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Scaling and finite-size scaling in the two-dimensional randomly coupled Ising ferromagnet
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It is shown by the Monte Carlo method that finite-size scaling~FSS! holds in the two-dimensional randomly
coupled Ising ferromagnet. It is also demonstrated that the form of the universal FSS function constructed via
a FSS scheme depends on the strength of the random coupling in the case of strongly disordered systems.
Monte Carlo measurements of thermodynamic~infinite-volume-limit! data of the correlation length (j) up to
j.200 along with measurements of the fourth-order cumulant ratio~Binder cumulant ratio! at criticality are
analyzed in light of two competing scenarios of weak universality and the multiplicative logarithmic correc-
tion. It is demonstrated that the data are likely to be more consistent with the former scenario than the latter
which is the conventional scenario.
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I. INTRODUCTION

The two-dimensional~2D! randomly disordered Ising fer
romagnet is the simplest nontrivial statistical model that
hibits the effect of another type of fluctuation in addition
the usual thermal fluctuation. By disorder is meant eithe
random site dilution or random-valued positive coupling
this case. The effect of the combined fluctuations of the th
mal and quenched~random! disorder on the critical behavio
of the system has been an important subject of the stud
The two-dimensional randomly coupled~or random bond!
Ising ferromagnet is defined by the Hamiltonian

H52(̂
i j &

Ji j SiSj , Ji j .0, Si561, ~1!

where the sum is over all the links of the square lattice, a
Ji j is randomly distributed.

According to a rigorous result by McCoy and Wu,1 the
specific heat (Cv) is nondivergent in a 2D Ising system wit
one-directional and correlated random bond disorder.
similar feature as in the McCoy-Wu model was obtained
the 2D Ising ferromagnet for uncorrelated disorder as we2

There are currently two main competing scenarios c
cerning the critical behavior of the 2D uncorrelated ra
domly disordered Ising ferromagnet: namely, the scenario
the weak universality3 and that of the logarithmic
correction.4,5 The latter is mainly based on the theoretic
prediction of Shalaev, Shankar, and Ludwig~SSL!, which
can be summerized as

j;t2n@11Cu ln~ t !u# ñ, n51, ñ51/2, ~2!

Cv;t2alnu11Cu ln~ t !uu1C8, ~3!

x;j22h, h51/4, ~4!

wheret is the reduced temperature@ t[(bc2b)/bc , with b
denoting the inverse temperature# and x is the thermody-
namic magnetic susceptibility. The coefficientsC andC8 as
a function of the strength of disorder cannot be determi
theoretically, althoughC is supposed to increase with th
strength of disorder.
PRB 610163-1829/2000/61~2!/1246~5!/$15.00
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Equations~2!–~4! reflect the presence of the crossov
from the critical behavior of the pure system to that rep
sented by the disorder, namely, e.g., for thej, that given by
the asymptotic form

j;t2nu ln~ t !u ñ. ~5!

Now it appears to be numerically established6–10 that the
value of h does not depend on the strength of disorder
both 2D randomly coupled and random site diluted Isi
ferromagnets. Another generic feature emerging from v
ous numerical studies6–9,11 is that other critical exponent
such asg andn increase with the strength of disorder at lea
effectively. These apparently varying critical exponents w
interpreted as originating from the crossover effect of E
~2!–~4! by some authors,6,11,12 while they were regarded a
genuine by others.8,9

For later purposes, we here would like to make so
nomenclature clear. Suppose we have two singular funct
at t50, say, f (t) and g(t). Then we say thatf (t) is more
singular thang(t) over the range betweent1 andt2 such that
0,t1,t,t2!1 if

u f ~ t1!/ f ~ t2!u.ug~ t1!/g~ t2!u. ~6!

