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Scaling and finite-size scaling in the two-dimensional randomly coupled Ising ferromagnet
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It is shown by the Monte Carlo method that finite-size scallf§9 holds in the two-dimensional randomly
coupled Ising ferromagnet. It is also demonstrated that the form of the universal FSS function constructed via
a FSS scheme depends on the strength of the random coupling in the case of strongly disordered systems.
Monte Carlo measurements of thermodynaimdinite-volume-limit) data of the correlation lengthé) up to
£=200 along with measurements of the fourth-order cumulant (&ioder cumulant ratipat criticality are
analyzed in light of two competing scenarios of weak universality and the multiplicative logarithmic correc-
tion. It is demonstrated that the data are likely to be more consistent with the former scenario than the latter
which is the conventional scenario.

I. INTRODUCTION Equations(2)—(4) reflect the presence of the crossover
from the critical behavior of the pure system to that repre-
The two-dimensional2D) randomly disordered Ising fer- sented by the disorder, namely, e.g., for ghehat given by
romagnet is the simplest nontrivial statistical model that exthe asymptotic form
hibits the effect of another type of fluctuation in addition to -
the usual thermal fluctuation. By disorder is meant either a E~t7|In(t)]". (5)
random site dilution or random-valued positive coupling in . . e
this case. The effect of the combined fluctuations of the ther- NOW it appears to be numerically establlsﬁelath.at the
mal and quenchettandon) disorder on the critical behavior Vvalue of » does not depend on the strength of disorder in
of the system has been an important subject of the studie80th 2D randomly coupled and random site diluted Ising

The two-dimensional randomly couplédr random bong ferromagnets. Another generic feature emerging from vari-
Ising ferromagnet is defined by the Hamiltonian ous numerical studi€s®*is that other critical exponents

such asy andv increase with the strength of disorder at least
effectively. These apparently varying critical exponents were
H= _<i2> JiSS, J;=0, §==1, oy interpreted as originating from the crossover effect of Egs.
. (2)—(4) by some author&t*2while they were regarded as
where the sum is over all the links of the square lattice, andjenuine by other®?®
Jij is randomly distributed. For later purposes, we here would like to make some

According to a rigorous result by McCoy and Wahe  nomenclature clear. Suppose we have two singular functions
specific heat C,) is nondivergent in a 2D Ising system with att=0, say,f(t) andg(t). Then we say thaf(t) is more
one-directional and correlated random bond disorder. Asingular tharg(t) over the range between andt, such that
similar feature as in the McCoy-Wu model was obtained foro<t,<t<t,<1 if
the 2D Ising ferromagnet for uncorrelated disorder as tell.

There are currently two main competing scenarios con- [T(t)/f(t)|>]g(t)/g(tr)]. (6)
cerning the critical behavior of the 2D uncorrelated ran-
domly disordered Ising ferromagnet: namely, the scenario o
the weak universalify and that of the logarithmic
correction*® The latter is mainly based on the theoretical
prediction of Shalaev, Shankar, and Ludwi§SL), which
can be summerized as

therwise, of coursd(t) is lessthan or equally singular to
(1).

t~* for any p>0 is essentiallynore singular thatfint| in
the sense that with(t) =t ~* andg(t) =|In t| Eq. (6) is math-
ematically valid for sufficiently small values of thg andt,.
However, it is extremely difficult to determineumerically
whether or not Eq(6) is indeed satisfied unless precise nu-

e~ L+ Clin[), v=1, v=1/2, @ merical values off (t) andg(t) at very smallt; andt, are
Co~tIn|1+ClIn(t)|[+C’, 3 avallaple. This is a fundamental d|ff|cglty encountered in a
v | [In(ol ® numerical study no matter whether it is a Monte Carlo or a
Y~ p=1/4 4) series expansion. In other words, one needs to get thermody-

