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Finite temperature ordering in the three-dimensional gauge glass
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We present results of Monte Carlo simulations of the gauge glass model in three dimensions using the
exchange Monte Carlo technique. We show clear evidence of the vortex glass ordered phase at finite tempera-
ture. Using finite size scaling we obtain estimates for the correlation length exporehB9+0.20, the
correlation function exponeng= —0.47+0.07, and the dynamic exponent 4.2+ 0.6. Using our values for
zandv we calculate the resistivity exponent to e 4.5+ 1.1. Finally, we provide a plausible lower bound on
the zero-temperature stiffness exponei,0.18.

I. INTRODUCTION larger sizes than previously possible. The main features of
our work are as follows.

High-temperature superconductors have a phase diagram (i) We present evidence of vortex glass ordering at finite
that is rich with physically diverse phenomehim the mixed ~ temperature in the three-dimensional gauge glass model. We
state of a pure type-II system one finds the Abrikosov Idttice Present superior data to that previously availabad obtain
of triangularly arranged vortices. This vortex lattice prohibits@ more accurate determination of the critical temperature
superconductivity because any perpendicularly applied curlc/J=0.47=0.03. . _ _
rent produces a Lorentz force causing the vortices to move, (i) Using finite size scaling we dgtermlne the correlatpn
dissipating energy. The addition of disorder, however, dras!®n9th expone_nvzl.Sgtlg.ZO to a higher degree of preci-
tically changes the behavior of the mixed state. Correlatedon than earlier .work§°.' The correlation function expo-
disorder, such as from heavy ion irradiaffolor twin nent is also_ obtamedr,_;z _O'A.'E 0.07. To our knowledge,
boundaried, causes the vortex lines to locally align with and (NS IS the first numerical estimate of for the gauge glass

adhere to the defects; this destroys the long-range order (grfom simulations. Assuming hyperscaling, these two expo-

the lattice and produces a superconducting glassy phasnéents completely determine the universality class of the

o I model.
known as the _Bose_glaéﬂandgm p_omt disorder, €.9., from gal(Jiﬁ()a ?ng?lsg s’f):nedard Monte Carlo simulations, we deter-
proton irradiatiorf pins the vortices in random positions cre-

. i ¢ qucti h K hmine the dynamical exponeat=4.2+0.6 and compare our
ating a different type of superconducting phase known as thi,qjis to experimental measurements of the resistivity expo-

vortex .glass7.'8 , nents=r(z—1). We finds=4.5+1.1.

Slmllar to a spin glass, the ordered state of the vortgx The layout of the paper is as follows. In Sec. Il we de-
glass is characterized by the phase of the superconductingyipe the model while in Sec. Il we discuss the observables
order parameter randomly oriented in space but frozen ifhat we measure. In Sec. IV we discuss our implementation
time. A system must have a Hamiltonian that contains bottpf the exchange Monte Carlo method and our tests for equili-
randomness and frustration in order to exhibit this type oforation. Our results for statics are discussed in Sec. V while
behavior. One such model that has been used extensively tur results for dynamics are given in Sec. VI. In Sec. VIl we
simulate the vortex glass transition is the gauge gidss. summarize our results and give some perspectives for future

The gauge glass is important to study because like othawork.
spin glasses in three spatial dimensiéhs?2the existence of
a finite temperature transition within the gauge glass is con- Il. MODEL
troversial. An estimate of the critical temperature was given
in 1990 by Huse and SeufgP<T.<0.6. A year later this The gauge glass describes the physics of a disordered
estimate was improved significantly by Regaral,® who  type-ll superconductor at distances larger than some charac-
found thatT .= 0.45+ 0.05, but their data were insufficient to teristic length scalé\, beyond which order in the flux lattice
establish that spin glass order occurs below this temperaturbas been brokeh? One can then imagine the system as a
Subsequent studi¥s'® have focused on defect energy scal- granular superconductémn an applied magnetic fieJdvith
ing to determine the existence of a finife by calculating ~an intergrain separation of ordér. Such a system can be
the stiffness exponertt. Unfortunately, these results seem to modeled as an array of nearest-neighbor coupled Josephson
be dependent on the chosen boundary conditions, and theiténctions®® This leads to the Hamiltonian
is little agreement on the values 6f Consequently it is not
clear whether the lower critical dimension is 3 or less than 3.

