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Screened interaction and self-energy in an infinitesimally polarized electron gas
via the Kukkonen-Overhauser method
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The screened electron-electron interacp ,» and the electron self-energy in an infinitesimally polarized
electron gas are derived by extending the approach of Kukkonen and Overhauser. Various quantities in the
expression forW, ., are identified in terms of the relevant response functions of the electron gas. The
self-energy is obtained froW, ,, by making use of the GW method which in this case represents a consistent
approximation. Contact with previous calculations is made.

Kukkonen and OverhausetKO) proposed an approxi- infinitesimally polarized electron gas. To obtain a result use-
mate analytic scheme for calculating the effects of exchang#ul also for multicomponent systems, we derive the screened
and correlations in an electron gas which accounts for botinteraction between two electrons by generalizing the theo-
charge and spin fluctuations. KO were the first to exploit, tories of Refs. 1 and 10 to an infinitesimally polarized degen-
its fullest extent for the case of paramagnetic jellium, theerate multivalley system. Then the electron self-energy is
many-body local field methodology introduced by Hubbardobtained in a consistent fashion by making use of the lowest
to account for vertex correctiodsThe main merits of the order diagram within what is commonly referred to as the
KO method are its simplicity and physical clarity. One of the GW approximatiort* We also show that the self-energy ob-
main results of the KO theory was an expression for theained following this procedure, although not identical, is
quasiparticle effective interaction for an unpolarized electrorvery similar to that derived by the present authors in Ref. 6.
gas. Although this was not initially appreciated, these results The first step in the KO procedure consists in obtaining a
were later confirmed for the paramagnetic case, by means shitable expression for the total effective potential felt by any
a more complex, less physically transparent, diagrammatigiven electron of the liquid as a result of the introduction of
technique by Vignale and SingWiThe diagrammatic analy- a perturbing electron. To this end we adopt the same formal-
sis was then extended to the case of an infinitesimally polarism utilized in Appendix A of Ref. 6 for obtaining the vari-
ized electron gas by Ng and SingfvThe situation was even- ous response functions. We begin by introducing a spin up
tually clarified by the present authors who derived equivalenelectron, represented by(aumbej density of Fourier am-
results within the framework of a theory of the electron gasplitude p; , into the Fermi sea. Lekn, be the linear density
based on the concept of quasiparticle pseudo-Hamiltatfian. fluctuation of spino==*1, set up by the introduction of this
This theory found successful application to the study ofelectron. Furthermore lg5", be the generalized many-body
many-body effects in two-dimensional electronic systéms. multivalley local fields defined in Ref. 6 with the same sim-

A popular alternative approach for calculating the physi-plifying approximations holding between the intra and inter-
cal properties of the Landau quasiparticles in an electron gaglley exchange and correlation related many-body local
is represented by the total energy metfAdd this approach a  fields. Then, on assuming that the density fluctuations in all
key step is represented by the determination of a suitabléhe valleys are the same, and by following the standard linear
expression for the electron gas total energy as a functional aksponse analysis, a complete expression for the potential felt
the particle occupation numbers. Although the procedure iy a spectator electron of spim in the Fermi sea can be
quite standard and has been in use for quite some time, it washtained in the following compact form:
only recently realized that, in order to be able to achieve a
correct microscopic theory, it is necessary to carefully keep do1=v(P{(1-GL —0oGY)p;+[An;+An J(1-GY)
separate track of the spin up and spin down occupation
numbers*® Accordingly even when studying the physics of —o[An;—An ]G}, (1)
an electron gas in its paramagnetic state, it is necessary, o ) )
within this framework, to determine the energy of an infini- Where it is understood that the potentidl,,, the density
tesimally polarized electron gas. This problem was tackled ifluctuations, and the many-body local fiel@sare all func-
Ref. 6 via the pseudo-Hamiltonian method. The self-energyions of bothq and w. Furthermore, in obtaining the above
obtained by this procedure proved to be equivalent to thagxpression, explicit account has been taken of the exchange
independently derived by Ng and Singfvi. and correlation effects between the perturbing and the spec-

