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We study the one-dimensional Bose-Hubbard model using the density-matrix renormalization group. For the
cases of on-site interactions and additional nearest-neighbor interactions the phase boundaries of the Mott
insulators and charge-density wave phases are determined. We find a direct phase transition between the
charge-density wave phase and the superfluid phase, and no supersolid or normal phases. In the presence of
nearest-neighbor interaction the charge density wave phase is completely surrounded by a region in which the
effective interactions in the superfluid phase are repulsive. In this region a single impurity causes the system to
be insulating. An even bigger region of the superfluid phase is driven into a Bose-glass phase by any finite
guenched disorder. We determine the boundaries of both regions in the phase diagram. The ac conductivity of
the superfluid phase in the attractive and the repulsive region is calculated, and a big superfluid stiffness is
found in the attractive as well as the repulsive region.

[. INTRODUCTION scribes soft-core bosons that gain kinetic energy by hopping
on the lattice and have a repulsive on-site interactiéior

At zero temperature superfluid-to-insulator phase transiboth of the above experiments on one-dimensional
tions can be found in bosonic lattice systehtsxperimental Josephson-junction arrays the range of the interactions were
realizations of such systems are superconducting islands oeported to be several sites lofig.As a step towards under-
grains connected by Josephson junctions, in which the relktanding the effect of the longer ranged interactions in these
evant particles are the bosonic Cooper pairs. The transitiorsystems, we study an extended version of the Bose-Hubbard
at zero temperature belong to the class of quantum phaseodel that takes nearest-neighbor interaction in addition to
transitions that are not driven by thermal but by quantunon-site interaction into account.
fluctuations. These quantum fluctuations are controlled by In the presence of on-site interactions only, Mott-
system parameters like the charging energy of the supercoimsulators are found at integer densities, surrounded by a
ducting islands and the Josephson coupling between thersuperfluid phasé. Additional nearest-neighbor interaction
Depending on such parameters, the system can assume diéads to charge-density wave phases at half integer densities.
ferent forms of long-range order. In two dimensionsAt the transition from the charge-density wave phase to the
superfluid-to-insulator phase transitions at zero temperatursuperfluid phase two forms of long-range order are involved:
were observed in thin granular film$ and in fabricated charge-density wave order and superfluid order. If there is a
Josephson-junction arrays. direct phase transition from the charge-density wave phase to

Recently experiments were carried out in one-dimensionathe superfluid phase, one type of order appears at the same
systems of fabricated Josephson junctions. In chains ongoint where the other vanishes. In two and higher dimen-
junction wide and 63, 127, and 255 junctions long with asions an intermediate phase, called the supersolid phase, that
tunable Josephson coupling a superfluid-insulator transitionas both types of order, was found between the charge-
was observed.In another experiment with fabricated Jo- density wave phase and the superfluid phase in theoretical
sephson junctions, long and narrow arrays formed an effeanodels®*! For experimental systems the existence of super-
tively one-dimensional lattice for lattice fluxes formed by solids is still controversial® In one-dimensional bosonic
Cooper pair$:® The density of these fluxes was controlled by models supersolids have not been found sd¥at.
an external magnetic field perpendicular to the array, and for The existence of a normal or metallic phase that has nei-
small ratios of Josephson coupling to charging energy, insuther superfluid nor charge-density wave order was claimed in
lating charge-density wave phases with densities 1/3, 1/2pne*®- and twd®-dimensional bosonic models in the high-
2/3, 1 ... were found. density limit. While normal phases at zero temperature have

In all of these systems the relevant particles, the Coopenot been ruled out rigorously, it has been argued that they
pairs or the lattice fluxes, are, at least approximatelyshould not exist’ We will determine whether normal or
bosonic. The basic physics of strongly interacting bosons osupersolid phases exist in the one-dimensional case.
a lattice is contained in the Bose-Hubbard model, which de- The low-energy behavior of the superfluid phase in one
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dimension is described by a Luttinger liqdidhe effect of
disorder and impurities can be especially strong in Luttinger 20 SE
liquids. A single impurity turns some regions of the Lut-
tinger liquid into insulatord® and even larger areas are MI

turned into a lattice glass by any finite quenched disotdér. =2

The parameters at which this happens are k8wt from \
Luttinger liquid theory. In the Bose-Hubbard model, the Lut- W \ K=1/2
tinger liquid parameters of any point in the superfluid phase U =1

are given by the decay of the correlation functions. By cal-
culating these parameters in clean systems, the relevance ol MI
impurities or disorder can be determined without actually p=1
adding impurities or disorder to the system. We will deter-

mine the regions of the phase diagram that are turned into
insulators by impurities and into lattice glasses by disorder. 0
We will also compare the conductivity and Drude weight in 0
the different regions.

To obtain numerical results, we use the density-matrix FIG. 1. Schematic phase diagram witk 0. It shows the Mott
renormalization grougDMRG).2%%! In a previous work® insulators(MI) with density p=1 and p=2, surrounded by the
Kuhner and Monien studied the Bose-Hubbard model usinguperfluid phaséSP. The Luttinger liquid paramete is shown at
the infinite size DMRG and periodic boundary conditions. Inthe commensurate-incommensurate phase transitions and the
this work finite-size DMRG and open boundary conditionsKosterlitz-Thouless transitions at the tips of the insulating regions.
are used, which allows for a much higher numerical accuracy
and gives access to much bigger systems. Mott-insulating regions surrounded by the superfluid phase.

The outline of this paper is as follows: In Sec. Il the basic On most of the phase boundaries between the insulating
phase diagram and the possible phase transitions of the Bogghases and the superfluid phase the density of the system
Hubbard model are discussed. Some aspects of the densitghanges as the phase boundary is crossed from the incom-
matrix renormalization group are discussed in Sec. Ill. Thepressible insulator to the compressible superfluid. The loca-
calculation of the phase boundaries is presented in Sec. I\tion of this commensurate to incommensurate density transi-
The correlation functions in the different phases are shown iion can be directly determined as the energy it takes to add
Sec. V. In Sec. VI the phase diagram with on-site interactiora particle or hole to the insulator:
is presented. The possible existence of normal or supersolid

t

phases is discussed in Sec. VII, and the phase diagram with nE=EP—Ey, 2
nearest-neighbor interaction is determined. In Sec. VIII the

ac conductivity and the superfluid stiffness is calculated for —,u,2= E'—E,. 3
the Mott insulator and different regions of the superfluid _ ) )
phase. Conclusions are given in Sec. IX. HereE, is the energy of the insulator ground steféd, is the

energy of a state with the density of the ground state and an
additional particle ancE" of that with an additional hole.
These energies can be calculated using DMRG, which will

The basic physics of interacting bosons on a lattice ide discussed in Sec. IV. Note that the chemical potentigils
contained in the Bose-Hubbard modaNe use an extended and w!! are not equal to each other, the compressibikity
version which includes nearest-neighbor repulsion: =dpldu of the insulator is zero. The superfluid phase is

comhpressible, and for state;s in the superfluid phade
=u¢. The values ofu! andu att=0 shown in Fig. 1 can
Hen= _tEi (bini+1+bibiT+1) be easily calculated analytically.
At the phase transitions from the insulator to the super-
+UE n-(n<—1)/2+V2 o 0 fluid phase where the density remains an integer, the model
A = L is in the universality class of they model, and there is a
Kosterlitz-Thoules¥~2° phase transition. This transition is
where theb; are the annihilation operators of bosons on sitepurely driven by phase fluctuations that are determinetl by
i, n;=b'b; is the number of particles on siteandt is the ~ The p_art|cle—hole excitation gap at the Kosterlitz-Thouless
hopping matrix elementJ is the on-site Coulomb repulsion transition closes as
andV is the nearest-neighbor repulsion. The energy scale is
set by choosingJ=1. E = P e const