Otherwise, of course,f (t) is lessthan or equally singular to
g(t).

t2r for anyr.0 is essentiallymore singular thanu ln tu in
the sense that withf (t)5t2r andg(t)5u ln tu Eq. ~6! is math-
ematically valid for sufficiently small values of thet1 andt2.
However, it is extremely difficult to determinenumerically
whether or not Eq.~6! is indeed satisfied unless precise n
merical values off (t) and g(t) at very smallt1 and t2 are
available. This is a fundamental difficulty encountered in
numerical study no matter whether it is a Monte Carlo o
series expansion. In other words, one needs to get therm
namic data very close to a critical point or an extremely lo
series expansion. It should be emphasized that the con
tional, finite-size-scaling~FSS! technique that is used to ana
lyze Monte Carlo data obtained at criticality—the sort
studies that mostly claimed evidence for the predictions
SSL~Ref. 11!—cannot overcome this difficulty either, owin
to the well-known fact that the correlation length in the sc
1246 ©2000 The American Physical Society
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ing region translates into the linear size of the latticeL at
criticality. ~For a critique of the most claims made in Re
11 and 12, see Ref. 13.!

In this paper we attempt to clarify the controversial iss
of the 2D randomly coupled Ising ferromagnet based on
ferent numerical methods from those used previously. F
we determine the functional form of an universal FSS fu
tion Q defined by14,15

AL~ t !5A~ t !QA„x~L,t !…, x~L,t ![jL~ t !/L. ~7!

To this end it is needed to check the validity of Eq.~7!, i.e.,
the validity of FSS itself in a disordered system. Given t
strength of disorder, this can be achieved by numeric
calculating the scaling functionQj(x) at different tempera-
tures close to criticality; if the scaling functions thus calc
lated turn out to be identical, then the FSS must hold in
system. Accordingly, if the disordered system does ind
belong to the same universality class as the correspon
pure system, the FSS functions calculated for differ
strength of disorder must be identical to that of the p
system. We will show that this is not the case. Second,
will demonstrate that the thermodynamic data ofj in a suf-
ficiently deep scaling region tend to bemore singular than
the asymptotic expression of SSL, Eq.~5!. Third, we will
show that measured value of Binder cumulant ratio at c
cality depend on the strength of disorder.

In the sections to follow we give a detailed description
our Monte Carlo simulation, report our results, and fina
conclude with some discussions.

II. SIMULATION

We consider a binary distribution ofJi j . Namely, the
value of Ji j at a link ^ i j & is randomly distributed betwee
two positive valuesJ andJ8 with probabilitiesp and 12p,
respectively. Forp51/2 the system is self-dual16 with the
self-dual point given by

tanh~Jb!5exp~22J8b!. ~8!

A self-dual point equals the critical point of a system, pr
vided that the system has only one critical point. We fixJ
51 andp51/2 without loss of generality and consider thr
different values ofJ8, i.e., J850.9, 0.25, and 0.1. The self
dual points ~critical points! are accordingly given bybc
50.464 281 9. . . ,0.807 051 85 . . . , and 1.103 895 23 . . .
for J850.9, 0.25, and 0.1, respectively.

Our raw data for eachJ8 are obtained by choosing a re
alization of random distribution ofJ8, and then running
Monte Carlo simulations in the single cluster algorithm18

with periodic boundary conditions; for each realization, me
surements were taken over 10000 configurations, eac
which was separated by 2–15 single-cluster updatings
cording to the autocorrelation times. The procedure is t
repeated for different realizations of distribution ofJ8. The
average over all the different realizations converges as
numbers of the random realization increase; basically
means that the value of a physical quantity is someth
physically interesting. To be more specific, our definitions
jL andUL are as follows:

jL5@AG~0!/G~k!21/2 sin~p/L !#J8 , ~9!
.
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UL5@32^S4&/^S2&2#J8 , ~10!

where^•••&,@•••#J8 , andG(k), respectively, represent th
usual thermal average, the average over different realizat
of J8, and the Fourier transform of the connected two-po
Green function with momentumk. ~See, for example, Ref
15 for more details of the definition ofjL .)

To achieve the necessary precision for our FSS sch
we used a number of different realizations: approximat
20–40, 150–250, and 300–1000 forJ850.9,0.25, and 0.1,
respectively; yet, in general, the fluctuation among differ
realizations of the random disorder is more significant th
the statistical error for a given realization. This was partic
larly the case forJ850.1. Nevertheless, the average ov
different realizations clearly converges to a physically me
ingful value. Our quoted error bars in our numerics are o
tained by the standard jackknife method and taking into c
sideration only the variation with different realizations. Th
smallest and largest values ofL used for the calculation o
the scaling function are 20 and 400, respectively. orJ8
50.05 it turns out that data of very largej are not necessary
but yield compelling results with the data even forj&50.
Thus the FSS extrapolation method is not used for thisJ8
and 250–500 different realizations of distribution ofJ8 turn
out to be sufficient.

