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One-dimensional Bose-Hubbard model with nearest-neighbor interaction
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We study the one-dimensional Bose-Hubbard model using the density-matrix renormalization group. For the
cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott
insulators and charge-density wave phases are determined. We find a direct phase transition between the
charge-density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of
nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the
effective interactions in the superfluid phase are repulsive. In this region a single impurity causes the system to
be insulating. An even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite
quenched disorder. We determine the boundaries of both regions in the phase diagram. The ac conductivity of
the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is
found in the attractive as well as the repulsive region.
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I. INTRODUCTION

At zero temperature superfluid-to-insulator phase tra
tions can be found in bosonic lattice systems.1 Experimental
realizations of such systems are superconducting island
grains connected by Josephson junctions, in which the
evant particles are the bosonic Cooper pairs. The transit
at zero temperature belong to the class of quantum ph
transitions that are not driven by thermal but by quant
fluctuations. These quantum fluctuations are controlled
system parameters like the charging energy of the super
ducting islands and the Josephson coupling between th
Depending on such parameters, the system can assum
ferent forms of long-range order. In two dimensio
superfluid-to-insulator phase transitions at zero tempera
were observed in thin granular films2–4 and in fabricated
Josephson-junction arrays.5,6

Recently experiments were carried out in one-dimensio
systems of fabricated Josephson junctions. In chains
junction wide and 63, 127, and 255 junctions long with
tunable Josephson coupling a superfluid-insulator transi
was observed.7 In another experiment with fabricated J
sephson junctions, long and narrow arrays formed an ef
tively one-dimensional lattice for lattice fluxes formed b
Cooper pairs.8,9 The density of these fluxes was controlled
an external magnetic field perpendicular to the array, and
small ratios of Josephson coupling to charging energy, in
lating charge-density wave phases with densities 1/3,
2/3, 1 . . . were found.

In all of these systems the relevant particles, the Coo
pairs or the lattice fluxes, are, at least approximate
bosonic. The basic physics of strongly interacting bosons
a lattice is contained in the Bose-Hubbard model, which
PRB 610163-1829/2000/61~18!/12474~16!/$15.00
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scribes soft-core bosons that gain kinetic energy by hopp
on the lattice and have a repulsive on-site interaction.1 For
both of the above experiments on one-dimensio
Josephson-junction arrays the range of the interactions w
reported to be several sites long.7–9 As a step towards under
standing the effect of the longer ranged interactions in th
systems, we study an extended version of the Bose-Hub
model that takes nearest-neighbor interaction in addition
on-site interaction into account.

In the presence of on-site interactions only, Mo
insulators are found at integer densities, surrounded b
superfluid phase.1 Additional nearest-neighbor interactio
leads to charge-density wave phases at half integer dens
At the transition from the charge-density wave phase to
superfluid phase two forms of long-range order are involv
charge-density wave order and superfluid order. If there
direct phase transition from the charge-density wave phas
the superfluid phase, one type of order appears at the s
point where the other vanishes. In two and higher dim
sions an intermediate phase, called the supersolid phase
has both types of order, was found between the cha
density wave phase and the superfluid phase in theore
models.10,11For experimental systems the existence of sup
solids is still controversial.12 In one-dimensional bosonic
models supersolids have not been found so far.13,14

The existence of a normal or metallic phase that has
ther superfluid nor charge-density wave order was claime
one15- and two16-dimensional bosonic models in the high
density limit. While normal phases at zero temperature h
not been ruled out rigorously, it has been argued that t
should not exist.17 We will determine whether normal o
supersolid phases exist in the one-dimensional case.

The low-energy behavior of the superfluid phase in o
12 474 ©2000 The American Physical Society
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PRB 61 12 475ONE-DIMENSIONAL BOSE-HUBBARD MODEL WITH . . .
dimension is described by a Luttinger liquid.1 The effect of
disorder and impurities can be especially strong in Luttin
liquids. A single impurity turns some regions of the Lu
tinger liquid into insulators,18 and even larger areas a
turned into a lattice glass by any finite quenched disorder19,1

The parameters at which this happens are known18,19,1 from
Luttinger liquid theory. In the Bose-Hubbard model, the Lu
tinger liquid parameters of any point in the superfluid pha
are given by the decay of the correlation functions. By c
culating these parameters in clean systems, the relevan
impurities or disorder can be determined without actua
adding impurities or disorder to the system. We will det
mine the regions of the phase diagram that are turned
insulators by impurities and into lattice glasses by disord
We will also compare the conductivity and Drude weight
the different regions.

To obtain numerical results, we use the density-ma
renormalization group~DMRG!.20,21 In a previous work,14

Kühner and Monien studied the Bose-Hubbard model us
the infinite size DMRG and periodic boundary conditions.
this work finite-size DMRG and open boundary conditio
are used, which allows for a much higher numerical accur
and gives access to much bigger systems.

The outline of this paper is as follows: In Sec. II the ba
phase diagram and the possible phase transitions of the B
Hubbard model are discussed. Some aspects of the den
matrix renormalization group are discussed in Sec. III. T
calculation of the phase boundaries is presented in Sec
The correlation functions in the different phases are show
Sec. V. In Sec. VI the phase diagram with on-site interact
is presented. The possible existence of normal or supers
phases is discussed in Sec. VII, and the phase diagram
nearest-neighbor interaction is determined. In Sec. VIII
ac conductivity and the superfluid stiffness is calculated
the Mott insulator and different regions of the superflu
phase. Conclusions are given in Sec. IX.

II. BOSE-HUBBARD MODEL

The basic physics of interacting bosons on a lattice
contained in the Bose-Hubbard model.1 We use an extende
version which includes nearest-neighbor repulsion:

HBH52t(
i

~bi
†bi 111bibi 11

† !

1U(
i

ni~ni21!/21V(
i

nini 11 , ~1!

where thebi are the annihilation operators of bosons on s
i, ni5bi

†bi is the number of particles on sitei, and t is the
hopping matrix element.U is the on-site Coulomb repulsio
andV is the nearest-neighbor repulsion. The energy scal
set by choosingU51.

For small interactions or larget the bosons are completel
delocalized, the system is in a superfluid phase. If the den
is commensurate with the lattice, and there is an interac
with the corresponding wave vector, the bosons become
calized at smallt. In the presence of on-site interaction on
(V50), Mott-insulating regions with integer density a
found. Figure 1 is a sketch of the phase diagram show
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Mott-insulating regions surrounded by the superfluid pha
On most of the phase boundaries between the insula

phases and the superfluid phase the density of the sy
changes as the phase boundary is crossed from the inc
pressible insulator to the compressible superfluid. The lo
tion of this commensurate to incommensurate density tra
tion can be directly determined as the energy it takes to
a particle or hole to the insulator:

mc
p5Ep2E0 , ~2!

2mc
h5Eh2E0 . ~3!