In this paper we attempt to settle the controversy by
studying the gauge glass using the exchange Monte Carlo
techniqué?®?! also known as parallel temperiig.>* This  where each sité on anN=L XL XL cubic lattice has an
technique allows us to simulate lower temperatures an@ssociated phase angle,J is a positive ferromagnetiGJo-

H=—J<iZj> cod b — b, —Ayj), &)
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sephsoncoupling between nearest neighbors, &gdis pro- [{al*) ay
portional to the line integral of the vector potential along a g(L)=2— ———, 3
straight line path from sité to its nearest neighbor sife [{lal*)Jav
i where[ - - - ], denotes an average over configurations of the
A :2_77 A dl 2 disorder- - -) denotes a thermal average, apts the com-
gy ' plex overlap order parameter,

®,=hc/(26) is the flux quantum. N

1

The Hamiltonian of the gauge glass is given by E).in =N Zl exdi(¢— ¢f)], 4)
which theA;; are quenched random variablesiformly dis-
tributed from 0 to 2r. Note that, by contrast, restricting the in which « and g8 denote two independent replicas with the
A;; only to values 0 andr leads to theXY spin glass, which same disorder. One ploggL) vs T for differentL and iden-
is equivalent to settingy; =0 and taking the interactions to tifies the temperature at which the curves cros§ asHow-
be =J at random. ever, sincgy(L) cannot exceed unity, the splaying out of the

The gauge glass is perhaps the simplest model of a disoglata forg(L) below T, (which indicates spin glass ordds
dered type-Il superconductor that contains the correct orded small effect which can be difficult to see. This is why it has
parameter symmetry as well as the randomness and frustreeen so hard to establish conclusively that there is spin glass
tion necessary for glassy behavior. However, there are son@der at finite T in the three-dimensional Ising spin
features it ignores. glass!®*?

The model ignores screening since #g in Eq. (1) are In order to avoid this problem we follow Reget al®in
quenched; there are no thermal fluctuations in the magnetiealculating a current; this is defined as the rate of change of
field. This corresponds to the extreme type-Il limit in which the free energy with respect to a twist an@leat the bound-
the Ginzburg-Landall parameterk=\/é—, where\ is  aries. We begin by replacing periodic boundary conditions
the penetration depth angl is the coherence length. This with twisted boundary conditions along one of the axes
limit may be realistic sincec can be quite large in higfi; ie.,
superconductors, e.gk~90 for YBaCu;O;_ ;5. It seems,
however, that when the gauge glass is modified to include dirLx= it 0. 6)
strong screening, the finite temperature transition to the vor

tex glass phase is rounded out in three dimensions very Cloﬁ%ns, and® = 7 corresponds to antiperiodic boundary con-

to the putativeT, .**"* This rounding_ probably_takes p'ace_ ditions. We can convert the model back to periodic boundary
over such a narrow temperature region that will be very d'f'conditions by redefinings through

ficult to observe. Hence a model which neglects screening,

like the gauge glass, should be able to account for most of

the observable data in the critical region. Gisni— iy 0. (6)
Unlike a real superconductor in a magnetic field, the

gauge glass is isotropic on average. There are local quench&the model then is precisely E¢l) with periodic boundary

fluxes but no net field in any direction. In six or more spatialconditions but with theA;; for bonds in thex direction

dimensions the lack of anisotropy does not seem to ni4tter changed according to

however it is still an open question whether, in three dimen-

Note that®=0 corresponds to periodic boundary condi-

sions, the vortex glass transition in the gauge glass and in a A A - S 7
system with a nonzero net field are in the same universality xR (@)
class.

The source of the quenched randomness in the gaudésing F=—In(2)/3 we define a current as the response of
glass model is the vector potentials linking the sites. This ighe free energy to an infinitesimal,
not very realistic, and a more accurate model would have

. - . . 1
vector potentials corresponding to a uniform field, and put H(L)= lim — = — SiNdi— i A .- g
disorder into the strength of the couplings. However, the (L) 0090 L Z (SN~ disi=Aiii)- (@
precise details of the disorder should be irrelevant for critical

phenomena. Because thé\;; are uniformly distributed over the entire

In this paper we shall show very clearly that the gaugeperiod of the sine function, the value of the current averaged
glass has a finite temperature transition to a vortex glassver samples is zero, i.e.,
ordered state and that its critical exponents agree, within
fairly large error bars, with some experimental measurements [1(L)]a=0. 9
on type-|l superconduc.tors. More work remains to be dorleConsequently we calculate the root-mean-square current,
to check whether an anisotropic model with a net field would~. b
change the universality class. given by

IrmsE \/[<|a(L)><IB(L)>]aV1 (10)

where @« and B denote two independent replicas with the
A standard technique to determine the critical temperatureame disorder. We use two replicas to avoid any bias in
is to use the Binder ratid calculating the average of the square of the current.

