
write

Ws↑ r↑5fs↑1v~q!@~G1
v 1sG2

v !r↑#. ~6!

For an unpolarized system, based on the isotropy, we h
for the spin dependent screened interaction potential
more general expression

WsW 1sW 2
5

W↑↑1W↓↑
2

1sW 1•sW 2

W↑↑2W↓↑
2

. ~7!

It is crucial to appreciate here that, although the excha
and correlation contributions to the effective potential b
tween the spectator and the perturbing electron have b
explicitly removed, the resulting scattering matrix eleme
Ma,b between two antisymmetrized states of the interact
potentialWsW 1sW 2

will automatically account for exchange an
~to some extent! correlation effects.12,13 This can be seen
from

Ma,b5
1

2
^c f uWsW 1sW 2

~rW12rW2 ,v!uc i&

5Wab~qW ,v!2da,bWaa~kW12kW22qW ,v!2d2a,b

3WT~kW12kW22qW ,v!, ~8!

where, with obvious notation

uc i&[ukW1 ,a;kW2 ,b&2ukW2 ,b;kW1 ,a&, ~9!
-
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^c f u[^kW12qW ,a;kW21qW ,bu2^kW21qW ,b;kW12qW ,au, ~10!

we have defined

WT~qW ,v!5W↑↑~qW ,v!2W↓↑~qW ,v!. ~11!

In Eq. ~8!, WsW 1sW 2
(rW,v) is the real space Fourier transform

the screened interaction given in Eq.~7!. Thus the matrix
elementsMss automatically incorporate antisymmetrizatio
effects and quite naturally contain nonlocal contributions

As for W2ss , the correlation effects between two opp
site spin Fermi sea electrons are accounted through spin
scattering processes with the corresponding screened p
tial in the transverse~spin-flip! channel being given by

WT522mB
22@v~q!G2

v ~qW ,v!#2xS~qW ,v!, ~12!

which is twice the contribution from the longitudinal sp
fluctuations.

For an infinitesimally polarized multivalley system, usin
Eqs.~3!–~6! and the expressions for the charge responsexC ,
the spin responsexS , and the mixed charge-spin respon
xCS derived in Ref. 6, it can be shown that

Wss~qW ,v!5v~q!$11v~q!@12G1
v ~qW ,v!#2xC~qW ,v!%

2mB
22@v~q!G2

v ~qW ,v!#2xS~qW ,v!

22sv~q!2G2
v ~qW ,v!@12G1

v ~qW ,v!#xCS~qW ,v!,

~13!

and that

W↓↑~qW ,v!5v~q!$11v~q!@12G1
v ~qW ,v!#2xC~qW ,v!%

1mB
22@v~q!G2

v ~qW ,v!#2xS~qW ,v!. ~14!

Now, for the infinitesimally polarized case, while the matr
elementsMa,b are still given by Eq.~8!, for WT we propose
the following natural ansatzbased on the structure of it
unpolarized counterpart:

WT5
W↑↑~qW ,v!1W↓↓~qW ,v!

2
2W↓↑~qW ,v!

522mB
22@v~q!G2

v ~qW ,v!#2xS~qW ,v!. ~15!

The screened interactionWss8(q
W ,v) given in Eqs.~13!

and ~14! is similar to the effective screened interactio
Vs,s8(q

W ,v,v,v) derived by the present authors@see Eq.~31!

of Ref. 6#. In fact, if in Vs,s8(q
W ,v,v,v) the real response

functions are replaced by the full complex responses and
complex conjugate many-body local fields that are prefac
to the response functions are replaced by their comp
counterparts, one gets exactlyWss8(q

W ,v)2v(q). As argued
in Ref. 6, the effective screened interactionVs,s8(q

W ,v,v,v)
should be used for calculations carried out up to first or
only. This conclusion is supported by the results of the
egant analysis carried out by Takada in Ref. 14. To evalu
higher order terms would in this case not only lead to be
results but would in fact be erroneous. It is then quite r
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sonable to evaluate the quasiparticle self-energy to first o
in the screened interaction from the expression

Ss~pW ,v!52(
qW
E

2`

` de

2p i
$Wssgs~pW 2qW ,v2e!

1Ws
Tg2s~pW 2qW ,v2e!%, ~16!

whereWss is given by Eq.~13! and Ws
T is defined as fol-

lows:

Ws
T~qW ,v![24mB

22@v~q!G2
Tv~qW ,v!#2xTs~qW ,v!, ~17!

with xTs being the transverse spin response defined in R
6. In the above equation forSs(pW ,v) it is understood that
Wss andWs

T are defined in terms of time ordered respon
functions and many-body local fields. Furthermore,
above expression forWs

T has been obtained from Eq.~15!
after noting that in the transverse channel we expect
screened interaction potential to be determined by the tr
verse spin susceptibility.

