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Finite temperature ordering in the three-dimensional gauge glass

T. Olson and A. P. Young
Department of Physics, University of California, Santa Cruz, California 95064

~Received 16 December 1999!

We present results of Monte Carlo simulations of the gauge glass model in three dimensions using the
exchange Monte Carlo technique. We show clear evidence of the vortex glass ordered phase at finite tempera-
ture. Using finite size scaling we obtain estimates for the correlation length exponentn51.3960.20, the
correlation function exponenth520.4760.07, and the dynamic exponentz54.260.6. Using our values for
z andn we calculate the resistivity exponent to bes54.561.1. Finally, we provide a plausible lower bound on
the zero-temperature stiffness exponent,u>0.18.
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I. INTRODUCTION

High-temperature superconductors have a phase diag
that is rich with physically diverse phenomena.1 In the mixed
state of a pure type-II system one finds the Abrikosov latti2

of triangularly arranged vortices. This vortex lattice prohib
superconductivity because any perpendicularly applied
rent produces a Lorentz force causing the vortices to mo
dissipating energy. The addition of disorder, however, dr
tically changes the behavior of the mixed state. Correla
disorder, such as from heavy ion irradiation3 or twin
boundaries,4 causes the vortex lines to locally align with an
adhere to the defects; this destroys the long-range orde
the lattice and produces a superconducting glassy p
known as the Bose glass.5 Random point disorder, e.g., from
proton irradiation,6 pins the vortices in random positions cr
ating a different type of superconducting phase known as
vortex glass.7,8

Similar to a spin glass, the ordered state of the vor
glass is characterized by the phase of the supercondu
order parameter randomly oriented in space but frozen
time. A system must have a Hamiltonian that contains b
randomness and frustration in order to exhibit this type
behavior. One such model that has been used extensive
simulate the vortex glass transition is the gauge glass.1,9

The gauge glass is important to study because like o
spin glasses in three spatial dimensions,10–12the existence of
a finite temperature transition within the gauge glass is c
troversial. An estimate of the critical temperature was giv
in 1990 by Huse and Seung,9, 0,Tc<0.6. A year later this
estimate was improved significantly by Regeret al.,13 who
found thatTc50.4560.05, but their data were insufficient t
establish that spin glass order occurs below this tempera
Subsequent studies14–19 have focused on defect energy sc
ing to determine the existence of a finiteTc by calculating
the stiffness exponentu. Unfortunately, these results seem
be dependent on the chosen boundary conditions, and t
is little agreement on the values ofu. Consequently it is not
clear whether the lower critical dimension is 3 or less than

In this paper we attempt to settle the controversy
studying the gauge glass using the exchange Monte C
technique,20,21 also known as parallel tempering.22–24 This
technique allows us to simulate lower temperatures
PRB 610163-1829/2000/61~18!/12467~7!/$15.00
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larger sizes than previously possible. The main features
our work are as follows.

~i! We present evidence of vortex glass ordering at fin
temperature in the three-dimensional gauge glass model.
present superior data to that previously available13 and obtain
a more accurate determination of the critical temperat
Tc /J50.4760.03.

~ii ! Using finite size scaling we determine the correlati
length exponentn51.3960.20 to a higher degree of prec
sion than earlier works.30,13 The correlation function expo
nent is also obtained,h520.4760.07. To our knowledge,
this is the first numerical estimate ofh for the gauge glass
from simulations. Assuming hyperscaling, these two ex
nents completely determine the universality class of
gauge glass model.

~iii ! Using standard Monte Carlo simulations, we det
mine the dynamical exponentz54.260.6 and compare ou
results to experimental measurements of the resistivity ex
nents5n(z21). We finds54.561.1.

The layout of the paper is as follows. In Sec. II we d
scribe the model while in Sec. III we discuss the observab
that we measure. In Sec. IV we discuss our implementa
of the exchange Monte Carlo method and our tests for eq
bration. Our results for statics are discussed in Sec. V w
our results for dynamics are given in Sec. VI. In Sec. VII w
summarize our results and give some perspectives for fu
work.