The purpose of the present paper is to generalize thtator electrons. We next recognize that within linear response
simple, elegant procedure developed by KO to the case of abne can write
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AnU:Vng¢UTI (2) <¢f|E(|21—(i,a;|22+(3,,8|—(|22+(i,ﬁ;|21—(i,a|, (10)

whereyg is the spino response for a noninteracting electron we have defined
gas. Then using Eggl) and (2), we obtain the following

relationships for the potentials: WT(&,w)=Wﬁ(<i,w)—W”@w). (12)
v(Q[(1— G —G%)+4v(q) v, xsGY(1-G%)] In Eq.(8), W5152(F'“’) is the real space Fourier transform of
"= DY Pi the screened interaction given in E). Thus the matrix

(3) elementsM ., automatically incorporate antisymmetrization
effects and quite naturally contain nonlocal contributions.
and As for W_,,., the correlation effects between two oppo-
site spin Fermi sea electrons are accounted through spin-flip

_v(@)(1-GL+GY) scattering processes with the corresponding screened poten-

e DY Pr @ fial in the transverse¢spin-flip) channel being given by
with DY defined as follows: W= — 245 v (0)G (4, 0)12xs(0, ®), (12)
D =1-v(q)(vpxo+ voxy)(1— G, —GY) which is twice the contribution from the longitudinal spin
) 2.1 Lo ) fluctuations.
—4v(q) vy xoxoGL(1-GY). 5 For an infinitesimally polarized multivalley system, using

. . . Egs.(3)—(6) and the expressions for the charge response
At this point, in order to obtain the screened electron-y,q spin responsgs, and the mixed charge-spin response
electron interaction from the effective potentiatg, in the yes derived in Ref. 6, it can be shown that
KO method one argues as follows. To correctly describe thé s '
physics of the problem, several different contributions SteM\y (g w)= 1+ 1-GY (g 2. (o
ming from exchange and correlation effects have been ap- rol@ @) =v(@{l+va)l +(@:@) xe(d, )}

proximately accounted for through the local fiel@s in the —MQZ[U(Q)GE(a,w)]ZXs(dyw)

formulas for¢,,. A physically satisfactory expression for R ) R

the electron-electron screened interactiblp;, between two —20v(q)?GY(q,w)[1—G%(q,w)]xcdq, ),

electrons can then be obtained by simply subtracting from 13

such expressions the terms accounting for the explicit ex- (13

change and correlation contributions between the spectateind that

and the perturbing electron. Accordingly following KO we

write W, (g, 0)=v(q){1+0(q)[1-G%(q,®) ]*xc(q, )}
Wy p1=¢sto([(GL+0oG)p;]. (6) +,LLB_Z[v(q)GU_(ﬁ,a))]sz(a,w). (14)

For an unpolarized system, based on the isotropy, we hawqow, for the infinitesimally polarized case, while the matrix
for the spin dependent screened interaction potential th@lementd\/laﬁ are still given by Eq(8), for W' we propose
more general expression the following natural ansatbased on the structure of its
unpolarized counterpart:
‘toop——Fm—.
0102 (7

W, (g, @) +W, (q, o) R

It is crucial to appreciate here that, although the exchange
and correlation contributions to the effective potential be- 5 b > 5 =
tween the spectator and the perturbing electron have been =~ 2pg [v(q)GL(q,0)]°xs(q, ). (15
explicitly removed, the resulting scattering matrix elements . _ . _ .
M, s between two antisymmetrized states of the interaction The screened interactioW,, (q,w) given in Egs.(13)
potentialW, ;. will automatically account for exchange and and (14) is similar to the effective screened interaction
(to some extentcorrelation effects**® This can be seen Vo,,(d,0,,) derived by the present authdsee Eq(31)
from of Ref. 6. In fact, if in V,, ,/(q,w,0,0) the real response
functions are replaced by the full complex responses and the
M :E W s v complex conjugate many-body local fields that are prefactors
ap 2<'ﬁf ‘71‘72(r1 r2,0)|i) to the response functions are replaced by their complex

counterparts, one gets exacw,(,,(ﬁ,w) —v(q). As argued

=Wap(9,0) = 84 pWaal ki =Ko =0, 0) =00 in Ref. 6, the effective screened interactidp . (q, , w, »)

XWT(Ky—Ko— 0, @), 8 should be used for calculations carried out up to first order
(ki ko= ) ® only. This conclusion is supported by the results of the el-
where, with obvious notation egant analysis carried out by Takada in Ref. 14. To evaluate