For small interactions or largethe bosons are completely 9= Hc T McEX Vt—t/’
delocalized, the system is in a superfluid phase. If the density ¢
is commensurate with the lattice, and there is an interactiogiving the insulating regions a very pointed shape. The
with the corresponding wave vector, the bosons become Iczommensurate-incommensurate phase boundaries can be de-
calized at smalt. In the presence of on-site interaction only termined directly by calculating the particle and hole excita-
(V=0), Mott-insulating regions with integer density are tion energies[Egs. (2) and (3)], and in principle the
found. Figure 1 is a sketch of the phase diagram showindosterlitz-Thouless transition could also be found by locat-
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ing thet at whichEg is zero. But since the energy gap closes
very slowly [Eq. (4)], small errors in the energies lead to a ~ U+4V Ko
big error in the locatiort, of the critical point. Instead, we o SE
will study the decay of the correlation functions to find the CDwW -~ k=2
critical point. p=3/2
The superfluid phase of interacting bosons in one dimen-

sion has a linear dispersion relation for small wave veajors U+2v
and no excitation gap. The low-energy physics of this phase pL e =1
is that of a Luttinger liqui&?®?’with the basic Hamiltonian MI

1 v p=1 \

Ho:—f dx (K[ 24| = [P (X)]?]. (5) k=172

2 K -
Herell(x) are density fluctuations arii(x) phase fluctua-
tions[bT(x)=\p(x) €®™], v is the second sound velocity CDW .
andK determines the decay of the correlation functi®n: p=1/2_<— B

K=
(bbg)y~r K72, (6) 0

2
(nrno)~1+K(27-rpr)*2+A(pr)*2’K00527rpr 7
FIG. 2. Schematic phase diagram with=0.4. It shows the
gMott insulator (MI) with density p=1, the charge-density wave
(CDW) phases at densitigs=1/2 andp= 3/2, and the surrounding
superfluid phasé¢SF. TheK are Luttinger liquid parameter at the

phase transitions.

for r>p. The interactions and the lattice introduce an extr
term:

Hcomm:J dxcog 2n0 (x) +27nx(p—po)], (8
and the basis of the system is then optimized to represent the
where 3,0 (x) =7 po+I1(X)], p is the density of the sys- chosen target states by sweeping through the system repeat-
tem, po is the density of the insulatdie.g., pp=1 for the  edly until the basis is converged.
Mott insulatoy, andn is the denominator of the density of ~ The density-matrix weight of the states discarded in a
the insulator:po=m/n. For K>K, this term becomes rel- DMRG step is a measure of the numerical errors caused by
evant and drives the system into an insulating phase. At thghe truncation. We found this truncation error to depend on
Kosterlitz-Thouless transitioi.=n?2 and K.=n? at the  the correlation length in the system. At a fixed number of
commensurate-incommensurate transiion’ states kept, we find very small truncation errors in the insu-
At the Mott insulators with integer densities, the denomi-lating phases, that grow as the phase transition to the super-
nator of the density is=1. At the sides of the insulator the fluid phase is approached, and are biggest in the superfluid
Luttinger Liquid parameter i =1, and at the Kosterlitz- phase. Note that in one dimension the whole superfluid phase
Thouless transition at the tip it iK=1/2. The parametek s critical with a diverging correlation length, but the corre-
can be determined from the correlation functions, and wdation length is always finite in finite systems.
will locate thet, of the Kosterlitz-Thouless transition by In each DMRG calculation for a given set of model pa-
finding thet at whichK=1/2. rameters we first use the ground state, the state with an ad-
If additional nearest-neighbor interactions are included inditional particle and the state with an additional hole as tar-
the model, charge-density wave phases are found at half irget states. To obtain adequate numerical accuracy in all
teger densities. They also have a Kosterlitz-Thouless transcases, we require the density-matrix weight of the truncated
tion at the tips, giving them a similar shape as the MottstatesA <5x 10 © (see Appendix B The energies of these
insulators(Fig. 2). Since the denominator of their density is states are used to calculate the chemical poterjiais. (2)
n=2, the parametdf =4 at the sides of the phase boundaryand(3)].
of the charge-density wave, arid=2 at the Kosterlitz- For further sweeps only the ground state is used as a
Thouless transition at the tip. The possible existence of atarget state. We require the weight of the truncated states
intermediate phase, supersolid or normal, between the 10 °, and the number of states kept is increased if neces-
charge-density wave phase and the superfluid phase will bsary. After the basis is converged, which usually takes two
addressed in Sec. VII. sweeps, the ground-state correlation functions are calculated.
At the same parameters and number of states, the trunca-
Il. DMRG tion error in a system with periodic boundary conditions is
usually much higher than with open boundary conditions,
To determine the energies and correlation functions weherefore we use open boundary conditions. To keep bound-

use the density-matrix renormalization gra@MRG),***a  ary effects small we add additional terms on the boundaries
numerical method capable of delivering precise results fokg the Hamiltonian

ground-state properties of low dimensional strongly interact-
ing system. We use the finite-size version of the DMRG . .
algorithm, in which the system is built up to a certain size, Hpoundary= Vpni+Vpon, . 9
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FIG. 3. (a) System size dependence of the chemical potential in /G- 4. System size dependence of the chemical potential in the
the Mott insulator (*) atp=1 with t=0.1 andV=0 and the superfluid phase at=0.1. As in Fig. 3, the upper set of q§ta ponnt;
charge-density wave phage) at p=1/2 with t=0.1 andV=0.4. (p) corresponds to the energy necessary to add ar:n additional particle
The upper set of data pointslenoted byp) corresponds to the (1¢), the lower one(h) to that of adding a holey(c). The dashed
energy necessary to add an additional partigi)( the lower one lines are linear fits.

(denoted byn) to that of adding a hoIe;(E). The dashed lines show
linear fits to the data(b) uP for p=1, V=0, andt=0.1 on an
expanded scale. A. Local density

V. CORRELATION FUNCTIONS

Since open boundary conditions are used, special care has
With this additional term, a particle on the boundary on av-to be taken to reduce boundary effects. The most obvious
erage has the same potential energy as in the rest of tfferm of these are local density oscillations. In the superfluid
system. phase they show the power-law decay away from the edge of
the system characteristic for the Luttinger liquid. If the den-
sity of the bosons is given as a rational numpern/m, the
IV. PHASE BOUNDARIES wavelength of the oscillations is the denominatorof the
density—the same wavelength as in the density-density cor-

As pointed out in Sec. II, the phase boundaries with therelation functiongEg. (7)]. Figure 5 shows the local density
exception of the Kosterlitz-Thouless transition can be deterin a system at density=3/4 with only on-site interactions,
mined by calculating the particle and hole excitation energieand p=1/4 with additional nearest-neighbor interactions,
[Egs.(2) and(3)]. Using DMRG we calculate these energies both in the superfluid phase.
in finite systems. We expect quadratic system size depen- In the insulators the boundary effects decay exponentially.
dence of the energies of the insulator ground states, and linn addition to the boundary induced density oscillations, in
ear system size dependence for the states with additional
particles and holes. Figure$a® and 4 show that the leading L
term in the scaling ofu? and ,u? in the insulator and the 0.80
superfluid phases is 1/ Figure 3b) showsu?! of the Mott A
insulator atp=1 with V=0 andt=0.1. In this case the < 075
system size dependence is very weak, and on the scale of
Fig. 3(b) the quadratic part of the scaling can be seen. Note
that the dependence of the chemical potential on the system 0.70
size is very small in this case. Since the quadratic and higher
parts contribute only very weakly to the scaling, we ignore 0.30
them and use linear extrapolations from the finite system A
sizes to determing.? and,u'c1 in the thermodynamic limit. In g‘ 0.20
the insulator phasg.P+# ,uE since there is a finite gaRy
=ul—ug [Eq. (4)].