II. MODEL

The gauge glass describes the physics of a disord
type-II superconductor at distances larger than some cha
teristic length scaleL, beyond which order in the flux lattice
has been broken.1,25 One can then imagine the system as
granular superconductor~in an applied magnetic field! with
an intergrain separation of orderL. Such a system can b
modeled as an array of nearest-neighbor coupled Josep
junctions.9,26 This leads to the Hamiltonian

H52J(
^ i , j &

cos~f i2f j2Ai j !, ~1!

where each sitei on an N5L3L3L cubic lattice has an
associated phase anglef i ,J is a positive ferromagnetic~Jo-
12 467 ©2000 The American Physical Society



a

e

o

iso
rd
st
om

e
h

s

ud
o
lo
e
if

in
t

he
ch
ia
r

en
in
li

u

av
pu
th
ca

g
la
th
n
n

ul

tu

the

e

e

as
lass
n

e of

ns

i-
n-
ary

of

e
ed

ent,

e
in

12 468 PRB 61T. OLSON AND A. P. YOUNG
sephson! coupling between nearest neighbors, andAi j is pro-
portional to the line integral of the vector potential along
straight line path from sitei to its nearest neighbor sitej,

Ai j 5
2p

F0
E

rW i

rW j
AW •dW l . ~2!

F05hc/(2e) is the flux quantum.
The Hamiltonian of the gauge glass is given by Eq.~1! in

which theAi j are quenched random variablesuniformly dis-
tributed from 0 to 2p. Note that, by contrast, restricting th
Ai j only to values 0 andp leads to theXY spin glass, which
is equivalent to settingAi j 50 and taking the interactions t
be 6J at random.

The gauge glass is perhaps the simplest model of a d
dered type-II superconductor that contains the correct o
parameter symmetry as well as the randomness and fru
tion necessary for glassy behavior. However, there are s
features it ignores.9

The model ignores screening since theAi j in Eq. ~1! are
quenched; there are no thermal fluctuations in the magn
field. This corresponds to the extreme type-II limit in whic
the Ginzburg-Landau27 parameterk5l/j→`, wherel is
the penetration depth andj is the coherence length. Thi
limit may be realistic sincek can be quite large in high-Tc
superconductors, e.g.,k'90 for YBa2Cu3O72d . It seems,
however, that when the gauge glass is modified to incl
strong screening, the finite temperature transition to the v
tex glass phase is rounded out in three dimensions very c
to the putativeTc .28–33 This rounding probably takes plac
over such a narrow temperature region that will be very d
ficult to observe. Hence a model which neglects screen
like the gauge glass, should be able to account for mos
the observable data in the critical region.

Unlike a real superconductor in a magnetic field, t
gauge glass is isotropic on average. There are local quen
fluxes but no net field in any direction. In six or more spat
dimensions the lack of anisotropy does not seem to matte34;
however it is still an open question whether, in three dim
sions, the vortex glass transition in the gauge glass and
system with a nonzero net field are in the same universa
class.

The source of the quenched randomness in the ga
glass model is the vector potentials linking the sites. This
not very realistic, and a more accurate model would h
vector potentials corresponding to a uniform field, and
disorder into the strength of the couplings. However,
precise details of the disorder should be irrelevant for criti
phenomena.

In this paper we shall show very clearly that the gau
glass has a finite temperature transition to a vortex g
ordered state and that its critical exponents agree, wi
fairly large error bars, with some experimental measureme
on type-II superconductors. More work remains to be do
to check whether an anisotropic model with a net field wo
change the universality class.

III. OBSERVABLES

A standard technique to determine the critical tempera
is to use the Binder ratio35
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g~L !522
@^uqu4&#av

@^uqu2&#av
2

, ~3!

where@•••#av denotes an average over configurations of
disorder,̂ •••& denotes a thermal average, andq is the com-
plex overlap order parameter,

q5
1

N (
j 51

N

exp@ i ~f j
a2f j

b!#, ~4!

in which a andb denote two independent replicas with th
same disorder. One plotsg(L) vs T for differentL and iden-
tifies the temperature at which the curves cross asTc . How-
ever, sinceg(L) cannot exceed unity, the splaying out of th
data forg(L) below Tc ~which indicates spin glass order! is
a small effect which can be difficult to see. This is why it h
been so hard to establish conclusively that there is spin g
order at finite T in the three-dimensional Ising spi
glass.10–12

In order to avoid this problem we follow Regeret al.13 in
calculating a current; this is defined as the rate of chang
the free energy with respect to a twist angleQ at the bound-
aries. We begin by replacing periodic boundary conditio
with twisted boundary conditions along one of the axesx̂,
i.e.,

f i 1Lx̂5f i1Q. ~5!

