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We use analytic and numerical methods to determine the density of states of a one-dimensional electron gas
coupled to a spatially random quasistatic backscattering potential of long correlation length. Our results pro-
vide insight into the “pseudogap” phenomenon occurring in underdoped higguperconductors, quasi-one-
dimensional organic conductors, and liquid metals. They demonstrate the important role played by amplitude
fluctuations of the backscattering potential and by fluctuations in gradients of the potential, and confirm the
importance of the self-consistency which is a key feature of the “fluctuation exchange” type approximations
for the electron Green'’s function. Our results allow an assessment of the merits of different approximations: a
previous approximate treatment presented by Sadovskii and, we show, justified by a WKB approximation gives
a reasonably good representation, except for a “central peak” anomaly, of our numerically computed densities
of states, whereas a previous approximation introduced by Lee, Rice, and Anderson is not as accurate.

[. INTRODUCTION results. In particular, Sadovskii obtained a continued-fraction
expression which led, for the problem studied in Ref. 5, to a
“Pseudogaps,” i.e., a suppression of the low-energy electow-energy density of states which varied as the square root
tronic density of states due to an interaction effect, are obf the correlation length.However, Sadovskii's results have
current interest in the context of high- superconductivity ~ recently been called in to question by TchernysHya#o
and of low-dimensional organic materialand are relevant exhibited a class of diagrams neglected by Sadovskii. A yet
to the theory of liquid metal$and to the issue of spin waves different set of approximations, the “fluctuation exchange”
aboveT, in ferromagneté.One general mechanism for pro- or “FLEX” approximation® has been employed by many
ducing pseudogaps involves the presence of long but nafuthors to study pseudogap effects in models of
infinite range order, for example, of the superconducting okuperconductivity, and these treatments have in turn been
density wave type. Consider, for definiteness, a oneguestioned® !
dimensional material exhibiting long ranged charge density |, order to clarify this situation, we present results of a

wave order aff=0. At T>0 thermal fluctuations prevent i,orough numerical and analytical study of a simple model
long ranged order but at low the order parameter fluctuates exhibiting pseudogap effects, namely, electrons moving in

veryllsl%wly i'; s;?(ace and tlime. It th%r]efcl))re Eas Sign.ifican_b)ne spatial dimension and coupled to a backscattering poten-
amplitude to back scatter electrons. The back scattering Wik, \ hich is constant in time but slowly varying in space,

tend to open a gap but will not do so completely because the

order is not perfect. Very similar issues come up in the physyvIth correlation length¢. Our main results are that) the

ics of liquid metals’ where the ions are highly correlated and approximate Freatment of Sadovsk?i Is a good qpproxi‘mgtion
move slowly in comparison to the electrons, in the theory of© the Qumepcally calgula'ted density of states. in the “high-
superconductivity, where slow Cooper pairing fluctuations€"€ray” regime>1/&%, with x an exponent which depends
mix particle and hole staté@stead of left and right movers ©On Whether the potential is commensurate or incommensu-
and again tend to open a gap, and in ferromagnets at tenhate. The_terms omitted in Sz_id_ovsku’s de_rlva_l_tlon r_10ted in
peratures slightly abovE,, slow magnetization fluctuations Ref. 7 evidently produce negligible correctiors) Neither
may suppress electron-hole Spin excitations and a"ov@h@ FLEX well apprOXimation nor the non-self-consistent
weakly damped spin waves to exfst. treatments such as that of Lee, Rice, and Anderseeil