HereE0 is the energy of the insulator ground state,Ep is the
energy of a state with the density of the ground state and
additional particle andEh of that with an additional hole.
These energies can be calculated using DMRG, which
be discussed in Sec. IV. Note that the chemical potentialsmc

p

and mc
h are not equal to each other, the compressibilityk

5]r/]m of the insulator is zero. The superfluid phase
compressible, and for states in the superfluid phasemc

p

5mc
h . The values ofmc

p andmc
h at t50 shown in Fig. 1 can

be easily calculated analytically.
At the phase transitions from the insulator to the sup

fluid phase where the density remains an integer, the mo
is in the universality class of thexy model, and there is a
Kosterlitz-Thouless22–25 phase transition. This transition i
purely driven by phase fluctuations that are determined bt.
The particle-hole excitation gap at the Kosterlitz-Thoule
transition closes as

Eg5mc
p2mc

h;expS const

Atc2t
D , ~4!

giving the insulating regions a very pointed shape. T
commensurate-incommensurate phase boundaries can b
termined directly by calculating the particle and hole exci
tion energies @Eqs. ~2! and ~3!#, and in principle the
Kosterlitz-Thouless transition could also be found by loc

FIG. 1. Schematic phase diagram withV50. It shows the Mott
insulators~MI ! with density r51 and r52, surrounded by the
superfluid phase~SF!. The Luttinger liquid parameterK is shown at
the commensurate-incommensurate phase transitions and
Kosterlitz-Thouless transitions at the tips of the insulating regio
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12 476 PRB 61TILL D. KÜ HNER, STEVEN R. WHITE, AND H. MONIEN
ing thet at whichEg is zero. But since the energy gap clos
very slowly @Eq. ~4!#, small errors in the energies lead to
big error in the locationtc of the critical point. Instead, we
will study the decay of the correlation functions to find t
critical point.

The superfluid phase of interacting bosons in one dim
sion has a linear dispersion relation for small wave vectoq
and no excitation gap. The low-energy physics of this ph
is that of a Luttinger liquid1,26,27with the basic Hamiltonian

H05
1

2pE dxF ~vK !@P~x!#21S v
K D @]xF~x!#2G . ~5!

HereP(x) are density fluctuations andF(x) phase fluctua-
tions @b†(x)5Ar(x) eiF(x)#, v is the second sound velocit
andK determines the decay of the correlation function:26

^br
†b0&;r 2K/2, ~6!

^nrn0&;11
2

K
~2prr !221A~rr !22/Kcos2prr ~7!

for r @r. The interactions and the lattice introduce an ex
term:

Hcomm5E dx cos@2nQ~x!12pnx~r2r0!#, ~8!

where]xQ(x)5p@r01P(x)#, r is the density of the sys
tem, r0 is the density of the insulator~e.g., r051 for the
Mott insulator!, andn is the denominator of the density o
the insulator:r05m/n. For K.Kc this term becomes rel
evant and drives the system into an insulating phase. At
Kosterlitz-Thouless transitionKc5n2/2 and Kc5n2 at the
commensurate-incommensurate transition.28–30

At the Mott insulators with integer densities, the denom
nator of the density isn51. At the sides of the insulator th
Luttinger Liquid parameter isK51, and at the Kosterlitz-
Thouless transition at the tip it isK51/2. The parameterK
can be determined from the correlation functions, and
will locate the tc of the Kosterlitz-Thouless transition b
finding thet at whichK51/2.

If additional nearest-neighbor interactions are included
the model, charge-density wave phases are found at hal
teger densities. They also have a Kosterlitz-Thouless tra
tion at the tips, giving them a similar shape as the M
insulators~Fig. 2!. Since the denominator of their density
n52, the parameterK54 at the sides of the phase bounda
of the charge-density wave, andK52 at the Kosterlitz-
Thouless transition at the tip. The possible existence of
intermediate phase, supersolid or normal, between
charge-density wave phase and the superfluid phase wi
addressed in Sec. VII.

III. DMRG

To determine the energies and correlation functions
use the density-matrix renormalization group~DMRG!,20,21a
numerical method capable of delivering precise results
ground-state properties of low dimensional strongly intera
ing system. We use the finite-size version of the DMR
algorithm, in which the system is built up to a certain siz
-
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and the basis of the system is then optimized to represen
chosen target states by sweeping through the system re
edly until the basis is converged.

The density-matrix weight of the states discarded in
DMRG step is a measure of the numerical errors caused
the truncation. We found this truncation error to depend
the correlation length in the system. At a fixed number
states kept, we find very small truncation errors in the in
lating phases, that grow as the phase transition to the su
fluid phase is approached, and are biggest in the super
phase. Note that in one dimension the whole superfluid ph
is critical with a diverging correlation length, but the corr
lation length is always finite in finite systems.

In each DMRG calculation for a given set of model p
rameters we first use the ground state, the state with an
ditional particle and the state with an additional hole as t
get states. To obtain adequate numerical accuracy in
cases, we require the density-matrix weight of the trunca
statesD,531026 ~see Appendix B!. The energies of these
states are used to calculate the chemical potentials@Eqs.~2!
and ~3!#.

For further sweeps only the ground state is used a
target state. We require the weight of the truncated stateD
,1029, and the number of states kept is increased if nec
sary. After the basis is converged, which usually takes t
sweeps, the ground-state correlation functions are calcula

At the same parameters and number of states, the tru
tion error in a system with periodic boundary conditions
usually much higher than with open boundary conditio
therefore we use open boundary conditions. To keep bou
ary effects small we add additional terms on the bounda
to the Hamiltonian

Hboundary5Vrn̂11Vrn̂L . ~9!

FIG. 2. Schematic phase diagram withV50.4. It shows the
Mott insulator ~MI ! with density r51, the charge-density wave
~CDW! phases at densitiesr51/2 andr53/2, and the surrounding
superfluid phase~SF!. The K are Luttinger liquid parameter at th
phase transitions.
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With this additional term, a particle on the boundary on a
erage has the same potential energy as in the rest of
system.

IV. PHASE BOUNDARIES

As pointed out in Sec. II, the phase boundaries with
exception of the Kosterlitz-Thouless transition can be de
mined by calculating the particle and hole excitation energ
@Eqs.~2! and~3!#. Using DMRG we calculate these energi
in finite systems. We expect quadratic system size dep
dence of the energies of the insulator ground states, and
ear system size dependence for the states with additi
particles and holes. Figures 3~a! and 4 show that the leadin
term in the scaling ofmc

p and mc
h in the insulator and the

superfluid phases is 1/L. Figure 3~b! showsmc
p of the Mott

insulator atr51 with V50 and t50.1. In this case the
system size dependence is very weak, and on the sca
Fig. 3~b! the quadratic part of the scaling can be seen. N
that the dependence of the chemical potential on the sys
size is very small in this case. Since the quadratic and hig
parts contribute only very weakly to the scaling, we igno
them and use linear extrapolations from the finite syst
sizes to determinemc

p andmc
h in the thermodynamic limit. In

the insulator phasemc
pÞmc

h , since there is a finite gapEg

5mc
p2mc

h @Eq. ~4!#.
In the superfluid phase the extrapolations formc

p andmc
h

should result in the samem sinceEg50 and the system is
compressible. In Fig. 4 very small deviations from this c
be seen. The effect of these deviations on our analysi
negligible, and we will ignore them.