namic data very close to a critical point or an extremely long
wheret is the reduced temperature=(8.— 8)/B., with 8 series expansion. It should be emphasized that the conven-
denoting the inverse temperatlirend y is the thermody- tional, finite-size-scalingFS9 technique that is used to ana-
namic magnetic susceptibility. The coefficie@sandC’ as lyze Monte Carlo data obtained at criticality—the sort of
a function of the strength of disorder cannot be determinedtudies that mostly claimed evidence for the predictions of
theoretically, althoughC is supposed to increase with the SSL(Ref. 1)—cannot overcome this difficulty either, owing
strength of disorder. to the well-known fact that the correlation length in the scal-
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ing region translates into the linear size of the latticat UL:[3_<S4>/<SZ>2]J’1 (10
criticality. (For a critique of the most claims made in Refs.
11 and 12, see Ref. 13. where(---),[---]y, andG(k), respectively, represent the

In this paper we attempt to clarify the controversial issueusual thermal average, the average over different realizations
of the 2D randomly coupled Ising ferromagnet based on dif-of J’, and the Fourier transform of the connected two-point
ferent numerical methods from those used previously. FirsGreen function with momenturk. (See, for example, Ref.
we determine the functional form of an universal FSS func-15 for more details of the definition af .)
tion Q defined by**® To achieve the necessary precision for our FSS scheme

we used a number of different realizations: approximately

AL =AM Qax(L,1), x(LH=&M®/L. (7)) 20-40, 150-250, and 3001000 fdr=0.9,0.25, and 0.1,
To this end it is needed to check the validity of E@), i.e.,  fespectively; yet, in general, the fluctuation among different
the validity of FSS itself in a disordered system. Given thef€alizations of the random disorder is more significant than
strength of disorder, this can be achieved by numericallyhe statistical error for a given realization. This was particu-
calculating the scaling functio®,(x) at different tempera- 1arly the case forJ’=0.1. Nevertheless, the average over
tures close to criticality; if the scaling functions thus calcu-different realizations clearly converges to a physically mean-
lated turn out to be identical, then the FSS must hold in oufngful value. Our quoted error bars in our numerics are ob-
system. Accordingly, if the disordered system does indeeéfined by the standard jackknife method and taking into con-
belong to the same universality class as the correspondingjderation only the variation with different realizations. The
pure system, the FSS functions calculated for differenfMallest and largest values bfused for the calculation of
strength of disorder must be identical to that of the purehe scaling function are 20 and 400, respectively.Jor
system. We will show that this is not the case. Second, we=0.05 it turns out that data of very largeare not necessary,
will demonstrate that the thermodynamic dataéGh a suf- ~ but yield compelling results with the data even #%50.
ficiently deep scaling region tend to Imeore singular than ~ Thus the FSS extrapolation method is not used for Jhis
the asymptotic expression of SSL, E&). Third, we will ~and 250-500 different realizations of distributionJfturn
show that measured value of Binder cumulant ratio at criti-out to be sufficient.
cality depend on the strength of disorder. Determination ofA, and of the size dependence Af

In the sections to follow we give a detailed description ofUponL,A, , is essential to the computation @f, . The mea-
our Monte Carlo simulation, report our results, and finallysurements of the correlation length must be taken into con-

conclude with some discussions. sideration for the computation of the scaling variakld-or
simplicity of our presentation, here we mainly focus on the
Il. SIMULATION correlation length. For eaclf, we chose three different in-

_ _ o verse temperaturgsvhere the value of thermodynamicis
We consider a binary distribution ofi;. Namely, the sufficiently large for the computations of the scaling vari-
value of J; at a link (ij) is randomly distributed between able and the scaling function.
two positive values) andJ’ with probabilitiesp and 1-p,
respectlvely'. Fom=1/2 the system is self-du8lwith the . RESULT AND ANALYSIS
self-dual point given by
B , The Q,(x) is calculated fod’=0.9,0.25, and 0.1. To this
tanh(JB) =exp(—23'B). (8 end, an investigation of the dependence of is carried out
A self-dual point equals the critical point of a system, pro-for various sets of the value_s al'(B) It is observed thaf
vided that the system has only one critical point. WeJix is @ monotonically increasing function &f and that thel.
=1 andp= 1/2 without loss of generality and consider three dependence becomes weaker with increakiagd becomes
different values of’, i.e.,J’=0.9, 0.25, and 0.1. The self- vanishingly small for sufficiently large L, i.e., under the con-
dual points (critical pointy are accordingly given by,  dition L/& =10 (thermodynamic condition TheL indepen-