In the superfluid phase the extrapolations £dt and ,ﬂg 0.00
should result in the samg sinceEy=0 and the system is
compressible. In Fig. 4 very small deviations from this can
be seen. The effect of these deviations on our analysis iS FIG. 5. Local densityn;) in the superfluid phase. The systems
negligible, and we will ignore them. areL =256 sites long.
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. . . . FIG. 7. <b:b0) correlation function in superfluid systems with
FIG. 6. Local-density fluctuations in the charge-density Wavejansity p=1/4 att=0.1, U=1, andV=0.4 and different system

phase with densify=0.5 att=0.1, U=1, andV=0.4 in al g oq| A the system size is increased the boundary effects be-
=256 system. The fluctuations induced by the right bpun_dany at come weaker, and the curves for different system sizes look similar
=256 decay quickly, but the true long-range oscillations 9%over increasing regions. The inset shows the decay pararieter
throughout the system. from power-law fits(b/bg)~r K2 to 16<r<32 for the different
system sizes (=32,64,96,128, and 256). As the system size
grows, K converges to the value for infinite systems. The dashed
there is real long-range order {n;) in the form of a charge- |ines show the extrapolation to the upper and lower limiKofThe
density wave with(n;)=p+S,(—1)', whereS, is the struc-  mean value of the upper and lower limit is taken Kisand the
ture factor. In an infinite system the long-range order is duelifference gives an estimate of the error. In the shown case it is
to spontaneous symmetry breaking—in finite systems withK=1.40+0.03.

even numbers of sites we allow this by adding a small sym-

metry breaking term to the chemical potential on the leftaigebraic decay, and also the region in which the correlation
boundary. Without this symmetry breaking term reflectionfunctions look the same for different system sizes. In all
symmetry would cause the ground state to be the linear contases the two biggest systems we calculate are at least 128
bination of two charge-density wave phases with a phasand 256 sites long. To estimate we fit a-r ¥/ to the
difference ofw, canceling out the long-ranged oscillations in numerical data for 16 r<32. For systems with 128 and 256
(n;). Breaking the symmetry in the finite system reduces thesites the boundary effects in this region are small, while the
Hilbert space necessary to represent the ground state by haffstance is also big enough to avoid short-randadn-
and also leads to a better convergence of the DMRG. In theuttinger liquid) effects.

superfluid phase the symmetry breaking term just modifies With increasing system size the boundary effects get
the density oscillations at the boundary. weaker, resulting in a decreasigthat asymptotically ap-
proaches the infinite size value. To find a simple estimate of
this we use theK determined in the biggest system as an
upper limitK,,, and the linear extrapolation from the values

In theTsuperquid phase the hopping correlation function y,o w6 biggest systems as a lower lirkit. We take the
I'(r)=(brby) decays with the power-law behavior given in ,ean yajuek = (K, +K,)/2 and estimate the error asK
Eq. (6), which can be used to determine the Luttinger quuid:(K —K)/2

" .

parameterK. As discussed above, there are local-density
fluctuations(n;) in the finite systems. The creation operator
can be represented by a densfty) and a phasep; part:
bl=\(ni)exp(¢). As discussed above, there are local- The density-density correlation functions are calculated in
density fluctuationgn;) in the finite systems, and they will the same way as the hopping correlation function. However,
affect the correlation functio(binJ-). Since the local-density in this case it is necessary to subtract the static expectation
oscillations, with the exception of the charge-density wavevalues, measuringn;n;)—(n;){n;), instead of just taking
phase, are boundary induced, and we are interested in tie;n;).
properties of an infinite system, we reduce the effect of the Figure 8 shows the density-density correlation function at
local-density oscillations averaging over pairs{bfb]) with  densityp=1/4. A fit with Eq. (7) works fairly well, but the
li—j|=r. To minimize boundary effects we pladeandj first term (2K)(2mpr) 2 could not be observed. Instead of
symmetrically around the center. the correlation function being bigger for smaliwe find it to
Figure 7 shows the power-law behavior in the superfluidoe smaller. Equatiof7) only necessarily holds at large dis-
phase for smalf, which is modified to a faster decay closer tances, and the short-range behavior we see is dominated by
to the system boundaries. The bigger the systems are, thke repulsive interaction between the particles. In fitting
bigger is the region in which the correlation functions fit the A(pr) ~?cos 2rpr to the data, a cutoff at small distances

the charge-density wave phase at dengity1/2 (Fig. 6)

B. Hopping correlation function

C. Density-density correlation function
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FIG. 8. Density-density correlation function in the superfluid

with A(pr)~#*cos 2rpr, A=0.143, and K=1.43. (p=0.25¢
=0.1U=1V=0.4L=256.)

has to be made. While this works well enough to confirm
that the correlation functions decay with a power-law behav-

ior, the uncertainties in the fit are too high to determite

VI. ON-SITE INTERACTIONS

Using the methods described above we determine th

Figure 9 shows the Mott insulator with densipy=1, sur-
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FIG. 9. The phase diagram with on-site interactions qiMy:
Mott insulator with density one; SF: superfluid phasthe solid
lines show a Padanalysis of 12th order strong-coupling expan-
sions(Ref. 31, two different sets of quantum Monte Carlo data are
“+" (Ref. 32 and “x” (Ref. 33. The filled circles show older
DMRG results(Ref. 14, the empty boxes are the new DMRG data.

the t direction is the error ot for the Kosterlitz-ThoulessKT)
transition.
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0.32

! e SUp ~ FIG. 10. Same as Fig. 9, with the tip of the Mott insulator on an
phase. The boxes show the numerical data, the solid line is the fifxpanded scale.

incommensurate phase transition from 12-order perturbation
theory. The excellent agreement with DMRG confirms the

hi

gh accuracy achieved.
To find the critical point of the Kosterlitz-Thouless tran-

sition at the tip of the Mott insulator, we determine that
which K=1/2. As described in Sec. V B, th¢ are deter-
mined by fitting power-law behavior to the decay of the hop-
ging correlation functiorl’(r)=(b/by). Due to finite-size
phase diagram in the presence of on-site interactions onlgffects, the result can depend on the interval tfat is used
for this fit. While we found 1&r=32 to be reasonable in
rounded by the superfluid phase. In Fig. 10 the tip of thedeneral, there are logarithmic finite-size effects at the
insulator is shown on an expanded scale. The very poimeﬁosterl[tz-Thquless transition that require a more detfilled
tip of the insulating region reflects the closing of the energyinSPection. Figure 11 showis’s that were determined with
gap given by Eq(4), which is due to the Kosterlitz-Thouless different fitting intervals plotted versus

transition. Figure 9 also shows results for the commensurate- For the t=0.29, t=0.3, andt=0.31 systems withl
=512 andL =1024 sites were calculated to keep finite-size

effects small. Table | shows thigfound with different fitting
intervals. Due to the finite-size effects thego to highett as
the fitting interval is shifted to bigger While using a fitting
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FIG. 11. K vs t at the Kosterlitz-Thouless transition from the
The dashed lines indicate the area with integer density. The erratensity one Mott insulator to the superfluid phase. The critical point
bars in theu direction are smaller than the circles, the error bar inis determined by finding theat whichK = 1/2. The biggest system
sizes ard. =256 sites except for=0.29,0.3,0.31, where they are