Note that Q50 corresponds to periodic boundary cond
tions, andQ5p corresponds to antiperiodic boundary co
ditions. We can convert the model back to periodic bound
conditions by redefiningf through

f i 1nx̂→f i 1nx̂2
n

L
Q. ~6!

The model then is precisely Eq.~1! with periodic boundary
conditions but with theAi j for bonds in thex direction
changed according to

Ai ,i 1 x̂→Ai ,i 1 x̂2
Q

L
. ~7!

Using F52 ln(Z)/b we define a current as the response
the free energy to an infinitesimalQ,

I ~L ![ lim
Q→0

]F

]Q
5

1

L (
i

^sin~f i2f i 1 x̂2Ai ,i 1 x̂!&. ~8!

Because theAi j are uniformly distributed over the entir
period of the sine function, the value of the current averag
over samples is zero, i.e.,

@ I ~L !#av50. ~9!

Consequently we calculate the root-mean-square curr
given by

I rms[A@^I a~L !&^I b~L !&#av, ~10!

where a and b denote two independent replicas with th
same disorder. We use two replicas to avoid any bias
calculating the average of the square of the current.
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PRB 61 12 469FINITE TEMPERATURE ORDERING IN THE THREE- . . .
The primary advantage of usingI rms rather thang(L) is
that I rms increases withL for T,Tc , so the splaying out of
the data belowTc should be much easier to see than for t
Binder ratio. In the ordered phase the current should s
with the stiffness exponent36,14–19u, i.e.,

I rms;Lu ~T,Tc!, ~11!

whereu.0 if Tc.0. Above Tc , where spin-spin correla
tions are small, we expectI rms to approach zero with increas
ing L because larger systems are less sensitive to a twi
the boundaries. TheI rms curves cross atTc and have the
finite size scaling form

I rms5 Ĩ ~L1/nt !, ~12!

where

t5~T2Tc!/Tc ~13!

is the reduced temperature.

IV. EXCHANGE MONTE CARLO TECHNIQUE AND
EQUILIBRATION

The exchange Monte Carlo technique,20,21also called par-
allel tempering,22–24 is a method for simultaneously simula
ing multiple copies of a particular configuration of disord
with each copy at a different temperature. After a cert
number of sweeps through the lattice, one tries to excha
the spin configurations of copies at neighboring temperatu
with the probability

P~sm↔sm11 ;bm ,bm11!5exp~2D!, ~14!

where

D[~bm2bm11!@E~sm11!2E~sm!#. ~15!

sm is the spin configuration of themth copy which has in-
verse temperaturebm and total energyE(sm). A given spin
configuration is thus heated and cooled many times du
the simulation. Since equilibration is fast at high tempe
ture, each time the system is cooled the minimum~valley!
that it visits is uncorrelated with the minimum that it visite
at the previous cooling. Hence the system can visit differ
local minima at low temperature more efficiently than if t
temperature were kept fixed. In the latter case, very la
barriers would have to be overcome, which takes a timeex-
ponentiallylarge in the ratio of the barrier height to the tem
perature.

In deciding what temperatures to simulate, one would l
the energy distributions of neighboring temperatures to h
enough overlap that the probability to exchange configu
tions is sufficiently high. This requires

Tm112Tm

Tm
5cmN21/2, ~16!

where thecm are constants of order unity. In our simulatio
we took all thecm to be exactly unity, which gave a satis
factory acceptance ratio for temperature exchanges in
interval from 0.5 to 0.6 for all sizes and temperatures st
ied.
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We took the highest temperatureTmax to be approximately
2Tc at which the spin dynamics is quite rapid. Temperatu
exchanges were carried out after every ten Monte Ca
sweeps, after which ‘‘time’’ the normalized energy-ener
autocorrelation function atTmax is quite low, about 0.25.

The equilibration timeteq for I rms is determined by fol-
lowing the temporal evolution of

I 2~ t0![F 1

t0
(
t51

t0

I a~ t1t0!I b~ t1t0!G
av

, ~17!

where t0 is the number of equilibration sweeps as well t
number of measurement sweeps and the subscriptsa andb
denote independent replicas. Whent0!teq the spin configu-
rations of the two replicas are completely uncorrelated bu
t0 increases they become more correlated, since they
feel the same random interactions. Thus we expectI 2(t0) to
monotonically increase from zero to the equilibrium value
t0→teq; see Fig. 1. Each of the equilibration times in Tab
I is chosen to be the least number of sweeps necessa
equilibrate at the lowest temperatureTmin . For each size ex-
ceptL512 we ran some samples fort0@teq in order to con-
fidently determineteq; the remaining samples were run wit
t05teq. We should note that forL512 it was impractical to
run jobs for t0 much greater than the value at which th
I 2(t0) seemed to stop increasing, so we took this value to
teq.

