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Pseudogaps in one-dimensional models with quasi-long-range order
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~Received 15 July 1999!

We use analytic and numerical methods to determine the density of states of a one-dimensional electron gas
coupled to a spatially random quasistatic backscattering potential of long correlation length. Our results pro-
vide insight into the ‘‘pseudogap’’ phenomenon occurring in underdoped high-Tc superconductors, quasi-one-
dimensional organic conductors, and liquid metals. They demonstrate the important role played by amplitude
fluctuations of the backscattering potential and by fluctuations in gradients of the potential, and confirm the
importance of the self-consistency which is a key feature of the ‘‘fluctuation exchange’’ type approximations
for the electron Green’s function. Our results allow an assessment of the merits of different approximations: a
previous approximate treatment presented by Sadovskii and, we show, justified by a WKB approximation gives
a reasonably good representation, except for a ‘‘central peak’’ anomaly, of our numerically computed densities
of states, whereas a previous approximation introduced by Lee, Rice, and Anderson is not as accurate.
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I. INTRODUCTION

‘‘Pseudogaps,’’ i.e., a suppression of the low-energy el
tronic density of states due to an interaction effect, are
current interest in the context of high-Tc superconductivity1

and of low-dimensional organic materials2 and are relevan
to the theory of liquid metals,3 and to the issue of spin wave
aboveTc in ferromagnets.4 One general mechanism for pro
ducing pseudogaps involves the presence of long but
infinite range order, for example, of the superconducting
density wave type. Consider, for definiteness, a o
dimensional material exhibiting long ranged charge den
wave order atT50. At T.0 thermal fluctuations preven
long ranged order but at lowT the order parameter fluctuate
very slowly in space and time. It therefore has significa
amplitude to back scatter electrons. The back scattering
tend to open a gap but will not do so completely because
order is not perfect. Very similar issues come up in the ph
ics of liquid metals.3 where the ions are highly correlated an
move slowly in comparison to the electrons, in the theory
superconductivity, where slow Cooper pairing fluctuatio
mix particle and hole states~instead of left and right movers!
and again tend to open a gap, and in ferromagnets at
peratures slightly aboveTc , slow magnetization fluctuation
may suppress electron-hole spin excitations and al
weakly damped spin waves to exist.4

A crucial, but still unresolved, question concerns t
proper method of calculation of physical quantities in t
presence of long-range-correlated scattering. A simple
physically appealing approximation was proposed in 1973
Lee, Rice, and Anderson,5 who argued that one need on
consider the leading perturbative one-boson-exchange
gram for the self-energy. Within this approximation the lo
energy density of states was constant, but was suppre
from the non-interacting value by a factor proportional to t
inverse of the correlation length of the scatterers. Subseq
workers used different approximations and obtained differ
PRB 610163-1829/2000/61~18!/12496~7!/$15.00
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results. In particular, Sadovskii obtained a continued-fract
expression which led, for the problem studied in Ref. 5, t
low-energy density of states which varied as the square
of the correlation length.6 However, Sadovskii’s results hav
recently been called in to question by Tchernyshyov7 who
exhibited a class of diagrams neglected by Sadovskii. A
different set of approximations, the ‘‘fluctuation exchange
or ‘‘FLEX’’ approximation8 has been employed by man
authors to study pseudogap effects in models
superconductivity,9 and these treatments have in turn be
questioned.10,11