L=1024.
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TABLE I. The location of the critical point, depending on the ,
interval ofr used for the fits td"(r)=(b/by). S
'l
te P
,I
4<r=<8 0.2874-0.0001 ., SF
8<r<16 0.2938-0.0001 p MI Mmr -
16<r=32 0.2968 0.0003 1.0 \ /
32<r=<48 0.3062-0.0003 \ /
48<r<64 0.31070.01 %\ /
s SF
N /'
interval of 16sr=<32 is a good compromise between avoid-
ing finite-size effects by using smal, and finding an

asymptotic value for the decay by using bigthe error de-
termined by this fit alone underestimates the true error. With
an error estimated from the effect of the choice of the fitting
interval, we findt,=0.297+0.01. FIG. 12. lllustration of the phase transitions between the Mott

Determination of the Kosterlitz-Thouless transition wasinsulator(MI) and the superfluid phag&F) on a line of constant
attempted in several previous studies. For a truncated modehemical potentiaj=0.15.
with a maximum of two particles per site the critical point
was found atf”=1/(2/3)~0.289 with the Bethe Ansaf?.  phase transition to the superfluid phase, with densjtied .

In a combination of exact diagonalization for system with upThe density decreases up to a minimum, then it start increas-
to L=12 sites and renormalization group Kashurnikov anding again. Att~0.26 the density goes up to=1 again, and
Svistunov found t;=0.304+-0.002%° and together with there is another phase transition, this time reentering the
Kravasin foundt,=0.300+0.005 (Ref. 33 in a quantum Mott insulating phase from the superfluid phase. Increasing
Monte Carlo study. In a infinite size DMRG study using further leads to another phase transition from the Mott insu-
periodic boundary conditions and a particle cutoffrof4  lator to the superfluid phase, this time wigh>1, and the

per site, the critical point was found fit=0.298%" An exact  density increasing further with increasing

diagonalization approach reported the critical point to be at To gain more insight into this, we compare to results from
t.=0.275+0.005%® and a study using 12th-order strong- a mean-field approachi.Figure 13 shows the phase diagram
coupling expansiori$ located it att,=0.26+0.01. with the Mott insulator at densitp=1, surrounded by the

In a previous study? Kihner and Monien used the infi- superfluid phase. In the superfluid phase, the lines of con-
nite size DMRG algorithm with periodic boundaries to de-stant density slope downward &ss increased. This is not
termine the critical point. In a similar fashion to the proce-only found in one dimension, but in all dimensions. The limit
dure used in this paper, thé at which K=1/2 was of t—o corresponds to keepingconstant and setting the
determined, and the critical point was foundtat0.277 interactions to zero. If the interactions are zero the system
+0.01. In contrast to Refs. 14 and 37, in this work the finite-goes from a superfluid phase to a Bose-Einstein condensate,
size version of DMRG and open boundary conditions argn which every particle has an energy of2t. If the chemi-
used. This results in a much higher numerical accuracy, andal potential is smaller thar 2t, the system is empty, be-
gives access to very large systems. While system sizes of upuse it costs energy to put a particle in, and for chemical
to 80 sites were studied in Refs. 14 and 37, system sizes @tentials bigger than- 2t the number of particles goes to
up to 1024 are used in this work. This reduces the uncertain-
ties associated with the extrapolation to infinite systems con- 1.0
siderably.

The range of values found fdg demonstrates the diffi-
culty involved in determining the critical point of the 0.8 -
Kosterlitz-Thouless transition, which is mostly due to loga-
rithmic finite-size effects close to the critical point. The large
system sizes used in this paper should compensate for this 06 I-
within the given error bars, and yield a reliable result. In this & -
context it is also interesting to note that while thefound oal M SF
here deviates from the one found in Ref. 14, the phase
boundaries found for the commensurate-incommensurate
transition, which is far easier to determine, are in very good 02 |-
agreement.

The phase diagram shown in Fig. 9 has a very interesting |
f_eature, a reentrance_phase transition. Imagine moving on a 0-%'00 0.10 0.20 0.30 0.40 0.50
line of constant chemical potentigl, for examplex=0.15, !
and starting at smatl moving toward bigget. The particle
density along this line is illustrated in Fig. 12. For sntahe FIG. 13. The mean-field phase diagréRef. 3§ in dimension-
system is in the Mott insulator phase. &t 0.1 there is a less units, showing lines of constant density.
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1.2 — T — T — T TABLE Il. Possible phases and their order parameters close to
3 A densityp=1/2.
- 7/
/
- // . S, Ps Phase
L / 4
11 / _ #0 =0 charge-density wave
- // - = #0 superfluid
p - // g #0 #0 supersolid
- 4 . =0 =0 Bose metal
/
L , i
/7
1.0 — // — M n
i AN e --—- SF iy and a nonzero superfluid stiffness
- ~ P .
I ]  PEo(eL)
i 1 pe=lim L —=—"—, (12)
0.9 L | L | L | L | L | L S 0 {9(152
00 01 02 03 04 05 06 o
t

which is proportional to the Drude weigl~p. In two

FIG. 14. The density on a line of constant chemical potentialand higher dimensions there is also an order parameter
1=0.3 in the mean-field phase diagrdfig. 13. (blY#0. In one dimension the whole superfluid phase is

critical, and there is no order parameter.

infinity, because every additional particle reduces the total At the transition from the charge-density wave phase to
energy of the system. Going back to the picture of constanthe superfluid phase both types of order are involved: the
interactions and changirtgthis means that the density of the crystalline order in the charge-density wave phase and the
system always goes to infinity &ss increased. superfluid order in the superfluid phase. In addition to a di-

In dimensions two and higher the superfluid-insulatorrect phase transition from the charge-density wave to the
transition on the line of constant density is a second-ordesuperfluid at which the crystalline order vanishes at the same
transition, and the tip of the insulating region is round. Fig-point where the superfluid order appears, there is the possi-
ure 14 shows the density on a line of constant chemical pobility of an intermediate phase. Table Il shows the possible
tential w =0.3. At the phase transition from the Mott insula- phases close to densipy=1/2 in a bosonic system with on-
tor to the superfluid phase the density first dropstas  site and nearest-neighbor interaction in two or higher dimen-
increased, and then increases again. In one dimension the #jpns. In addition to the charge-density wave and the super-
of the insulating region is very long and narrow due to thefluid phase, supersolids that have both forms of order were
Kosterlitz-Thouless transition, and it is possible to reentefound in two-dimensional modef8:!! Baltin and

into the insulator ap=1. Wagenblast found a region that has neither superfluid stiff-
ness nor charge-density wave in a one-dimensional bosonic
VII. NEAREST-NEIGHBOR INTERACTION model in the high density. The possible existence of such a