FIG. 1. A semilogarithmic plot ofI 2(t0) againstt0, from Eq.
~17! for L54 atT/J50.3 using 2000 samples to test for equilibr
tion. One sees that the results do not change fort0 greater than
about 1000. Hence, in the production runs, the equilibration ti
was taken to bet051280.

TABLE I. Parameters of the exchange Monte Carlo simulatio
for each value ofL, whereTmin and Tmax are the minimum and
maximum ofnT temperatures, andteq is the number of sweeps fo
equilibration, which, in our simulations, is also equal to the num
of sweeps for measurements. The number of samples studie
each size is also shown.

L Tmin Tmax nT teq Samples

4 0.3 0.97 11 1280 8000
6 0.3 0.92 18 10240 10937
8 0.3 0.92 27 20480 5388

12 0.3 0.90 47 163840 781
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12 470 PRB 61T. OLSON AND A. P. YOUNG
V. RESULTS FOR STATICS

We present our results forI rms from Eq. ~10! in Fig. 2.
The data cross atTc /J50.47 and splay out clearly onboth
sides of the transition. This is the first time that the splay
out of the data forI rms in the ordered state can be disti
guished well beyond the size of the error bars, thus pres
ing incontrovertible evidence for a spin glass ordered ph
in three dimensions. The data for the lowest temperature
given numerically in Table II. We obtain an uncertainty
0.03 for Tc /J by setting the error equal to the region ov
which the data for all sizes overlap within their error ba
Our final estimate for the critical temperature is

Tc /J50.4760.03, ~18!

which agrees with the previous value of 0.4560.05 from
Regeret al.13 The key difference is that in Regeret al. the
values forI rms did not splay out significantly belowTc and so
they did not find compelling evidence for spin glass orde

We obtain an estimate for the correlation length expon
n by finite size scaling the data from Fig. 2; see also E
~12!. Figure 3 shows that the data scale well withn51.39.
This value is obtained by scaling the data using differ
choices for n, fitting a polynomial, calculating the chi
squared statistic for each choice, and minimizing the
squared. The error inn is determined by varying the value o
n until the L58 data no longer scale with the smaller siz
within the sum of their error bars.L58 was chosen rathe
than L512 because the error bars of the former are m
smaller. This leads to our estimate

n51.3960.20. ~19!

Variations inTc from Eq. ~18! did not significantly increase
the error bar beyond that shown in Eq.~19!. Our result
agrees with, and is a bit more precise than, those previo
presented by Wengel and Young,30 n51.360.3, and by
Regeret al,13 1.360.4.

FIG. 2. A plot of I rms from Eq. ~10! for L54, 6, 8, and 12. For
the point of intersection we estimate that the critical temperatur
0.4760.03. Some of theL512 error bars have been removed f
clarity.

TABLE II. I rms from Eq.~10! for T/J50.3 and differentL. The
values are clearly distinct beyond the size of the error bars.

L54 L56 L58 L512

1.02660.009 1.09060.008 1.16560.012 1.23860.037
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The correlation length exponent has also been dedu
from experimental measurements. It is now known,3,4 how-
ever, that the response of the resistivity and critical tempe
ture to tilting of the applied field distinguishes a vortex gla
transition, in which point disorder dominates, from a Bo
glass transition, in which correlated disorder, such as t
boundaries or columnar pins, dominates. To our knowled
there are only two experiments6,37 which observe a vortex
glass transitionanddemonstrate the proper response to m
netic field tilting.

In the first, Petreanet al.6 find that for untwinned proton-
irradiated YBa2Cu3O72d near criticality the resistivity de-
creases from its maximum as the field is tilted away from
c axis,6 which signals a vortex glass transition, whereas
twinned YBa2Cu3O72d , they find a Bose glass transitio
with the resistivity increasing from its minimum.4 Petrean
et al.6 do not obtainn but do obtain the resistivity exponen
s by fitting resistivity vs temperature curves. We will com
pare our results to these in Sec. VI.