FIG. 3. ~a! System size dependence of the chemical potentia
the Mott insulator (*) atr51 with t50.1 and V50 and the
charge-density wave phase~o! at r51/2 with t50.1 andV50.4.
The upper set of data points~denoted byp) corresponds to the
energy necessary to add an additional particle (mc

p), the lower one
~denoted byh) to that of adding a hole (mc

h). The dashed lines show
linear fits to the data.~b! mp for r51, V50, and t50.1 on an
expanded scale.
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V. CORRELATION FUNCTIONS

A. Local density

Since open boundary conditions are used, special care
to be taken to reduce boundary effects. The most obvi
form of these are local density oscillations. In the superfl
phase they show the power-law decay away from the edg
the system characteristic for the Luttinger liquid. If the de
sity of the bosons is given as a rational numberr5n/m, the
wavelength of the oscillations is the denominatorm of the
density—the same wavelength as in the density-density
relation functions@Eq. ~7!#. Figure 5 shows the local densit
in a system at densityr53/4 with only on-site interactions
and r51/4 with additional nearest-neighbor interaction
both in the superfluid phase.

In the insulators the boundary effects decay exponentia
In addition to the boundary induced density oscillations,

n FIG. 4. System size dependence of the chemical potential in
superfluid phase att50.1. As in Fig. 3, the upper set of data poin
~p! corresponds to the energy necessary to add an additional pa
(mc

p), the lower one~h! to that of adding a hole (mc
h). The dashed

lines are linear fits.

FIG. 5. Local densitŷ ni& in the superfluid phase. The system
areL5256 sites long.
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the charge-density wave phase at densityr51/2 ~Fig. 6!
there is real long-range order in^ni& in the form of a charge-
density wave witĥ ni&5r1Sp(21)i , whereSp is the struc-
ture factor. In an infinite system the long-range order is d
to spontaneous symmetry breaking—in finite systems w
even numbers of sites we allow this by adding a small sy
metry breaking term to the chemical potential on the l
boundary. Without this symmetry breaking term reflecti
symmetry would cause the ground state to be the linear c
bination of two charge-density wave phases with a ph
difference ofp, canceling out the long-ranged oscillations
^ni&. Breaking the symmetry in the finite system reduces
Hilbert space necessary to represent the ground state by
and also leads to a better convergence of the DMRG. In
superfluid phase the symmetry breaking term just modi
the density oscillations at the boundary.

B. Hopping correlation function

In the superfluid phase the hopping correlation funct
G(r )5^br

†b0& decays with the power-law behavior given
Eq. ~6!, which can be used to determine the Luttinger liqu
parameterK. As discussed above, there are local-dens
fluctuations^ni& in the finite systems. The creation operat
can be represented by a density^ni& and a phasef i part:
bi

†5A^ni&exp(ifi). As discussed above, there are loc
density fluctuationŝni& in the finite systems, and they wi
affect the correlation function̂bi

†bj&. Since the local-density
oscillations, with the exception of the charge-density wa
phase, are boundary induced, and we are interested in
properties of an infinite system, we reduce the effect of
local-density oscillations averaging over pairs of^bi

†bj& with
u i 2 j u5r . To minimize boundary effects we placei and j
symmetrically around the center.

Figure 7 shows the power-law behavior in the superfl
phase for smallr, which is modified to a faster decay clos
to the system boundaries. The bigger the systems are
bigger is the region in which the correlation functions fit t

FIG. 6. Local-density fluctuations in the charge-density wa
phase with densityr50.5 at t50.1, U51, and V50.4 in a L
5256 system. The fluctuations induced by the right boundaryi
5256 decay quickly, but the true long-range oscillations
throughout the system.
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algebraic decay, and also the region in which the correla
functions look the same for different system sizes. In
cases the two biggest systems we calculate are at least
and 256 sites long. To estimateK, we fit a•r 2K/2 to the
numerical data for 16<r<32. For systems with 128 and 25
sites the boundary effects in this region are small, while
distance is also big enough to avoid short-ranged~non-
Luttinger liquid! effects.

With increasing system size the boundary effects
weaker, resulting in a decreasingK that asymptotically ap-
proaches the infinite size value. To find a simple estimate
this we use theK determined in the biggest system as
upper limit Ku , and the linear extrapolation from the value
in the two biggest systems as a lower limitKl . We take the
mean valueK5(Ku1Kl)/2 and estimate the error asDK
5(Ku2Kl)/2.

C. Density-density correlation function

The density-density correlation functions are calculated
the same way as the hopping correlation function. Howev
in this case it is necessary to subtract the static expecta
values, measurinĝninj&2^ni&^nj&, instead of just taking
^ninj&.

Figure 8 shows the density-density correlation function
densityr51/4. A fit with Eq. ~7! works fairly well, but the
first term (2/K)(2prr )22 could not be observed. Instead o
the correlation function being bigger for smallr, we find it to
be smaller. Equation~7! only necessarily holds at large dis
tances, and the short-range behavior we see is dominate
the repulsive interaction between the particles. In fitti
A(rr )22/Kcos 2prr to the data, a cutoff at small distance

e
FIG. 7. ^br

†b0& correlation function in superfluid systems wit
densityr51/4 at t50.1, U51, andV50.4 and different system
sizesL. As the system size is increased the boundary effects
come weaker, and the curves for different system sizes look sim
over increasing regions. The inset shows the decay parametK
from power-law fits^br

†b0&;r 2K/2 to 16<r<32 for the different
system sizes (L532,64,96,128, and 256). As the system si
grows, K converges to the value for infinite systems. The dash
lines show the extrapolation to the upper and lower limit ofK. The
mean value of the upper and lower limit is taken asK, and the
difference gives an estimate of the error. In the shown case
K51.4060.03.
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has to be made. While this works well enough to confi
that the correlation functions decay with a power-law beh
ior, the uncertainties in the fit are too high to determineK.

VI. ON-SITE INTERACTIONS

Using the methods described above we determine
phase diagram in the presence of on-site interactions o
Figure 9 shows the Mott insulator with densityr51, sur-
rounded by the superfluid phase. In Fig. 10 the tip of
insulator is shown on an expanded scale. The very poin
tip of the insulating region reflects the closing of the ene
gap given by Eq.~4!, which is due to the Kosterlitz-Thoules
transition. Figure 9 also shows results for the commensur

FIG. 8. Density-density correlation function in the superflu
phase. The boxes show the numerical data, the solid line is th
with A(rr )22/Kcos 2prr, A50.143, and K51.43. (r50.25,t
50.1,U51,V50.4,L5256.)

FIG. 9. The phase diagram with on-site interactions only~MI:
Mott insulator with density one; SF: superfluid phase!. The solid
lines show a Pade´ analysis of 12th order strong-coupling expa
sions~Ref. 31!, two different sets of quantum Monte Carlo data a
‘‘ 1’’ ~Ref. 32! and ‘‘x’’ ~Ref. 33!. The filled circles show older
DMRG results~Ref. 14!, the empty boxes are the new DMRG da
The dashed lines indicate the area with integer density. The e
bars in them direction are smaller than the circles, the error bar
the t direction is the error oftc for the Kosterlitz-Thouless~KT!
transition.
-

e
ly.

e
d

y

e-

incommensurate phase transition from 12-order perturba
theory. The excellent agreement with DMRG confirms t
high accuracy achieved.