Determination ofA` and of the size dependence ofA
uponL,AL , is essential to the computation ofQA . The mea-
surements of the correlation length must be taken into c
sideration for the computation of the scaling variablex. For
simplicity of our presentation, here we mainly focus on t
correlation length. For eachJ8, we chose three different in
verse temperatures~where the value of thermodynamicj is
sufficiently large! for the computations of the scaling var
able and the scaling function.

III. RESULT AND ANALYSIS

TheQj(x) is calculated forJ850.9,0.25, and 0.1. To this
end, an investigation of theL dependence ofj is carried out
for various sets of the values of (J8,b). It is observed thatjL
is a monotonically increasing function ofL and that theL
dependence becomes weaker with increasingL and becomes
vanishingly small for sufficiently large L, i.e., under the co
dition L/jL*10 ~thermodynamic condition!. TheL indepen-
dent value within the statistical errors is the correspond
thermodynamic value. Owing to Eq.~7! the thermodynamic
condition holds independent of temperature.

The plots ofQj(x) for the three values ofb in the scaling
region are shown in Fig.1 forJ850.25. Clearly, each set o
data belonging to different value ofb superposes onto a
single curve that is the universal FSS function for the va
of J8. In particular, down toL520 we observe no visible
effect that may possibly come from any kind of correction
scaling. Thus the validity of the FSS is verified for theJ8
down to thisL. We repeated the same procedure for the ot
two values ofJ8 and observed a similar data collapse. F
comparison, the FSS function for eachJ8 is shown in Fig. 2.
It is observed that the FSS function forJ850.9 is indistin-
guishable from that of the corresponding pure system
has been calculated in Ref. 15. However, for stronger dis
der the FSS scaling function clearly depends onJ8.
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The ansatz for our scaling function is

Qj~x!511c1x1c2x21c3x31c4x4. ~11!

The values of the coefficientsci( i 51, . . . ,4) arecalculated
by fitting our data to the ansatz for each value ofJ8. The
choice of the ansatz for the scaling function is not so imp
tant. We tried several different forms of ansatz such
Qj(x)5(n50

n53bnexp(2n/x) ~Ref. 19! and Qj(x)511b1xb2

1b3xb4, but the results were not significantly sensitive to t
choice of different forms of ansatz.

The thermodynamic correlation lengths are measured
rectly ~without using any extrapolation method! for the data
roughly over the rangej&40. With knowledge of the scal
ing function available, the thermodynamic values closer
criticality can now be easily estimated by the use of
single-step FSS extrapolation method.14,15 For the extrapola-

FIG. 1. Numerical calculation ofQj for J850.25 and at three
arbitrary inverse temperatureb50.74, 0.77, and 0.79 in the scalin
region. Our figure clearly indicates that the scaling function d
not have explicit temperature dependence. For each value ofb, the
smallest value ofL used is 20. Note that smallerL means largerx.
Down to L520, the effect of the possible logarithmic correction
not observed.

FIG. 2. TheQj(x) for the three values ofJ8. The dependence o
the scaling function onJ8 is obvious.
-
s

i-

o
e

tion we always use data withL>50; we are thus confiden
that the effect of a possible correction to FSS is negligi
small on the extraction of thermodynamic values. For
each value ofJ8 the thermodynamic values of the correlatio
length are evaluated over the ranges 5.7(1)<j<204(2)
@5.7~1!, 204~2!#, @5.8~1!, 217~3!#, and @5.0~1!, 203~5!#. For
the J850.05 the thermodynamic data were obtained by
rect measurement under the thermodynamic conditionL/jL
>12, which is over the range 5.52(2)<j<47.64(29).