phase was also recently predicted for a two-dimensional
Longer range interactions have been found to be imporposonic model in the high-density limit by Das and
tant in experiment$-® We now include nearest-neighbor in- Doniach!® who call it a Bose metal.
teractions by SettingI:OA-. Due to the nearest-neighbor in- In Appendix C Strong Coup”ng expansions are used to
teractions a new insulator phase appears at half integgffystrate the difference between the commensurate-
densities. It is a charge-density wave ph&®W) with a  jncommensurate phase transitiongat 1/2 in one and two
WaVelength of two SiteS, and like the Mott insulator at integerdimensions_ Strong_coup“ng expansions can be used to
density it has an excitation gap and is incompressible. Thgtudy the insulator, but not the superfluid. To study the low-
crystalline order is characterized by a nonzero structure fa“energy behavior of the superfluid phase the Luttinger liquid
tor can be used. In addition to the basic Luttinger liquid Hamil-
tonian [Eq. (5)], the lattice and the interactions introduce
S :i > (—1)=l(nn) (10) scattering term$Eq. (8)]. These only contribute gi=1/2,
N2 5 R where they can drive the system into a different phase, but
not at nearby densities. At incommensurate densities close to
In Fig. 6 the local density oscillations in the charge-density,=1/2, the wave function is incommensurate with the lattice
wave phase are shown. A small boundary effect can be seegind hence cannot be pinned to the lattice to form an insula-
but the main feature are long-range density oscillationgor. Of course this would be changed if there were impurities
throughout the system that do not decay. An order parametejr disorder, but a pure system in one dimension is in the
(nj—p) can be defined to describe this charge-density wave, uttinger liquid phase unless it is at a density commensurate

even in one dimension. . o with the lattice and the interactions.
~In one dimension the superfluid phase is signalled by a At density p=1/2 DMRG can be used to determine if
diverging correlation length there is an intermediate phase or a direct phase transition
from the charge-density wave phase to the superfluid phase.
5222 r2<b:bo>/§r: <brTbo>, (11) To do this, we investigate the relationship between the su-

perfluid and crystalline order at the phase transition. The
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FIG. 15. Structure factolS, versus the inverse correlation FIG. 17. The phase diagram of the Bose-Hubbard model with
length ¢ for different system sizes. The dashed lines show powernearest-neighbor interactiod=0.4. The Mott insulator(MI) at
law fits. densityp=1 and the charge-density wave pha&®W) at density
p=1/2 are surrounded by the superfluid phase. The long-dashed
onset of superfluidity is signaled by a diverging correlationlines show the lines of constant density. The solid lines are lines of
length £ [Eq. (11)], charge-density order is measured®y  constantk. The K=2 line crosses the densify=1/2 line at the
>0 [Eq. (10)]. Kosterlitz-ThoulesgKT) transition at the tip of the charge-density
The model is in the universality class of thg model at ~ Wave phase. In the region left of the=1 line, whereK>1, the
the phase transition on the line of constant density at superfluid phase is turned into an insulator by a single impurity

—1/2. Due to the Kosterlitz-Thouless transition expected orfRef- 18. In the prese“‘l’e of dkisord?r the region 'iﬂmﬁ 2/3 I:pe
this line, it is difficult to determine exactly when the struc- 'S turned into a Bose glass pha$eefs. 19 and 1L The Kosterlitz-

. . - Thouless(KT) transition at the tip of the Mott insulator is at the
ture factor or the inverse correlation length go to zero. But it oint where thek — 1/2 line line intersects the—1 line.

is possible to study the dependence of the structure factor o
the correlation length. Figure 15 shows that for small values
the structure factor depends on the correlation length by serse system size. The linear fit to the three biggest system
power law: sizes shows that (S,=0) goes to zero for infinite sys-
1 o N tems. From this and the power-law behavior in Fig. 15 we
§(Sy) T E(S;=0) "~ (S (13 conclude that there is a power-law dependence of the struc-

To keep the effect of the boundaries small for the calculatiorfure factor on the correlation length, and that in infinite sys-
of both the structure facto®, and the correlation length, ~ tems the correlation length diverges at the same point at
only sites that were at least a quarter of the system size awayhich the structure factor goes to zero. This means that there
from the boundaries were taken into account. is a direct phase transition from the charge-density wave
In Fig. 16 the extrapolated inverse correlation lengthphase to the superfluid phase, and no supersolid or normal
1/£(S,,=0) at zero structure factor is plotted against the in-phase in between. This is in agreement with Ref. 14, where
the infinite size DMRG algorithm was used with periodic

0.4 ' T ' T ' T ' boundaries and a different extrapolation to infinite system
| i sizes.
e The phase boundaries of the charge-density wave phase
03 |- // — can be found in the same way as those of the Mott insulator,
- and we use the methods used for the on-site only interaction
L e 0 4 . .
= L case to calculate the phase diagram. Figure 17 shows the
o 02 L // B phase diagram in the region of the=1/2 charge-density
vy 7 wave phase and the=1 Mott insulator. Like the shape of
- - A . the Mott insulator with on-site interaction only, the shapes of
7 the insulating regions reflect the Kosterlitz-Thouless transi-
01 - O/O N tions at the tips. The tips are also bending down, allowing
7 i reentrance phase transitions from the superfluid to the insu-
/O/O lating phases. We find the Kosterlitz-Thouless transitions at
0.0 Y S E— tM'=0.404+0.02 for the Mott insulator, and atSP"W
0.00 0.01 0.02 0.03 0.04

1L =0.125+0.003 for the charge-density wave phase. The criti-
cal point at the tip of the charge-density wave phase had
FIG. 16. The inverse correlation lengthéldt S, =0 obtained ~been found i3|a- quantum Monte Carlo studyt&0.1. The
from Fig. 15 versus the inverse system size. The dashed line shovgccuracy oft; is relatively low becaus& only changes
a linear fit to the three biggest system sizes. very slowly if t is changed close to this transition. This was
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o . there is a qualitative difference between the conductivity in
N /K=2/3 the repulsive region and the attractive region of the Luttinger
\ liquid in the pure system. The regular part of the conductiv-

ity is given by

Mott-insulator

T e m s ST 3 ‘: 1 m . _ O 2
K=1 < ; ] O_E-eg(w):_ E |< |Jq 0| >| 5[0)_(Em—E0)]
/ \ | L m#0 Em_ EO

K=2/3 L K=1/2

=———-1Im lim
wml N
t n—0

FIG. 18. lllustration of the lines of constamt in the phase - 1 .
diagram. The dotted lines indicat€ that are slightly smaller or <O|Jq=0 —w+E0—H+i 7 Jq=0|0>1 (14

bigger thanK =1.

. L and the current operator is
also observed by Kwner and Monien in Ref. 14, where the P

critical points were found at}'~0.325+0.05 andtg®" o I
=0.118+0.004. jq=it> e 19%b! b, —H.c). (15)
At the phase boundaries of the charge-density wave phase "

the Luttinger liquid parameter =4 except for the Recent developments with DMRG make the calculation
Kosterlitz-Thouless transition at the tip, where iths=2.  of gynamical correlation functions like the ac conductivity
The charge-density wave phase is surrounded by a regigfussible®® The conductivity at a frequenay= w+i 7 can be

whereK>1. The effective interactions in the Luttinger liq- cajculated as the direct product of the current operator ap-
uid are attractive foK <1 and repulsive foK >1. Kane and plied to the ground state

Fisher showed that in the repulsive region a single impurity

turns the system into an insulatér*® An even larger region liq=0)=1q0/0), (16)
of the Luttinger liquid is driven into a glass phase Kf )
>2/3 for any finite quenched disordkt! and a correction vector

In the phase diagram these regiod&X1 and K>2/3)
are determined by doing calculations for different densities X(2))= ——=————liq=0)- (17)
andt. For example, to determine thdor which K(t)=1 at wt+Eo—H+igy

a given densityp, we do calculations for differertuntil we
find a pair oft; andt, that are close to each other, and
K(t1)>1>K(t,). We then determing(K=1) by linear in-
terpolation. To find the boundaries of the repulsive Luttinge
liquid region, we calculaté(K=1) for various densities.