To find the critical point of the Kosterlitz-Thouless tran
sition at the tip of the Mott insulator, we determine thet at
which K51/2. As described in Sec. V B, theK are deter-
mined by fitting power-law behavior to the decay of the ho
ping correlation functionG(r )5^br

†b0&. Due to finite-size
effects, the result can depend on the interval ofr that is used
for this fit. While we found 16<r<32 to be reasonable in
general, there are logarithmic finite-size effects at
Kosterlitz-Thouless transition that require a more detai
inspection. Figure 11 showsK ’s that were determined with
different fitting intervals plotted versust.

For the t50.29, t50.3, and t50.31 systems withL
5512 andL51024 sites were calculated to keep finite-si
effects small. Table I shows thetc found with different fitting
intervals. Due to the finite-size effects thetc go to highert as
the fitting interval is shifted to biggerr. While using a fitting

fit

or

FIG. 10. Same as Fig. 9, with the tip of the Mott insulator on
expanded scale.

FIG. 11. K vs t at the Kosterlitz-Thouless transition from th
density one Mott insulator to the superfluid phase. The critical po
is determined by finding thet at whichK51/2. The biggest system
sizes areL5256 sites except fort50.29,0.3,0.31, where they ar
L51024.
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interval of 16<r<32 is a good compromise between avo
ing finite-size effects by using smallr, and finding an
asymptotic value for the decay by using bigr, the error de-
termined by this fit alone underestimates the true error. W
an error estimated from the effect of the choice of the fitt
interval, we findtc50.29760.01.

Determination of the Kosterlitz-Thouless transition w
attempted in several previous studies. For a truncated m
with a maximum of two particles per site the critical poi
was found attc

BA51/(2A3)'0.289 with the Bethe Ansatz.34

In a combination of exact diagonalization for system with
to L512 sites and renormalization group Kashurnikov a
Svistunov found tc50.30460.002,35 and together with
Kravasin foundtc50.30060.005 ~Ref. 33! in a quantum
Monte Carlo study. In a infinite size DMRG study usin
periodic boundary conditions and a particle cutoff ofn54
per site, the critical point was found attc50.298.37 An exact
diagonalization approach reported the critical point to be
tc50.27560.005,36 and a study using 12th-order stron
coupling expansions31 located it attc50.2660.01.

In a previous study,14, Kühner and Monien used the infi
nite size DMRG algorithm with periodic boundaries to d
termine the critical point. In a similar fashion to the proc
dure used in this paper, thet at which K51/2 was
determined, and the critical point was found attc50.277
60.01. In contrast to Refs. 14 and 37, in this work the fini
size version of DMRG and open boundary conditions
used. This results in a much higher numerical accuracy,
gives access to very large systems. While system sizes o
to 80 sites were studied in Refs. 14 and 37, system size
up to 1024 are used in this work. This reduces the uncert
ties associated with the extrapolation to infinite systems c
siderably.

The range of values found fortc demonstrates the diffi
culty involved in determining the critical point of th
Kosterlitz-Thouless transition, which is mostly due to log
rithmic finite-size effects close to the critical point. The lar
system sizes used in this paper should compensate for
within the given error bars, and yield a reliable result. In t
context it is also interesting to note that while thetc found
here deviates from the one found in Ref. 14, the ph
boundaries found for the commensurate-incommensu
transition, which is far easier to determine, are in very go
agreement.

The phase diagram shown in Fig. 9 has a very interes
feature, a reentrance phase transition. Imagine moving o
line of constant chemical potentialm, for examplem50.15,
and starting at smallt, moving toward biggert. The particle
density along this line is illustrated in Fig. 12. For smallt the
system is in the Mott insulator phase. Att'0.1 there is a

TABLE I. The location of the critical pointtc depending on the
interval of r used for the fits toG(r )5^br

†b0&.

r t c

4<r<8 0.287460.0001
8<r<16 0.293860.0001

16<r<32 0.296860.0003
32<r<48 0.306260.0003
48<r<64 0.310760.01
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phase transition to the superfluid phase, with densitiesr,1.
The density decreases up to a minimum, then it start incre
ing again. Att'0.26 the density goes up tor51 again, and
there is another phase transition, this time reentering
Mott insulating phase from the superfluid phase. Increasint
further leads to another phase transition from the Mott in
lator to the superfluid phase, this time withr.1, and the
density increasing further with increasingt.

To gain more insight into this, we compare to results fro
a mean-field approach.38 Figure 13 shows the phase diagra
with the Mott insulator at densityr51, surrounded by the
superfluid phase. In the superfluid phase, the lines of c
stant density slope downward ast is increased. This is no
only found in one dimension, but in all dimensions. The lim
of t→` corresponds to keepingt constant and setting th
interactions to zero. If the interactions are zero the sys
goes from a superfluid phase to a Bose-Einstein conden
in which every particle has an energy of22t. If the chemi-
cal potential is smaller than22t, the system is empty, be
cause it costs energy to put a particle in, and for chem
potentials bigger than22t the number of particles goes t

FIG. 12. Illustration of the phase transitions between the M
insulator~MI ! and the superfluid phase~SF! on a line of constant
chemical potentialm50.15.

FIG. 13. The mean-field phase diagram~Ref. 38! in dimension-
less units, showing lines of constant density.
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infinity, because every additional particle reduces the to
energy of the system. Going back to the picture of cons
interactions and changingt, this means that the density of th
system always goes to infinity ast is increased.

In dimensions two and higher the superfluid-insula
transition on the line of constant density is a second-or
transition, and the tip of the insulating region is round. F
ure 14 shows the density on a line of constant chemical
tential m50.3. At the phase transition from the Mott insul
tor to the superfluid phase the density first drops ast is
increased, and then increases again. In one dimension th
of the insulating region is very long and narrow due to t
Kosterlitz-Thouless transition, and it is possible to reen
into the insulator atr51.

VII. NEAREST-NEIGHBOR INTERACTION

Longer range interactions have been found to be imp
tant in experiments.7–9 We now include nearest-neighbor in
teractions by settingV50.4. Due to the nearest-neighbor i
teractions a new insulator phase appears at half inte
densities. It is a charge-density wave phase~CDW! with a
wavelength of two sites, and like the Mott insulator at integ
density it has an excitation gap and is incompressible.
crystalline order is characterized by a nonzero structure
tor

Sp5
1

N2 (
i j

~21! u i 2 j u^ninj&. ~10!

In Fig. 6 the local density oscillations in the charge-dens
wave phase are shown. A small boundary effect can be s
but the main feature are long-range density oscillatio
throughout the system that do not decay. An order param
^ni2r& can be defined to describe this charge-density wa
even in one dimension.

In one dimension the superfluid phase is signalled b
diverging correlation length

j25(
r

r 2^br
†b0&/(

r
^br

†b0&, ~11!

FIG. 14. The density on a line of constant chemical poten
m50.3 in the mean-field phase diagram~Fig. 13!.
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and a nonzero superfluid stiffness

rs5 lim
f→0

L
]2E0~f,L !

]f2
, ~12!

which is proportional to the Drude weightD;rs . In two
and higher dimensions there is also an order param
^bi

†&Þ0. In one dimension the whole superfluid phase
critical, and there is no order parameter.