=0.4642819...,0.8070518 ..., and 1.1038953. .. dent value within the statistical errors is the corresponding

for J’=0.9, 0.25, and 0.1, respectively. thermodynamic value. Owing to E¢r) the thermodynamic
Our raw data for eacl’ are obtained by choosing a re- condition holds independent of temperature.

alization of random distribution ofi’, and then running The plots ofQ(x) for the three values g8 in the scaling

Monte Carlo simulations in the single cluster algoritim region are shown in Fig.1 fal’=0.25. Clearly, each set of
with periodic boundary conditions; for each realization, mea-data belonging to different value g8 superposes onto a
surements were taken over 10000 configurations, each &fingle curve that is the universal FSS function for the value
which was separated by 2—15 single-cluster updatings a®f J’. In particular, down toL=20 we observe no visible
cording to the autocorrelation times. The procedure is theffect that may possibly come from any kind of correction to
repeated for different realizations of distribution Bf. The  scaling. Thus the validity of the FSS is verified for the
average over all the different realizations converges as th@own to thisL. We repeated the same procedure for the other
numbers of the random realization increase; basically thigwo values of)’ and observed a similar data collapse. For
means that the value of a physical quantity is somethingomparison, the FSS function for eathis shown in Fig. 2.
physically interesting. To be more specific, our definitions oflt is observed that the FSS function faf=0.9 is indistin-
& andU, are as follows: guishable from that of the corresponding pure system that
has been calculated in Ref. 15. However, for stronger disor-
& =[VG(0)/G(k)—1/2sin=/L)]y, (9)  der the FSS scaling function clearly dependslon
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FIG. 1. Numerical calculation of, for J'=0.25 and at three FIG. 3. Inf versus|Int|. The dotted lines represent the results of

arbitrary inverse temperatug@=0.74, 0.77, and 0.79 in the scaling the besty? fits assuming a pure power-law-type singularity. The
region. Our figure clearly indicates that the scaling function doesalues of the slope, which correspond to the values,ddire 1.00,
not have explicit temperature dependence. For each valge thfe  1.10, 1.20, and 1.34, respectively, fat=0.90, 0.25, 0.10, and
smallest value of used is 20. Note that smallermeans largexk. 0.05.

Down toL =20, the effect of the possible logarithmic correction is

not observed. tion we always use data with=50; we are thus confident
that the effect of a possible correction to FSS is negligibly
The ansatz for our scaling function is small on the extraction of thermodynamic values. For the
each value 09’ the thermodynamic values of the correlation
Qe(X) =1+ Cyx+Cox*+ Cax>+ %™, (1D length are evaluated over the ranges 5.%E¥x204(2)

The values of the coefficients(i=1, . . . ,4) arecalculated  [5-7(1), 2042)], [5.8(1), 21713)], and[5.0(1), 2035)]. For
by fitting our data to the ansatz for each valueJof The theJ'=0.05 the thermodynamic data were obtained by di-
choice of the ansatz for the scaling function is not so impor/€ct measurement under the thermodynamic conditiah
tant. We tried several different forms of ansatz such as>12. which is over the range 5.52(2f<47.64(29).