Ill. OBSERVABLES
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The primary advantage of usirlg, rather thang(L) is l l I
thatl,,,s increases with. for T<T,, so the splaying out of 1 i¥s3ss
the data belowl ; should be much easier to see than for the :
Binder ratio. In the ordered phase the current should scale
with the stiffness exponeft'*~*9¢, i.e., 205

|rms~|-0 (T<Tc)a (11)

where >0 if T.>0. Above T, where spin-spin correla- 0
tions are small, we expet,sto approach zero with increas- | | | |
ing L because larger systems are less sensitive to a twist at 10 108 10® 10%¢ 10°
the boundaries. The,,s curves cross af, and have the to

finite size scaling form

—_

FIG. 1. A semilogarithmic plot of?(t,) againstt,, from Eq.

| :T(Lllvt) (12) (17) for L=4 atT/J=0.3 using 2000 samples to test for equilibra-
ms ' tion. One sees that the results do not changetdogreater than
where about 1000. Hence, in the production runs, the equilibration time
was taken to bé,=1280.
t=(T—-Ty)/T, (13
is the reduced temperature. We took the highest temperatufe,,, to be approximately

2T, at which the spin dynamics is quite rapid. Temperature
exchanges were carried out after every ten Monte Carlo
sweeps, after which “time” the normalized energy-energy
autocorrelation function af 4 is quite low, about 0.25.

The exchange Monte Carlo technicffé!also called par- The equilibration timete, for | is determined by fol-
allel tempering>2*is a method for simultaneously simulat- lowing the temporal evolution of
ing multiple copies of a particular configuration of disorder
with each copy at a different temperature. After a certain 1 to

i i 2 —
numbgr of sweeps through th_e Iatt|ce., one tries to exchange 12(t)=| — > l(t+to)l g(t+1o) | 17
the spin configurations of copies at neighboring temperatures to =1
with the probability

IV. EXCHANGE MONTE CARLO TECHNIQUE AND
EQUILIBRATION

av

wheret, is the number of equilibration sweeps as well the

P(om— Ome1:Bm: B 1) = XN —A), (149 humber of measurement sweeps and the subseripsd 3
where denote independent replicas. Whigret,, the spin configu-
rations of the two replicas are completely uncorrelated but as
A=(Bm— Bm+V[E(om+1) —E(om)]. (15  tg increases they become more correlated, since they both

. . , . ) ) feel the same random interactions. Thus we exp&¢) to

om is the spin configuration of theth copy which has in- monotonically increase from zero to the equilibrium value as
verse temperaturg,, and total energ (o). A given spin to—teq; S€€ Fig. 1. Each of the equilibration times in Table
configuration is thus heated and cooled many times during’is chosen to be the least number of sweeps necessary to
the simulation. Since equilibration is fast at high tempera-qjilibrate at the lowest temperatdFg,,. For each size ex-
ture, each time the system is cooled the minim(valley) ceptL =12 we ran some samples fof>tqin order to con-

that it visits is uncorrelated with the minimum that it visited fidently determing.,: the remaining samples were run with
. . .. . eq:

at the previous cooling. Hence the system can visit dn‘_feren o=teq- We should note that fdr =12 it was impractical to

local minima at low temperature more efficiently than if the

. run jobs fort, much greater than the value at which the
temperature were kept fixed. In the latter case, very Iarg(?z(to) seemed to stop increasing, so we took this value to be
barriers would have to be overcome, which takes a txe '

ponentiallylarge in the ratio of the barrier height to the tem- %’
perature.

In deciding what temperatures to simulate, one would like, ~ELE I Parameters of the exchange Monte Carlo simulations
or each value ofL, whereT,,, and T, are the minimum and

the energy distributions of neighboring temperatures to havmaximum ofn; temperatures, antlyis the number of sweeps for

Qnough ove_rl_ap that_ the pr.obablllt.y to exchange Conflguraéquilibration, which, in our simulations, is also equal to the number
tions is sufficiently high. This requires

of sweeps for measurements. The number of samples studied for
each size is also shown.