A crucial, but still unresolved, question concerns thereproduce at all well the dependence of density of states on
proper method of calculation of physical quantities in thecorrelation length, although the self-consistency which is an
presence of long-range-correlated scattering. A simple andssential feature of the FLEX approximation leads to a better
physically appealing approximation was proposed in 1973 byepresentation of the density of states than does the approxi-
Lee, Rice, and Andersohywho argued that one need only mation of Lee, Rice, and Andersofiii) Fluctuations in the
consider the leading perturbative one-boson-exchange diamplitudeof the scattering potential play a crucial role in the
gram for the self-energy. Within this approximation the low form of the low-energy density of states. Most of the models
energy density of states was constant, but was suppressstlidied make assumptions about the amplitude fluctuations
from the non-interacting value by a factor proportional to thewhich are not physically reasonabl@v) Some features of
inverse of the correlation length of the scatterers. Subsequettie results are controlled by fluctuations in the gradient of
workers used different approximations and obtained differenthe backscattering potential; the widely used Lorentzian form
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has divergent gradient fluctuations which change the form oBecause of the phase factors arising from the incommensu-

the results. rate Fermi surfac¥ is a complex potential; further we have
The balance of this paper is organized as follows. In Secabsorbed phase factors into the definition of, thus we write

Il we present the models and a simple “WKB” treatment the V correlator as

which reveals the essential physics. In Sec. Ill we present the

results of our numerical study. In Sec. IV we compare the (ViVjpo=1(k/§). (10

numerical results to those obtained by approximate methods.

Section V contains a summary, conclusions, and a list of Here

open problems. 0 1 0 —i
"1:(1 0)’ "2_( 0

. : Lo . .are the usual Pauli matrices.
We consider spinless electrons moving in one spatial di- A formal solution for the Green function of Eq. 8 has

mension and coupled to a static potential with spatial correpean derived by Abrikosov and RyzhKif:their solution
!atlons to be specified below. The fundamental Ham”ton'arbeneralizes immediately to the commensurate case. The so-
IS lution is expressed in terms of tH& matrix defined forz

>z’ by

0 -1

1 0
and o3=
1. MODEL

H=—-2> {2(d]dj;1+H.c)+ud/dj+Vdd}. (D) o, ,
i S(z,z/;w)in—TZexp(—f,dy(y)). (11
We consider two subcases. F ‘
(A) Half filling and commensurate potentidh this case HereT, is the “space ordering” symbol and
wn=0 and we assum¥(j) is a real random potential chosen
from a distribution which implies A—E[wﬂ;- al. (12
F

{Vj)=0 2 Abrikosov and Ryzhkin show that, e.g., the right-moving
and Green functiorlGrg is given forz>z'" by (we usually do not
make thew dependence expligit

(ViVino = (1K) B 0200 Gru2.2) =S 282\~ ) 1Syde, — ),

Heref(x)—0 for x—o and we are interested in the lar§e (13
limit. , , .

(B) Incommensurate band filling and potentiah this ©<0: Grr(z,2') = S12(,X)Sx(2 ’_oc)/lsll(oo’_m()l"l)
case we linearize Eql) about the Fermi points, separate the
electrons into right-movingR) and left-moving(L) branches Further, in this model the density of states for a system of
in the usual way, and adopt a matrix notation, defining thgengthL is given by
2X2 matrix G via

1
: : =— —LI2;0+ie).
GRYR(Z,t;Z’,t’)=e'pF(272)<TCR(Z,t)CTR(Z’t’)>, @) N(w) LTl'Tr ImInS(L/2,—L/2;w+i€) (15

. , Consider the matrixZ). Its eigenvalues are
G (z,5;2t")=e PFEZ)Tc (z,t)c[(Z't")), (5 2l g

+ —+i 2_ 2
GRL(Z,t;Z’,t’):eipF(Z+Z/)<TCR(Z,t)CI(Zlt,)> (6) —K(Z)_—UF |U(Z)| w (16)

and so we have

A(2)=x(2)Q(2)05Q *(2) 17

with a rotation matrix.