04(x) =3"=30,exp(-n/x) (Ref. 19 and Qu(x) =1+ b,x"2 In Fig. 3, Ing(t) is plotted as a function dint|. The slope
+b4xP4, but the results were not significantly sensitive to the®f €ach straight line corresponds to the valueroflt is
choice of different forms of ansatz. evident thatv increases with decreasinj, at least, effec-

The thermodynamic correlation lengths are measured giively. Fixing the critical points at the self-dual points in the

rectly (without using any extrapolation methofbr the data x* fits and assuming a pure power-law-type critical beh?vior,
roughly over the rangé=40. With knowledge of the scal- W€ obtainy=1.01(1),1.1q2),1.203), and1.346), for J*
ing function available, the thermodynamic values closer to=9-9 0.25, 0.1, and 0.05, respectively. Assuming a scaling
criticality can now be easily estimated by the use of thefunction with an additive correction term, e.g(t)~t"(1

single-step FSS extrapolation methdd® For the extrapola- +21), yields the estimate of the critical exponent, e.,
=1.08(4) andv=1.17(5) forJ'=0.25 and)’ =0.1, respec-

12 ‘ ‘ \ tively. Notice that forJ’=0.9 the estimated value of is
virtually the same as that in the pure system.

By fitting our data to Eq(2), it is found that the data can
be fitted with a quite broad range of values®andv. With
the use of the asymptotic form, E@), in the fit, we can get
more precise estimate of than with Eq.(2). The problem
associated with this fit is that one does not knawpriori

0.8

g’ 06 - whether all the data are beyond the crossover point. For a
o comparison with the result of Ref. 12 we quote here our
oa L estimates ob obtained by fitting our data to E¢5): that is,

CI 7=0.033),0.323),0.543), and0.696), respectively, for
J'=0.9,0.25,0.1, and 0.05. The value @fincreases mono-
tonically with decreasing’. ~
‘ ‘ ‘ A useful observation is thdtl + C|In(®)|](C,»>0) is less
0 02 0.4 08 08 singular than [Int]” for any range of t>0. Thus the
X . . . . .
asymptotic singularity, Eq5), is alwaysmoresingular than

FIG. 2. TheQg(x) for the three values of’. The dependence of the mixture of the singularities, E2), in the sense of Eq.

the scaling function od’ is obvious. (6). Accordingly, if thermodynamic correlation length data

02
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14 ‘ : TABLE I. Binder cumulant ratio at the self-dual points for three
values of)’. Note thatU, (t=0) for eachJ’ does not vary with_
within the statistical errors, thus showing that each self-dual point is
indeed the critical point. It is also clear thil (t=0) increases
with decreasing’, although ford’=0.9 it is hardly distinguishable
from the value of the pure system. Far=0.25 we extended the
measurements up tb=400, which does not show any sign of
crossover.
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FIG. 4. The ratio(t)/(t~*|Int|¥?) for J’=0.25, 0.1, and 0.05.
The data forJ’=0.1 and 0.05 are uniformly shifted so that the
difference in the data points is clearly visible in a single figure.value of the pure system. The value fbr=0.9 is indistin-
Here the increasing value of the ratio abecomes smaller is evi- guishable from the pure case, as is observed to be the case
dence that the data over the region are inconsistent with the predidor the scaling functiorQ, for this J’.
tion of SSL. The tendency of the increasing ratio withecoming
sufficiently small is observed fa' =0.25 and 0.1, showing that the IV. DISCUSSION AND CONCLUSION
apparent consistency with the logarithmic correction of SSL for the
larger values oft tends to become invalidated in the sufficientty ~ We have obtained unambiguous numerical evidence that
deep scaling region. In the caseXf=0.05, all the data scalmore FSS holds for a quenched randomly coupled Ising ferromag-
steep than the asymptotic scaling, showing that SSL cannot be cofret employing a different method from that used in Ref. 23.
rect for any data in the scaling region for this. It was noticed in Ref. 17 that the data collapse in the pres-

ence of the logarithmic correction was not so good as in the
turn out to bemoressingular than the asymptotic singularity apsence of it. In our system, however, we found excellent
in an arbitrary portionof the scaling region, then the predic- data collapse. The universal FSS function is found to be
tion of SSL must be invalidated. dependent upon the strength of disorder for strongly disor-