In order to clarify this situation, we present results of
thorough numerical and analytical study of a simple mo
exhibiting pseudogap effects, namely, electrons moving
one spatial dimension and coupled to a backscattering po
tial which is constant in time but slowly varying in spac
with correlation lengthj. Our main results are that~i! the
approximate treatment of Sadovskii is a good approximat
to the numerically calculated density of states in the ‘‘hig
energy’’ regimeE.1/jx, with x an exponent which depend
on whether the potential is commensurate or incommen
rate. The terms omitted in Sadovskii’s derivation noted
Ref. 7 evidently produce negligible corrections.~ii ! Neither
the FLEX well approximation nor the non-self-consiste
treatments such as that of Lee, Rice, and Anderson5 well
reproduce at all well the dependence of density of states
correlation length, although the self-consistency which is
essential feature of the FLEX approximation leads to a be
representation of the density of states than does the app
mation of Lee, Rice, and Anderson.~iii ! Fluctuations in the
amplitudeof the scattering potential play a crucial role in th
form of the low-energy density of states. Most of the mod
studied make assumptions about the amplitude fluctuat
which are not physically reasonable.~iv! Some features of
the results are controlled by fluctuations in the gradient
the backscattering potential; the widely used Lorentzian fo
12 496 ©2000 The American Physical Society
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has divergent gradient fluctuations which change the form
the results.

The balance of this paper is organized as follows. In S
II we present the models and a simple ‘‘WKB’’ treatme
which reveals the essential physics. In Sec. III we present
results of our numerical study. In Sec. IV we compare
numerical results to those obtained by approximate meth
Section V contains a summary, conclusions, and a list
open problems.

II. MODEL

We consider spinless electrons moving in one spatial
mension and coupled to a static potential with spatial co
lations to be specified below. The fundamental Hamilton
is

H52(
j

$2~dj
†dj 111H.c.!1mdj

†dj1Vjdj
†dj%. ~1!

We consider two subcases.
~A! Half filling and commensurate potential. In this case

m50 and we assumeV( j ) is a real random potential chose
from a distribution which implies

^Vj&50 ~2!

and

^VjVj 1k&5~21!kf ~k/j!. ~3!

Here f (x)→0 for x→` and we are interested in the largej
limit.

~B! Incommensurate band filling and potential. In this
case we linearize Eq.~1! about the Fermi points, separate t
electrons into right-moving~R! and left-moving~L! branches
in the usual way, and adopt a matrix notation, defining
232 matrix G via

GR,R~z,t;z8,t8!5eipF(z2z8)^TcR~z,t !cR
†~z8t8!&, ~4!

GL,L~z,t;z8,t8!5e2 ipF(z2z8)^TcL~z,t !cL
†~z8t8!&, ~5!

GRL~z,t;z8,t8!5eipF(z1z8)^TcR~z,t !cL
†~z8t8!& ~6!

GLR~z,t;z8,t8!5e2 ipF(z1z8)^TcL
†~z,t !cR~z8t8!&. ~7!

The Green ’s function obeys a Schro¨dinger equation which
after Fourier transformation in time may be written

@v1 i s3vF]z1V~z!#5d~z2z8!. ~8!

A general potential~z! has a forward scattering part whic
couples right movers to right movers and left movers to
movers, and a backscattering part which couples left mov
to right movers. The forward scattering part is not importa
for the density of states;12 thus we consider only the back
scattering part and write

V~z!5v1~z!s11v2~z!s2 . ~9!
f
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Because of the phase factors arising from the incommen
rate Fermi surfaceV is a complex potential; further we have
absorbed phase factors into the definition of, thus we wr
the V correlator as

^Vj* Vj 1k&5 f ~k/j!. ~10!

Here

s15S 0 1

1 0D , s25S 0 2 i

i 0D and s35S 1 0

0 21D
are the usual Pauli matrices.

A formal solution for the Green function of Eq. 8 ha
been derived by Abrikosov and Ryzhkin;12 their solution
generalizes immediately to the commensurate case. The
lution is expressed in terms of theS matrix defined forz
.z8 by

S~z,z8;v!5 i
s3

vF
TzexpS 2E

z8

z

dy ~y! D . ~11!

HereTz is the ‘‘space ordering’’ symbol and

A5
s3

vF
@v1vW •s¢ #. ~12!

Abrikosov and Ryzhkin show that, e.g., the right-movin
Green functionGRR is given forz.z8 by ~we usually do not
make thev dependence explicit!

v.0: GRR~z,z8!5S22~`,z!S22~z8,2`!/ iS22~`,2`!,
~13!

v,0: GRR~z,z8!5S12~`,x!S21~z8,2`!/ iS11~`,2`!.
~14!