If =1 is small compared to the lengthover which var-
ies, may be found via a WKB approximation. Details are
given in the Appendix. The essential result is thaRD

. . .. where(2) is the rotation matrix which diagonalizeg)( is a
A general potential?) has a forward scattering part which rotation matrix which is close to unity and is a diagonal

couples right movers to rlg_ht movers gnd left movers to Ieftmatrix which, up to a phase, is
movers, and a backscattering part which couples left movers

GLr(zt;2' ) =e PF 2N Tel(z,t)er(Z't)).  (7)

The Green ’s function obeys a Schinger equation which
after Fourier transformation in time may be written

[wt+iozved, +V(2)]=6(z—2"). (8)

to right movers. The forward scattering part is not important 2 1

for the density of state¥’ thus we consider only the back- D=exp — a-3J dy| «(y)—

scatterin i z 2k(y)
g part and write

1
V(2)=v1(2) 01+ v5(2) 0. 9 X (aye)2+zsin2(2e)(ay¢)2 +. (18
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Here 6=tan !(|v|/w) and ¢ =arctanfv,|/|jv,)). problem to map on to one with pointlik@lelta correlated
From Eq.(15) it is clear that G ifx is purely real the disorder. Ovchinnikov and Erikhm&hhave shown that in a
density of states vanishes; thus obtaining real excitations dfuctuating gap model very similar to the—0 limit of the
energyw requires the existence of regions in which the localcommensurate potential potential case the density of states
gap is larger tham. In particular, in models with only phase diverges as 1 (with logarithmic corrections so the integral
fluctuations, the local gap amplitude| is constant and for s not divergentand therefore we expect such a divergence
|o|<[v| the density of states vanishes. This result is ofin the present commensurate potential case also. The inter-
course familiqr in the context.csf—wave.su.per.conductivity, esting question is the dependenceof the coefficient of
where low-lying states and indeed dissipation come onlythe divergent term on the correlation length: this is equiva-
from vortices and phase-slip centers, at whichahgplitude ot to the question of the frequency range over which the
of the superconduc_tlng order parameter vanishes. The met ivergence is visible above the background.
ods used by Lee, Rice, and Andersty Sadovskfl, and by We present here a qualitative argument indicating that the

many subsequent workers assume thas Gaussian and correct scale ig~ 2. We note first that the density of states

peaked atv|=0 and therefore cannot address the rare am- ; .
plitude fluctuations which are the relevant physics for realis-pe"ak in the fluctuating gap mode| may be traced back to the

tic systems as already noted by Ref. 6 Su-Schrieffer-Heegét argument that in such models a
In the limit of infinite correlation length the density of change in sign of the back-scattering potential produces a

states follows immediately from the leading order terms; oné“liggap state. The mean distance between sign changes is
finds for a fixed realization of disorder &Y% Further, midgap states decay exponentially on a scale

set by the mean gap so the hybridization between midgap

) . states may be neglected and they may be treated as indepen-
=TrimG = ———.. (19 dent. We conclude that the number of such states per unit
2 2
No V@)~ length is of orders~ Y2 therefore the divergencevhich is

integrable must exist foro< ¢~ 2

9" This argument may be sharpened. As noted by Bartosch
. 5 _ y .

leading to the é—c« results previously obtained by and Kopietz” at @=0 the Green's function for the com-

Sadovski® For example, for the incommensurate problemMensurate case may be explicitly computed. In the context of

the two independently fluctuating components of the potialfn® WKB formula this may be easily seen from Eg8): in

The average density of states is then obtained by avera
ing this expression over the probability distribution df

lead to the commensurate case the fact that the potential is purely
real means),¢=0 while 9,6—0 asw— 0, so corrections to
N(w) o AdA A2/an2 » the WKB res'ul't vanish. The number of statesuat 0 may
No :fo Az e 0 Toat (200 then be explicitly computed from Eq15). At w=0, Sis

purely real except when the potential crosses zero, at which
3 N  oaa2 point an extra phaser is incurred. Thus in a system of
For <A, Eq. (20) implies N(w)/No=mw"/24;. The length L the number of states ai=0 is given precisely by

analogous expression for the commensurate problem Ieadstoe number of zero crossings, which is of ortléfag) Y2 To
a density of states proportional to.