By using these two states and the ground gateas DMRG
target states, the conductivity;*9(z) can be calculated very
rprecisely. To calculate the conductivity over an interval of
width » ranging fromw; to w,, we use correction vectors

; T B - [X(w1+i7)) and|x(w,+i7)) as target states. At the end of
The lines withK=1 andK=2/3 are shown in Fig. 17. the DMRG calculation, when the DMRG basis is optimized

The repulsive Luttinger Ilqwd K>1) region Completely to represent these states, we calculate the conductivity from
surrounds the charge-density wave phase. Instead of going to

t=0 as the Mott insulator is approached, the 1 line ends 0.6
in the side of the Mott-insulating region, whelke=1 for all
of the commensurate-incommensurate phase boundary. Fig-
ure 18 illustrates how the two lines with=1 meet at the 0.5 I 0.02 I 4]
phase boundary of the Mott insulator. Although we could not
obtain more detailed results for densities closeptol, we 0.4 - L 4
argue that the lines withiK>1 bend toward¢=0 as the - q
density gets closer to one, while those with<<R<1 bend 3 o3 001 4 4
towards the tip of the Mott insulator.
Lines of constanK with 1/2<K<1 are discontinuous at 0 - -
p=1, where the system is an insulator #r1/2, with the
tipped shape reflecting the Kosterlitz-Thouless behavior. o Ll | Al
Lines withK=<1/2 are round ap=1, and do not reflect the ' '
Kosterlitz-Thouless behavior. Analogous po=1, we also B T
observe that the lines of constaftare round forK<2 and 0 . Lm0 | .
p=1/2, where the charge-density wave phase ends in a 0.4 0.6 0.8 1 12
Kosterlitz-Thouless transition &=2.

FIG. 19. The conductivityr}*%(w) in the Mott insulator at den-
VIIl. CONDUCTIVITY sity p=1, t=0.05, U=1, V=0.4, system sizé =256, m=128
states, two correction vectors as target states with0.05, and
The repulsive region of the Luttinger liquid is turned into broadeningyy=0.01 for the plot. The inset shows the same data on
an insulator by a single impurit}. This raises the question if an expanded scale.
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TABLE lll. The Drude weightD for different system sizes in
the Mott insulator with densitp=1, t=0.05,U=1, V=0.4.(T)
is the kinetic energyf o;°9 w)dw the integral over the ac conduc-
tivity. Also shown is the number of states the broadening; of
the correction vectors, and the truncation eukor

6 T T T T T T T T T T T T T T T

L D/t  (T)(IL) 2tfo'fY(w)dw m A

Y

32
64

0.0084
—0.0040

0.6392
0.6392

0.6307
0.6432

0.05
0.05

128
128

10
10

128
256

—0.0075
—0.0036

0.6392
0.6392

10
10

0.6467
0.6428

0.05
0.05

128
128

w1 t0 w,. Repeating this procedure for neighboring intervals,
we piece together the conductivity for a whole range of fre-
guencies.

The finite .broadenm.m in the correction vectors is only FIG. 21. The conductivityr;°9 w) in the repulsive region of the
used to obtain appropriate DMRG target states. To calculatguperﬂuid phase at densify=3/4, t=0.05, U=1, V=0.4. Data
the spectrum W'th'n the DMRG b‘?‘S'S’ we use a LanczOgpown is for different system sizes withL€64m=256
method that yields approximate eigenstates of the Hamil—g g5) (=128m=256,=0.05), and [=256m=512y
tonian. The broadening used in our plots is then applied ta-0.2). Broadeningy,=0.05 for the plot, and the low-frequency
the discrete peaks found with the Lanczos method, and igutoffs given in Table IV.
only used for better visualization.

DMRG calculations work best with open boundary con-Note that the Drude weight is proportional to the superfluid
ditions. How the current operator is applied in a system withstiffnessp, given in Eq.(12).
open boundary conditions is discussed in Appendix D. Since the kinetic energyT) can be calculated directly

The conductivity in the Mott insulator phase is shown inwith DMRG, and we expedd =0, this is an opportunity to
Fig. 19. There is an energy gapdto=0.54, with a big peak verify the consistency of the calculation. In Table IIl the
after that and only small excitations at higher energies. Sincerude weight is shown for various system sizes. A small
it is an insulator phase, we expect to find no Drude weightfinite-size effect can be seen in the data. From the differences
With the kinetic energy defined as in the individual values we estimate the error of the Drude

weight AD=0.02, or 2% of —(T)/L.

L
0.6

T I T T |
08 1 1.2
®

02 04 14 16

(Ty=t>, (bl, by+h.c), (18) In the superfluid phase we find precursor peaks at small
n i frequencies in the conductivity. They are due to the finite
the Drude weight is given by width®® of the wave vector, which is Aq=4+/3/L. Figure
20 shows these precursor peaks in the repulsive Luttinger
1 o liquid for different system sizes. As the system size is in-
D=—E<T>—2f doo®Y(w). (19 creased the precursor peaks move towandsO. For the
1.5 . T . T : T . : T T 1.2 T | T | T | T | T | T | T
“ i 1.0 -
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FIG. 20. The precursor peaks in the conductivitf%(w) in the
repulsive region of the superfluid phase at dengity 3/4, t
=0.05, U=1, V=0.4, system sizd. =128, andm=128 states.
Broadeningz=0.02 for correction vectors, angly=0.005 for the
plot.

FIG. 22. The conductivity;*9(w) in the attractive region of the
superfluid phase at densip~=3/4,t=0.5, U=1, V=0.4. System
size L=32 andL =64 with m=128 states, and. =128 with m
=256 states. Broadening=0.2 for the correction vectorsy,
=0.2 for the plot, and the low-frequency cutoffs given in Table V.
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TABLE IV. The Drude weightD for different system sizes in the repulsive region of the superfluid phase
at densityp=3/4,t=0.05,U=1, V=0.4. Same notation as in Table III.

L D/t (TH/(tL) 2t f oY w)dw 7 m A e
16 0.776 0.874 0.099 0.2 128 8107 0.2
32 0.791 0.885 0.094 0.2 128 X0’ 0.1
64 0.799 0.890 0.091 0.2 128 X810~ 6 0.08
64 0.798 0.890 0.092 0.05 256 X0 ® 0.08
128 0.799 0.892 0.093 0.2 128 X708 0.02
128 0.801 0.892 0.091 0.1 256 X607 0.02
128 0.793 0.892 0.099 0.05 128 X10° 0.02
128 0.797 0.892 0.095 0.05 256 X110~ © 0.02
256 0.800 0.893 0.093 0.2 512 X807 0.02

calculation of the Drude weight these peaks should not conthe phase boundaries of the Mott insulators and the charge-
tribute, and we use low-energy cutoffs to ignore them. density wave phase were determined.