Further, in this model the density of states for a system
lengthL is given by

N~v!5
1

Lp
Tr Im ln S~L/2,2L/2;v1 i e!. ~15!

Consider the matrix (z). Its eigenvalues are

6k~z!56
1

vF
Auv~z!u22v2 ~16!

and so we have

A~z!5k~z!Q~z!s3Q21~z! ~17!

with a rotation matrix.
If k21 is small compared to the lengthj over which var-

ies, may be found via a WKB approximation. Details a
given in the Appendix. The essential result is that5RD
where~z! is the rotation matrix which diagonalizes (z), is a
rotation matrix which is close to unity and is a diagon
matrix which, up to a phase, is

D5expH 2s3E
z8

z

dyFk~y!2
1

2k~y!

3S ~]yu!21
1

4
sin2~2u!~]yw!2D G1•••J . ~18!
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Hereu5tan21(uvu/v) andw5arctan(uv1u/uv2u).
From Eq. ~15! it is clear that G ifk is purely real the

density of states vanishes; thus obtaining real excitation
energyv requires the existence of regions in which the lo
gap is larger thanv. In particular, in models with only phas
fluctuations, the local gap amplitudeuvu is constant and for
uvu,uvu the density of states vanishes. This result is
course familiar in the context ofs -wave superconductivity
where low-lying states and indeed dissipation come o
from vortices and phase-slip centers, at which theamplitude
of the superconducting order parameter vanishes. The m
ods used by Lee, Rice, and Anderson,5 by Sadovskii6, and by
many subsequent workers assume thatv is Gaussian and
peaked atuvu50 and therefore cannot address the rare a
plitude fluctuations which are the relevant physics for rea
tic systems as already noted by Ref. 6.

In the limit of infinite correlation length the density o
states follows immediately from the leading order terms; o
finds for a fixed realization of disorder

N~v!

N0
5Tr ImG 5

v

AuV~z!u22v2
. ~19!

The average density of states is then obtained by ave
ing this expression over the probability distribution ofV,
leading to the j→` results previously obtained b
Sadovskii.6 For example, for the incommensurate proble
the two independently fluctuating components of the pot
lead to

N~v!

N0
5E

0

v DdD

D0
2 e2D2/2D0

2 v

Av22D2
. ~20!

For v!D0, Eq. ~20! implies N(v)/N05pv2/2D0
2. The

analogous expression for the commensurate problem lea
a density of states proportional tov.

The expressions presented above suggests that the ‘
nite correlation length’’ results fail when̂(]zu)2/k&;k,
i.e., (]zuvu)2v2/@v22uvu2#2;k2. If one considers this esti
mate as a function of frequency, then one sees that in
regions of small potential where low-lying states occur,k
;v. Further, the Lorentzian disorder assumed above h
divergent second moment, so^(]zV)2&;D0

2/(ja) wherea is
an ultraviolet cutoff of order a lattice constant. Combini
these factors suggests that the WKB approximation bre
down for v4;D2(ja). Matching this scale to the low
energy density of states;v2 yields a residual density o
states of orderj21/2. As we shall see in the next section, th
numerics suggests ratherj21/3. Similar considerations for the
commensurate case would yieldN(v);j21/4; as we shall
see, the numerical results roughly agree. Our arguments
gest that the value of the low-energy density of states
controlled by fluctuations in the derivative of the rando
potential. These are ultraviolet divergent for the widely us
Lorentzian form of the potential fluctuations. Study of ra
dom potentials with finite second moments and hence der
tive fluctuations on the scale ofj21 would be of interest.

We now consider the density of states at very low en
gies. Very low energies correspond to very long leng
scales, and at length scales greater thanj one expects the
of
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problem to map on to one with pointlike~delta correlated!
disorder. Ovchinnikov and Erikhman13 have shown that in a
fluctuating gap model very similar to thej→0 limit of the
commensurate potential potential case the density of st
diverges as 1/v ~with logarithmic corrections so the integra
is not divergent! and therefore we expect such a divergen
in the present commensurate potential case also. The in
esting question is the dependence onj of the coefficient of
the divergent term on the correlation length: this is equi
lent to the question of the frequency range over which
divergence is visible above the background.