The expressions presented above suggests that the .‘inﬁ:_onvert this into an estimate for the density of states as a
nite correlation length” results fail whex(d,8)% k)~ x, unction of frequency, an estimate of the number of nearby

i.e., (d,]v]) 2w [ w?—|v|2]2~ k2. If one considers this esti- Stales is required. We argue that this may be obtained by
mate as a function of frequency, then one sees that in thefaling, assumingo~1/; this leads to a divergence

regions of small potential where low-lying states occar, ~ L/@(£a)'? Of course, rough estimates such as these will
~ . Further, the Lorentzian disorder assumed above has 3Pt correctly capture logarithmic terms. .
divergent second moment, $(7,V)?)~A2/(£a) wherea is Bartosch and Kopietz have analyzed the formal solution

an ultraviolet cutoff of order a lattice constant. Combining 0 the commensurate problem in a different way, obtaining
these factors suggests that the WKB approximation breakdn expression which they interpret at the zero-frequency den-
down for w*~D?(£a). Matching this scale to the low- Sity of states per unit length per unit frequency. Their expres-
energy density of states w? yields a residual density of sion diverges exponentially in the size of the system and is
states of ordeg™ Y2 As we shall see in the next section, the consistent neither with the arguments given above nor with
numerics suggests rath&r /3. Similar considerations for the the numerics to be presented in the next section. In fact their
commensurate case would yiel(w)~ ¢~ Y4 as we shall expression closely resembles the expression for the real part
see, the numerical results roughly agree. Our arguments sugf Grg which follows from our analysis. We have argued
gest that the value of the low-energy density of states iglsewher®’ that what they have computed is a wave function
controlled by fluctuations in the derivative of the randomamplitude, not a density of states, so we do not consider their
potential. These are ultraviolet divergent for the widely usedesults further.
Lorentzian form of the potential fluctuations. Study of ran- We now briefly discuss the»—0 density of states for
dom potentials with finite second moments and hence derivdncommensurate potentials. The arguments presented above
tive fluctuations on the scale @f * would be of interest. suggest that this will behave differently than in the commen-
We now consider the density of states at very low enersurate case—the fact that the fluctuating gap has two com-
gies. Very low energies correspond to very long lengthponents means that the zero crossing argument is not rel-
scales, and at length scales greater thiamne expects the evant and the probability for the root-mean-square gap to
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FIG. 1. Energy(E) dependence of density of statésalculated FIG. 2. Residual E—0) density of statedl calculated numeri-
numerically for commensurate potentlal model defined by Figs. 1_36ally for the commensurate potential defined by Eas-(3) (filled
of the text, for different correlation lengthés The mean gap value circles, the incommensurate potential defined by Et) (dia-

Ay=0.2 is shown by a dotted line. The data come from eigenvalue%ondi and the approximation of Sadovskii for commensutate

binned into intervals of width 0.01. The dashed line shows theangle and incommensurat&squarg cases, are plotted against cor-

relation length¢ on doubly logarithmic axes. Also shown are

. . L . . dotted, dashed, and dash-dotted lines indicating scaling Vit
vanish is negligible. We therefore believe that the incom-;-1 £ respectively. For the numerically calculated commen-
mensurate model has a vanishing density of states premseiy,rate potential case, the central peak evident in Fig. 1 has been
at zero frequency. subtracted as described in the text.