M = CmN*l/Z’ (16)
Tm L Trmin T max Ny teq Samples
where thec,, are constants of order unity. In our simulations 4 0.3 0.97 11 1280 8000
we took all thec,, to be exactly unity, which gave a satis- 6 0.3 0.92 18 10240 10937
factory acceptance ratio for temperature exchanges in the g 0.3 0.92 27 20480 5388
interval from 0.5 to 0.6 for all sizes and temperatures stud- 12 0.3 0.90 47 163840 781

ied.
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FIG. 2. A plot of I, from Eqg.(10) for L=4, 6, 8, and 12. For
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FIG. 3. A plot of I, from Eqg. (10) vs LY, where t

the point of intersection we estimate that the critical temperature is=(T—T,)/T., and v=1.39. Some of thd_=12 error bars have

0.47+0.03. Some of the.=12 error bars have been removed for
clarity.

V. RESULTS FOR STATICS

We present our results fdr,,s from Eqg. (10) in Fig. 2.
The data cross af./J=0.47 and splay out clearly ooth

sides of the transition. This is the first time that the splayingt " . . . .
in the ordered state can be distin- 9/2ss transition, in which correlated disorder, such as twin

out of the data for ;s

guished well beyond the size of the error bars, thus presen
ing incontrovertible evidence for a spin glass ordered phas

in three dimensions. The data for the lowest temperature a
given numerically in Table Il. We obtain an uncertainty of
0.03 for T./J by setting the error equal to the region over
which the data for all sizes overlap within their error bars.
Our final estimate for the critical temperature is

T./J=0.47+0.03, (18)

which agrees with the previous value of 0:46.05 from
Regeret al® The key difference is that in Reget al. the
values forl ,s did not splay out significantly below. and so
they did not find compelling evidence for spin glass order.

been removed for clarity.

The correlation length exponent has also been deduced
from experimental measurements. It is now kna\frhow-
ever, that the response of the resistivity and critical tempera-
ture to tilting of the applied field distinguishes a vortex glass
ransition, in which point disorder dominates, from a Bose

p_oundaries or columnar pins, dominates. To our knowledge,
there are only two experimefit’ which observe a vortex

ass transitiorand demonstrate the proper response to mag-
netic field tilting.

In the first, Petreaet al® find that for untwinned proton-
irradiated YBaCuzO,_ 5 near criticality the resistivity de-
creases from its maximum as the field is tilted away from the
c axis® which signals a vortex glass transition, whereas in
twinned YBgCuw;,O,_ 5, they find a Bose glass transition
with the resistivity increasing from its minimufnPetrean
et al® do not obtainv but do obtain the resistivity exponent
s by fitting resistivity vs temperature curves. We will com-
pare our results to these in Sec. VI.

In the second work, Kleiret al®” study the vortex glass

We obtain an estimate for the correlation length exponenfransition in (K,Ba)BiQ. The dependence of their data on

v by finite size scaling the data from Fig. 2; see also Eq
(12). Figure 3 shows that the data scale well witk 1.39.

field tilting is that expected for the vortex glass, and they
obtain »=1.0*+0.2 which agrees with ours within the error

This value is obtained by scaling the data using differenfygg.

choices for v, fitting a polynomial, calculating the chi-

Kawamura® has recently modified the gauge glass to in-

squared statistic for each choice, and minimizing the chijyde a net magnetic field. He obtains- 2.2+ 0.4 which is

squared. The error in is determined by varying the value of

greater than our estimate and the experimental result of Klein

v until the L=8 data no longer scale with the smaller sizesgt 5137

within the sum of their error bard.=8 was chosen rather

In addition tov, we calculate the independent exponent

thanL =12 because the error bars of the former are muchyhich describes the decay of the correlation function at criti-

smaller. This leads to our estimate

»=1.39+0.20. (19

Variations inT, from Eq. (18) did not significantly increase
the error bar beyond that shown in E(L9). Our result
agrees with, and is a bit more precise than, those previous
presented by Wengel and Youffy,y=1.3+0.3, and by
Regeret al,'® 1.3+ 0.4.

TABLE II. 1,,sfrom Eq.(10) for T/J=0.3 and different.. The
values are clearly distinct beyond the size of the error bars.