R R R R higher order terms would in this case not only lead to better
|id=|ky,a;Ky,B8)— Ko, Bi Ky, ), (9)  results but would in fact be erroneous. It is then quite rea-
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sonable to evaluate the quasiparticle self-energy to firstorderp (g )= 11— G 2y n(a.€)— u=2GY 12v(q. €
in the screened interaction from the expression 1@ 9=v(@] +Pxe(d.€) = e |G xs(a.€)

~20REG (1-GY)Ixcs(€)] (19
- * de - and
So(pw)=—2 f 27 Woed’(p—q,0—¢€)
q ° 7 - _ -
o Da(q,€)=—4ug0(q)?G[*x"(q,e),  (20)
+W,9%(p—q,0—€)}, (16)
with the local fieldsG. being functions ofj and e—e .
whereW,,, is given by Eq.(13) andW! is defined as fol- while GT being a function ofe?— € ”-.

lows: The expression for the self-energy given in Ef8) can
be rearranged, as will be shown below, to give the following
- _2 S o T = expression similar to that of Eq16) derived above:
W, (0,0)=—4ugTv(q)G"(q,0)]°x ’(q,0), (17)

- » de -
with xT? being the transverse spin response defined in Ref. 3(p,w)= —Z f ﬁ{[U(Q)'F D,(q,€)]
6. In the above equation f&t?(p,®) it is understood that a 7"

W,,, andW_ are defined in terms of time ordered response Xg°(p—q,w—€)+Dy(q,€)
functions and many-body local fields. Furthermore, the o
above expression fow! has been obtained from E¢L5) Xg (p—q,0—¢€)}. (21

after noting that in the transverse channel we expect the

screened interaction potential to be determined by the trandNow, if in Eq. (21) the complex conjugate local fields are

verse spin susceptibility. replaced by complex local fields and the frequencies of the

Earlier on, in Ref. 6, the present authors derived the foldocal fields that are prefactors to the response functions are

lowing expression for the self-energy of an infinitesimally replaced by those of the response functions, we then get

polarized Fermi gas exactly the self-energy given by E¢L6). We further note
that the expression for the self-energy as given by(E6). is
identical to the result of Ref. 4.

o2 o - - e We will now rearrange the expression for the self-energy
37(p,eg)=—2 {n? -Rev(q)+Dy(q,e;—€s o] given in Eq.(21) in terms of screened exchange and coulomb
q hole contributions. It can be verified from Kramers-Kronig
so. 7 %— 2 . relations thaD, Aq, €) can be cast in the following form:
+n; - REDy(q, el €’ )] 1.40,¢€) g
_wad_w Im[Di(q,l:)] N Im[Dj(q.fi)T] , 5 2(» ):_J‘oc E Im Dl,z(a,t) - Im D1,2(aa_t)
0T |w—e;te o wmete 149:€ o ™| e—t+in et+t—ip
Noting thatDllz(ﬁ,e) vanishes for large values of, we
where readily obtain
i * de - - -
I%  5-D1dd.e97(p—d.w—e)
| > (1-n? )fwdt[l D[t)]fmd !
=—— -n:_- m , € —— -
272 q P=a% Jo 149 —o [w—e—eﬁia-i-ln][e—t-l-ln]
. ¢ det[l D, A4 t)]de !
— n:_- m ,— € ~ . -
2 g 9o 124 - [w—e— eﬁfd—ln][e-f—t—ln]

, [7dt] ImDygq,t) ImD; Aq,—t)
Y ”Mf _[ _ ]_

f“ dt  ImDy(qt)
= T — 7 —t+i — 7 +t—i =
q 0 W€ t+i7 o ep_q+t I

0 T w—e> -—t+i
q wep_qtln

- =dt  ImD;4q,t
-3 nZ_DiAdo—e_)-> | — 1A% (23

0 T w—€l -—t+iy
q q w Ep_qt|7]
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Finally by noting that

= d -
> f_m 2—;v(q)9“(p—q.w—e)=2 v(an:_ ¢,
q q (24)

we see from Eqs23) and(24) that the self-energy given in

Eq. (21) is equivalent to the expression in E3.8).
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makes a reasonable ansatz for the spin-flip term. The
screened interaction obtained in this approach can be then
used to obtain the electron self-energy by means of a GW
type of approximation. The self-energy thus obtained is simi-
lar to that previously derived by different means by the
present authors.
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