“infinite correlation length” result from the WKB approximation.

effects are entirely negligible; the study of the length depen-
_ _ ] _dence of results has has allowed us to verify that even for the

In this section we present results of a detailed numericagmalier systemsL(~10%) accessible to direct diagonaliza-
study of the density of states of the two models. We proceeqon, boundary effects are negligible.
by writing the real-space form of the Hamiltonian as a ma-  Figure 1 shows the density of states for the commensurate
trix, choosing a particular realization of the backscatteringyodel for several correlation lengths and=0.2. Several
potential from the distribution defined in the previous secC-eatures are immediately evident. First, as noted by other
tion, and numerically diagonalizing the Hamiltonian. We Ob'workers? correlation lengths larger thagn=v:/A are re-
tain the density of states by averaging the eigenvalues OV&[uired in order to obtain an appreciable pseudogap. Second,
an appropriate energy windowf order(bandwidth/50] and ¢ density of states drops only slowly &ss creased, and is
then average over marnypically 1000 realizations of the g, /hrisingly large even at~100. Third, at low energies the
d!sorder. We find that the average over realizations Of_th?jensity of states is approximately constant except for a “cen-
disorder converges more rapidly for longer correlation;, peak” which is centered ab=0 and has a width which
lengths than for shorter ones, and converges more slowly fQfiminishes as the correlation length increases. We have ob-
the commensurate model than for the incommensurate ong,ined the residuali.e., without central peakdensity of

We first consider the commensurate model, @9.which 5105 by smoothly extrapolating the calculaa) to zero,
may be diagonalized as it stands. For the disorder we ChOS&f g acting the upturn. The procedure suffers from ambigu-
Gaussian distribution in which ities because our data are relatively coarsely binned in fre-
quency and there is some uncertainty about the proper func-
tional form for the central peak. The results are shown as
filled circles in Fig. 2; the dashed line clearly shows that the
residual density of states vanisheséas’ with »~1/2.

We now turn to the central peak. It is evident that the
width decreases a&increases. Our data are not sufficiently
accurate to allow us to determine the precise scaling of the
central peak witké andw, but we believe they are consistent
These choices correspond to periodic boundary conditionwith the form N(w,&)~f(w&Y?) with f(x) given by the
for the fluctuating potential and open boundary conditionsOvchinnikov-Erikhman forif f(x)~1/xIn%(x) for x<1
for the electrons. andf—0 for x—1. In particular,N(w) appears to increase

BecauseH for the commensurate case may be written as aoughly as 1é and as shown in Fig. 3, the area under the
tridiagonal matrix, Sturm-chain techniqdésnay be used to central peak scales approximatelyas’? although one sees
obtain the density of states for very large system sfgeso  that the corrections to this scaling become appreciable for
L~10"); these system sizes are large enough that boundarg< 100.

IIl. NUMERICAL RESULTS

vj=R{2 V(q)e'dl (21)
q

and the distribution o¥/(q) is determined by the kernel

A3 sinh(1/¢)
Keomn( Q)= cosh{1/é)—cogq—m)’

(22
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FIG. 3. Spectral weight, i.e., integrated area under central peak g 4. Energy(E) dependence of density of stafésalculated
for the commensurate potential case, plotted against square root gf,merically for incommensurate potential model defined by Egs.
inverse correlation length. (1), (22), (23 of the text, for different correlation lengths The
) ) ) ) ) mean gap value\;=0.2 is shown by the vertical dotted line. The
The incommensurate model is defined via a continuunesylts are obtained from numerically calculated eigenvalues binned

equation; a discretization is therefore necessary. For complto intervals of width 0.01. The dashed line is the result of the the
tational convenience we have adopted “infinite correlation length” WKB calculation.