At the transition from the charge-density wave phase
the superfluid phase both types of order are involved:
crystalline order in the charge-density wave phase and
superfluid order in the superfluid phase. In addition to a
rect phase transition from the charge-density wave to
superfluid at which the crystalline order vanishes at the sa
point where the superfluid order appears, there is the po
bility of an intermediate phase. Table II shows the possi
phases close to densityr51/2 in a bosonic system with on
site and nearest-neighbor interaction in two or higher dim
sions. In addition to the charge-density wave and the su
fluid phase, supersolids that have both forms of order w
found in two-dimensional models.10,11 Baltin and
Wagenblast15 found a region that has neither superfluid sti
ness nor charge-density wave in a one-dimensional bos
model in the high density. The possible existence of suc
phase was also recently predicted for a two-dimensio
bosonic model in the high-density limit by Das an
Doniach,16 who call it a Bose metal.

In Appendix C strong coupling expansions are used
illustrate the difference between the commensura
incommensurate phase transition atr51/2 in one and two
dimensions. Strong-coupling expansions can be used
study the insulator, but not the superfluid. To study the lo
energy behavior of the superfluid phase the Luttinger liq
can be used. In addition to the basic Luttinger liquid Ham
tonian @Eq. ~5!#, the lattice and the interactions introduc
scattering terms@Eq. ~8!#. These only contribute atr51/2,
where they can drive the system into a different phase,
not at nearby densities. At incommensurate densities clos
r51/2, the wave function is incommensurate with the latt
and hence cannot be pinned to the lattice to form an ins
tor. Of course this would be changed if there were impurit
or disorder, but a pure system in one dimension is in
Luttinger liquid phase unless it is at a density commensu
with the lattice and the interactions.

At density r51/2 DMRG can be used to determine
there is an intermediate phase or a direct phase trans
from the charge-density wave phase to the superfluid ph
To do this, we investigate the relationship between the
perfluid and crystalline order at the phase transition. T

l

TABLE II. Possible phases and their order parameters clos
densityr51/2.

Sp rs Phase

Þ0 50 charge-density wave
50 Þ0 superfluid
Þ0 Þ0 supersolid
50 50 Bose metal
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onset of superfluidity is signaled by a diverging correlati
lengthj @Eq. ~11!#, charge-density order is measured bySp

.0 @Eq. ~10!#.
The model is in the universality class of thexy model at

the phase transition on the line of constant density ar
51/2. Due to the Kosterlitz-Thouless transition expected
this line, it is difficult to determine exactly when the stru
ture factor or the inverse correlation length go to zero. Bu
is possible to study the dependence of the structure facto
the correlation length. Figure 15 shows that for small valu
the structure factor depends on the correlation length b
power law:

j~Sp!212j~Sp50!21;~Sp!a. ~13!

To keep the effect of the boundaries small for the calculat
of both the structure factorSp and the correlation lengthj,
only sites that were at least a quarter of the system size a
from the boundaries were taken into account.

In Fig. 16 the extrapolated inverse correlation leng
1/j(Sp50) at zero structure factor is plotted against the

FIG. 15. Structure factorSp versus the inverse correlatio
lengthj for different system sizes. The dashed lines show pow
law fits.

FIG. 16. The inverse correlation length 1/j at Sp50 obtained
from Fig. 15 versus the inverse system size. The dashed line sh
a linear fit to the three biggest system sizes.
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verse system size. The linear fit to the three biggest sys
sizes shows that 1/j(Sp50) goes to zero for infinite sys
tems. From this and the power-law behavior in Fig. 15
conclude that there is a power-law dependence of the st
ture factor on the correlation length, and that in infinite sy
tems the correlation length diverges at the same poin
which the structure factor goes to zero. This means that th
is a direct phase transition from the charge-density w
phase to the superfluid phase, and no supersolid or no
phase in between. This is in agreement with Ref. 14, wh
the infinite size DMRG algorithm was used with period
boundaries and a different extrapolation to infinite syst
sizes.

The phase boundaries of the charge-density wave ph
can be found in the same way as those of the Mott insula
and we use the methods used for the on-site only interac
case to calculate the phase diagram. Figure 17 shows
phase diagram in the region of ther51/2 charge-density
wave phase and ther51 Mott insulator. Like the shape o
the Mott insulator with on-site interaction only, the shapes
the insulating regions reflect the Kosterlitz-Thouless tran
tions at the tips. The tips are also bending down, allow
reentrance phase transitions from the superfluid to the in
lating phases. We find the Kosterlitz-Thouless transitions
tc
MI50.40460.02 for the Mott insulator, and attc

CDW

50.12560.003 for the charge-density wave phase. The cr
cal point at the tip of the charge-density wave phase
been found in a quantum Monte Carlo study att'0.1. The
accuracy oftc

MI is relatively low becauseK only changes
very slowly if t is changed close to this transition. This w

r-

ws

FIG. 17. The phase diagram of the Bose-Hubbard model w
nearest-neighbor interactionV50.4. The Mott insulator~MI ! at
densityr51 and the charge-density wave phase~CDW! at density
r51/2 are surrounded by the superfluid phase. The long-das
lines show the lines of constant density. The solid lines are line
constantK. The K52 line crosses the densityr51/2 line at the
Kosterlitz-Thouless~KT! transition at the tip of the charge-densi
wave phase. In the region left of theK51 line, whereK.1, the
superfluid phase is turned into an insulator by a single impu
~Ref. 18!. In the presence of disorder the region left ofK52/3 line
is turned into a Bose glass phase~Refs. 19 and 1!. The Kosterlitz-
Thouless~KT! transition at the tip of the Mott insulator is at th
point where theK51/2 line line intersects ther51 line.
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also observed by Ku¨hner and Monien in Ref. 14, where th
critical points were found attc

MI'0.32560.05 and tc
CDW

50.11860.004.
At the phase boundaries of the charge-density wave ph

the Luttinger liquid parameter isK54 except for the
Kosterlitz-Thouless transition at the tip, where it isK52.
The charge-density wave phase is surrounded by a re
whereK.1. The effective interactions in the Luttinger liq
uid are attractive forK,1 and repulsive forK.1. Kane and
Fisher showed that in the repulsive region a single impu
turns the system into an insulator.18,30 An even larger region
of the Luttinger liquid is driven into a glass phase ifK
.2/3 for any finite quenched disorder.19,1

In the phase diagram these regions (K.1 andK.2/3)
are determined by doing calculations for different densit
and t. For example, to determine thet for which K(t)51 at
a given densityr, we do calculations for differentt until we
find a pair of t1 and t2 that are close to each other, an
K(t1).1.K(t2). We then determinet(K51) by linear in-
terpolation. To find the boundaries of the repulsive Lutting
liquid region, we calculatet(K51) for various densities.

The lines withK51 andK52/3 are shown in Fig. 17
The repulsive Luttinger liquid (K.1) region completely
surrounds the charge-density wave phase. Instead of goin
t50 as the Mott insulator is approached, theK51 line ends
in the side of the Mott-insulating region, whereK51 for all
of the commensurate-incommensurate phase boundary.
ure 18 illustrates how the two lines withK51 meet at the
phase boundary of the Mott insulator. Although we could n
obtain more detailed results for densities closer tor51, we
argue that the lines withK.1 bend towardst50 as the
density gets closer to one, while those with 1/2,K,1 bend
towards the tip of the Mott insulator.