Figures 21 and 22 show the conductivity in the superfluid The low-energy behavior of the superfluid phase of one-
phase in the repulsive and attractive Luttinger liquid regionsdimensional bosonic systems is that of a Luttinger liquid. We
In the Luttinger liquid the conductivity was predicted to in- determined the Luttinger liquid parametérfrom the decay
crease with a power law for small frequencies, and deca@f the hopping correlation functions. Since the value<ds
exponentially for big frequenci(fg;zs The conductivity in known for insulator-superfluid transitions, we could use it to
the attractive region shown in Fig. 22 is in good quali’[ative|00a'[e the Kosterlitz-Thouless transitions at the tips of the
agreement with this. In the repulsive cdfég. 21) there are  Mott insulators and the charge-density wave phase intte
too few peaks to clearly identify this behavior. Bigger sys-phase diagram.
tems would have to be studied to determine if the overall In the charge-density wave phase we found that close to
shape is qualitatively different from the attractive region. the phase transition the structure factor depends on a power

The Drude weight in the repulsive and attractive regimelaw of the superfluid correlation length. From this we con-
of the superfluid phase is shown in Tables IV and V. Forclude that there is a direct phase transition from the charge-
some system sizes data with different numbers of states density wave phase to the supersolid, and no intermediate
and broadeningy is shown. The numerical accuracy dependsphase like a supersolid or normal phase.
on these parameters, with biggarand smallery for higher The charge-density wave phase is surrounded by a region
accuracy. The data in Tables IV and V show that the impacef the superfluid phase wheke>1, which corresponds to a
of mand » on the Drude weight is small. In both the attrac- Luttinger liquid with repulsive effective interactions. Kane
tive and repulsive case we find big nonzero values that arand Fisher have shown that this region will be turned into an
close to the kinetic energy per site in the systems. The difinsulator by a single impurity. We determined the boundary
ferences in the Drude weight in different system sizes, withof the repulsive region by finding the line whefe=1 in the
the exception of the smallest systems, are rather due to n@ghase diagram. We found that this boundary does not go to
merical errors that grow with the system size, than due td=0 as the Mott insulator is approached, but ends in the side
finite-size effects. of the Mott insulating region, where the Luttinger liquid pa-

rameter also i&K=1.
IX. CONCLUSIONS We calculated the ac conductivity in the Mott insulator
and the superfluid phase. In the Mott insulator and the attrac-

In summary, we have studied the phase diagram of thé@ve region of the superfluid phase the ac conductivity has the
one-dimensional Bose-Hubbard model with on-site only in-expected shape. In the repulsive region of the Luttinger lig-
teractions and with additional nearest-neighbor interactionuid we found a different shape, but could not determine if
The density-matrix renormalization grou®MRG) was this is due to the finite system sizes. The Drude weight or
used to calculate chemical potentials for given densities anduperfluid stiffness was found to be big in both the attractive
model parameters, and by doing this for sets of parametersnd the repulsive region.

TABLE V. The Drude weighD for different system sizes in the attractive region of the superfluid phase
at densityp=3/4,t=0.5, U=1, V=0.4. Same notation as in Table III.

L D/t (TH/(tL) 2t[ oY w)dw 7 m A R
32 1.438 1.444 0.006 0.2 128 10 0.6
64 1.421 1.427 0.006 0.2 128 10 0.4
128 1.412 1.417 0.005 0.2 128 10 0.3

128 1.411 1.417 0.006 0.2 256 10 0.3
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FIG. 25. TheT'(r)=(bb,) correlation function for various
truncation errors\ in the p=1 Mott insulator phase. System size
L=128,t=0.1, andv=0.4.

FIG. 23. TheTI'(r)=(b'h,) correlation function for various
truncations of the maximum number of particles per Bjtgy in the
Mott insulator at densitp=1 in aL =128 system witlt=0.1 and

V=0.4. Forn,,,,=3 the different correlation functions become in- . .
distinguishable. Nmax=3 iN a quantum Monte Carlo study. To verify the ef-

fect of this truncation on the correlation functioi(r)
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APPENDIX A: TRUNCATION OF THE MODEL APPENDIX B: TRUNCATION OF THE DMRG BASIS

The number of possible states per site in the Bose- In every DMRG step the basis is truncated, and only the
Hubbard model is infinite since there can be any number oéigenstates of the density matrix with the biggest eigenvalues
particles on a site. For practical DMRG calculations we trun-are kept. The density matrix weight of the discarded stAtes
cate the model by only allowing a maximum number of par-is a measure of the error caused by these truncations. To
ticles npax ON each site. Pagt al®’ chosen,,,,=4 in a  verify to which extent the truncation errors affect the results,
DMRG study, while Kashurnikov and Svisturibvused we calculate the correlation functidi(r)=(bb,) with dif-
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FIG. 24. TheT'(r)=(b'b,) correlation function for various FIG. 26. TheI'(r)=(b[b,) correlation function in the super-

Nmax iN the superfluid phase in B=128 system withp=1, t fluid phase atp=1 for various truncation errors. System size
=0.5, andv=0.4. =128,t=0.5, andv=0.4.
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i 1 13176 | .
N i + | correspond to the changes in the energies during a DMRG
L _ o sweep. Differences in the chemical potentials are small for

1.31 L L 1.31740 5 . 0'5 . 1'0 . 15 A<10 °. We require the dis_carded weight to _be smaller_than
(@ A (b) ' io‘sA : : A<5X 1_0‘6 for the calculations of the chemical potentlals,
and to improve the results further, we extrapolate linearly
FIG. 27. u™ versus the discarded weightin the Mott insulator ~ from the two values with the lowesx.
atp=1. The scale foA is logarithmic on the left plot and linear on
the right plot. The system size Is=128,t=0.1, andv=0.4. APPENDIX C: STRONG-COUPLING EXPANSION AT THE
COMMENSURATE-INCOMMENSURATE TRANSITION

ferent numbers of states kept in the DMRG basis. Figure 25 The fundamental difference between the commensurate-

e e fcommensurat phase ransiionst 112 o and wo
: y gimensions can be illustrated with the help of a strong-

weight is very small, and the dependence on the weight Ocoupling expansion. In the strong-coupling limit the kinetic

the discarded states is weak. Note that the discrepancies aéﬁergy is zero. The zero-order states are the ground states of

mostly apparent due to.the.loganthmlc sc_ale. . the Hamiltonian only including the particle-particle repul-
The correlation function in the superfluid phase is Shownsion'
in Fig. 26. We find that the discarded weight with the same™ "~
number of states is bigger than it is in the insulator. At small
distances the correlation functions are very similar for all H= UZ n;(n;—1)/2+ VZ nn.q. (Cy
numbers of states, with increasing differencesras in- : :
creased. If the discarded weights are smaller than 8 The series expansion is made in terms of the kinetic energy
x 10”8, the correlation functions coincide even at the bound+erm:
aries of the system. By requiring the discarded weight to be
smaller thanA=<10° for the calculation of the correlation , T
functions, accuracy should be high enough in all cases. H'= —IZ (bibj+H.c). (€2
The chemical potentials are calculated from the energies it .y

takes'to add a 'partlcle or hole. Flgur_es 27 and 28 show Strong-coupling expansions of this type have been suc-
chemical potentials calculated with different numbers Ofcessfully used to study the phase diagram with on-site only
states kept versus the discarded weightThe error bars jnteraction®!“*41To determine the phase boundaries of the
Mott insulator atp=1, first the ground state of EQC1) has
0510 —————— to be found. In this state there is simply one boson sitting on
every site. Higher terms of the perturbation series introduce
local particle-hole excitations. The chemical potentials on
the boundaries can be determined from the energy it costs to
add a particl¢Eq. (2)] or a hole[Eq. (3)]. But in these cases,
the zeroth-order ground state is degenerate, since the addi-
0.500 1 tional particle or hole can sit on any site. This degeneracy is
0486 & 1 lifted in first-order perturbation theory. In first order the
problem is reduced to the additional single particle moving
on a uniform background of completely localized particles.
Since the extra particle gains energy by hopping from site to
site, it becomes completely delocalized. Although this be-
havior can be modified in higher order of the perturbation
series, and there are limitations due to the radius of conver-
gence, it is interesting to note the difference between the
perturbation series in the insulator and with an additional