H=— ird’ . .d -—df.d. —(RoL suggests that the terms which TchernysHybas noted are
; (il 10, r~ i pdj+1p) ~ (R L)] neglected in Sadovskii's approach are not quantitatively im-
portant and become less significant &ss increased. For

i T
+Vj(dj dj r+dj R} L)} (23 infinite correlation length Sadovskii's results are justified by
with complexV; Gaussian distributed with correlator the WKB arguments of Sec. Il. Closer.exammatlon hpwever
shows that the low energy largebehavior of the density of
<V-*Vj+k)=A0e"k"f (24) states is not so well represented as one can see in Fig. 2, the
; .

magnitude differs from the numerical one by factors of order

Our results for the density of states are shown in Fig. 42 and the scaling witf¥ is incorrect, being:~* instead of
The more rapid drop okl with », expected from the WKB the numerlpally (_jetgrmmed exponent2/3 to — 1. Similar
argument, is evident. There is no central peak. Indeed theféScrepancies arnse In the commensurate_clz/izse, where the Sa-
are some indications of a “central dip” but it is difficult to dovskiiN(0)~&~ " instead of the correct” ~*. o
resolve this question numerically. We have obtained the re- We now turn to the two other widely used approximations
sidual density of states by smoothly extrapolating the calcuWith & more transparent physical content, namely, the Lee-
lated N(w) to zero, neglecting any possible downturn; the Rice-Anderson(LRA) and “fluctuation exchange’(FLEX).
procedure is less ambiguous than in the commensurate cage!e former authors argued that one should approximate the
The results are shown as filled squares in Fig. 2; the scalin§lectron self energy by the leading order graphs which cor-
with & seems to be closer % 23 than to the theoretically "€spond to the expression

predicteds Y2,
s —fex—fﬂ G
RAT) T ) 2mio—€,+Qq iw+eptilé’
(25

IV. COMPARISON TO APPROXIMATE CALCULATIONS

In this section we discuss the relation of the numerical
results to various approximate calculations, in order to obtainvhere Q=2kr ,Gy=(iw— ep)*l is the bare Green's func-
insight into the strengths and weakness of the different aption andK(q) is defined in Eqs(21) and(22). This approxi-
proximations. We begin with the WKB approximation, mation leads to a gap structure which becomes very sharp
shown as heavy dashed line in Figs. 1 and 4. This is seen wven for relatively smalk and to a low energy density of
be a good approximation to the calculated density of statestates which varies aséfor both commensurate and incom-
for not too low energies and not too short correlation lengthsmensurate cases. These incorrect results arise because the
essentially the numerical results follows the WKB one until self-energy is too singular; this feature in turn arises because
the density of states drops to the residual level shown in Figthe bare electron Green'’s function is used to describe the
2. intermediate state.

We now turn to the continued fraction method of Sa- An alternative scheme is the FLEX method. This is com-
dovskii, which for the incommensurate case is compared t@licated in general and can be implemented at various levels
numerics in Fig. 4. The qualitative correspondence is seen tof approximation. In the case of present interest the standard
be good, and to improve for longer correlation lengths. Thismplementation® 2! is equivalent to making the Lee-Rice-
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' ' ' ' ' ' ' relevant model requires a correct treatment of amplitude
fluctuations, which are typically described by a non-
Gaussian probability distribution, which is difficult to handle
either analytically or numerically.

On the qualitative level, we found that pseudogaps require
relatively extreme conditions: a drop in the density of states
does not begin to appear until the correlation length is larger
than the basic coherence length/A, defined by the elec-

—&=5 1 tron velocity and mean field fluctuation amplitude, and the
_ E:;g low energy density of states decreases only slowly as
—— £=40 increased beyond this scale. Physics we have omitted from
— £=80 ] our model, including quantum fluctuations of the pairing po-
- $v=|<:360g-» tential and the phase space effects characteristic of dimen-
e sions greater than 1, only weakens the tendency to form a
, , gap. The “pseudogap” observed in underdoped higlsu-
0.0 0.1 0.2 0.3 0.4 0.5 perconductors involves a significant suppression of the low
E energy density of states and therefore implies, at least for

FIG. 5. Energy(E) dependence of density of stalalculated these materials, the existence of well established, reasonably

. - : long ranged pairing fluctuations.

via the FLEX approximation from Ed25) of the text for different . .