Lines of constantK with 1/2,K,1 are discontinuous a
r51, where the system is an insulator forK.1/2, with the
tipped shape reflecting the Kosterlitz-Thouless behav
Lines with K<1/2 are round atr51, and do not reflect the
Kosterlitz-Thouless behavior. Analogous tor51, we also
observe that the lines of constantK are round forK<2 and
r51/2, where the charge-density wave phase ends i
Kosterlitz-Thouless transition atK52.

VIII. CONDUCTIVITY

The repulsive region of the Luttinger liquid is turned in
an insulator by a single impurity.18 This raises the question i

FIG. 18. Illustration of the lines of constantK in the phase
diagram. The dotted lines indicateK that are slightly smaller or
bigger thanK51.
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there is a qualitative difference between the conductivity
the repulsive region and the attractive region of the Luttin
liquid in the pure system. The regular part of the conduct
ity is given by

s1
reg~v!5

1

L (
mÞ0

u^mu j q50u0&u2

Em2E0
d@v2~Em2E0!#

52
1

vpL
Im lim

h→01

^0u j q50
† 1

v1E02H1 ih
j q50u0&, ~14!

and the current operator is

j q5 i t(
n

e2 iqn~bn11
† bn2H.c.!. ~15!

Recent developments with DMRG make the calculat
of dynamical correlation functions like the ac conductivi
possible.39 The conductivity at a frequencyz5v1 ih can be
calculated as the direct product of the current operator
plied to the ground state

u j q50&5 j q50u0&, ~16!

and a correction vector

ux~z!&5
1

v1E02H1 ih
u j q50&. ~17!

By using these two states and the ground stateu0& as DMRG
target states, the conductivitys1

reg(z) can be calculated very
precisely. To calculate the conductivity over an interval
width h ranging fromv1 to v2, we use correction vector
ux(v11 ih)& andux(v21 ih)& as target states. At the end o
the DMRG calculation, when the DMRG basis is optimiz
to represent these states, we calculate the conductivity f

FIG. 19. The conductivitys1
reg(v) in the Mott insulator at den-

sity r51, t50.05, U51, V50.4, system sizeL5256, m5128
states, two correction vectors as target states withh50.05, and
broadeninghg50.01 for the plot. The inset shows the same data
an expanded scale.
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v1 to v2. Repeating this procedure for neighboring interva
we piece together the conductivity for a whole range of f
quencies.

The finite broadeningh in the correction vectors is only
used to obtain appropriate DMRG target states. To calcu
the spectrum within the DMRG basis, we use a Lanc
method that yields approximate eigenstates of the Ha
tonian. The broadening used in our plots is then applied
the discrete peaks found with the Lanczos method, an
only used for better visualization.

DMRG calculations work best with open boundary co
ditions. How the current operator is applied in a system w
open boundary conditions is discussed in Appendix D.

The conductivity in the Mott insulator phase is shown
Fig. 19. There is an energy gap ofDv50.54, with a big peak
after that and only small excitations at higher energies. Si
it is an insulator phase, we expect to find no Drude weig
With the kinetic energy defined as

^T&5t(
n

^bn11
† bn1h.c.&, ~18!

the Drude weight is given by

D52
1

L
^T&22E dvs1

reg~v!. ~19!

TABLE III. The Drude weightD for different system sizes in
the Mott insulator with densityr51, t50.05, U51, V50.4. ^T&
is the kinetic energy,*s1

reg(v)dv the integral over the ac conduc
tivity. Also shown is the number of statesm, the broadeningh of
the correction vectors, and the truncation errorD.

L D/t ^T&/(tL) 2/t*s1
reg(v)dv h m D

32 0.0084 0.6392 0.6307 0.05 128 1027

64 20.0040 0.6392 0.6432 0.05 128 1027

128 20.0075 0.6392 0.6467 0.05 128 1027

256 20.0036 0.6392 0.6428 0.05 128 1027

FIG. 20. The precursor peaks in the conductivitys1
reg(v) in the

repulsive region of the superfluid phase at densityr53/4, t
50.05, U51, V50.4, system sizeL5128, andm5128 states.
Broadeningh50.02 for correction vectors, andhg50.005 for the
plot.
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Note that the Drude weight is proportional to the superflu
stiffnessrs given in Eq.~12!.

Since the kinetic energŷT& can be calculated directly
with DMRG, and we expectD50, this is an opportunity to
verify the consistency of the calculation. In Table III th
Drude weight is shown for various system sizes. A sm
finite-size effect can be seen in the data. From the differen
in the individual values we estimate the error of the Dru
weight DD50.02t, or 2% of 2^T&/L.

In the superfluid phase we find precursor peaks at sm
frequencies in the conductivity. They are due to the fin
width39 of the wave vectorq, which is Dq54A3/L. Figure
20 shows these precursor peaks in the repulsive Luttin
liquid for different system sizes. As the system size is
creased the precursor peaks move towardsv50. For the

FIG. 21. The conductivitys1
reg(v) in the repulsive region of the

superfluid phase at densityr53/4, t50.05, U51, V50.4. Data
shown is for different system sizes with (L564,m5256,h
50.05), (L5128,m5256,h50.05), and (L5256,m5512,h
50.2). Broadeninghg50.05 for the plot, and the low-frequenc
cutoffs given in Table IV.

FIG. 22. The conductivitys1
reg(v) in the attractive region of the

superfluid phase at densityr53/4, t50.5, U51, V50.4. System
size L532 andL564 with m5128 states, andL5128 with m
5256 states. Broadeningh50.2 for the correction vectors,hg

50.2 for the plot, and the low-frequency cutoffs given in Table
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TABLE IV. The Drude weightD for different system sizes in the repulsive region of the superfluid ph
at densityr53/4, t50.05, U51, V50.4. Same notation as in Table III.

L D/t ^T&/(tL) 2/t*s1
reg(v)dv h m D vc

16 0.776 0.874 0.099 0.2 128 531027 0.2
32 0.791 0.885 0.094 0.2 128 731027 0.1
64 0.799 0.890 0.091 0.2 128 531026 0.08
64 0.798 0.890 0.092 0.05 256 131026 0.08

128 0.799 0.892 0.093 0.2 128 731026 0.02
128 0.801 0.892 0.091 0.1 256 631027 0.02
128 0.793 0.892 0.099 0.05 128 131025 0.02
128 0.797 0.892 0.095 0.05 256 131026 0.02
256 0.800 0.893 0.093 0.2 512 531027 0.02
o

ui
ns
n-
ca

ve

s
ra

m
o
s
d

a
c-
a
di
it
n
t

th
in
io

an
te

rge-

ne-
e

to
the

to
wer
n-
rge-
iate

gion

e
an
ry

o to
ide

a-

or
rac-
the
liq-

if
or

ive
calculation of the Drude weight these peaks should not c
tribute, and we use low-energy cutoffs to ignore them.