We present here a qualitative argument indicating that
correct scale isj21/2. We note first that the density of state
peak in the fluctuating gap model may be traced back to
Su-Schrieffer-Heeger14 argument that in such models
change in sign of the back-scattering potential produce
midgap state. The mean distance between sign chang
j1/2. Further, midgap states decay exponentially on a sc
set by the mean gap so the hybridization between mid
states may be neglected and they may be treated as inde
dent. We conclude that the number of such states per
length is of orderj21/2, therefore the divergence~which is
integrable! must exist forv,j21/2.

This argument may be sharpened. As noted by Barto
and Kopietz,15 at v50 the Green’s function for the com
mensurate case may be explicitly computed. In the contex
the WKB formula this may be easily seen from Eq.~18!: in
the commensurate case the fact that the potential is pu
real means]zw50 while ]zu→0 asv→0, so corrections to
the WKB result vanish. The number of states atv50 may
then be explicitly computed from Eq.~15!. At v50, S is
purely real except when the potential crosses zero, at wh
point an extra phaseip is incurred. Thus in a system o
lengthL the number of states atv50 is given precisely by
the number of zero crossings, which is of orderL/(aj)1/2. To
convert this into an estimate for the density of states a
function of frequency, an estimate of the number of nea
states is required. We argue that this may be obtained
scaling, assumingv;1/L; this leads to a divergenc
;1/v(ja)1/2. Of course, rough estimates such as these
not correctly capture logarithmic terms.

Bartosch and Kopietz15 have analyzed the formal solutio
to the commensurate problem in a different way, obtain
an expression which they interpret at the zero-frequency d
sity of states per unit length per unit frequency. Their expr
sion diverges exponentially in the size of the system and
consistent neither with the arguments given above nor w
the numerics to be presented in the next section. In fact t
expression closely resembles the expression for the real
of GRR which follows from our analysis. We have argue
elsewhere16 that what they have computed is a wave functi
amplitude, not a density of states, so we do not consider t
results further.

We now briefly discuss thev→0 density of states for
incommensurate potentials. The arguments presented a
suggest that this will behave differently than in the comme
surate case—the fact that the fluctuating gap has two c
ponents means that the zero crossing argument is not
evant and the probability for the root-mean-square gap
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vanish is negligible. We therefore believe that the inco
mensurate model has a vanishing density of states prec
at zero frequency.

III. NUMERICAL RESULTS

In this section we present results of a detailed numer
study of the density of states of the two models. We proc
by writing the real-space form of the Hamiltonian as a m
trix, choosing a particular realization of the backscatter
potential from the distribution defined in the previous se
tion, and numerically diagonalizing the Hamiltonian. We o
tain the density of states by averaging the eigenvalues
an appropriate energy window@of order~bandwidth!/50# and
then average over many~typically 1000! realizations of the
disorder. We find that the average over realizations of
disorder converges more rapidly for longer correlati
lengths than for shorter ones, and converges more slowly
the commensurate model than for the incommensurate o

We first consider the commensurate model, Eq.~1!, which
may be diagonalized as it stands. For the disorder we cho
Gaussian distribution in which

Vj5ReF(
q

V~q!eiq j G ~21!

and the distribution ofV(q) is determined by the kernel

Kcomm~q!5
D0

2 sinh~1/j!

cosh~1/j!2cos~q2p!
. ~22!

These choices correspond to periodic boundary condit
for the fluctuating potential and open boundary conditio
for the electrons.