correlation Iengﬁﬁs and the incommqensurate potential. The infinite On the f[echnlcal side, we have showh that the WKB

correlation length WKB result is shown by the dashed line. Notemem‘?d(WhICh we suspect__can be Qe”e_ra“z?d to higher di-

that the mean gap valuk, was fixed at 0.2; the variation of the Mensiongand the Sadovskii approximatigwhich probably

position of the density of states peak is an artifact of the FLExCannoj provide relatively reasonable estimates of the density

approximation. of states; other approximations do rather poorly, which is
unfortunate because they easily generalize well to dimen-

Anderson calculation self-consistent, by using a fully dressedions larger than 1. _ _ _

Green’s function to compute the one-loop self-energy i.e., Three extensions of t_h_|s work Wou_ld be deswable. Qne is

S cLex(K, ) = [GK with G=[i 0 — e, — 3 ex(kw)] L. This to calculate the conductivity, another is to numerically inves-

amounts to writing a Kadanoff-Baym functional which is figate the crossover between the laggpseudogap behavior
composed of a series of ring diagrams involving bubbles@nd the smalk constant density-of-states behavior the third
made by convolving fullG lines accounts in an approximate IS t0 treat non-Gaussian amplitude fluctuations.
way for the self-energy, when the interaction and vertex are
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and the central peak is absent. Also as seen in Fig. 5 the APPENDIX A: WKB APPROXIMATION FOR S
location of the peak IN(E) has a strong correlation length  Forz>2', obeys the equation

dependence, inconsistent with the numerics and with physi-

cal intuition. The investigation of more sophisticated ver- [d,+A(z)]S=0 (Al)
sions of FLEX starting from different Baym-Kadanoff func-

tinals along the lines of Ref. 22 as would a full parquetVith

treatment along the lines given in Ref. 23. A(2)=i 0ot A(2)cose(2) o+ A(2)SiNo(2) oy .

A2)

Here o, , 3 are the usual Pauli matrices afdd and ¢ are

To summarize, we have used numerical methods and eelated to the quantities, andv, defined in the text by,
WKB analysis of a formal solution of a Schfimger equation = A cosg;v,=Asine. The eigenvalues of are x(z) with
to obtain an expression for the Green’s function of a modek?(z) = A%(z) — w? If the scale& over which varies is much
of a one-dimensional charge density wave in its fluctuationarger thanx %, Eq. (A1) may be solved via a WKB ap-
regime. We found that low-lying density of states comesproximation. Write
from regions where the amplitude of the CDW gap vanishes
and we emphasize that a proper treatment of a physically S(z,2')=Q(z)R(z)D(2)1(Z"). (A3)

V. CONCLUSION
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Here expi6n- o) with

tan(z6) = Al w, (Ad)

ﬁE(n]JHZInS):(Sin(Pv_COSQD!O)y (As)

and

D=exp(—Lz,dy{[x(y)Jrds(y)]03+do(y)} . (A)

is a diagonal matrix and; andd, are functions to be deter-
mined.R is a rotation matrix which is close to the unit ma-
trix and expresses the initial conditions. Using E@s3) and
(A6) in Eq. (Al) gives

[k+d3]Ro3R 1 +dy— (,R)R " 1=[Q 19,Q]+ k0.
(A7)

D H. MONIEN PRB 61

Explicitly, [Q~19,Q]=iq- & with
2

By assumingR is the unit matrix1 plus small corrections
and iterating the equation one obtains

q=nd,0+ = sin20(NX 2)d,p+Ssir? 6zp,  (A8)

dy=i sin® 6 9,0 — % (9,0)*+ % sin2(26)(az¢)2} TR

(A9)
zxq
2k

i(zXq) (zXq)2 izXd
LX) (zXa)” z
2K 82

(A10)

This solution may obviously be extended. A nonzero value
of dy occurs in the third order.

*Present address: Physikalisches Institut, Univar&tnn, Nuf3-
allee 12, D-53115 Bonn, Federal Republic of Germany.
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