In the second work, Kleinet al.37 study the vortex glass
transition in (K,Ba)BiO3. The dependence of their data o
field tilting is that expected for the vortex glass, and th
obtain n51.060.2 which agrees with ours within the erro
bars.

Kawamura33 has recently modified the gauge glass to
clude a net magnetic field. He obtainsn52.260.4 which is
greater than our estimate and the experimental result of K
et al.37

In addition ton, we calculate the independent exponenth
which describes the decay of the correlation function at cr
cality. To our knowledge, this is the first calculation ofh for
the gauge glass in three dimensions. Finite size scaling
dicts that, at the critical point, the spin glass susceptibilit

xSG5N@^uqu2&#av ~20!

scales as

xSG;L22h, ~21!

assuming the hyperscaling relationg/n522h. We use stan-
dard the Monte Carlo method to calculate the susceptib
at T/J50.44, 0.47, and 0.50; the details of these simulatio
are discussed in Sec. VI. We present our results in Fig
From linear least-squares fits to the data on a log-log s
we obtain

is
FIG. 3. A plot of I rms from Eq. ~10! vs L1/nt, where t

5(T2Tc)/Tc and n51.39. Some of theL512 error bars have
been removed for clarity.
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PRB 61 12 471FINITE TEMPERATURE ORDERING IN THE THREE- . . .
h520.4760.07. ~22!

The error in our estimate comes mainly from the uncertai
in Tc . Kawamura’s33 anisotropic gauge glass yields a simil
estimateh520.560.2.

There has been some controversy regarding the valu
the zero-temperature stiffness exponentu. This is typically
computed from the root-mean-square ‘‘defect energy’’
changing the boundary conditions from periodic to antipe
odic, but is also given by the response to an infinitesim
twist in the boundary conditions, as shown in Eq.~11!. A
positive value foru indicates a finite temperature transitio
to a spin glass state, whereasu,0 implies Tc50. Some
studies13,14,17,18obtain 0<u<0.077; we refer to these as th
low group. Others,15,16,19however, calculate 0.26<u<0.31;
we name these the high group.

Our results for the rms current are not at sufficiently lo
T and largeL to get a firm estimate foru, but we obtain a
plausible bound as follows. For each temperature belowTc
we do a linear least-squares fit of logIrms against logL to get
aneffectivetemperature-dependent valueueff(T). The results
are shown in Fig. 5. We see thatueff increases monotonically
as T decreases, so we expect that the asymptotic valu
greater than the value ofueff at the lowest temperature; i.e
we expect

u>0.18, ~23!

which is consistent with the results of the ‘‘high group.’’

FIG. 4. A log-log plot ofxSG vs L for L54, 6, 8, and 10 at
T/J50.47 according to Eq.~21! with h520.47.

FIG. 5. A plot of ueff(T) vs T. At eachT, ueff(T) is obtained
from a linear least-squares fit of logIrms against logL.
y
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-
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VI. DYNAMICS

When the gauge glass is sufficiently close to criticality t
correlation length is of orderL and the system experience
critical slowing down. The equilibration timeteq then scales
as

teq;Lz, ~24!

wherez is the dynamic exponent. At temperatures just abo
the vortex glass transition, the resistivityr is predicted8 to
scale as

r;~T2Tc!
s, ~25!

wheres is related to other exponents by

s5n~z21! ~26!

in three dimensions. We are thus motivated to calculatez to
compare our results to experimental measurements ofs. It
must be emphasized, however, that there are more dynam
universality classes than static universality classes. In
simulations which determinez we use dissipative~Monte
Carlo! dynamics with standard Metropolis-type updatin
probabilities,without the temperature swapping~exchange
Monte Carlo technique! that we used in our simulations o
static quantities~see Table III!. Tests for equilibration were
carried out as in Bhatt and Young10.

The dynamic exponent can be obtained by a finite s
scaling of time-dependent measurements of the spin g
susceptibility. We use the ‘‘two-replica’’ susceptibilit
xSG(t0) defined by

xSG~ t0!5F 1

Nt0
(
t51

t0 U(
j 51

N

ei [f j
a(t01t)2f j

b(t01t)]U2G
av

,

~27!

wherea andb denote independent replicas.
We obtain our estimate ofz by a finite size scaling analy

sis of the data forxSG(t0) for sizesL56, 8, and 10; the
scaling is better without theL54 data, so it has been omit
ted. One expects from Eq.~24! that at criticality

xSG~ t0!

xSG~ teq!
5 f ~L2zt0!, ~28!

where f is a scaling function. Our results, shown in Fig.
yield

z54.260.6, ~29!

as calculated from theT/J50.47 data. The estimate of th
uncertainty is obtained by varyingz until the L510 data no
longer scale with the smaller sizes within the error ba

TABLE III. Number of samples in the standard Monte Car
simulations used for calculating the dynamic exponent. Three t
peratures were used to account for the uncertainty inTc .