Figures 21 and 22 show the conductivity in the superfl
phase in the repulsive and attractive Luttinger liquid regio
In the Luttinger liquid the conductivity was predicted to i
crease with a power law for small frequencies, and de
exponentially for big frequencies.27,28 The conductivity in
the attractive region shown in Fig. 22 is in good qualitati
agreement with this. In the repulsive case~Fig. 21! there are
too few peaks to clearly identify this behavior. Bigger sy
tems would have to be studied to determine if the ove
shape is qualitatively different from the attractive region.

The Drude weight in the repulsive and attractive regi
of the superfluid phase is shown in Tables IV and V. F
some system sizes data with different numbers of statem
and broadeningh is shown. The numerical accuracy depen
on these parameters, with biggerm and smallerh for higher
accuracy. The data in Tables IV and V show that the imp
of m andh on the Drude weight is small. In both the attra
tive and repulsive case we find big nonzero values that
close to the kinetic energy per site in the systems. The
ferences in the Drude weight in different system sizes, w
the exception of the smallest systems, are rather due to
merical errors that grow with the system size, than due
finite-size effects.

IX. CONCLUSIONS

In summary, we have studied the phase diagram of
one-dimensional Bose-Hubbard model with on-site only
teractions and with additional nearest-neighbor interact
The density-matrix renormalization group~DMRG! was
used to calculate chemical potentials for given densities
model parameters, and by doing this for sets of parame
n-
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the phase boundaries of the Mott insulators and the cha
density wave phase were determined.

The low-energy behavior of the superfluid phase of o
dimensional bosonic systems is that of a Luttinger liquid. W
determined the Luttinger liquid parameterK from the decay
of the hopping correlation functions. Since the value ofK is
known for insulator-superfluid transitions, we could use it
locate the Kosterlitz-Thouless transitions at the tips of
Mott insulators and the charge-density wave phase in them-t
phase diagram.

In the charge-density wave phase we found that close
the phase transition the structure factor depends on a po
law of the superfluid correlation length. From this we co
clude that there is a direct phase transition from the cha
density wave phase to the supersolid, and no intermed
phase like a supersolid or normal phase.

The charge-density wave phase is surrounded by a re
of the superfluid phase whereK.1, which corresponds to a
Luttinger liquid with repulsive effective interactions. Kan
and Fisher have shown that this region will be turned into
insulator by a single impurity. We determined the bounda
of the repulsive region by finding the line whereK51 in the
phase diagram. We found that this boundary does not g
t50 as the Mott insulator is approached, but ends in the s
of the Mott insulating region, where the Luttinger liquid p
rameter also isK51.

We calculated the ac conductivity in the Mott insulat
and the superfluid phase. In the Mott insulator and the att
tive region of the superfluid phase the ac conductivity has
expected shape. In the repulsive region of the Luttinger
uid we found a different shape, but could not determine
this is due to the finite system sizes. The Drude weight
superfluid stiffness was found to be big in both the attract
and the repulsive region.
ase
TABLE V. The Drude weightD for different system sizes in the attractive region of the superfluid ph
at densityr53/4, t50.5, U51, V50.4. Same notation as in Table III.

L D/t ^T&/(tL) 2/t*s1
reg(v)dv h m D vc

32 1.438 1.444 0.006 0.2 128 1024 0.6
64 1.421 1.427 0.006 0.2 128 1024 0.4

128 1.412 1.417 0.005 0.2 128 1024 0.3
128 1.411 1.417 0.006 0.2 256 1025 0.3
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APPENDIX A: TRUNCATION OF THE MODEL

The number of possible states per site in the Bo
Hubbard model is infinite since there can be any numbe
particles on a site. For practical DMRG calculations we tru
cate the model by only allowing a maximum number of p
ticles nmax on each site. Paiet al.37 chosenmax54 in a
DMRG study, while Kashurnikov and Svistunov35 used

FIG. 23. The G(r )5^br
†b0& correlation function for various

truncations of the maximum number of particles per sitenmax in the
Mott insulator at densityr51 in a L5128 system witht50.1 and
V50.4. Fornmax>3 the different correlation functions become i
distinguishable.

FIG. 24. The G(r )5^br
†b0& correlation function for various

nmax in the superfluid phase in aL5128 system withr51, t
50.5, andV50.4.
-

n-

ul-

-
f

-
-

nmax53 in a quantum Monte Carlo study. To verify the e
fect of this truncation on the correlation functionG(r )
5^br

†b0&, we calculate systems with differentnmax. Figure
23 showsG(r ) in the Mott insulator. Due to the sma
particle-hole excitations, the correlation functions are alm
identical fornmax>3. In the superfluid phase there are mo
particle-hole excitations which are affected by the truncati
Figure 24 shows that the correlation functions are indep
dent ofnmax for nmax>4. By choosingnmax55 for all cal-
culations the effect of the truncation should be small enou
not to affect the results presented in this work.

APPENDIX B: TRUNCATION OF THE DMRG BASIS

In every DMRG step the basis is truncated, and only
eigenstates of the density matrix with the biggest eigenva
are kept. The density matrix weight of the discarded stateD
is a measure of the error caused by these truncations
verify to which extent the truncation errors affect the resu
we calculate the correlation functionG(r )5^br

†b0& with dif-

FIG. 25. The G(r )5^br
†b0& correlation function for various

truncation errorsD in the r51 Mott insulator phase. System siz
L5128, t50.1, andV50.4.

FIG. 26. TheG(r )5^br
†b0& correlation function in the super

fluid phase atr51 for various truncation errors. System sizeL
5128, t50.5, andV50.4.
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ferent numbers of states kept in the DMRG basis. Figure
showsG(r ) with different truncation errors in the Mott insu
lator. Even for very small numbers of states the discar
weight is very small, and the dependence on the weigh
the discarded states is weak. Note that the discrepancie
mostly apparent due to the logarithmic scale.

The correlation function in the superfluid phase is sho
in Fig. 26. We find that the discarded weight with the sa
number of states is bigger than it is in the insulator. At sm
distancesr the correlation functions are very similar for a
numbers of states, with increasing differences asr is in-
creased. If the discarded weightsD are smaller than 8
31028, the correlation functions coincide even at the boun
aries of the system. By requiring the discarded weight to
smaller thanD<1029 for the calculation of the correlation
functions, accuracy should be high enough in all cases.

The chemical potentials are calculated from the energie
takes to add a particle or hole. Figures 27 and 28 sh
chemical potentials calculated with different numbers
states kept versus the discarded weightD. The error bars

FIG. 27. m1 versus the discarded weightD in the Mott insulator
at r51. The scale forD is logarithmic on the left plot and linear o
the right plot. The system size isL5128, t50.1, andV50.4.

FIG. 28. m1 and m2 versus discarded weightD in the super-
fluid phase. The scale forD is logarithmic on the left plot and linea
on the right plot. The density isr51, system sizeL5128, andt
50.5, andV50.4.
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correspond to the changes in the energies during a DM
sweep. Differences in the chemical potentials are small
D,1025. We require the discarded weight to be smaller th
D,531026 for the calculations of the chemical potential
and to improve the results further, we extrapolate linea
from the two values with the lowestD.

APPENDIX C: STRONG-COUPLING EXPANSION AT THE
COMMENSURATE-INCOMMENSURATE TRANSITION

The fundamental difference between the commensur
incommensurate phase transition atr51/2 in one and two
dimensions can be illustrated with the help of a stron
coupling expansion. In the strong-coupling limit the kine
energy is zero. The zero-order states are the ground stat
the Hamiltonian only including the particle-particle repu
sion:

H5U(
i

ni~ni21!/21V(
i

nini 11 . ~C1!