BecauseH for the commensurate case may be written a
tridiagonal matrix, Sturm-chain techniques17 may be used to
obtain the density of states for very large system sizes~up to
L;107); these system sizes are large enough that boun

FIG. 1. Energy~E! dependence of density of statesN calculated
numerically for commensurate potential model defined by Figs. 1
of the text, for different correlation lengthsj. The mean gap value
D050.2 is shown by a dotted line. The data come from eigenva
binned into intervals of width 0.01. The dashed line shows
‘‘infinite correlation length’’ result from the WKB approximation
-
ely

al
d
-
g
-
-
er

e

or
e.

e a

s
s

a

ry

effects are entirely negligible; the study of the length dep
dence of results has has allowed us to verify that even for
smaller systems (L;104) accessible to direct diagonaliza
tion, boundary effects are negligible.

Figure 1 shows the density of states for the commensu
model for several correlation lengths andD50.2. Several
features are immediately evident. First, as noted by ot
workers,5 correlation lengths larger thanjD5vF /D are re-
quired in order to obtain an appreciable pseudogap. Sec
the density of states drops only slowly asj is creased, and is
surprisingly large even atj;100. Third, at low energies the
density of states is approximately constant except for a ‘‘c
tral peak’’ which is centered atv50 and has a width which
diminishes as the correlation length increases. We have
tained the residual~i.e., without central peak! density of
states by smoothly extrapolating the calculatedN(v) to zero,
neglecting the upturn. The procedure suffers from ambi
ities because our data are relatively coarsely binned in
quency and there is some uncertainty about the proper fu
tional form for the central peak. The results are shown
filled circles in Fig. 2; the dashed line clearly shows that t
residual density of states vanishes asj2h with h;1/2.

We now turn to the central peak. It is evident that t
width decreases asj increases. Our data are not sufficient
accurate to allow us to determine the precise scaling of
central peak withj andv, but we believe they are consiste
with the form N(v,j); f (vj1/2) with f (x) given by the
Ovchinnikov-Erikhman form18 f (x);1/x ln3(x) for x,1
and f→0 for x→1. In particular,N(v) appears to increas
roughly as 1/v and as shown in Fig. 3, the area under t
central peak scales approximately asj21/2, although one sees
that the corrections to this scaling become appreciable
j<100.

3

s
e

FIG. 2. Residual (E→0) density of statesN calculated numeri-
cally for the commensurate potential defined by Eqs.~1!–~3! ~filled
circles!, the incommensurate potential defined by Eq.~10! ~dia-
monds!, and the approximation of Sadovskii for commensurate~tri-
angle! and incommensurate~square! cases, are plotted against co
relation lengthj on doubly logarithmic axes. Also shown ar
dotted, dashed, and dash-dotted lines indicating scaling withj21/3,
j21/2, j22/3, respectively. For the numerically calculated comme
surate potential case, the central peak evident in Fig. 1 has
subtracted as described in the text.
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The incommensurate model is defined via a continu
equation; a discretization is therefore necessary. For com
tational convenience we have adopted

H52(
j

$ i @dj 11,R
† dj ,R2dj ,R

† dj 11,R!2~R↔L !#

1Vj~dj ,L
† dj ,R1dj ,R

† dj ,L!% ~23!

with complexVj Gaussian distributed with correlator

^Vj* Vj 1k&5D0
2e2uku/j. ~24!

Our results for the density of states are shown in Fig
The more rapid drop ofN with v, expected from the WKB
argument, is evident. There is no central peak. Indeed th
are some indications of a ‘‘central dip’’ but it is difficult to
resolve this question numerically. We have obtained the
sidual density of states by smoothly extrapolating the ca
lated N(v) to zero, neglecting any possible downturn; t
procedure is less ambiguous than in the commensurate
The results are shown as filled squares in Fig. 2; the sca
with j seems to be closer toj22/3 than to the theoretically
predictedj21/2.

IV. COMPARISON TO APPROXIMATE CALCULATIONS

In this section we discuss the relation of the numeri
results to various approximate calculations, in order to ob
insight into the strengths and weakness of the different
proximations. We begin with the WKB approximatio
shown as heavy dashed line in Figs. 1 and 4. This is see
be a good approximation to the calculated density of sta
for not too low energies and not too short correlation lengt
essentially the numerical results follows the WKB one un
the density of states drops to the residual level shown in
2.