In Fig. 3, lnj(t) is plotted as a function ofu ln tu. The slope
of each straight line corresponds to the value ofn. It is
evident thatn increases with decreasingJ8, at least, effec-
tively. Fixing the critical points at the self-dual points in th
x2 fits and assuming a pure power-law-type critical behav
we obtainn51.01(1),1.10(2),1.20(3), and1.34~6!, for J8
50.9, 0.25, 0.1, and 0.05, respectively. Assuming a sca
function with an additive correction term, e.g.,j(t);t2n(1
1at), yields the estimate of the critical exponent, e.g.,n
51.08(4) andn51.17(5) forJ850.25 andJ850.1, respec-
tively. Notice that forJ850.9 the estimated value ofn is
virtually the same as that in the pure system.

By fitting our data to Eq.~2!, it is found that the data can
be fitted with a quite broad range of values ofC andñ. With
the use of the asymptotic form, Eq.~5!, in the fit, we can get
more precise estimate ofñ than with Eq.~2!. The problem
associated with this fit is that one does not knowa priori
whether all the data are beyond the crossover point. Fo
comparison with the result of Ref. 12 we quote here o
estimates ofñ obtained by fitting our data to Eq.~5!: that is,
ñ50.03(3),0.32(3),0.54(3), and 0.69~6!, respectively, for
J850.9,0.25,0.1, and 0.05. The value ofñ increases mono-
tonically with decreasingJ8.

A useful observation is that@11Cu ln(t)u#ñ(C,ñ.0) is less

singular than u lntuñ for any range of t.0. Thus the
asymptotic singularity, Eq.~5!, is alwaysmoresingular than
the mixture of the singularities, Eq.~2!, in the sense of Eq
~6!. Accordingly, if thermodynamic correlation length da

s

FIG. 3. lnj versusu ln tu. The dotted lines represent the results
the bestx2 fits assuming a pure power-law-type singularity. T
values of the slope, which correspond to the values ofn, are 1.00,
1.10, 1.20, and 1.34, respectively, forJ850.90, 0.25, 0.10, and
0.05.
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turn out to bemoresingular than the asymptotic singulari
in an arbitrary portionof the scaling region, then the predic
tion of SSL must be invalidated.

In Fig. 4 is plottedj(t)/(t21u ln tu0.5) for J850.25, 0.1,
and 0.05. It is observed that the value of the ratio decrea
monotonically for J850.25 until the temperature is ver
close to criticality, but starts to increase with further a
proaching to the criticality. This is surprising in view of th
picture of SSL, because the figure shows that none of
data are either in the asymptotic region or in the scal
region of the pure system. In the case ofJ850.1, we find
that the data less close to the criticality are consistent w
the prediction of SSL, but start to deviate from it ast→0. In
the case ofJ850.05, we observe that all the data aremore
singular than the asymptotic form. We are thus to led
picture that the apparent consistency with the logarithm
correction for weak disorder starts to become invalidated
the sufficiently deep scaling region.

The binder cumulant ratio at criticality, denoted b
UL

(4)(t50), is another universal quantity.20,21For eachJ8 we
measured it at the critical point with varyingL ~Table I!. It is
observed thatUL

(4)(t50) is invariant withL within the sta-
tistical errors for a givenJ8, and that it tends to increas
uniformly with decreasingJ8. For J850.25, it is obvious
that the value up toL5400 is different from the exact valu
at criticality of the pure system, i.e.,UL51.832 077 1(47).22

TheUL for L520 is supposed to represent the characteris
of the pure system@a smaller value ofL at criticality corre-
sponds to a smaller value ofj(t) in the scaling region#, if the
scenario of the crossover is indeed correct. However,UL
51.850(3) atL520 of J850.25 is clearly different from the

FIG. 4. The ratioj(t)/(t21u lntu1/2) for J850.25, 0.1, and 0.05
The data forJ850.1 and 0.05 are uniformly shifted so that th
difference in the data points is clearly visible in a single figu
Here the increasing value of the ratio ast becomes smaller is evi
dence that the data over the region are inconsistent with the pre
tion of SSL. The tendency of the increasing ratio witht becoming
sufficiently small is observed forJ850.25 and 0.1, showing that th
apparent consistency with the logarithmic correction of SSL for
larger values oft tends to become invalidated in the sufficient
deep scaling region. In the case ofJ850.05, all the data scalemore
steep than the asymptotic scaling, showing that SSL cannot be
rect for any data in the scaling region for thisJ8.
es
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e
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e
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value of the pure system. The value forJ850.9 is indistin-
guishable from the pure case, as is observed to be the
for the scaling functionQj for this J8.