The series expansion is made in terms of the kinetic ene
term:

H852t(
^ i , j &

~bi
†bj1H.c.!. ~C2!

Strong-coupling expansions of this type have been s
cessfully used to study the phase diagram with on-site o
interaction.31,40,41To determine the phase boundaries of t
Mott insulator atr51, first the ground state of Eq.~C1! has
to be found. In this state there is simply one boson sitting
every site. Higher terms of the perturbation series introd
local particle-hole excitations. The chemical potentials
the boundaries can be determined from the energy it cos
add a particle@Eq. ~2!# or a hole@Eq. ~3!#. But in these cases
the zeroth-order ground state is degenerate, since the a
tional particle or hole can sit on any site. This degenerac
lifted in first-order perturbation theory. In first order th
problem is reduced to the additional single particle mov
on a uniform background of completely localized particle
Since the extra particle gains energy by hopping from site
site, it becomes completely delocalized. Although this b
havior can be modified in higher order of the perturbati
series, and there are limitations due to the radius of con
gence, it is interesting to note the difference between
perturbation series in the insulator and with an additio

FIG. 29. The CDW in two dimensions att50.

FIG. 30. The CDW in one dimension att50.
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particle or hole. At integer density the series starts out wit
completely localized state, while it starts with a complete
delocalized state if there is an additional particle or ho
This is in good agreement with the fact that there is a M
insulator for smallt at integer density, and a direct pha
transition to a superfluid~delocalized! phase if the density is
changed.

A similar strong-coupling expansion can also be used
the charge-density wave phase atr51/2. The charge-density
wave phase att50 is a state with alternating particle num
bers, in one as well as two dimensions~Figs. 29 and 30!.
Higher-order terms in the perturbation series introduce lo
particle hopping without destroying the charge-density wa
order.

At the commensurate-incommensurate transition, an a
tional particle~or hole! enters the system. ForV,U/2 the
energy is smallest if the additional particle goes to one of
empty sites. Figure 31 shows how the additional particle
into the two-dimensional charge-density wave. In higher
ders of perturbation theory the additional particle, as wel
particle-hole excitations, hop on the charge-density ba
ground without destroying it. From this we cannot infer if th
true ~nonperturbation theory! ground state is superfluid o
not, and if the charge-density wave order is destroyed by
particle hopping. Nevertheless, it is interesting to note t
for this case supersolids have been found10,11 in two dimen-
sions. Close to the charge-density wave phase atr51/2, the
charge-density order survives at small doping.

In contrast to this, the one-dimensional case looks q
different. The additional particle also goes to an unoccup
site. If the charge-density wave remains unchanged, the
ditional energy isDE52V. With the structure factorSp , the
charge-density wave is given by an order parameter^nl&
5r1Spexp(ipl1if0). An additional particle or hole can
also be added by shifting the phasef0 by p over a region
with an odd number of sites. Figure 32 shows an exampl
such a state. In the center there is a domain with ap phase
shift, and the number of particles compared to the char
density wave~Fig. 29! is increased by one. And the add
tional energy is alsoDE52V. To lift the degeneracy be
tween all these states in first-order perturbation theory, it

FIG. 31. CDW with additional particle in two dimensions att
50.

FIG. 32. Additional particle in one dimension att50. The thick
lines are the domain walls.f0 is the phase of the charge-densi
wave.
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be seen that a particle hopping next to the domain bound
is equivalent to the domain wall moving. Since energy
gained by this, the domain walls are completely delocaliz
in first-order perturbation theory. Unlike the two
dimensional case, where the charge-density wave order
vives in all orders, in one dimension it is destroyed in fi
order. While a perturbation series does not necessarily c
verge, this striking feature illustrates the fundamental diff
ence between the one- and two-dimensional case.

APPENDIX D: CURRENT OPERATOR
WITH OPEN BOUNDARIES

DMRG calculations work best with open boundary co
ditions. To calculate the conductivity with DMRG, the cu
rent operator has to be implemented. The current operato
it is given in Eq. ~15! can be used directly with periodi

FIG. 33. The conductivitys1
reg(v) in the insulator with periodic

and open boundary conditions. The density isr51, t50.05, U
51, andV50.4, system sizeL532, andm5128 states. Broaden
ing h50.2 for the correction vectors, andhg50.01 for the plot.
The inset shows the data on an expanded scale.

FIG. 34. The conductivitys1
reg(v) in the superfluid with peri-

odic and open boundary conditions. The density isr53/4, t
50.05, U51, andV50.4, system likeL532, andm5128 states.
Broadeningh50.2 for the correction vectors, andhg50.02 for the
plot. The inset shows the data on an expanded scale.



it
n:

d
r
th

e
ary

ula-
th
ters.
la-
dic

cur-
with
ur-

ze is
ndi-
the
de
for
ell,

-

PRB 61 12 489ONE-DIMENSIONAL BOSE-HUBBARD MODEL WITH . . .
boundary conditions, but to apply the current operator w
open boundary conditions we modify it with a filter functio

j q505 (
n52`

`

P~xn /M !~bn11
† bn2H.c.!. ~D1!

The filter functionP(xn /M ) used here is a Parzen filter,xn is
the distance of siten from the middle of the system, an
M5L/2 is half the system size. The Parzen filter looks ve
similar to a gauss function, but goes smoothly to zero at
system boundaries. It is given as

TABLE VI. The Drude weightD with open and periodic bound
ary conditions. Systems sizeL532, t50.05, U51, andV50.4,
m5128 states, broadeningh50.2. Same notation as in Table III.

Boundary r D/t ^T&/(tL) 2/t*s1
reg(v)dv D vc

Periodic 1 0.0195 0.6392 0.6197 1026

Open 1 0.0017 0.6392 0.6375 1028

Periodic 3/4 0.8050 0.8957 0.0907 1024

Open 3/4 0.7881 0.8836 0.0955 1026 0.06
e

n,

n

e

J.

pf

ys
h

y
e

P~x!5aH 126uxu216uxu3 if 0<uxu<1/2

2~12uxu!3 if 1/2<uxu<1.
~D2!

A prefactora is chosen to provide results with the sam
amplitude as those found in systems with periodic bound
conditions, witha chosen so that(P(xn /M )251. To verify
the effect of open boundaries, we do two separate calc
tions of the conductivity, one with periodic and one wi
open boundaries, for otherwise identical system parame
Figures 33 and 34 show the conductivity in the Mott insu
tor and the superfluid phase with open and with perio
boundary conditions. Even in the small systems withL532
the curves are quite similar. In the superfluid phase a pre
sor peak at small frequencies can be seen in the system
open boundary conditions. Figure 20 shows how the prec
sor peaks move to smaller frequencies as the system si
increased. They are an artifact of the open boundary co
tions, and we use frequency cutoffs to exclude them from
calculation of the Drude weight. TableVI shows the Dru
weights in the insulator and the superfluid. The values
open and periodic boundary conditions compare quite w
and we estimate an error ofDD/t'0.02.
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