We now turn to the continued fraction method of S
dovskii, which for the incommensurate case is compared
numerics in Fig. 4. The qualitative correspondence is see
be good, and to improve for longer correlation lengths. T

FIG. 3. Spectral weight, i.e., integrated area under central p
for the commensurate potential case, plotted against square ro
inverse correlation length.
u-

.

re

e-
-

se.
g

l
in
p-

to
s
;

l
g.

-
to
to
s

suggests that the terms which Tchernyshyov7 has noted are
neglected in Sadovskii’s approach are not quantitatively
portant and become less significant asj is increased. For
infinite correlation length Sadovskii’s results are justified
the WKB arguments of Sec. II. Closer examination howe
shows that the low energy largej behavior of the density of
states is not so well represented as one can see in Fig. 2
magnitude differs from the numerical one by factors of ord
2 and the scaling withj is incorrect, beingj21/2 instead of
the numerically determined exponent22/3 to 21. Similar
discrepancies arise in the commensurate case, where th
dovskii N(0);j21/3 instead of the correctj21/2.

We now turn to the two other widely used approximatio
with a more transparent physical content, namely, the L
Rice-Anderson~LRA! and ‘‘fluctuation exchange’’~FLEX!.
The former authors argued that one should approximate
electron self energy by the leading order graphs which c
respond to the expression

SLRA5E G0K5E dq

2p

K~q!

iv2ep1Qq
'

1

iv1ep1 i /j
,

~25!

where Q52kF ,G05( iv2ep)21 is the bare Green’s func
tion andK(q) is defined in Eqs.~21! and~22!. This approxi-
mation leads to a gap structure which becomes very sh
even for relatively smallj and to a low energy density o
states which varies as 1/j for both commensurate and incom
mensurate cases. These incorrect results arise becaus
self-energy is too singular; this feature in turn arises beca
the bare electron Green’s function is used to describe
intermediate state.

An alternative scheme is the FLEX method. This is co
plicated in general and can be implemented at various le
of approximation. In the case of present interest the stand
implementation19–21 is equivalent to making the Lee-Rice

ak
of

FIG. 4. Energy~E! dependence of density of statesN calculated
numerically for incommensurate potential model defined by E
~1!, ~22!, ~23! of the text, for different correlation lengthsj. The
mean gap valueD050.2 is shown by the vertical dotted line. Th
results are obtained from numerically calculated eigenvalues bin
into intervals of width 0.01. The dashed line is the result of the
‘‘infinite correlation length’’ WKB calculation.
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Anderson calculation self-consistent, by using a fully dres
Green’s function to compute the one-loop self-energy i
SFLEX(k,v)5*GK with G5@ iv2ek2SFLEX(kv)#21. This
amounts to writing a Kadanoff-Baym functional which
composed of a series of ring diagrams involving bubb
made by convolving fullG lines accounts in an approxima
way for the self-energy, when the interaction and vertex
known.

We have numerically solved the FLEX equations forD
50.2 and variousj, the results are shown in Fig. 5. It is cle
from the results that the dressed Green’s function leads
less singular integral and therefore to a larger low ene
density of states with lessj dependence. The value ofN(0)
is found to be larger than that obtained numerically but thj
dependence is qualitatively reasonable (;j21/2). These are
successes and indicate that the general idea of smoothin
multiple back scattering by a self-energy is reasonable;
the other hand, as with the LRA approach, the differen
between commensurate and incommensurate cases is
and the central peak is absent. Also as seen in Fig. 5
location of the peak inN(E) has a strong correlation lengt
dependence, inconsistent with the numerics and with ph
cal intuition. The investigation of more sophisticated ve
sions of FLEX starting from different Baym-Kadanoff func
tinals along the lines of Ref. 22 as would a full parqu
treatment along the lines given in Ref. 23.