0.52
0.505

0.50 -

0.48
0.482

0.46 L L 0.478 5
(a) A {b)

FIG. 28. u* and u~ versus discarded weiglkt in the super-
fluid phase. The scale fa¥ is logarithmic on the left plot and linear o] o] [o] [o] [o] [@] [eo] [e] ]
on the right plot. The density i=1, system sizd =128, andt
=0.5, andv=0.4. FIG. 30. The CDW in one dimension &t0.
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particle or hole. At integer density the series starts out with a o

completely localized state, while it starts with a completely
delocalized state if there is an additional particle or hole. FIG. 33. The conductivity;"% ) in the insulator with periodic
This is in good agreement with the fact that there is a Mot@nd open boundary conditions. The densitypis 1, t=0.05, U
insulator for smallt at integer density, and a direct phase =1, andvV=0.4, system sizé =32, andm=128 states. Broaden-
transition to a superfluidelocalized phase if the density is N9 7= 0.2 for the correction vectors, ang,=0.01 for the plot.
The inset shows the data on an expanded scale.

changed.

A similar strong-coupling expansion can also be used at
the charge-density wave phasepat 1/2. The charge-density be seen that a particle hopping next to the domain boundary
wave phase at=0 is a state with alternating particle num- is equivalent to the domain wall moving. Since energy is
bers, in one as well as two dimensioffggs. 29 and 30  gained by this, the domain walls are completely delocalized
Higher-order terms in the perturbation series introduce locain first-order perturbation theory. Unlike the two-
particle hopping without destroying the charge-density wavealimensional case, where the charge-density wave order sur-
order. vives in all orders, in one dimension it is destroyed in first

At the commensurate-incommensurate transition, an adderder. While a perturbation series does not necessarily con-
tional particle(or hole enters the system. F&f<U/2 the  verge, this striking feature illustrates the fundamental differ-
energy is smallest if the additional particle goes to one of theence between the one- and two-dimensional case.
empty sites. Figure 31 shows how the additional particle fits
into the two-dimensional charge-density wave. In higher or-
ders of perturbation theory the additional particle, as well as APPENDIX D: CURRENT OPERATOR
particle-hole excitations, hop on the charge-density back- WITH OPEN BOUNDARIES
ground without destroying it. From this we cannot infer if the
true (nonperturbation theojyground state is superfluid or ~ DMRG calculations work best with open boundary con-
not, and if the charge-density wave order is destroyed by thélitions. To calculate the conductivity with DMRG, the cur-
particle hopping. Nevertheless, it is interesting to note thatent operator has to be implemented. The current operator as
for this case supersolids have been folidin two dimen- it is given in Eq.(15) can be used directly with periodic
sions. Close to the charge-density wave phage=at/2, the
charge-density order survives at small doping. 1.0 —

In contrast to this, the one-dimensional case looks quite
different. The additional particle also goes to an unoccupied
site. If the charge-density wave remains unchanged, the ad- 0.8 |- ——— periodic h -
ditional energy iIAE=2V. With the structure facto®,, , the L —— open /
charge-density wave is given by an order paraméigy ;

=p+S,expin+igy). An additional particle or hole can :8: 06 |- | %\ [} N
/ |
\»
|
|

also be added by shifting the phagg by 7 over a region 2 - {]
with an odd number of sites. Figure 32 shows an example of J 04 L /\ IRl |
such a state. In the center there is a domain with phase 'g ' / \ T \\ )
shift, and the number of particles compared to the charge- " il f} | 1
density wave(Fig. 29 is increased by one. And the addi- 02 + ; I
tional energy is als?AE=2V. To lift the degeneracy be- \ Ji \‘ / ] ! N \
. . _ . . [~ \ /\ | \ // ‘\ ! ‘\ %
tween all these states in first-order perturbation theory, it can \leyl \?’1 Ly sl |\/.\\LA

0.0
00 02 04 06 08 10 12 14 16

¢o=10 o= ¢0=0 ®

|.| |.| |. .l |.| |. .l |.| |.| | FIG. 34. The conductivity;*%(w) in the superfluid with peri-
odic and open boundary conditions. The densitypis3/4, t
FIG. 32. Additional particle in one dimensiontat 0. The thick =0.05,U=1, andV=0.4, system likd. =32, andm=128 states.
lines are the domain wallsp, is the phase of the charge-density Broadening,=0.2 for the correction vectors, ang,=0.02 for the
wave. plot. The inset shows the data on an expanded scale.
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TABLE VI. The Drude weightD with open and periodic bound- 1-6|x|2+6|x|® if 0<|x|<1/2
ary conditions. Systems size=32, t=0.05, U=1, andV=0.4, P(x)=a 3 . (D2)
m= 128 states, broadening=0.2. Same notation as in Table Il. 2(1—1x]) if 1/2<|x|<1.
Boundary p DIt (TY(LL) 2ifo" % (w)dw A we A prefactora is chosen to provide results with the same

amplitude as those found in systems with periodic boundary

Periodic 1 0.0195 0.6392 0.6197 10 conditions, witha chosen so that P(x,/M)?=1. To verify
Open 1 0.0017 0.6392 0.6375 10 the effect of open boundaries, we do two separate calcula-
Periodic ~ 3/4 0.8050 0.8957 0.0907 10 tions of the conductivity, one with periodic and one with
Open 3/4 0.7881 0.8836 0.0955 T0 0.06  open boundaries, for otherwise identical system parameters.

Figures 33 and 34 show the conductivity in the Mott insula-
tor and the superfluid phase with open and with periodic
boundary Conditions! _but to apply_thg cgrrent_operator_witrboundary conditions. Even in the small systems wita32
open boundary conditions we modify it with a filter function: the curves are quite similar. In the superfluid phase a precur-
sor peak at small frequencies can be seen in the system with

. open boundary conditions. Figure 20 shows how the precur-

]q:(’:nz_w P(Xn/M)(bL 1bn—H.C.). (DY) sor peaks move to smaller frequencies as the system size is

increased. They are an artifact of the open boundary condi-

The filter functionP(x,,/M) used here is a Parzen filtet, is  tions, and we use frequency cutoffs to exclude them from the
the distance of siten from the middle of the system, and calculation of the Drude weight. TableVI shows the Drude
M =L/2 is half the system size. The Parzen filter looks veryweights in the insulator and the superfluid. The values for
similar to a gauss function, but goes smoothly to zero at thepen and periodic boundary conditions compare quite well,
system boundaries. It is given as and we estimate an error afD/t~0.02.
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