L=4 L=6 L=8 L=12

1.026£0.009 1.096:0.008 1.16%0.012 1.2380.037

cality. To our knowledge, this is the first calculationfor

the gauge glass in three dimensions. Finite size scaling pre-

dicts that, at the critical point, the spin glass susceptibility
XSG:N[<|q|2>]av (20)

I%’cales as

~|_2—7/,

XsG (21)

assuming the hyperscaling relatighw=2— 7. We use stan-
dard the Monte Carlo method to calculate the susceptibility
atT/J=0.44, 0.47, and 0.50; the details of these simulations
are discussed in Sec. VI. We present our results in Fig. 4.
From linear least-squares fits to the data on a log-log scale
we obtain
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' T TABLE lll. Number of samples in the standard Monte Carlo
I i simulations used for calculating the dynamic exponent. Three tem-
- slope . i;;” 1 peratures were used to account for the uncertainfy.in
n= —0.
w 108 — T/J L=4 L=6 L=8 L=10
pad L ]
i 1 0.44 500 400 358 372
i /5 = 047 ] 0.47 500 400 328 246
F . 0.50 500 400 350 321
1 1 1 1 1 1 |
10
L VI. DYNAMICS
FIG. 4. A log-log plot of ysg vs L for L=4, 6, 8, and 10 at When the gauge glass is sufficiently close to criticality the
T/J=0.47 according to Eq21) with = —0.47. correlation length is of ordel and the system experiences
critical slowing down. The equilibration timg, then scales
n=—0.47+0.07. (220 &
teq~ L7, (29

The error in our estimate comes mainly from the uncertaintyyperey is the dynamic exponent. At temperatures just above
in T.. Kawamura'$® anisotropic gauge glass yields a similar tq yortex glass transition, the resistivityis predicted to

estimaten=—0.5+0.2. scale as
There has been some controversy regarding the value of
the zero-temperature stiffness exponéntrhis is typically p~(T—T.)5, (25

computed from the root-mean-square ‘“defect energy” on .
changing the boundary conditions from periodic to antiperi-Wheres is related to other exponents by

od_ic, _but is also given by Fhe response to an infinitesimal s=v(z—1) (26)

twist in the boundary conditions, as shown in Efl). A

positive value foré indicates a finite temperature transition in three dimensions. We are thus motivated to calcutate

to a spin glass state, where&s<0 implies T,=0. Some compare our results to experimental measurements tf
studied31*1718gptain 0< #<0.077; we refer to these as the Must be emphasized, however, that there are more dynamical
low group. Otherd®>1°however, calculate 0.269<0.31;  universality classes than static universality classes. In our

we name these the high group. simulations which Qetermine we use diss.ipative{Monte'
Our results for the rms current are not at sufficiently low€arlo dynamics with standard Metropolis-type updating
T and largel to get a firm estimate fos, but we obtain a Probabilities, without the temperature swappin@xchange
plausible bound as follows. For each temperature below Monte Carlo techniquethat we used in our simulations of
we do a linear least-squares fit of Iggs against lod. to get ~ Static quantitiegsee Table Ill. Tests for equilibration were
an effectivetemperature-dependent valdg(T). The results ~carried out as in Bhatt and Youtfy _ S
are shown in Fig. 5. We see th@y; increases monotonically ~ 1he dynamic exponent can be obtained by a finite size
as T decreases, so we expect that the asymptotic value &c@ling of time-dependent measurements of the spin glass
greater than the value @i at the lowest temperature; i.e., Susceptibility. We use the “two-replica” susceptibility

we expect Xsalto) defined by
1 to N 2
= i[6%(to+1) — P (tg+1)]
6=0.18, (23) Xsclto) Nt 21 le e'l%(to j (to } ,
av
(27)
which is consistent with the results of the “high group.”  wherea and 8 denote independent replicas.