In Fig. 4 is plotted£(t)/(t™YInt/>9) for J’=0.25, 0.1,  dered cases. We also have shown thistmoresingular than
and 0.05. It is observed that the value of the ratio decreasege theoretical prediction for the data sufficiently close to
monotonically forJ’'=0.25 until the temperature is very criticality or for very strongly disordered cases.
close to criticality, but starts to increase with further ap-  The behavior of the Binder cumulant ratio does not show
proaching to the criticality. This is surprising in view of the any sign of crossover. If one speculates that the valug,of
picture of SSL, because the figure shows that none of thgp to L=400 forJ’ =0.25 does not represent the asymptotic
data are either in the asymptotic region or in the Scalin%caling region yet, then it would be puzz”ng Why all the
region of the pure system. In the caseJét=0.1, we find  previous FSS studies af, at criticality, with the use of more

that the data less close to the criticality are consistent withyy |ess similar ranges df, unambiguously have yieldeg
the prediction of SSL, but start to deviate from ittas0. In =0.2558% Otherwise, if this value of they reflects the

the case of)’=0.05, we observe that all the data anere  crossover region, it is still puzzling) why the value ofU,

singular than the asymptotic form. We are thus to led thejoes not change over such a broad range ahd (i) why
picture that the apparent consistency with the logarithmighe value ofU, representing the pure system is not observed.
correction for weak disorder starts to become invalidated injence, the only feasible interpretation seems to be that the

the sufficiently deep scaling region. values ofU, for eachJ’ is already asymptotic and represents
The binder cumulant ratio at criticality, denoted by g different universality class.
U{*(t=0), is another universal quantit§}** For each)’ we Our result of varying exponeni combined with the es-

measured it at the critical point with varyiig(Table )). Itis  taplished fact of the invariance of v supports the scenario
observed that{*)(t=0) is invariant withL within the sta-  of weak universality The same numerical evidence was also
tistical errors for a given)’, and that it tends to increase obtained for the 2D randomly coupled three-state Potts
uniformly with decreasing)’. For J'=0.25, it is obvious ferromagne®?

that the value up td. =400 is different from the exact value A very strong claim for the evidence for the SSL made in
at criticality of the pure system, i.eJ, =1.8320771(47%%> a recent high-temperature expansion study of the same
TheU, for L= 20 is supposed to represent the characteristicenodel? is actually misleading. What the authors of the paper
of the pure systerfia smaller value ot at criticality corre-  observe is the monotonic increase of the effective valug of
sponds to a smaller value éft) in the scaling regioh ifthe  with the strength of disorder. On the other hand, they
scenario of the crossover is indeed correct. Howelkr, claimed that the same data fitted to th®ymptoticform of
=1.850(3) al.=20 of 3’ =0.25 is clearly different from the SSL give rise to the same value of the logarithmic exponent
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as predicted by SSL irrespective of the strength of the disoref the pure system. To make it extreme, one can make the
der. This is unlikely to be mathematically correct because thealue ofJ’ arbitrarily close to 1but different from } with a
effective increase of leads to the effective increase of the 50% random distribution of’. The system is still at the
logarithmic exponent, as shown in this work and as can béond percolating threshold, but physically the system must
easily checked by a simple numerical experiment as %Rell. be identical to the pure systetii) The averaging process is

In light of relatively short series terntd,it appears to be fundamentally different from that of the percolation problem.
unlikely that the series expansion analysis is able to make Bloreover, our case does not have any parameters controlling

sharp estimate of using Eq.(2). the percolation problem.

One may also suspect that there possibly exists some
subtle effect coming from the binary distribution &f . In-
deed, thep=1/2 corresponds to the bond percolation thresh-
old. Although one may not rule out the possibility, it appears We would like to thank Professor Iksoo Chang, Professor
to be unfeasible for the following reason®: If there exists B. Chan Eu, Professor Walter Selke, Professor Alan Sokal,
such an effect, then it must be independent of the valuE of Professor Peter Young, and Professor Chung-In Um for help-
since our distribution 08’ is at the percolation threshold for ful comments. The major part of the computer simulations
all the values ofl’ considered here. FaI' =0.9, however, for this study were carried out by the CRAY-T3E of the
we see that the critical behavior is virtually the same as thaBuper Computer Center at ETRI.
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