T/J L54 L56 L58 L510

0.44 500 400 358 372
0.47 500 400 328 246
0.50 500 400 350 321
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12 472 PRB 61T. OLSON AND A. P. YOUNG
Similar scaling plots fromT/J50.44 andT/J50.50 yieldz
values within Eq.~29!; thus the uncertainty inTc is not the
dominant contribution to the error inz. Our value agrees with
the previous estimatez54.760.7 by Regeret al.13 and z
53.360.5 from Kawamura’s33 anisotropic gauge glass.

Using Eqs.~29! and ~19!, the resistivity exponent is ob
tained from Eq.~26!,

s54.561.1. ~30!

This value agrees with the experiments of Kleinet al.,37 s
53.960.3, on (K,Ba)BiO3, as well as Petreanet al.,6 s
55.360.7, who study untwinned proton-irradiate
YBa2Cu3O72d .

VII. CONCLUSIONS

In this work we have presented exchange Monte Ca
results for the gauge glass model in three dimensions.
have shown incontrovertible evidence of a vortex-glass
dered phase belowTc . To our knowledge, this is the firs
time that such clear ordering has been shown forany spin
glass model in three dimensions. The correlation length
ponentn has been calculated to higher precision than befo
We have also obtained an estimate of the correlation func
exponenth from Monte Carlo simulations. Finally, our va
ues ofn andz are combined to estimate the resistivity exp
nents. Our results are summarized in Table IV.

It is interesting that our values ofh and n agree with
those of two other glassy systems, the three-dimensional6J
Ising spin glass11 and chiral ordering of the three
dimensional6JXY spin glass.38 Kawashima and Young11

obtain n51.760.3 andh520.3560.05 for the Ising spin
glass, while Kawamura38 obtainsn51.560.3 andh520.4
60.2 for the chiral glass ordering. However, it is expect
that the Ising and gauge glass models are in different uni

FIG. 6. A finite-size scaling plot ofxSG(t0) using Eq.~28! for
L56, 8, and 10 atT/J50.47 withz54.2.
.V
r,
o
e

r-

x-
e.
n

-

d
r-

sality classes because the order parameter has a diffe
number of components in each case: one for the Ising s
glass and two@the real and imaginary parts of Eq.~4!# for the
gauge glass. Indeed, a first ordere562d expansion shows
that the gauge glass exponents are not the same as
n-component vector spin glass.39 The order parameters fo
the Ising spin glass and the chiral transition in theXY spin
glass do have the same dimensionality, but the transitions
still likely to be in different universality classes because
the long-range interaction between chiralities in theXY spin
glass. The error bars in the exponents are not extrem
small, so the apparent agreement between the results ma
simply a numerical coincidence.

To confidently compare these results with experiment o
has to show that the critical point in the gauge glass mode
in the same universality class as an anisotropic model wi
net field. Clearly, if such anisotropy causes the scaling
havior to be anisotropic, in the sense that theexponentsfor
the divergence of the correlation length are different
separations along and perpendicular to the field, then i
relevant. If, however, the anisotropy induced by a net fi
does not lead to anisotropic scaling, but just causes theam-
plitudesof the correlation lengths in the different direction
to be different, then it is not clear why it should be releva
just as making an Ising ferromagnet anisotropic by hav
the bonds in one direction different from those in the oth
directions does not change the universality class.

Kawamura33 has studied a vortex glass model with a n
field and finds different critical behavior from that of th
gauge glass, even though the scaling isnot anisotropic in the
sense defined above. However, he imposes free boun
conditions which may lead to very large corrections to fin
size scaling~since a large fraction of the sites are on t
boundary!. Hence it would be very useful to study the vorte
glass transition in a model with a net fieldand periodic
boundary conditions.
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TABLE IV. Critical temperature and exponents of the gau
glass in three dimensions.

Tc /J n h z

0.4760.03 1.3960.20 20.4760.07 4.260.6
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