Earlier on, in Ref. 6, the present authors derived the
lowing expression for the self-energy of an infinitesima
polarized Fermi gas

Ss~pW ,epW
s
!52(

qW
H npW 2qW

s Re@v~q!1D1~qW ,epW
s
2epW 2qW

s
!#

1npW 2qW
2s Re@D2~qW ,epW

s
2epW 2qW

s
!#

2PE
0

`dv

p F Im@D1~qW ,v!#

v2epW
s
1epW 2qW

s 1
Im@D2~qW ,v!#

v2epW
s
1epW 2qW

2s G J ,

~18!

where
er

f.

e
e

e
s-

l-

D1~qW ,e![v~q!2@ u12G1
v u2xC~qW ,e!2mB

22uG2
v u2xS~qW ,e!

22s Re@G2
v ~12G1

v!!#xCS~qW ,e!# ~19!

and

D2~qW ,e![24mB
22v~q!2uG2

Tvu2xTs~qW ,e!, ~20!

with the local fieldsG6 being functions ofqW andepW
s
2epW 2qW

s

while G2
T being a function ofepW

s
2epW 2qW

2s .
The expression for the self-energy given in Eq.~18! can

be rearranged, as will be shown below, to give the followi
expression similar to that of Eq.~16! derived above:

Ss~pW ,v!52(
qW
E

2`

` de

2p i
$@v~q!1D1~qW ,e!#

3gs~pW 2qW ,v2e!1D2~qW ,e!

3g2s~pW 2qW ,v2e!%. ~21!

Now, if in Eq. ~21! the complex conjugate local fields ar
replaced by complex local fields and the frequencies of
local fields that are prefactors to the response functions
replaced by those of the response functions, we then
exactly the self-energy given by Eq.~16!. We further note
that the expression for the self-energy as given by Eq.~16! is
identical to the result of Ref. 4.

We will now rearrange the expression for the self-ene
given in Eq.~21! in terms of screened exchange and coulo
hole contributions. It can be verified from Kramers-Kron
relations thatD1,2(qW ,e) can be cast in the following form:

D1,2~qW ,e!52E
0

` dt

p H Im D1,2~qW ,t !

e2t1 ih
2

Im D1,2~qW ,2t !

e1t2 ih J .

~22!

Noting that D1,2(qW ,e) vanishes for large values ofe, we
readily obtain
i(
qW
E

2`

` de

2p
D1,2~qW ,e!gs~pW 2qW ,v2e!

52
i

2p2 (
qW

~12npW 2qW
s

!E
0

`

dt@ Im D1,2~qW ,t !#E
2`

`

de
1

@v2e2epW 2qW
s

1 ih#@e2t1 ih#

1
i

2p2 (
qW

npW 2qW
s E

0

`

dt@ Im D1,2~qW ,2t !#E
2`

`

de
1

@v2e2epW 2qW
s

2 ih#@e1t2 ih#

5(
qW

npW 2qW
s E

0

` dt

p H Im D1,2~qW ,t !

v2epW 2qW
s

2t1 ih
2

Im D1,2~qW ,2t !

v2epW 2qW
s

1t2 ihJ 2(
qW
E

0

` dt

p

Im D1,2~qW ,t !

v2epW 2qW
s

2t1 ih

52(
qW

npW 2qW
s

D1,2~qW ,v2epW 2qW
s

!2(
qW
E

0

` dt

p

Im D1,2~qW ,t !

v2epW 2qW
s

2t1 ih
. ~23!
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Finally by noting that

(
qW
E

2`

` de

2p i
v~q!gs~pW 2qW ,v2e!5(

qW
v~q!npW 2qW

s ,

~24!

we see from Eqs.~23! and~24! that the self-energy given in
Eq. ~21! is equivalent to the expression in Eq.~18!.

We have shown that the Kukkonen-Overhauser appro
to derivation of the screened interaction between two e
trons in an unpolarized electron liquid can be extended to
case of an infinitesimally polarized system provided o
ch
c-
e

e

makes a reasonable ansatz for the spin-flip term. T
screened interaction obtained in this approach can be
used to obtain the electron self-energy by means of a G
type of approximation. The self-energy thus obtained is si
lar to that previously derived by different means by t
present authors.
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