We obtain our estimate afby a finite size scaling analy-

0.2 o sis of the data forygg(tg) for sizesL=6, 8, and 10; the
C ] scaling is better without the=4 data, so it has been omit-
0.15 L ] ted. One expects from E@24) that at criticality
= - ] Xsd(to) _
=< 0.1} - —=f(L" %), 28
<& E E XSG(teq) ( O) ( )
0.05 - wheref is a scaling function. Our results, shown in Fig. 6,
C . yield
-I | (1 ) | (1 ) | 111 ) | I-
0.3 035 04 045 z=4.2+0.6, (29

R4 as calculated from th&/J=0.47 data. The estimate of the

FIG. 5. A plot of 6.4(T) vs T. At eachT, 6(T) is obtained  uncertainty is obtained by varyirguntil the L= 10 data no
from a linear least-squares fit of ldg,s against log.-. longer scale with the smaller sizes within the error bars.
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TABLE IV. Critical temperature and exponents of the gauge

@@ T/1 = 0.47

1 _ L &&gnkmlg glass in three dimensions.
\:E’r L ° g xé ] T/ v 7 z
f o5 " " ;5 . 047+0.03  1.3%020  -047-0.07  4.2:0.6
1::; £ a-az ]
o Lon _‘
i ]

a® sality classes because the order parameter has a different
L L number of components in each case: one for the Ising spin
10-210210-! 1 10 100 glass and twdthe real and imaginary parts of Ed,)] for the

L t, gauge glass. Indeed, a first order 6—d expansion shows
that the gauge glass exponents are not the same as any
FIG. 6. A finite-size scaling plot ofsc(ty) using Eq.(28) for n-component vector spin glad$The order parameters for
L=6, 8, and 10 all/J=0.47 withz=4.2. the Ising spin glass and the chiral transition in ¥ spin
glass do have the same dimensionality, but the transitions are
Similar scaling plots fronT/J=0.44 andT/J=0.50 yieldz  still likely to be in different universality classes because of
values within Eq.(29); thus the uncertainty i is not the  the long-range interaction between chiralities in ¥\é spin
dominant contribution to the error in Our value agrees with glass. The error bars in the exponents are not extremely
the previous estimate=4.7+0.7 by Regeretal!® andz  small, so the apparent agreement between the results may be

=3.3+0.5 from Kawamura'¥ anisotropic gauge glass. simply a numerical coincidence.
Using Egs.(29) and (19), the resistivity exponent is ob- To confidently compare these results with experiment one
tained from Eq/(26), has to show that the critical point in the gauge glass model is
in the same universality class as an anisotropic model with a
s=4.5+1.1. (300 net field. Clearly, if such anisotropy causes the scaling be-

137 g havior to be anisotropic, in the sense that éxponentdor

’ the divergence of the correlation length are different for
separations along and perpendicular to the field, then it is
relevant. If, however, the anisotropy induced by a net field
does not lead to anisotropic scaling, but just causesthe
plitudesof the correlation lengths in the different directions
VIl. CONCLUSIONS to be different, then it is not clear why it should be relevant,

In this work we have presented exchange Monte Carldust as making an Ising ferromagnet anisotropic by having
results for the gauge glass model in three dimensions. W@e bqnds in one direction dlfferent from.those in the other
have shown incontrovertible evidence of a vortex-glass ordirections doegs not change the universality class.
dered phase belo,. To our knowledge, this is the first  Kawamurd® has studied a vortex glass model with a net
time that such clear ordering has been showndioy spin field and finds different critical be_ha\_/lor from that_ of the
glass model in three dimensions. The correlation length exdauge glass, even though the scalingasanisotropic in the
ponenty has been calculated to higher precision than beforeSense defined above. However, he imposes free boundary
We have also obtained an estimate of the correlation functiofonditions which may lead to very large corrections to finite
exponenty from Monte Carlo simulations. Finally, our val- Size scallng(smcg a large fraction of the sites are on the
ues ofr andz are combined to estimate the resistivity expo-Poundary. Hence it would be very useful to study the vortex
nents. Our results are summarized in Table V. glass transition in a model with a net fielwhd periodic

It is interesting that our values of and » agree with boundary conditions.
those of two other glassy systems, the three-dimensitidal
Ising spin glas$ and chiral ordering of the three-
dimensional=JXY spin glass® Kawashima and Yourtd
obtain »=1.7+0.3 and»= —0.35+0.05 for the Ising spin We would like to thank W. K. Kwok for useful discus-
glass, while Kawamur4 obtainsy=1.5+0.3 andyp=—0.4  sions regarding experimental data. This work was supported
+0.2 for the chiral glass ordering. However, it is expectedby the National Science Foundation under Grant No. DMR
that the Ising and gauge glass models are in different unive9713977.

This value agrees with the experiments of Kleha
=3.9+0.3, on (K,Ba)BiQ, as well as Petreaetal.® s
=5.3+0.7, who study untwinned proton-irradiated
YBa,CuO;_ 5.
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