IV. DISCUSSION AND CONCLUSION

We have obtained unambiguous numerical evidence
FSS holds for a quenched randomly coupled Ising ferrom
net employing a different method from that used in Ref. 2
It was noticed in Ref. 17 that the data collapse in the pr
ence of the logarithmic correction was not so good as in
absence of it. In our system, however, we found excell
data collapse. The universal FSS function is found to
dependent upon the strength of disorder for strongly dis
dered cases. We also have shown thatj is moresingular than
the theoretical prediction for the data sufficiently close
criticality or for very strongly disordered cases.

The behavior of the Binder cumulant ratio does not sh
any sign of crossover. If one speculates that the value ofUL
up to L5400 forJ850.25 does not represent the asympto
scaling region yet, then it would be puzzling why all th
previous FSS studies ofxL at criticality, with the use of more
or less similar ranges ofL, unambiguously have yieldedh
50.25.6,8,25 Otherwise, if this value of theh reflects the
crossover region, it is still puzzling~i! why the value ofUL
does not change over such a broad range ofL and ~ii ! why
the value ofUL representing the pure system is not observ
Hence, the only feasible interpretation seems to be that
values ofUL for eachJ8 is already asymptotic and represen
a different universality class.

Our result of varying exponentn combined with the es-
tablished fact of the invariance ofg/n supports the scenario
of weak universality.3 The same numerical evidence was al
obtained for the 2D randomly coupled three-state Po
ferromagnet.24

A very strong claim for the evidence for the SSL made
a recent high-temperature expansion study of the sa
model12 is actually misleading. What the authors of the pap
observe is the monotonic increase of the effective value og
with the strength of disorder. On the other hand, th
claimed that the same data fitted to theasymptoticform of
SSL give rise to the same value of the logarithmic expon

TABLE I. Binder cumulant ratio at the self-dual points for thre
values ofJ8. Note thatUL(t50) for eachJ8 does not vary withL
within the statistical errors, thus showing that each self-dual poin
indeed the critical point. It is also clear thatUL(t50) increases
with decreasingJ8, although forJ850.9 it is hardly distinguishable
from the value of the pure system. ForJ850.25 we extended the
measurements up toL5400, which does not show any sign o
crossover.

L J851.00 J850.90 J850.25 J850.10

20 1.8324~6! 1.834~1! 1.850~3! 1.864~2!

40 1.8321~6! 1.833~2! 1.846~3! 1.856~3!

60 1.8317~5! 1.832~1! 1.852~3! 1.854~3!

80 1.8318~5! 1.833~1! 1.847~3! 1.860~3!

100 1.8316~6! 1.832~2! 1.849~3! 1.863~2!

200 1.844~3!

400 1.845~2!
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as predicted by SSL irrespective of the strength of the dis
der. This is unlikely to be mathematically correct because
effective increase ofg leads to the effective increase of th
logarithmic exponent, as shown in this work and as can
easily checked by a simple numerical experiment as we26

In light of relatively short series terms,12 it appears to be
unlikely that the series expansion analysis is able to mak
sharp estimate ofñ using Eq.~2!.

One may also suspect that there possibly exists s
subtle effect coming from the binary distribution ofJi j . In-
deed, thep51/2 corresponds to the bond percolation thre
old. Although one may not rule out the possibility, it appea
to be unfeasible for the following reasons:~i! If there exists
such an effect, then it must be independent of the value oJ8
since our distribution ofJ8 is at the percolation threshold fo
all the values ofJ8 considered here. ForJ850.9, however,
we see that the critical behavior is virtually the same as
-

.

ko
,

e

r-
e

e

a

e

-
s

at

of the pure system. To make it extreme, one can make
value ofJ8 arbitrarily close to 1~but different from 1! with a
50% random distribution ofJ8. The system is still at the
bond percolating threshold, but physically the system m
be identical to the pure system.~ii ! The averaging process i
fundamentally different from that of the percolation proble
Moreover, our case does not have any parameters contro
the percolation problem.
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