V. CONCLUSION

To summarize, we have used numerical methods an
WKB analysis of a formal solution of a Schro¨dinger equation
to obtain an expression for the Green’s function of a mo
of a one-dimensional charge density wave in its fluctuat
regime. We found that low-lying density of states com
from regions where the amplitude of the CDW gap vanis
and we emphasize that a proper treatment of a physic

FIG. 5. Energy~E! dependence of density of statesN calculated
via the FLEX approximation from Eq.~25! of the text for different
correlation lengths and the incommensurate potential. The infi
correlation length WKB result is shown by the dashed line. N
that the mean gap valueD0 was fixed at 0.2; the variation of th
position of the density of states peak is an artifact of the FL
approximation.
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relevant model requires a correct treatment of amplitu
fluctuations, which are typically described by a no
Gaussian probability distribution, which is difficult to hand
either analytically or numerically.

On the qualitative level, we found that pseudogaps requ
relatively extreme conditions: a drop in the density of sta
does not begin to appear until the correlation length is lar
than the basic coherence lengthvF /D0 defined by the elec-
tron velocity and mean field fluctuation amplitude, and t
low energy density of states decreases only slowly asj is
increased beyond this scale. Physics we have omitted f
our model, including quantum fluctuations of the pairing p
tential and the phase space effects characteristic of dim
sions greater than 1, only weakens the tendency to for
gap. The ‘‘pseudogap’’ observed in underdoped high-Tc su-
perconductors involves a significant suppression of the
energy density of states and therefore implies, at least
these materials, the existence of well established, reason
long ranged pairing fluctuations.

On the technical side, we have shown that the WK
method~which we suspect can be generalized to higher
mensions! and the Sadovskii approximation~which probably
cannot! provide relatively reasonable estimates of the den
of states; other approximations do rather poorly, which
unfortunate because they easily generalize well to dim
sions larger than 1.

Three extensions of this work would be desirable. One
to calculate the conductivity, another is to numerically inve
tigate the crossover between the large-j pseudogap behavio
and the small-j constant density-of-states behavior the th
is to treat non-Gaussian amplitude fluctuations.
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APPENDIX A: WKB APPROXIMATION FOR S

For z.z8, obeys the equation

@]z1A~z!#S50 ~A1!

with

A~z!5 ivs31D~z!cosw~z!s11D~z!sinw~z!s2 .
~A2!

Here s1,2,3 are the usual Pauli matrices andD and w are
related to the quantitiesv1 andv2 defined in the text byv1
5D cosw;v25D sinw. The eigenvalues of are6k(z) with
k2(z)5D2(z)2v2 If the scalej over which varies is much
larger thank21, Eq. ~A1! may be solved via a WKB ap
proximation. Write

S~z,z8!5Q~z!R~z!D~z!I ~z8!. ~A3!

te
e



-
a-

lue
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Here exp(iunW•sW ) with

tan~zu!5D/v, ~A4!

nW [~n1 ,n2 ,n3!5~sinw,2cosw,0!, ~A5!

and

D5expS 2E
z8

z

dy$@k~y!1d3~y!#s31d0~y!% D , ~A6!

is a diagonal matrix andd3 andd0 are functions to be deter
mined.R is a rotation matrix which is close to the unit m
trix and expresses the initial conditions. Using Eqs.~A3! and
~A6! in Eq. ~A1! gives

@k1d3#Rs3R211d02~]zR!R 215@Q21]zQ#1ks3 .
~A7!
Explicitly, @Q21]zQ#5 iqW •sW with

qW 5nW ]zu1
1

2
sin 2u~nW 3 ẑ!]zw1sin2 u ẑwz ~A8!

By assumingR is the unit matrix1 plus small corrections
and iterating the equation one obtains

d35 i sin2 u ]zw2
1

2k F ~]zu!21
1

4
sin2~2u!~]zw!2G1•••,

~A9!

R511
i ~ ẑ3qW !

2k
2

~ ẑ3qW !2

8k2
1

i ẑ3]z

k
F ẑ3qW

2k
G1•••.

~A10!

This solution may obviously be extended. A nonzero va
of d0 occurs in the third order.
.
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